JP2020084516A - Power generating device in house and air conditioning device in house - Google Patents

Power generating device in house and air conditioning device in house Download PDF

Info

Publication number
JP2020084516A
JP2020084516A JP2018218805A JP2018218805A JP2020084516A JP 2020084516 A JP2020084516 A JP 2020084516A JP 2018218805 A JP2018218805 A JP 2018218805A JP 2018218805 A JP2018218805 A JP 2018218805A JP 2020084516 A JP2020084516 A JP 2020084516A
Authority
JP
Japan
Prior art keywords
roof
house
heat
air
closed space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018218805A
Other languages
Japanese (ja)
Other versions
JP6543867B1 (en
Inventor
孝仁 前山
Takahito Maeyama
孝仁 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018218805A priority Critical patent/JP6543867B1/en
Application granted granted Critical
Publication of JP6543867B1 publication Critical patent/JP6543867B1/en
Publication of JP2020084516A publication Critical patent/JP2020084516A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

To provide a power generation device in a house using a temperature difference between indoor and outdoor by stably maintaining a state in which a temperature difference occurs, and an air conditioner of the house using the power generation device in the house.SOLUTION: A blower 1 for sending air in a house to the upper part of the house is provided in the house, and the air sent to the upper part of the house by the blower 1 is sent to a lower end part 4 of a roof 2 through a roof direct flow passage 3 formed right under the roof 2. A thermoelectric conversion element 6 is attached to a closed space 5 located at a lower part of the lower end side of the passage 3 directly under the roof. One of the thermoelectric conversion elements 6 is positioned on the closed space 5 side, and the other is arranged so as to be in contact with the outside 7. A heat insulating wall is formed inside the closed space 5.SELECTED DRAWING: Figure 1

Description

本発明は、温度差発電を利用した家屋内発電装置と、この家屋内発電装置を用いた家屋の空調装置に関する。 The present invention relates to an indoor power generation device that uses temperature difference power generation and an air conditioner for a house that uses the indoor power generation device.

近年、夏季における猛暑傾向が顕著となっており、室内での熱中症の発症が社会問題となっている。特に、老人はエアコンからの冷風を好まない場合が多く、自然の風の流れを室内で有効に循環させることができれば、極めて効果的である。 In recent years, the tendency of intense heat in summer has become remarkable, and the onset of heat stroke indoors has become a social problem. In particular, old people often do not like the cool air from the air conditioner, and it is extremely effective if the natural air flow can be effectively circulated indoors.

また、電気代節約のためにエアコンを使用しないことによる熱中症の発症も数多く報告されており、通常使用される商用電力を用いずに、簡便で安価な手法で空調設備が確保されることが求められている。 In addition, many cases of heat stroke have been reported due to not using an air conditioner to save electricity bills, and it is possible to secure air conditioning equipment by a simple and inexpensive method without using commercial power that is normally used. It has been demanded.

室内の温度管理に関して、建築構造物外皮が発する輻射熱エネルギーを適時に回収して温度管理する制御装置に関する技術が、特許文献1に記載されている。 Regarding temperature control in a room, Patent Literature 1 describes a technique related to a control device that timely recovers radiant heat energy generated by the outer skin of a building structure and controls the temperature.

特開2013−104626号公報JP, 2013-104626, A

家屋内での発電を行う一つの方法として、室内と屋外との温度差を利用した温度差発電が挙げられる。この温度差発電を行うにあたっては、温度差が生じる状況を安定的に維持することが必要である。 One method for generating power inside a house is temperature difference power generation using the temperature difference between indoors and outdoors. In performing the temperature difference power generation, it is necessary to stably maintain the situation where the temperature difference occurs.

本発明は、このような事情を考慮してなされたもので、温度差が生じる状況を安定的に維持することを可能として、室内と屋外との温度差を利用した家屋内発電装置と、この家屋内発電装置を用いた家屋の空調装置を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and it is possible to stably maintain a situation in which a temperature difference occurs, and an indoor power generation device using a temperature difference between indoor and outdoor, It is an object of the present invention to provide an air conditioner for a house using an indoor power generator.

以上の課題を解決するために、本発明の家屋内発電装置は、家屋内の空気を家屋の上部に送り込む送風機と、送風機によって家屋の上部に送り込まれた空気を屋根直下に沿って屋根の下端部まで送る屋根直下流路と、屋根直下流路の下端側下部に位置する閉空間に設けられた熱電変換素子とを備え、熱電変換素子は、その一方が前記閉空間側に位置し、その他方が屋外に接するように配置されて、前記閉空間と屋外との温度差により温度差発電を行うことを特徴とする。 In order to solve the above problems, the indoor power generation device of the present invention is a blower that sends the air in the house to the upper part of the house, and the air that is sent to the upper part of the house by the blower is the lower end of the roof along directly below the roof. A channel directly under the roof to be sent to the part, and a thermoelectric conversion element provided in a closed space located at the lower end side lower part of the channel directly under the roof, the thermoelectric conversion element, one of which is located on the closed space side, and the other One of them is arranged so as to be in contact with the outside, and temperature difference power generation is performed by the temperature difference between the closed space and the outside.

家屋内の空気は、屋根直下に沿って屋根の下端部まで送る屋根直下流路を通過する際に、高温状態となっている屋根からの熱を受けて温度が上昇し、この温度上昇した空気が、屋根直下流路の下端側下部に位置する閉空間に送られる。そのため、閉空間内の空気と、屋外の空気との間に温度差が生じ、熱電変換素子によって温度差発電を行うことができる。 The air in the house rises in temperature when it receives heat from the roof that is in a high temperature when it passes through the flow path directly under the roof, which is sent to the lower end of the roof along the bottom of the roof. Are sent to the closed space located below the lower end of the flow path directly under the roof. Therefore, a temperature difference occurs between the air in the closed space and the outdoor air, and the thermoelectric conversion element can perform temperature difference power generation.

本発明の家屋内発電装置においては、前記閉空間の内部には保温壁が形成されており、前記熱電変換素子は、その一方が前記保温壁の内側に位置し、その他方が前記保温壁の外側に位置するように配置されている構成とすることができる。 In the house power generator of the present invention, a heat retaining wall is formed inside the closed space, the thermoelectric conversion element, one of which is located inside the heat retaining wall, the other of the heat retaining wall. It may be configured so as to be located outside.

閉空間の内部には保温壁が形成されていることにより、閉空間内の空気を高温で維持することができ、閉空間内の空気と、屋外の空気との間に温度差が生じる状況を安定的に維持することができる。 Since the heat insulation wall is formed inside the closed space, the air inside the closed space can be maintained at a high temperature, and a temperature difference occurs between the air inside the closed space and the air outside. It can be maintained stable.

本発明の家屋内発電装置においては、前記閉空間の下側を仕切る仕切り板に、前記閉空間内の空気を排出する排出口が設けられており、前記排出口は、開閉自在な構造である構成とすることができる。 In the indoor power generator of the present invention, the partition plate that partitions the lower side of the closed space is provided with an exhaust port for exhausting the air in the closed space, and the exhaust port is a structure that can be opened and closed. It can be configured.

閉空間内は通常は密閉されているが、密閉されているままでは、屋根によって熱せられた空気が屋根直下流路を通って閉空間内に供給されなくなるため、屋根による加熱の効果が得られにくくなる。そのため、適宜排出口を開けて、屋根によって熱せられた空気の供給を促進することにより、温度差発電の効率を向上することができる。 The closed space is usually sealed, but if it remains sealed, the air heated by the roof will not be supplied to the closed space through the flow path directly under the roof, and the effect of heating by the roof will be obtained. It gets harder. Therefore, the efficiency of the temperature difference power generation can be improved by opening the discharge port appropriately and promoting the supply of the air heated by the roof.

本発明の家屋内発電装置においては、前記屋根を構成する屋根材と、前記屋根直下流路を構成する気流誘導材との間で熱伝導を行う熱伝導棒を備え、熱伝導棒は、棒状の本体部と、本体部の両端に設けられた大径部とによって構成され、熱伝導棒の屋根材側の先端部は、屋根材表面に露出せずに屋根材内部に埋め込まれている構成とすることができる。 In the house power generator of the present invention, the roof material that constitutes the roof and the heat conducting rod that conducts heat between the airflow guide material that constitutes the flow path directly below the roof are provided, and the heat conducting rod is rod-shaped. And a large-diameter portion provided at both ends of the main body, the tip of the heat conducting rod on the roof material side is embedded in the roof material without being exposed to the roof material surface. Can be

熱伝導棒によって、屋根材に蓄積された熱が屋根直下流路に伝達されるため、屋根直下流路を通過する空気を高温に維持することができ、閉空間内を高温にして、温度差を形成しやすくなる。また、熱伝導棒は、本体部の両端に設けられた大径部を有しているため、屋根材との接触面積と、気流誘導材との接触面積とを大きくすることができ、熱伝導性能を高めることができる。さらに、熱伝導棒の屋根材側の先端部は、屋根材表面に露出せずに屋根材内部に埋め込まれているため、熱伝導棒の形成が雨漏りを誘発することを防止できる。 Since the heat accumulated in the roof material is transferred to the flow path directly under the roof by the heat conduction rod, the air passing through the flow path directly under the roof can be maintained at a high temperature, and the temperature inside the closed space becomes high, and the temperature difference Easier to form. Further, since the heat conduction rod has large diameter portions provided at both ends of the main body portion, it is possible to increase the contact area with the roof material and the contact area with the airflow guide material, and thus the heat conduction Performance can be improved. Furthermore, since the tip of the heat conducting rod on the roof material side is embedded in the roof material without being exposed to the roof material surface, it is possible to prevent the formation of the heat conducting rod from inducing rain leakage.

本発明の家屋内発電装置においては、前記熱伝導棒は、前記屋根材に接する側と前記気流誘導材に接する側とに分割されて、前記屋根材の下側に設けられた屋根裏材を通過する部位に形成された空気層によって連結されている構成とすることができる。 In the indoor power generator of the present invention, the heat conducting rod is divided into a side in contact with the roof material and a side in contact with the airflow guide material, and passes through a roof backing material provided under the roof material. The structure may be such that they are connected by an air layer formed at the portion to be connected.

熱伝導棒の重要な機能は、屋根を構成する屋根材と、屋根直下流路を構成する気流誘導材との間で熱伝導を行うことにあるが、屋根材と気流誘導材との間には、通常木製の屋根裏材が存在しており、屋根裏材を通過する部位も熱伝導性の高い材質で形成されていると、熱が屋根裏材に伝達されてしまい、気流誘導材に熱が効果的に伝達されなくなる。そのため、屋根裏材を通過する部位に、断熱性の高い空気層を形成することにより、屋根裏材への熱伝導を抑制し、気流誘導材に熱が効果的に伝達されるようにすることができる。 The important function of the heat conduction rod is to conduct heat between the roof material that constitutes the roof and the airflow guide material that forms the flow path directly under the roof, but between the roof material and the airflow guide material. Usually has a wooden attic, and if the part that passes through the attic is also made of a material with high thermal conductivity, heat will be transferred to the attic, and the heat will be effective for the airflow guide. Will not be transmitted. Therefore, by forming an air layer having a high heat insulating property in a portion passing through the attic, it is possible to suppress heat conduction to the attic and to effectively transfer the heat to the airflow guide. ..

本発明の家屋内発電装置においては、前記熱電変換素子には、閉空間側と屋外側のいずれにも金属製の柱状体からなるヒートシンクが取り付けられている構成とすることができる。 In the indoor power generator of the present invention, the thermoelectric conversion element may be configured such that a heat sink made of a metal columnar body is attached to both the closed space side and the outdoor side.

ヒートシンクにより、放熱、吸熱の効果が高まるため、熱電変換素子に対して、温度差を安定的に維持することができる。 Since the heat sink enhances the effects of heat dissipation and heat absorption, it is possible to stably maintain the temperature difference with respect to the thermoelectric conversion element.

本発明の家屋内発電装置においては、前記ヒートシンクの柱状体は、長手方向に対して垂直な断面において、放射状に形成された複数の突起を有している構成とすることができる。 In the house power generator of the present invention, the columnar body of the heat sink may have a plurality of radially formed protrusions in a cross section perpendicular to the longitudinal direction.

放射状に形成された複数の突起を有していることにより、空気と接する表面積を広くすることができ、ヒートシンクによる放熱、吸熱をより促進することができる。 By having a plurality of radially formed protrusions, the surface area in contact with air can be increased, and heat dissipation and heat absorption by the heat sink can be further promoted.

本発明の家屋の空調装置は、本発明の家屋内発電装置によって得られる電力によって、家屋内の空気を循環させて空調を行うことを特徴とする。 An air conditioner for a house according to the present invention is characterized in that the air in the house is circulated by electric power obtained by the indoor power generator of the present invention.

家屋内発電装置によって得られる電力を用いて、家屋内の送風機を動かして、家屋内の空気を循環させることにより、他の電源に依存しない自立型の空調装置を実現することができる。 By using the electric power obtained by the indoor power generator to move the blower inside the house to circulate the air inside the house, a self-supporting air conditioner that does not depend on other power sources can be realized.

本発明によると、温度差が生じる状況を安定的に維持することを可能として、室内と屋外との温度差を利用した家屋内発電装置と、この家屋内発電装置を用いた家屋の空調装置を実現することができる。 According to the present invention, it is possible to stably maintain a situation where a temperature difference occurs, and to provide an indoor power generation device that utilizes the temperature difference between indoors and outdoors, and an air conditioner for a house that uses this indoor power generation device. Can be realized.

本発明の実施形態に係る家屋内発電装置と、家屋の空調装置の構成を示す図である。It is a figure which shows the structure of the indoor power generator which concerns on embodiment of this invention, and the air conditioner of a house. 屋根直下流路の下端側下部に位置する閉空間の詳細を示す図である。It is a figure which shows the detail of the closed space located in the lower end side lower part of the flow path just under the roof. 屋根と屋根直下流路との間の熱伝導構造を示す図である。It is a figure which shows the heat conduction structure between a roof and the flow path just under a roof. 熱電変換素子の詳細を示す図である。It is a figure which shows the detail of a thermoelectric conversion element.

以下に、本発明の家屋内発電装置と、家屋の空調装置について、その実施形態に基づいて説明する。
図1に、本発明の実施形態に係る家屋内発電装置と、家屋の空調装置の構成を示す。
家屋内には、家屋内の空気を家屋の上部に送り込む送風機1が設けられており、送風機1によって家屋の上部に送り込まれた空気は、屋根2の直下に沿って形成された屋根直下流路3を通って、屋根2の下端部4まで送られる。屋根直下流路3の下端側下部に位置する閉空間5には、熱電変換素子6が取り付けられている。熱電変換素子6は、その一方が閉空間5側に位置し、その他方が屋外7に接するように配置されている。熱電変換素子6として、ペルチェ素子等を用いることができる。
Below, the indoor power generator of the present invention and the air conditioner of a house will be described based on its embodiments.
FIG. 1 shows a configuration of an indoor power generator according to an embodiment of the present invention and an air conditioner for a house.
A blower 1 is provided inside the house to blow the air inside the house to the upper part of the house, and the air blown to the upper part of the house by the blower 1 is a flow path directly under the roof formed immediately below the roof 2. It is sent to the lower end part 4 of the roof 2 through 3. A thermoelectric conversion element 6 is attached to the closed space 5 located below the lower end side of the flow path 3 directly below the roof. One of the thermoelectric conversion elements 6 is located on the closed space 5 side, and the other is arranged so as to contact the outdoors 7. As the thermoelectric conversion element 6, a Peltier element or the like can be used.

家屋内の空気は、屋根2の直下に沿って屋根2の下端部4まで送る屋根直下流路3を通過する際に、高温状態となっている屋根2からの熱を受けて温度が上昇し、この温度上昇した空気が、閉空間5への入り口に設けられた流入口11を介して、屋根直下流路3の下端側下部に位置する閉空間5に送られるため、閉空間5内の空気と、屋外7の空気との間に温度差が生じ、熱電変換素子6によって温度差発電を行うことができる。 The air in the house receives heat from the roof 2, which is in a high temperature state, when the air passes through the flow path 3 directly below the roof 2, which is sent to the lower end portion 4 of the roof 2 along directly below the roof 2, and the temperature rises. Since the temperature-increased air is sent to the closed space 5 located below the lower end side of the flow path 3 directly below the roof via the inlet 11 provided at the entrance to the closed space 5, A temperature difference occurs between the air and the air in the outdoors 7, and the thermoelectric conversion element 6 can perform temperature difference power generation.

図2に、屋根直下流路3の下端側下部に位置する閉空間5の詳細を示す。
閉空間5の内部には保温壁8が形成されており、熱電変換素子6は、その一方が保温壁8の内側に位置し、その他方が保温壁8の外側に位置するように配置されている。閉空間5の内部に保温壁8が形成されていることにより、閉空間5内の空気を高温で維持することができ、閉空間5内の空気と、屋外7の空気との間に温度差が生じる状況を安定的に維持することができる。
FIG. 2 shows details of the closed space 5 located below the lower end of the flow path 3 directly below the roof.
A heat insulating wall 8 is formed inside the closed space 5, and one of the thermoelectric conversion elements 6 is arranged inside the heat insulating wall 8 and the other is arranged outside the heat insulating wall 8. There is. Since the heat insulating wall 8 is formed inside the closed space 5, the air in the closed space 5 can be maintained at a high temperature, and the temperature difference between the air in the closed space 5 and the air in the outdoors 7 can be maintained. It is possible to stably maintain the situation in which

閉空間5の下側を仕切る仕切り板9に、閉空間5内の空気を排出する排出口10が設けられており、排出口10は、開閉自在な構造となっている。閉空間5内は通常は密閉されているが、密閉されているままでは、屋根2によって熱せられた空気が屋根直下流路3を通って閉空間5内に供給されなくなるため、屋根2による加熱の効果が得られにくくなる。そのため、適宜排出口10を開けて、屋根2によって熱せられた空気の供給を促進することにより、温度差発電の効率を向上することができる。 A partition plate 9 that partitions the lower side of the closed space 5 is provided with a discharge port 10 for discharging the air in the closed space 5, and the discharge port 10 has a structure that can be opened and closed. The closed space 5 is normally sealed, but if the sealed space 5 remains closed, the air heated by the roof 2 will not be supplied to the closed space 5 through the channel 3 directly below the roof, and thus the roof 2 will not heat the air. It becomes difficult to obtain the effect of. Therefore, the efficiency of the temperature difference power generation can be improved by opening the exhaust port 10 as appropriate and promoting the supply of the air heated by the roof 2.

図3に、屋根と屋根直下流路との間の熱伝導構造を示す。図3(a)は、屋根と屋根直下流路を横方向から見た図であり、図3(b)は、屋根の上方から見た説明図である。
屋根2を構成する屋根材21と、屋根直下流路3を構成する気流誘導材22との間で熱伝導を行う熱伝導棒23を備えており、熱伝導棒23は、棒状の本体部24と、本体部24の両端に設けられた大径部25a、25bとによって構成されている。大径部25a、25bは、本体部24よりも径が大きくなるように形成されている。熱伝導棒23の屋根材21側の先端部26aは、屋根材21の表面に露出せずに、屋根材21内部に埋め込まれている。また、熱伝導棒23の気流誘導材22側の大径部25bは、気流誘導材22に直接接着されている。屋根材21は、瓦、コロニアル等によって形成されており、太陽光からの熱を吸収しやすくなっている。熱伝導棒23は、熱伝導率の高い金属によって形成されている。大径部25a、25bの形状は四角形に限定されず、状況に応じて適宜選択できる。
FIG. 3 shows a heat conduction structure between the roof and the channel directly under the roof. FIG. 3A is a view of the roof and a channel directly below the roof as viewed from the lateral direction, and FIG. 3B is an explanatory view of the roof as viewed from above.
The roof member 21 that constitutes the roof 2 and the airflow guide member 22 that constitutes the channel 3 directly below the roof are provided with a heat conducting rod 23, and the heat conducting rod 23 is a rod-shaped main body portion 24. And large diameter portions 25a and 25b provided at both ends of the main body portion 24. The large diameter portions 25a and 25b are formed to have a diameter larger than that of the main body portion 24. The tip portion 26 a of the heat conducting rod 23 on the roof material 21 side is embedded in the roof material 21 without being exposed on the surface of the roof material 21. The large-diameter portion 25 b of the heat conducting rod 23 on the air flow guide 22 side is directly bonded to the air flow guide 22. The roof material 21 is formed of a roof tile, a colonial, or the like, and easily absorbs heat from sunlight. The heat conducting rod 23 is formed of a metal having a high heat conductivity. The shape of the large diameter portions 25a and 25b is not limited to a quadrangle, and can be appropriately selected depending on the situation.

熱伝導棒23によって、屋根材21に蓄積された熱が屋根直下流路3に伝達されるため、屋根直下流路3を通過する空気を高温に維持することができ、閉空間5内を高温にして、温度差を形成しやすくなる。また、熱伝導棒23は、本体部24の両端に設けられた大径部25a、25bを有しているため、屋根材21との接触面積と、気流誘導材22との接触面積とを大きくすることができ、熱伝導性能を高めることができる。さらに、熱伝導棒23の屋根材21側の先端部26aは、屋根材21の表面に露出せずに、屋根材21内部に埋め込まれているため、熱伝導棒23を設置することによる雨漏りの誘発を防止できる。 Since the heat accumulated in the roofing material 21 is transferred to the flow path 3 directly below the roof by the heat conduction rod 23, the air passing through the flow path 3 directly below the roof can be maintained at a high temperature, and the temperature inside the closed space 5 becomes high. Therefore, it becomes easy to form a temperature difference. Further, since the heat conducting rod 23 has the large diameter portions 25a and 25b provided at both ends of the main body portion 24, the contact area with the roof member 21 and the contact area with the airflow guide member 22 are increased. It is possible to improve the heat conduction performance. Further, since the tip end portion 26a of the heat conducting rod 23 on the roof material 21 side is not exposed on the surface of the roof material 21 and is embedded inside the roof material 21, it is possible to prevent rain leakage by installing the heat conducting rod 23. You can prevent the trigger.

熱伝導棒23は、屋根材21に接する側の先端部26aから気流誘導材22に接する側の先端部26bまで、金属によって一体として成形することもできるが、図3に示すように、屋根材21の下側に設けられた屋根裏材27を通過する部位に形成された空気層28によって連結されるようにすることもできる。この場合には、熱伝導棒23は、屋根材21に接する側と気流誘導材22に接する側とに分割されて、空気層28に連結される構造となる。空気層28は、この部分を中空にすることによって容易に形成できる。 The heat-conducting rod 23 can be integrally formed of metal from the tip end portion 26a on the side in contact with the roof member 21 to the tip end portion 26b on the side in contact with the air flow guide member 22, but as shown in FIG. It is also possible to connect by an air layer 28 formed at a portion passing through a roof lining 27 provided below 21. In this case, the heat conducting rod 23 is divided into a side in contact with the roof member 21 and a side in contact with the airflow guide member 22, and is connected to the air layer 28. The air layer 28 can be easily formed by making this portion hollow.

熱伝導棒23の重要な機能は、屋根2を構成する屋根材21と、屋根直下流路3を構成する気流誘導材22との間で熱伝導を行うことにあるが、屋根材21と気流誘導材22との間には、通常木製の屋根裏材27が存在しており、屋根裏材27を通過する部位も熱伝導性の高い材質で形成されていると、熱が屋根裏材27に伝達されてしまい、気流誘導材22に熱が効果的に伝達されなくなる。そのため、屋根裏材27を通過する部位に、断熱性の高い空気層28を形成することにより、屋根裏材27への熱伝導を抑制し、気流誘導材22に熱が効果的に伝達されるようにすることができる。断熱性を高めるために、屋根裏材27との境界部位に、断熱材を設置することもできる。屋根材21と屋根裏材27との間には、ゴム等によって形成された防水シート29が設置されている。上述した構造の熱伝導棒23は、既設の屋根に後付けで取り付けることもできる他、予め屋根に組み込んだものを設置することもできる。 An important function of the heat conducting rod 23 is to conduct heat between the roof material 21 that constitutes the roof 2 and the air flow guide material 22 that constitutes the flow path 3 directly below the roof. A wooden attic 27 is usually present between the guide member 22 and heat is transferred to the attic 27 if the portion passing through the attic 27 is also formed of a material having high thermal conductivity. As a result, heat is not effectively transferred to the air flow guide member 22. Therefore, by forming an air layer 28 having a high heat insulating property in a portion that passes through the attic 27, heat conduction to the attic 27 is suppressed, and heat is effectively transferred to the airflow guide 22. can do. In order to improve the heat insulating property, a heat insulating material can be installed at a boundary portion with the attic 27. A waterproof sheet 29 made of rubber or the like is installed between the roof material 21 and the roof lining material 27. The heat-conducting rod 23 having the above-described structure can be retrofitted to an existing roof, or can be installed in advance on the roof.

図4に、熱電変換素子の詳細を示す。図4(a)は、熱電変換素子を横方向から見た図であり、図4(b)は、熱電変換素子の上方から見た説明図である。 FIG. 4 shows details of the thermoelectric conversion element. FIG. 4A is a diagram of the thermoelectric conversion element viewed from the lateral direction, and FIG. 4B is an explanatory diagram of the thermoelectric conversion element viewed from above.

図2を用いて説明したように、閉空間5の内部に保温壁8が形成されており、熱電変換素子6は、その一方が保温壁8の内側に位置し、その他方が保温壁8の外側に位置するように配置されている。保温壁8の下側を仕切る仕切り板9に、保温壁8内の空気を排出する排出口10が設けられており、排出口10は、保温壁8内の圧力によって開閉する開閉自在な構造となっている。 As described with reference to FIG. 2, the heat insulating wall 8 is formed inside the closed space 5, and one of the thermoelectric conversion elements 6 is located inside the heat insulating wall 8 and the other is the heat insulating wall 8. It is arranged so as to be located outside. The partition plate 9 that partitions the lower side of the heat retaining wall 8 is provided with an exhaust port 10 for exhausting the air in the heat retaining wall 8. The exhaust port 10 has an openable and closable structure that opens and closes according to the pressure in the heat retaining wall 8. Is becoming

熱電変換素子6には、閉空間5側と屋外7側のいずれにも、金属製の柱状体30からなるヒートシンク31が取り付けられている。ヒートシンク31により、放熱、吸熱の効果が高まるため、熱電変換素子6に対して、温度差を安定的に維持することができる。 A heat sink 31 made of a metal columnar body 30 is attached to the thermoelectric conversion element 6 both on the closed space 5 side and on the outdoor 7 side. Since the heat sink 31 enhances the effect of heat radiation and heat absorption, it is possible to stably maintain the temperature difference with respect to the thermoelectric conversion element 6.

図4(b)に示すヒートシンク31の柱状体30は、長手方向に対して垂直な断面32が四角形状であるが、他の形状とすることもできる。図4(c)、図4(d)、図4(e)、図4(f)に、ヒートシンク31の柱状体30の他の形状の具体的な例を示す。 The columnar body 30 of the heat sink 31 shown in FIG. 4B has a rectangular cross section 32 perpendicular to the longitudinal direction, but may have another shape. 4C, FIG. 4D, FIG. 4E, and FIG. 4F show specific examples of other shapes of the columnar body 30 of the heat sink 31.

図4(c)に示すものは、長手方向に対して垂直な断面32が円形状であり、図4(d)に示すものは、長手方向に対して垂直な断面32が長方形状である。また、図4(e)、図4(f)に示すものは、長手方向に対して垂直な断面32において、放射状に形成された複数の突起33を有している構造となっている。このうち、図4(e)は、長手方向に対して垂直な断面32が多角形のものに対して、複数の突起33を放射状に形成したものであり、図4(f)は、長手方向に対して垂直な断面32が円形のものに対して、複数の突起33を放射状に形成したものである。 In FIG. 4(c), the cross section 32 perpendicular to the longitudinal direction is circular, and in FIG. 4(d), the cross section 32 perpendicular to the longitudinal direction is rectangular. Further, the structure shown in FIGS. 4E and 4F has a structure having a plurality of radially formed projections 33 in a cross section 32 perpendicular to the longitudinal direction. Of these, FIG. 4E shows a polygonal cross section 32 perpendicular to the longitudinal direction, and a plurality of protrusions 33 are formed radially, and FIG. 4F shows the longitudinal direction. A plurality of protrusions 33 are radially formed in contrast to a circular cross section 32 perpendicular to the.

このような放射状に形成された複数の突起33を有していることにより、空気と接する表面積を広くすることができ、ヒートシンク31による放熱、吸熱をより促進することができる。 By having the plurality of radial projections 33, the surface area in contact with air can be increased, and the heat dissipation and heat absorption by the heat sink 31 can be further promoted.

上述した家屋内発電装置によって得られる電力は、電気設備の電源として利用できる他、家屋内に設置された送風機1の電源として使用すると、他の電源を用いずに、家屋内の送風機1を動かして、家屋内の空気を循環させることができ、自立型の空調装置として機能させることができる。なお、図1においては、送風機1を代表して1機のみを表記しているが、必要に応じて家屋内に送風機1を複数設置して、家屋内の空気が効率的に循環するようにすることができる。 The electric power obtained by the above-described indoor power generator can be used as a power source for electric equipment, and when used as a power source for the blower 1 installed in the house, the blower 1 in the house can be operated without using any other power source. Thus, the air in the house can be circulated, and the air conditioner can function as an independent air conditioner. In FIG. 1, only one blower 1 is shown on behalf of the blower 1, but if necessary, a plurality of blowers 1 may be installed in the house so that the air in the house circulates efficiently. can do.

なお、以上の説明においては、夏季において、屋根が高温となる状況を前提として説明したが、冬季においては、屋根が低温となるため、熱伝導の方向を逆転させることによって温度差を作り出し、温度差発電を行うことができる。 In the above description, the roof is assumed to be hot in summer, but in winter, the roof is cold, so the temperature difference is created by reversing the direction of heat conduction. Differential power generation can be performed.

本発明は、温度差が生じる状況を安定的に維持することを可能として、室内と屋外との温度差を利用した家屋内発電装置と、この家屋内発電装置を用いた家屋の空調装置として、広く利用することができる。 The present invention makes it possible to stably maintain a situation in which a temperature difference occurs, and an in-house power generator using a temperature difference between indoor and outdoor, and an air conditioner for a house using this indoor power generator, Can be widely used.

1 送風機
2 屋根
3 屋根直下流路
4 下端部
5 閉空間
6 熱電変換素子
7 屋外
8 保温壁
9 仕切り板
10 排出口
11 流入口
21 屋根材
22 気流誘導材
23 熱伝導棒
24 本体部
25a、25b 大径部
26a、26b 先端部
27 屋根裏材
28 空気層
29 防水シート
30 柱状体
31 ヒートシンク
32 断面
33 突起
DESCRIPTION OF SYMBOLS 1 Blower 2 Roof 3 Flow path directly under the roof 4 Lower end 5 Closed space 6 Thermoelectric conversion element 7 Outdoor 8 Heat insulation wall 9 Partition plate 10 Discharge port 11 Inlet 21 Roof material 22 Air flow guide 23 Heat conduction rod 24 Main body 25a, 25b Large-diameter portion 26a, 26b Tip portion 27 Attic material 28 Air layer 29 Waterproof sheet 30 Columnar body 31 Heat sink 32 Cross section 33 Protrusion

Claims (8)

家屋内の空気を家屋の上部に送り込む送風機と、送風機によって家屋の上部に送り込まれた空気を屋根直下に沿って屋根の下端部まで送る屋根直下流路と、屋根直下流路の下端側下部に位置する閉空間に設けられた熱電変換素子とを備え、
熱電変換素子は、その一方が前記閉空間側に位置し、その他方が屋外に接するように配置されて、前記閉空間と屋外との温度差により温度差発電を行うことを特徴とする家屋内発電装置。
A blower that blows the air inside the house to the top of the house, and a channel directly under the roof that blows the air that is blown to the top of the house by the blower to the lower end of the roof along the bottom of the roof. A thermoelectric conversion element provided in the closed space located,
One of the thermoelectric conversion elements is located on the closed space side, and the other is arranged so as to be in contact with the outside, and temperature difference power generation is performed by a temperature difference between the closed space and the outside. Power generator.
前記閉空間の内部には保温壁が形成されており、前記熱電変換素子は、その一方が前記保温壁の内側に位置し、その他方が前記保温壁の外側に位置するように配置されていることを特徴とする請求項1記載の家屋内発電装置。 A heat insulating wall is formed inside the closed space, and one of the thermoelectric conversion elements is arranged inside the heat insulating wall and the other is arranged outside the heat insulating wall. The indoor power generation device according to claim 1, wherein the power generation device is an indoor power generation device. 前記閉空間の下側を仕切る仕切り板に、前記閉空間内の空気を排出する排出口が設けられており、前記排出口は、開閉自在な構造であることを特徴とする請求項1または2記載の家屋内発電装置。 The partition plate for partitioning the lower side of the closed space is provided with a discharge port for discharging the air in the closed space, and the discharge port has a structure that can be opened and closed. In-house power generator. 前記屋根を構成する屋根材と、前記屋根直下流路を構成する気流誘導材との間で熱伝導を行う熱伝導棒を備え、熱伝導棒は、棒状の本体部と、本体部の両端に設けられた大径部とによって構成され、熱伝導棒の屋根材側の先端部は、屋根材表面に露出せずに屋根材内部に埋め込まれていることを特徴とする請求項1から3のいずれかに記載の家屋内発電装置。 A roof material that constitutes the roof, and a heat conduction rod that conducts heat between the airflow guide material that constitutes the flow path directly below the roof, the heat conduction rod is a rod-shaped body portion, and at both ends of the body portion. The large-diameter portion provided, and the tip of the heat conducting rod on the roof material side is embedded in the roof material without being exposed to the surface of the roof material. The indoor power generator according to any one of the above. 前記熱伝導棒は、前記屋根材に接する側と前記気流誘導材に接する側とに分割されて、前記屋根材の下側に設けられた屋根裏材を通過する部位に形成された空気層によって連結されていることを特徴とする請求項4記載の家屋内発電装置。 The heat-conducting rod is divided into a side in contact with the roof material and a side in contact with the airflow guide member, and is connected by an air layer formed in a portion passing through a roof backing material provided under the roof material. The indoor power generation device according to claim 4, wherein the power generation device is an indoor power generation device. 前記熱電変換素子には、閉空間側と屋外側のいずれにも金属製の柱状体からなるヒートシンクが取り付けられていることを特徴とする請求項1から5のいずれかに記載の家屋内発電装置。 6. The indoor power generator according to claim 1, wherein the thermoelectric conversion element is provided with a heat sink made of a metal columnar body on both the closed space side and the outdoor side. .. 前記ヒートシンクの柱状体は、長手方向に対して垂直な断面において、放射状に形成された複数の突起を有していることを特徴とする請求項6記載の家屋内発電装置。 7. The indoor power generator according to claim 6, wherein the columnar body of the heat sink has a plurality of radially formed protrusions in a cross section perpendicular to the longitudinal direction. 請求項1から7のいずれかに記載の家屋内発電装置によって得られる電力によって、家屋内の空気を循環させて空調を行うことを特徴とする家屋の空調装置。 An air conditioner for a house, characterized in that the air in the house is circulated for air conditioning by the electric power obtained by the indoor power generator according to any one of claims 1 to 7.
JP2018218805A 2018-11-22 2018-11-22 House indoor generator and air conditioner for house Expired - Fee Related JP6543867B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018218805A JP6543867B1 (en) 2018-11-22 2018-11-22 House indoor generator and air conditioner for house

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018218805A JP6543867B1 (en) 2018-11-22 2018-11-22 House indoor generator and air conditioner for house

Publications (2)

Publication Number Publication Date
JP6543867B1 JP6543867B1 (en) 2019-07-17
JP2020084516A true JP2020084516A (en) 2020-06-04

Family

ID=67297523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018218805A Expired - Fee Related JP6543867B1 (en) 2018-11-22 2018-11-22 House indoor generator and air conditioner for house

Country Status (1)

Country Link
JP (1) JP6543867B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146973B (en) * 2020-01-10 2020-11-10 北京理工大学 Power generation device utilizing temperature difference between inside and outside of building wall

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137493A (en) * 1997-07-18 1999-02-12 Eidai Co Ltd Cooling system, heating system and both cooling and heating systems
JP2001295386A (en) * 2000-04-11 2001-10-26 Ibiden Co Ltd Structure of building and heat storaging system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137493A (en) * 1997-07-18 1999-02-12 Eidai Co Ltd Cooling system, heating system and both cooling and heating systems
JP2001295386A (en) * 2000-04-11 2001-10-26 Ibiden Co Ltd Structure of building and heat storaging system

Also Published As

Publication number Publication date
JP6543867B1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP2013509559A (en) Apparatus for air conditioning a room and heat pump assembly for use in the apparatus
JP2014040951A (en) Heat storage type radiation heating and cooling system utilizing heat pump air conditioner
JP2020084516A (en) Power generating device in house and air conditioning device in house
CN103807909A (en) Novel distributed solar phase-variable energy-storage heating device and method
JP3156275U (en) House with comfortable living space using air conditioner
JP6021733B2 (en) Dehumidifier
JP4605759B2 (en) Indoor air conditioning system for buildings
KR20120056014A (en) Heat pump radiant heating ? convection cooling/heating system
KR20160044130A (en) Fan Heater Using Heat Pipe
RU143280U1 (en) ELECTRIC HEATING DEVICE FOR HEATING YURT
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
JP2009145035A (en) Instantaneous heating type floor heating device
CN107548262A (en) The heat abstractor and transducer air conditioning of air conditioning frequency converter
JP2003343884A (en) Circulating type cooling and heating method of building using geothermal power
JP2007192542A (en) Heat collecting air supply system for floor heated room
JP2008116178A (en) Air conditioning method and device, and dehumidification method and device
CN102607118A (en) Indoor environment regulating device
JP6285677B2 (en) Thermal storage heating system and building
WO2014000740A1 (en) Fixture for air supply to a room with air temperature treatment
JP2006132822A (en) Indoor air-conditioning system of building
KR101477520B1 (en) Movable warm air conditioner
JP2009250544A (en) Underfloor heating system house
JP2008281284A (en) Building air-blowing system, and building
JPH11101475A (en) Heat insulation structure of dwelling
JP6381449B2 (en) Floor heating system and floor heating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190530

R150 Certificate of patent or registration of utility model

Ref document number: 6543867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees