JP2020084799A - Fluid machine, seal member and method for modifying fluid machine - Google Patents

Fluid machine, seal member and method for modifying fluid machine Download PDF

Info

Publication number
JP2020084799A
JP2020084799A JP2018215916A JP2018215916A JP2020084799A JP 2020084799 A JP2020084799 A JP 2020084799A JP 2018215916 A JP2018215916 A JP 2018215916A JP 2018215916 A JP2018215916 A JP 2018215916A JP 2020084799 A JP2020084799 A JP 2020084799A
Authority
JP
Japan
Prior art keywords
groove
gap
damming
wall portion
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018215916A
Other languages
Japanese (ja)
Other versions
JP7185503B2 (en
Inventor
峻浩 中島
Takahiro Nakashima
峻浩 中島
秀之 川尻
Hideyuki Kawajiri
秀之 川尻
貞男 黒澤
Sadao Kurosawa
貞男 黒澤
中村 高紀
Takanori Nakamura
高紀 中村
夕介 佐藤
Yusuke Sato
夕介 佐藤
武士 井戸本
Takeshi Idomoto
武士 井戸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018215916A priority Critical patent/JP7185503B2/en
Publication of JP2020084799A publication Critical patent/JP2020084799A/en
Application granted granted Critical
Publication of JP7185503B2 publication Critical patent/JP7185503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

To provide a fluid machine that has improved seal effect with respect to the fluid passing between a rotary member and a stationary member and can effectively suppress leakage losses.SOLUTION: A fluid machine includes: a runner 2 rotating with pressure of a water flow; and a seal liner 21 covering the runner 2. The seal liner 21 includes: a groove 22 extending in a circumferential direction; and a damming part 23 positioned so as to be partially buried in the groove 22.SELECTED DRAWING: Figure 1

Description

本発明の実施の形態は、流体機械、シール部材及び流体機械の改修方法に関する。 Embodiments of the present invention relate to a fluid machine, a seal member, and a method of repairing a fluid machine.

水力発電等に用いられる流体機械には、回転部材であるランナと、ランナを覆う静止部材である上カバー及び下カバーとを有するものがある。このような流体機械では、ランナと上カバーとの間に背圧室と呼ばれる空間が形成され、ランナと下カバーとの間に側圧室と呼ばれる空間が形成される。 Some fluid machines used for hydroelectric power generation have a runner that is a rotating member, and an upper cover and a lower cover that are stationary members that cover the runner. In such a fluid machine, a space called a back pressure chamber is formed between the runner and the upper cover, and a space called a side pressure chamber is formed between the runner and the lower cover.

ランナは、そのランナ羽根で水流の圧力を受けることにより回転し、水力発電のための動力を生成する。ところが、このような運転の際、ランナを通過することなく上述した背圧室や側圧室を通過する水流が存在する。 The runner rotates by receiving the pressure of the water flow at its runner blades, and generates power for hydroelectric power generation. However, during such an operation, there is a water flow that passes through the back pressure chamber and the side pressure chamber without passing through the runner.

ランナを通過しない水流はランナ羽根に流体力を与えないため、背圧室や側圧室を通過する水流の流量が多くなるほど、流体機械の効率は低下する。このように背圧室や側圧室を流れる水流は一般に、漏れ流れと呼ばれ、漏れ流れによって発生する損失は一般に、漏れ損失と呼ばれる。 Since the water flow that does not pass through the runner does not exert a fluid force on the runner blade, the efficiency of the fluid machine decreases as the flow rate of the water flow that passes through the back pressure chamber and the side pressure chamber increases. The water flow thus flowing through the back pressure chamber and the side pressure chamber is generally called a leakage flow, and the loss caused by the leakage flow is generally called a leakage loss.

漏れ損失を抑制するための技術には様々なものがあり、例えばランナと静止部材との間に構造上許される寸法の範囲内で微小隙間を形成し、当該微小隙間によって漏れ流れの通流を抑制するシール構造や、静止部材側のシール面に矩形やねじ山形の突起を形成して隙間を絞るシール構造が知られている。 There are various techniques for suppressing the leakage loss. For example, a minute gap is formed between the runner and the stationary member within a structurally allowable size range, and the minute gap allows the leakage flow to flow. There are known seal structures for suppressing and seal structures for forming a rectangular or thread-shaped protrusion on the seal surface on the stationary member side to narrow the gap.

また、互いに対向する回転部材の壁部又は静止部材の壁部に周方向の溝を形成するシール構造も知られている。このシール構造では、溝によって隙間の流路面積が拡大及び縮小することにより、漏れ流れが減速された後にすぐさま加速され、衝突や壁面との摩擦等によりシール効果を得ることができる。 A seal structure is also known in which a circumferential groove is formed in the wall portion of the rotating member or the wall portion of the stationary member facing each other. In this seal structure, the flow passage area of the gap is expanded and contracted by the groove, whereby the leak flow is decelerated and then immediately accelerated, and a sealing effect can be obtained by collision, friction with the wall surface, or the like.

実公昭54―53145号公報Japanese Utility Model Publication No. 54-53145 特許第5835687号公報Japanese Patent No. 5835687

ところで、回転部材と静止部材との間の隙間を流れる漏れ流れは、回転部材との摩擦により、隙間内を通過する際に大きな周方向速度成分を持つことになる。上述した回転部材の壁部又は静止部材の壁部に周方向の溝を形成するシール構造は漏れ流れの軸方向速度成分に対する減速を効果的に行うことは可能であるが、周方向速度成分に対する減速に関しては改善の余地がある。 By the way, the leakage flow flowing through the gap between the rotating member and the stationary member has a large circumferential velocity component when passing through the gap due to friction with the rotating member. Although the above-described seal structure in which the circumferential groove is formed in the wall portion of the rotating member or the wall portion of the stationary member can effectively reduce the axial velocity component of the leakage flow, it can reduce the circumferential velocity component. There is room for improvement regarding deceleration.

本発明は上記実情を考慮してなされたものであり、回転部材と静止部材との間を通過する流体に対するシール効果を向上させ、漏れ損失を効果的に抑制できる流体機械、シール部材及び流体機械の改修方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and a fluid machine, a seal member, and a fluid machine capable of improving a sealing effect on a fluid passing between a rotating member and a stationary member and effectively suppressing a leakage loss. The purpose is to provide a repair method.

一実施の形態に係る流体機械は、流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備える。互いに対向する前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、周方向に延びる溝と、前記溝を部分的に埋めるように位置する堰き止め部と、を有する。 A fluid machine according to one embodiment includes a rotating member that rotates by the pressure of a fluid, and a stationary member that covers the rotating member. At least one of the wall portion of the rotating member and the wall portion of the stationary member facing each other has a groove extending in the circumferential direction, and a damming portion positioned so as to partially fill the groove. ..

一実施の形態に係る流体機械は、流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備える。互いに対向する前記回転部材の壁部及び前記静止部材の壁部との間には、第1の隙間と、前記第1の隙間に対し径方向及び軸方向の両方に離れた第2の隙間と、前記第1の隙間及び前記第2の隙間の間に位置して前記第1の隙間及び前記第2の隙間の両方と折れ曲がり形状をなすように結合する第3の隙間と、が形成されている。そして、前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、前記第3の隙間を部分的に埋めるように位置する堰き止め部を有する。 A fluid machine according to one embodiment includes a rotating member that rotates by the pressure of a fluid, and a stationary member that covers the rotating member. Between the wall portion of the rotating member and the wall portion of the stationary member that face each other, a first gap and a second gap that is separated from the first gap in both the radial direction and the axial direction. A third gap that is located between the first gap and the second gap and that is connected to both the first gap and the second gap so as to form a bent shape is formed. There is. At least one of the wall portion of the rotating member and the wall portion of the stationary member has a damming portion positioned so as to partially fill the third gap.

一実施の形態に係るシール部材は、流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備え、互いに対向する前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、周方向に延びる溝を有する流体機械に用いられるシール部材である。当該シール部材は、前記溝の内部に配置され、前記溝を部分的に埋めるように設けられる。 A seal member according to an embodiment includes a rotating member that rotates by the pressure of a fluid, and a stationary member that covers the rotating member, and includes a wall portion of the rotating member and a wall portion of the stationary member that face each other. At least one of the two is a seal member used in a fluid machine having a groove extending in the circumferential direction. The seal member is arranged inside the groove and provided so as to partially fill the groove.

一実施の形態に係る流体機械の改修方法は、流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備え、互いに対向する前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、周方向に延びる溝を有する流体機械の改修方法である。当該改修方法は、堰き止め部を準備する工程と、前記溝の内部に、前記溝を部分的に埋めるように前記堰き止め部を設ける工程と、を備える。 A method for repairing a fluid machine according to an embodiment includes a rotating member that rotates by the pressure of a fluid, and a stationary member that covers the rotating member, and a wall portion of the rotating member and a wall of the stationary member that face each other. At least one of the parts is a method of repairing a fluid machine having a groove extending in the circumferential direction. The repairing method includes a step of preparing a damming portion and a step of providing the damming portion inside the groove so as to partially fill the groove.

本発明によれば、回転部材と静止部材との間を通過する流体に対するシール効果を向上させ、漏れ損失を効果的に抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing effect with respect to the fluid which passes between a rotating member and a stationary member is improved, and a leakage loss can be suppressed effectively.

第1の実施の形態に係る流体機械としてのフランシス形水車の子午断面図である。It is a meridian sectional view of the Francis type water turbine as a fluid machine which concerns on 1st Embodiment. 第1の実施の形態に係るフランシス形水車のランナと下カバーとの間に形成されるシール構造の拡大子午断面図である。It is an enlarged meridian sectional view of the seal structure formed between the runner and the lower cover of the Francis turbine according to the first embodiment. 第1の実施の形態におけるシール構造を構成する下カバー側の部分を図2の矢印IIIの方向に見た際の概略図である。FIG. 3 is a schematic view of a lower cover side portion that constitutes the seal structure in the first embodiment, as viewed in a direction of an arrow III in FIG. 2. (A)は、第2の実施の形態に係る流体機械を説明する図であって、そのシール構造を構成する下カバー側の部分を図2の矢印IIIの方向と同様の方向に見た際の概略図であり、(B)及び(C)は、変形例を示す図である。(A) is a figure explaining the fluid machine which concerns on 2nd Embodiment, Comprising: When the lower cover side part which comprises the sealing structure is seen in the same direction as the direction of the arrow III of FIG. FIG. 4B is a schematic diagram of FIG. 4B, and FIGS. 第3の実施の形態に係る流体機械を説明する図であって、そのシール構造を構成する下カバー側の部分を図2の矢印IIIの方向と同様の方向に見た際の概略図である。It is a figure explaining the fluid machine which concerns on 3rd Embodiment, Comprising: It is the schematic when the lower cover side part which comprises the sealing structure is seen in the same direction as the direction of the arrow III of FIG. .. 第4の実施の形態に係る流体機械を説明する図であって、そのシール構造を構成する下カバー側の部分を図2の矢印IIIの方向と同様の方向に見た際の概略図である。It is a figure explaining the fluid machine which concerns on 4th Embodiment, Comprising: It is the schematic when the part by the side of the lower cover which comprises the sealing structure is seen in the same direction as the direction of the arrow III of FIG. .. 第5の実施の形態に係る流体機械を説明する図であって、そのシール構造を構成する下カバー側の部分を図2の矢印IIIの方向と同様の方向に見た際の概略図である。It is a figure explaining the fluid machine which concerns on 5th Embodiment, Comprising: It is the schematic when the part by the side of the lower cover which comprises the sealing structure is seen in the same direction as the direction of the arrow III of FIG. .. 図7のVIII−VIII線に沿う断面図である。It is sectional drawing which follows the VIII-VIII line of FIG. 第6の実施の形態に係る流体機械を説明する図であって、そのシール構造の子午断面面である。It is a figure explaining the fluid machine concerning a 6th embodiment, and is a meridional cross section of the seal structure. 図9のX−X線に沿う断面図である。It is sectional drawing which follows the XX line of FIG.

以下に、添付の図面を参照して各実施の形態を詳細に説明する。 Hereinafter, each embodiment will be described in detail with reference to the accompanying drawings.

<第1の実施の形態>
図1は、第1の実施の形態に係る流体機械としてのフランシス形水車1の一部の子午断面図である。なお、ここでは流体機械の一例としてフランシス形水車1を例示して説明するが、流体機械は水車に限られるものではない。また、図1においては、説明の便宜上、フランシス形水車1の構成部材に対するハッチングの図示を省略している。
<First Embodiment>
FIG. 1 is a meridional sectional view of a part of a Francis turbine 1 as a fluid machine according to a first embodiment. It should be noted that although the Francis turbine 1 is described as an example of the fluid machine here, the fluid machine is not limited to the turbine. Further, in FIG. 1, for convenience of description, the hatching of the constituent members of the Francis turbine 1 is omitted.

図1に示すフランシス形水車1では、水車運転時において、ケーシング10からの水流がステーベーン11及びガイドベーン12を介して回転部材であるランナ2に流入し、流入した水流の圧力によりランナ2が回転軸線C1を中心に回転する。 In the Francis type turbine 1 shown in FIG. 1, when the turbine is in operation, the water flow from the casing 10 flows into the runner 2 that is a rotating member via the stay vanes 11 and the guide vanes 12, and the runner 2 rotates due to the pressure of the flowing water flow. It rotates about the axis C1.

以下の説明において、単に軸方向と言う場合には、その方向は、回転軸線C1上の方向又は回転軸線C1に沿う方向を意味する。また、周方向という用語は、ランナ2が回転軸線C1を中心に回転する方向に沿う方向を意味するものとし、径方向という用語は、回転軸線C1に直交する方向を意味するものとする。 In the following description, when simply saying the axial direction, the direction means a direction on the rotation axis C1 or a direction along the rotation axis C1. The term circumferential direction means a direction along which the runner 2 rotates about the rotation axis C1, and the term radial direction means a direction orthogonal to the rotation axis C1.

ランナ2は、周方向に並ぶように配置される複数のランナ羽根3と、複数のランナ羽根3を翼高さ方向の一方の側から固定する環状部材であるクラウン4と、他方の側から固定する環状部材であるバンド5とを備える。 The runner 2 includes a plurality of runner blades 3 arranged side by side in the circumferential direction, a crown 4 that is an annular member that fixes the plurality of runner blades 3 from one side in the blade height direction, and a fixed from the other side. And a band 5 which is an annular member.

図中の符号6は、ランナ2の特にバンド5を径方向の外側から覆う静止部材としての下カバーを示す。バンド5と下カバー6との間には空間である側圧室7が形成されている。図示省略するが、クラウン4の上方にはクラウン4を上方から覆う静止部材としての上カバーが設けられ、上カバーとクラウン4との間には空間である背圧室が形成される。 Reference numeral 6 in the drawing denotes a lower cover as a stationary member that covers the band 5 of the runner 2 from the outside in the radial direction. A side pressure chamber 7, which is a space, is formed between the band 5 and the lower cover 6. Although illustration is omitted, an upper cover as a stationary member that covers the crown 4 from above is provided above the crown 4, and a back pressure chamber that is a space is formed between the upper cover and the crown 4.

本実施の形態では、水流の方向における側圧室7の下流側の部分にシール構造20が形成され、シール構造20は、バンド5と下カバー6との間の空間を絞る微小隙間を形成することにより、漏れ流れを通過させ難くする。 In the present embodiment, the seal structure 20 is formed in the downstream side portion of the side pressure chamber 7 in the direction of the water flow, and the seal structure 20 forms a minute gap that narrows the space between the band 5 and the lower cover 6. This makes it difficult for the leak flow to pass through.

図2はシール構造20の拡大子午断面図である。図2に示すように、本実施の形態におけるシール構造20は、水流の方向における下カバー6の下流側の部分に取り付けられてバンド5を径方向外側から覆うシールライナ21と、水流の方向におけるバンド5の下流側部分とで構成される。シール構造20では、径方向で互いに対向するシールライナ21の壁部21Aとバンド5の壁部5Aとがその上流側よりも隙間を絞ることにより微小隙間を形成する。シールライナ21の壁部21Aとバンド5の壁部5Aとの間の微小隙間は環状をなすように周方向に一連に延びている。 FIG. 2 is an enlarged meridional sectional view of the seal structure 20. As shown in FIG. 2, the seal structure 20 according to the present embodiment includes a seal liner 21 that is attached to a downstream side portion of the lower cover 6 in the water flow direction and covers the band 5 from the outside in the radial direction, and a seal liner 21 in the water flow direction. It is composed of the downstream side portion of the band 5. In the seal structure 20, the wall portion 21A of the seal liner 21 and the wall portion 5A of the band 5 that face each other in the radial direction form a minute gap by narrowing the gap more than the upstream side. The minute gap between the wall portion 21A of the seal liner 21 and the wall portion 5A of the band 5 extends in the circumferential direction in series so as to form an annular shape.

シールライナ21の壁部21Aは周方向に延びる溝22を有し、本実施の形態における溝22は水平面において周方向の全周にわたって延びる環状に形成されている。しかしながら、溝22は環状でなくてもよく、円弧状であってもよい。また、図2においては溝22が3つ形成されるが、溝22の数は特に限られるものではない。さらに、本実施の形態における溝22の断面形状は子午断面において矩形状であるが、その断面形状も特に限られるものではなく、例えば台形状や半円状等であってもよい。 The wall portion 21A of the seal liner 21 has a groove 22 extending in the circumferential direction, and the groove 22 in the present embodiment is formed in an annular shape extending over the entire circumference in the circumferential direction in the horizontal plane. However, the groove 22 need not be annular and may be arcuate. Further, although three grooves 22 are formed in FIG. 2, the number of grooves 22 is not particularly limited. Further, the cross-sectional shape of the groove 22 in the present embodiment is rectangular in the meridional section, but the cross-sectional shape is not particularly limited, and may be trapezoidal or semi-circular, for example.

図3は、シール構造20を構成する下カバー6側の部分、具体的にはシールライナ21を図2の矢印IIIの方向に見た際の概略図を示す。図2及び図3に示すように、本実施の形態に係るランナ2には、溝22を部分的に埋めるように位置する堰き止め部23が設けられている。本実施の形態では、堰き止め部23が各溝22に一つ設けられるが、堰き止め部23は一つの溝22において複数設けられてもよい。また、複数の溝22の中には、堰き止め部23が設けられないものがあってもよい。 FIG. 3 is a schematic view of a portion of the seal structure 20 on the lower cover 6 side, specifically, the seal liner 21 when viewed in the direction of arrow III in FIG. As shown in FIGS. 2 and 3, the runner 2 according to the present embodiment is provided with a damming portion 23 positioned so as to partially fill the groove 22. In the present embodiment, one damming portion 23 is provided in each groove 22, but a plurality of damming portions 23 may be provided in one groove 22. Further, some of the plurality of grooves 22 may not be provided with the damming portion 23.

堰き止め部23は溝22と協働してシール効果を高めるためのシール部材として機能する。本実施の形態において例示された堰き止め部23は、軸方向で対向する溝22の壁部の間を完全に埋めるが、軸方向で対向する溝22の壁部の間に隙間を設けるように設けられてもよい。また、径方向で見た場合に堰き止め部23の形状は矩形であるが、その形状は特に限られるものではない。また、堰き止め部23の形成方法は特に限られるものではなく、シールライナ21の一体物として形成されてもよいし、シールライナ21の別体として形成されてシールライナ21に対して溶接等で取り付けられてもよい。 The damming portion 23 cooperates with the groove 22 to function as a sealing member for enhancing the sealing effect. The damming portion 23 illustrated in the present embodiment completely fills the space between the walls of the grooves 22 that face each other in the axial direction, but provides a gap between the walls of the grooves 22 that face each other in the axial direction. It may be provided. Further, the shape of the damming portion 23 is rectangular when viewed in the radial direction, but the shape is not particularly limited. Further, the method of forming the damming portion 23 is not particularly limited, and may be formed as an integrated body of the seal liner 21, or may be formed as a separate body of the seal liner 21 and welded to the seal liner 21. It may be attached.

次に、本実施の形態の作用について図2及び図3を参照しつつ説明する。 Next, the operation of this embodiment will be described with reference to FIGS. 2 and 3.

水車運転時において、ケーシング10からの水流がステーベーン11及びガイドベーン12を介して回転部材であるランナ2に流入した際、ランナ2は、そのランナ羽根3で水流の圧力を受けることにより回転する。この際、一部の水流である漏れ流れが側圧室7を流入する。 When the water flow from the casing 10 flows into the runner 2, which is a rotating member, via the stay vanes 11 and the guide vanes 12 during the operation of the water turbine, the runner 2 is rotated by the pressure of the water flow at the runner blades 3. At this time, a leak flow, which is a part of the water flow, flows into the side pressure chamber 7.

側圧室7内の漏れ流れは、シール構造20においてシールライナ21の壁部21Aとバンド5の壁部5Aと間の微小隙間によって下流側への通過を抑制されるとともに、溝22による流路面積の増大及び減少による減速と加速とを繰り返すことにより、下流側への通過をさらに抑制される。しかしながら、この際、微小隙間内の漏れ流れは、図3の矢印αに示すようにバンド5の回転に影響を受け、回転方向Rと同方向の周方向速度を持った流れとなる。そして、溝22だけでは漏れ流れの周方向速度を十分に抑えられない状況が生じ得て、漏れ流れが速い速度を保ったままシール構造20から流出しようとする。 The leakage flow in the side pressure chamber 7 is suppressed from passing to the downstream side by the minute gap between the wall portion 21A of the seal liner 21 and the wall portion 5A of the band 5 in the seal structure 20, and the flow passage area by the groove 22 is suppressed. By repeatedly decelerating and accelerating by increasing and decreasing, the passage to the downstream side is further suppressed. However, at this time, the leakage flow in the minute gap is affected by the rotation of the band 5 as shown by an arrow α in FIG. 3, and has a circumferential velocity in the same direction as the rotation direction R. Then, a situation may occur in which the circumferential velocity of the leak flow cannot be sufficiently suppressed only by the groove 22, and the leak flow tries to flow out from the seal structure 20 while maintaining the fast velocity.

この際、本実施の形態では、溝22を部分的に埋めるように位置する堰き止め部23が設けられることで、上述のような周方向速度を持った漏れ流れが微小隙間内の溝22を通過する際に、堰き止め部23に衝突して堰き止められる。これにより、漏れ流れは、急激に且つ大きく減速されることで、溝22のみが設けられる場合に比較し漏れ流れの通過が抑制される。 At this time, in the present embodiment, the damming portion 23 located so as to partially fill the groove 22 is provided, so that the leak flow having the circumferential velocity as described above causes the groove 22 in the minute gap to flow. When passing, it collides with the blocking portion 23 and is blocked. As a result, the leak flow is rapidly and largely decelerated, so that passage of the leak flow is suppressed as compared with the case where only the groove 22 is provided.

以上のようにして本実施の形態によれば、ランナ2とシールライナ21との間を通過する水流(漏れ流れ)に対するシール効果を向上させ、漏れ損失を効果的に抑制できる。 As described above, according to the present embodiment, the sealing effect with respect to the water flow (leakage flow) passing between the runner 2 and the seal liner 21 can be improved, and the leakage loss can be effectively suppressed.

なお、本実施の形態では、新たな流体機械を作製する際に堰き止め部23を設けることを想定しているが、堰き止め部23は、溝22を有する既存の例えば発電所に設置済みの流体機械に対して改修の目的で設けられてもよい。この場合、堰き止め部23を準備し、既存の周方向の溝の内部に、当該溝を部分的に埋める堰き止め部23を設けられてもよい。 In addition, in the present embodiment, it is assumed that the damming portion 23 is provided when manufacturing a new fluid machine, but the damming portion 23 is already installed in, for example, an existing power plant having the groove 22. It may be provided for the purpose of repairing the fluid machine. In this case, the damming portion 23 may be prepared, and the damming portion 23 that partially fills the groove may be provided inside the existing circumferential groove.

<第2の実施の形態>
次に、第2の実施の形態について説明する。本実施の形態における構成部分のうちの第1の実施の形態の構成部分と同様のものには、同一の符号を付し、共通する部分の説明については省略する場合がある。
<Second Embodiment>
Next, a second embodiment will be described. The same parts as those of the first embodiment among the parts of the present embodiment are designated by the same reference numerals, and description of common parts may be omitted.

本実施の形態では、図4(A)に示すように溝22がシールライナ21において軸方向に間隔を空けて複数設けられ、複数の溝22のそれぞれに対応して堰き止め部23が設けられる。 In the present embodiment, as shown in FIG. 4A, a plurality of grooves 22 are provided in the seal liner 21 at intervals in the axial direction, and a damming portion 23 is provided corresponding to each of the plurality of grooves 22. ..

そして、複数の堰き止め部23は、矢印Fで示す水流の方向で下流側に位置する堰き止め部23の少なくとも一部が、その上流側に位置する堰き止め部23よりもランナ2の回転方向R逆側に位置するように配列されている。また、軸方向で隣り合う堰き止め部23は軸方向で互いに重なっている。 In the plurality of damming portions 23, at least a part of the damming portion 23 located on the downstream side in the direction of the water flow indicated by the arrow F has a rotation direction of the runner 2 more than that of the damming portion 23 located on the upstream side. It is arranged so as to be located on the opposite side of R. Further, the damming portions 23 adjacent to each other in the axial direction overlap each other in the axial direction.

本実施の形態においても、シールライナ21の壁部21Aとバンド5の壁部5Aと間の微小隙間内の漏れ流れは、矢印αに示すように周方向成分を持つが、堰き止め部23に衝突することで周方向速度が減速される。この後、減速された漏れ流れは溝22から流出して軸方向に向かって流れようとする。 Also in the present embodiment, the leakage flow in the minute gap between the wall portion 21A of the seal liner 21 and the wall portion 5A of the band 5 has a circumferential component as shown by an arrow α, but it does not flow to the damming portion 23. The collision reduces the circumferential speed. After that, the decelerated leak flow flows out from the groove 22 and tends to flow in the axial direction.

ここで、本実施の形態では、下流側の堰き止め部23が上流側の堰き止め部23よりも回転方向R逆側に位置する。これにより、上流側の堰き止め部23により減速された漏れ流れが溝22から流出して軸方向に向かって流れようとする際、下流側の堰き止め部23上の溝22内よりも高圧になっている領域によって通過を制約される。これにより、漏れ流れが効果的に抑制されるため、漏れ損失を効果的に低減させることができる。 Here, in the present embodiment, the dam portion 23 on the downstream side is located on the opposite side of the dam portion 23 on the upstream side in the rotation direction R. Thus, when the leak flow decelerated by the upstream dam 23 flows out from the groove 22 and tries to flow in the axial direction, the pressure becomes higher than that in the groove 22 on the downstream dam 23. Passage is restricted by the area where Thereby, the leakage flow is effectively suppressed, so that the leakage loss can be effectively reduced.

なお、図4(B)及び(C)は、第2の実施の形態の変形例を示す。図4(B)の変形例では、堰き止め部23の周方向の長さが下流側のものほど長くなっている。これにより、水流の方向で下流側に位置する堰き止め部23の少なくとも一部が、その上流側に位置する堰き止め部23よりもランナ2の回転方向R逆側に位置する。 4B and 4C show a modification of the second embodiment. In the modification of FIG. 4(B), the length of the damming portion 23 in the circumferential direction is longer on the downstream side. As a result, at least a part of the damming portion 23 located on the downstream side in the water flow direction is located on the opposite side to the rotation direction R of the runner 2 than the damming portion 23 located on the upstream side.

また、図4(C)では、水流の方向で下流側に位置する堰き止め部23の少なくとも一部が、その上流側に位置する堰き止め部23よりもランナ2の回転方向R逆側に位置するが、軸方向で隣り合う堰き止め部23は周方向に離れており、軸方向で互いに重なっていない。 Further, in FIG. 4C, at least a part of the damming portion 23 located on the downstream side in the direction of the water flow is located on the opposite side to the rotation direction R of the runner 2 than the damming portion 23 located on the upstream side. However, the damming portions 23 that are adjacent to each other in the axial direction are separated in the circumferential direction and do not overlap each other in the axial direction.

<第3の実施の形態>
次に、第3の実施の形態について説明する。本実施の形態における構成部分のうちの第1及び第2の実施の形態の構成部分と同様のものには、同一の符号を付し、共通する部分の説明については省略する場合がある。
<Third Embodiment>
Next, a third embodiment will be described. The same parts as those of the first and second embodiments among the parts of the present embodiment are designated by the same reference numerals, and description of common parts may be omitted.

図5に示すように、本実施の形態では、溝22がシールライナ21において軸方向に間隔を空けて複数設けられ、複数の溝22のそれぞれに対応して堰き止め部23が設けられる。 As shown in FIG. 5, in the present embodiment, a plurality of grooves 22 are provided in the seal liner 21 at intervals in the axial direction, and a damming portion 23 is provided corresponding to each of the plurality of grooves 22.

そして、ランナ2の回転方向R逆側を向く堰き止め部23の端面23Aが、矢印Fで示す水流の流れの方向で上流から下流に向けて延びるに従い、回転方向R逆側に延びるように傾斜している。 Then, as the end surface 23A of the damming portion 23 facing the opposite side to the rotation direction R of the runner 2 extends from the upstream side toward the downstream side in the direction of the water flow indicated by the arrow F, the end surface 23A is inclined so as to extend to the opposite side to the rotation direction R. is doing.

本実施の形態では、堰き止め部23に衝突して周方向速度が減速された後、軸方向に向かう漏れ流れが、傾斜した端面23Aによってさらに堰き止められて減速される。これにより、漏れ流れが効果的に抑制されるため、漏れ損失を効果的に低減させることができる。 In the present embodiment, after colliding with the damming portion 23 and the circumferential speed is reduced, the leak flow in the axial direction is further dammed by the inclined end surface 23A and is decelerated. Thereby, the leakage flow is effectively suppressed, so that the leakage loss can be effectively reduced.

<第4の実施の形態>
次に、第4の実施の形態について説明する。本実施の形態における構成部分のうちの第1乃至第3の実施の形態の構成部分と同様のものには、同一の符号を付し、共通する部分の説明については省略する場合がある。
<Fourth Embodiment>
Next, a fourth embodiment will be described. Of the components in this embodiment, those similar to the components in the first to third embodiments are designated by the same reference numerals, and description of common parts may be omitted.

図6に示すように、本実施の形態では、溝22がシールライナ21において軸方向に間隔を空けて複数設けられ、複数の溝22のそれぞれに対応して堰き止め部23が設けられる。溝22は、周方向に延びるとともに軸方向に延びるように水平方向に対して角度βの傾きで傾斜している。 As shown in FIG. 6, in the present embodiment, a plurality of grooves 22 are provided in the seal liner 21 at intervals in the axial direction, and a damming portion 23 is provided corresponding to each of the plurality of grooves 22. The groove 22 is inclined at an angle β with respect to the horizontal direction so as to extend in the circumferential direction and extend in the axial direction.

角度βは、0°よりも大きく設定され、漏れ流れの影響を考慮し、好ましくは10°〜45°に設定される。 The angle β is set to be larger than 0° and is preferably set to 10° to 45° in consideration of the influence of leak flow.

本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。 Also in the present embodiment, the same effect as that of the first embodiment can be obtained.

<第5の実施の形態>
次に、第5の実施の形態について説明する。本実施の形態における構成部分のうちの第1乃至第4の実施の形態の構成部分と同様のものには、同一の符号を付し、共通する部分の説明については省略する場合がある。
<Fifth Embodiment>
Next, a fifth embodiment will be described. Of the constituent parts of the present embodiment, the same parts as those of the first to fourth embodiments are designated by the same reference numerals, and description of common parts may be omitted.

図7に示すように、本実施の形態では、溝22がシールライナ21において軸方向に間隔を空けて複数設けられ、複数の溝22のそれぞれに対応して堰き止め部23が設けられる。 As shown in FIG. 7, in the present embodiment, a plurality of grooves 22 are provided in the seal liner 21 at intervals in the axial direction, and a damming portion 23 is provided corresponding to each of the plurality of grooves 22.

堰き止め部23は、図8に示すようにボルト24を通すための貫通孔23Bを有し、締結部材であるボルト24によって溝22の内部に固定されている。図8に示すように、シールライナ21にはボルト孔25が形成され、ボルト24はボルト孔25に締結される。ボルト24は、図示の例では、シールライナ21の壁部21Aから飛び出さない(突出しない)ように締結されるが、ボルト24は壁部21Aから突出してもよい。また、図示の例では、ボルト24がシールライナ21を貫通しないが、ボルト24がシールライナ21を貫通し、シールライナ21から径方向外側に貫通して露出したボルト24の先端部分にナットを締め付けることで、堰き止め部23が固定されてもよい。 As shown in FIG. 8, the damming portion 23 has a through hole 23B through which the bolt 24 is inserted, and is fixed inside the groove 22 by the bolt 24 which is a fastening member. As shown in FIG. 8, a bolt hole 25 is formed in the seal liner 21, and the bolt 24 is fastened to the bolt hole 25. In the illustrated example, the bolt 24 is fastened so as not to project (project) from the wall portion 21A of the seal liner 21, but the bolt 24 may project from the wall portion 21A. Further, in the illustrated example, the bolt 24 does not penetrate the seal liner 21, but the bolt 24 penetrates the seal liner 21 and is tightened with a nut on the tip portion of the bolt 24 exposed by penetrating radially outward from the seal liner 21. Therefore, the damming portion 23 may be fixed.

堰き止め部23を溝22に形成する際に、例えば溝22を削る際に同時に削りだしによって堰き止め部23を形成することができるが、堰き止め部23を設計形状の通りに正確に加工することは、溝加工の工程の増長を招くこととなる。これは堰き止め部23を設ける箇所が増えるほど大幅な増長となる。これに対して、本実施の形態では、堰き止め部23は溝22の加工後にボルト24によって固定されるため、溝加工の工程を短縮することが可能となる。 When forming the damming portion 23 in the groove 22, for example, the damming portion 23 can be formed by shaving at the same time when the groove 22 is shaved, but the damming portion 23 is processed exactly as designed. This leads to an increase in the groove processing step. This increases significantly as the number of locations where the damming portion 23 is provided increases. On the other hand, in the present embodiment, since the damming portion 23 is fixed by the bolt 24 after the groove 22 is processed, the groove processing step can be shortened.

また、側圧室7における漏れ流れは土砂を含むことがあるため、土砂を含んだ漏れ流れにより堰き止め部23が磨耗し、経年的に流れを堰止める効果が得られなくなり、漏れ損失の抑制効果が低下することが考えられる。このような場合に、本実施の形態では、堰き止め部23を交換可能であるため、復帰作業の作業負担を低減することができる。 Further, since the leak flow in the side pressure chamber 7 may contain earth and sand, the damming portion 23 is worn by the leak flow containing earth and sand, and the effect of damaging the flow cannot be obtained over the years, and the effect of suppressing leakage loss is reduced. Is likely to decrease. In such a case, in the present embodiment, the damming portion 23 can be replaced, so that the work load of the returning work can be reduced.

<第6の実施の形態>
次に、第6の実施の形態について説明する。本実施の形態における構成部分のうちの第1乃至第5の実施の形態の構成部分と同様のものには、同一の符号を付し、共通する部分の説明については省略する場合がある。
<Sixth Embodiment>
Next, a sixth embodiment will be described. The same parts as those of the first to fifth embodiments among the parts of the present embodiment are designated by the same reference numerals, and description of common parts may be omitted.

図9に示すように、本実施の形態では、静止部材であるシールライナ21と回転部材であるバンド5との間に段付き形状のシール構造が形成される。シールライナ21は段付き形状を有し、水流の方向で上流から下流に向けて、径方向内側を向く壁面と、軸方向で水流の上流側を向く壁面と、径方向内側を向く壁面とをこの順で段状をなすように接続しており、シールライナ21に対向するバンド5にも段付き形状が形成されている。 As shown in FIG. 9, in this embodiment, a stepped seal structure is formed between the seal liner 21 which is a stationary member and the band 5 which is a rotating member. The seal liner 21 has a stepped shape, and has a wall surface facing inward in the radial direction from the upstream to the downstream in the direction of the water flow, a wall surface facing upstream in the water flow in the axial direction, and a wall surface facing in the radial direction. The connection is made in this order so as to form a step, and the band 5 facing the seal liner 21 is also formed with a step.

シールライナ21とバンド5との間には、上流側に位置して径方向の微小隙間を形成する第1の隙間31と、第1の隙間31に対し径方向及び軸方向の両方に離れ、第1の隙間31よりも下流側に位置して径方向の微小隙間を形成する第2の隙間32と、第1の隙間31及び第2の隙間32の間に位置して第1の隙間31及び第2の隙間32の両方と折れ曲がり形状をなすように結合する第3の隙間33とが形成され、各隙間によってシール構造が形成される。 Between the seal liner 21 and the band 5, a first gap 31 which is located on the upstream side and forms a minute gap in the radial direction is separated from the first gap 31 in both the radial direction and the axial direction, A second gap 32 that is located downstream of the first gap 31 and forms a minute gap in the radial direction, and a first gap 31 that is located between the first gap 31 and the second gap 32. And a second gap 32, and a third gap 33 that is joined to form a bent shape are formed, and each gap forms a seal structure.

第1の隙間31、第2の隙間32及び第3の隙間33はそれぞれ円環状をなしている。また、第3の隙間33の径方向寸法は第1の隙間31及び第2の隙間32よりも大きくなっている。 Each of the first gap 31, the second gap 32, and the third gap 33 has an annular shape. Further, the radial dimension of the third gap 33 is larger than that of the first gap 31 and the second gap 32.

そして、第3の隙間33を部分的に埋めるように位置する堰き止め部23がシールライナ21に設けられる。本実施の形態では、堰き止め部23が軸方向で水流の上流側を向くシールライナ21の壁面に設けられるが、堰き止め部23はシールライナ21の径方向内側を向く壁面又はバンド5側に設けられてもよい。 The damming portion 23 positioned so as to partially fill the third gap 33 is provided in the seal liner 21. In the present embodiment, the damming portion 23 is provided on the wall surface of the seal liner 21 that faces the upstream side of the water flow in the axial direction, but the damming portion 23 is located on the wall surface of the seal liner 21 that faces the radially inner side or the band 5 side. It may be provided.

微小隙間として機能する第1の隙間31内の漏れ流れは、バンド5の回転に影響を受け、図10の矢印αで示すように回転方向と同方向の周方向速度を持った流れとなるため、第3の隙間33に流入する流れもまた回転方向と同方向の周方向速度を持っている。本実施の形態では第3の隙間33を部分的に埋める堰き止め部23により、周方向速度を持った漏れ流れが堰き止められることで急激に減速される。これにより、シール効果を向上させ、漏れ損失を効果的に抑制できる。 The leak flow in the first gap 31, which functions as a minute gap, is affected by the rotation of the band 5 and has a circumferential velocity in the same direction as the rotation direction as indicated by an arrow α in FIG. The flow flowing into the third gap 33 also has a circumferential velocity in the same direction as the rotation direction. In the present embodiment, the damming portion 23 that partially fills the third gap 33 damps a leak flow having a circumferential velocity, thereby rapidly decelerating. Thereby, the sealing effect can be improved and the leakage loss can be effectively suppressed.

なお、本実施の形態では第3の隙間33を埋める堰き止め部23が1つ設けられている場合を例示したが、その数は特に限られるものではない。 In addition, although the case where one damming portion 23 that fills the third gap 33 is provided is illustrated in the present embodiment, the number thereof is not particularly limited.

以上、各実施の形態を説明したが、上記の各実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the respective embodiments have been described above, the respective embodiments described above are presented as examples, and are not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the scope equivalent thereto.

例えば上述の第1乃至第5の実施の形態では、溝22及び堰き止め部23が静止部材であるシールライナ21に設けられる例を示したが、溝22はバンド5側に設けられてもよい。また、溝22及び堰き止め部23は回転部材及び静止部材の両方に設けられてもよい。 For example, in the above-described first to fifth embodiments, an example in which the groove 22 and the damming portion 23 are provided in the seal liner 21 that is a stationary member is shown, but the groove 22 may be provided on the band 5 side. .. Further, the groove 22 and the damming portion 23 may be provided on both the rotating member and the stationary member.

1…フランシス形水車、2…ランナ、3…ランナ羽根、4…クラウン、5…バンド、5A…壁部、6…下カバー、7…側圧室、10…ケーシング、11…ステーベーン、12…ガイドベーン、20…シール構造、21…シールライナ、21A…壁部、22…溝、23…堰き止め部、23A…端面、23B…貫通孔、24…ボルト、25…ボルト孔、31…第1の隙間、32…第2の隙間、33…第3の隙間、C1…回転軸線 1... Francis turbine, 2... Runner, 3... Runner blades, 4... Crown, 5... Band, 5A... Wall part, 6... Lower cover, 7... Side pressure chamber, 10... Casing, 11... Stay vanes, 12... Guide vanes , 20... Seal structure, 21... Seal liner, 21A... Wall part, 22... Groove, 23... Damming part, 23A... End face, 23B... Through hole, 24... Bolt, 25... Bolt hole, 31... First gap , 32... second gap, 33... third gap, C1... rotation axis

Claims (9)

流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備え、
互いに対向する前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、周方向に延びる溝と、前記溝を部分的に埋めるように位置する堰き止め部と、を有する、流体機械。
A rotary member that rotates by the pressure of the fluid; and a stationary member that covers the rotary member,
At least one of the wall portion of the rotating member and the wall portion of the stationary member facing each other has a groove extending in the circumferential direction, and a damming portion positioned so as to partially fill the groove. , Fluid machinery.
前記溝は、軸方向に間隔を空けて複数設けられ、
複数の前記溝のそれぞれに対応して、前記堰き止め部が設けられ、
複数の前記堰き止め部は、前記流体の流れの方向で下流側に位置するものの少なくとも一部が、上流側に位置するものよりも前記回転部材の回転方向逆側に位置するように配列される、請求項1に記載の流体機械。
A plurality of the grooves are provided at intervals in the axial direction,
Corresponding to each of the plurality of grooves, the damming portion is provided,
The plurality of damming units are arranged such that at least a part of the damming units located on the downstream side in the flow direction of the fluid is located on the opposite side in the rotation direction of the rotating member from the one located on the upstream side. The fluid machine according to claim 1.
前記軸方向で隣り合う前記堰き止め部は、前記軸方向で互いに重なる、請求項2に記載の流体機械。 The fluid machine according to claim 2, wherein the damming portions adjacent to each other in the axial direction overlap each other in the axial direction. 前記回転部材の回転方向逆側を向く前記堰き止め部の端面は、前記流体の流れの方向で上流から下流に向けて延びるに従い、前記回転部材の回転方向逆側に延びる、請求項1乃至3のいずれかに記載の流体機械。 The end surface of the damming portion facing the rotation direction opposite side of the rotation member extends to the rotation direction opposite side of the rotation member as it extends from the upstream to the downstream in the direction of the fluid flow. The fluid machine according to any one of 1. 前記溝は、前記周方向に延びるとともに軸方向に延びるように傾斜している、請求項1乃至4のいずれかに記載の流体機械。 The fluid machine according to claim 1, wherein the groove is inclined so as to extend in the circumferential direction and extend in the axial direction. 前記堰き止め部は、前記溝の内部において締結部材によって固定されている、請求項1乃至5のいずれかに記載の流体機械。 The fluid machine according to claim 1, wherein the damming portion is fixed inside the groove by a fastening member. 流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備え、
互いに対向する前記回転部材の壁部及び前記静止部材の壁部との間には、第1の隙間と、前記第1の隙間に対し径方向及び軸方向の両方に離れた第2の隙間と、前記第1の隙間及び前記第2の隙間の間に位置して前記第1の隙間及び前記第2の隙間の両方と折れ曲がり形状をなすように結合する第3の隙間と、が形成されており、
前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、前記第3の隙間を部分的に埋めるように位置する堰き止め部を有する、流体機械。
A rotary member that rotates by the pressure of the fluid; and a stationary member that covers the rotary member,
Between the wall portion of the rotating member and the wall portion of the stationary member that face each other, a first gap and a second gap that is separated from the first gap in both the radial direction and the axial direction. A third gap that is located between the first gap and the second gap and that is connected to both the first gap and the second gap so as to form a bent shape is formed. Cage,
At least one of the wall portion of the rotating member and the wall portion of the stationary member has a damming portion positioned so as to partially fill the third gap.
流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備え、互いに対向する前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、周方向に延びる溝を有する流体機械に用いられるシール部材であって、
前記溝の内部に配置され、前記溝を部分的に埋めるように設けられるシール部材。
A rotary member that rotates by the pressure of a fluid, and a stationary member that covers the rotary member, and at least one of the wall portion of the rotary member and the wall portion of the stationary member facing each other is circumferentially arranged. A sealing member used in a fluid machine having a groove extending,
A seal member disposed inside the groove and provided so as to partially fill the groove.
流体の圧力により回転する回転部材と、前記回転部材を覆う静止部材と、を備え、互いに対向する前記回転部材の壁部及び前記静止部材の壁部のうちの少なくともいずれか一方が、周方向に延びる溝を有する流体機械の改修方法であって、
堰き止め部を準備する工程と、
前記溝の内部に、前記溝を部分的に埋めるように前記堰き止め部を設ける工程と、を備える、流体機械の改修方法。
A rotary member that rotates by the pressure of a fluid, and a stationary member that covers the rotary member, and at least one of the wall portion of the rotary member and the wall portion of the stationary member facing each other is circumferentially arranged. A method of refurbishing a fluid machine having an extending groove, comprising:
A step of preparing a damming portion,
And a step of providing the damming portion inside the groove so as to partially fill the groove.
JP2018215916A 2018-11-16 2018-11-16 Fluid machinery and method of refurbishing fluid machinery Active JP7185503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018215916A JP7185503B2 (en) 2018-11-16 2018-11-16 Fluid machinery and method of refurbishing fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018215916A JP7185503B2 (en) 2018-11-16 2018-11-16 Fluid machinery and method of refurbishing fluid machinery

Publications (2)

Publication Number Publication Date
JP2020084799A true JP2020084799A (en) 2020-06-04
JP7185503B2 JP7185503B2 (en) 2022-12-07

Family

ID=70907066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018215916A Active JP7185503B2 (en) 2018-11-16 2018-11-16 Fluid machinery and method of refurbishing fluid machinery

Country Status (1)

Country Link
JP (1) JP7185503B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620772A (en) * 1979-07-27 1981-02-26 Hitachi Ltd Seal structure of hydraulic machine
JPS62108573U (en) * 1985-12-25 1987-07-10
JPH08505462A (en) * 1993-01-08 1996-06-11 ザ、テクサス、エイアンドエム、ユーニヴァーサティ、システィム Pressure damper seal
JP2012082817A (en) * 2010-09-13 2012-04-26 Toshiba Corp Fluid machine
US20170114655A1 (en) * 2015-10-23 2017-04-27 Doosan Heavy Industries Construction Co., Ltd. Sealing assembly
WO2018005846A1 (en) * 2016-06-30 2018-01-04 General Electric Company Turbomachine and corresponding method of assembling a face seal assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620772A (en) * 1979-07-27 1981-02-26 Hitachi Ltd Seal structure of hydraulic machine
JPS62108573U (en) * 1985-12-25 1987-07-10
JPH08505462A (en) * 1993-01-08 1996-06-11 ザ、テクサス、エイアンドエム、ユーニヴァーサティ、システィム Pressure damper seal
JP2012082817A (en) * 2010-09-13 2012-04-26 Toshiba Corp Fluid machine
US20170114655A1 (en) * 2015-10-23 2017-04-27 Doosan Heavy Industries Construction Co., Ltd. Sealing assembly
WO2018005846A1 (en) * 2016-06-30 2018-01-04 General Electric Company Turbomachine and corresponding method of assembling a face seal assembly

Also Published As

Publication number Publication date
JP7185503B2 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
US10316679B2 (en) Seal structure and rotating machine
US8388311B2 (en) Turbomachinery
JP6131177B2 (en) Seal structure and rotating machine
US10260366B2 (en) Sealing device and turbo machine
US20120121411A1 (en) Labyrinth Seals for Turbomachinery
JP5725848B2 (en) Turbine
WO2014010052A1 (en) Axial flow fluid machine
JP2009085185A (en) Axial flow turbine and axial flow turbine stage structure
US20160333714A1 (en) Sealing structure and rotary machine
EP3190267B1 (en) Structure for multi-stage sealing of turbine
JP2012031997A (en) Seal teeth for seal assembly
CA2948470A1 (en) Gas turbine engine stage provided with a labyrinth seal
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
KR102110066B1 (en) Seal structure and turbo machine
JP6153650B2 (en) Steam turbine stationary body and steam turbine provided with the same
EP2634376A2 (en) Turbo-machinery sealing arrangement
US11136897B2 (en) Seal device and turbomachine
JP2015001180A (en) Axis flow turbine
JP6167158B2 (en) Seal structure and turbomachine
JP7185503B2 (en) Fluid machinery and method of refurbishing fluid machinery
JP2018040282A (en) Axial flow turbine and diaphragm outer ring thereof
JP2019035347A (en) Turbine component, turbine blade, axial flow turbine and remodeling method thereof, and manufacturing method of turbine blade
JP2019011768A (en) Seal device and turbo machine
JP2018048565A (en) Axial flow turbine seal device
JP5412571B2 (en) Turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7185503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150