JP2020083720A - Transition metal carrier having amorphous coating layer and its production method - Google Patents

Transition metal carrier having amorphous coating layer and its production method Download PDF

Info

Publication number
JP2020083720A
JP2020083720A JP2018222636A JP2018222636A JP2020083720A JP 2020083720 A JP2020083720 A JP 2020083720A JP 2018222636 A JP2018222636 A JP 2018222636A JP 2018222636 A JP2018222636 A JP 2018222636A JP 2020083720 A JP2020083720 A JP 2020083720A
Authority
JP
Japan
Prior art keywords
transition metal
carrier
coating layer
amorphous coating
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018222636A
Other languages
Japanese (ja)
Other versions
JP7198646B2 (en
Inventor
千津 稲木
Chizu Inagi
千津 稲木
鶴田 俊二
Shunji Tsuruta
俊二 鶴田
中島 昭
Akira Nakajima
昭 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2018222636A priority Critical patent/JP7198646B2/en
Publication of JP2020083720A publication Critical patent/JP2020083720A/en
Application granted granted Critical
Publication of JP7198646B2 publication Critical patent/JP7198646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a transition metal carrier that is difficult to sinter and has high catalytic activity.SOLUTION: A transition metal carrier having an amorphous coating layer is a transition metal carrier in which the transition metal is carried by a carrier, in which a size of the transition metal is 0.3 nm or larger and 20 nm or smaller, a size of the carrier is 10 nm or larger and 100 μm or smaller, a surface of the transition metal carrier has an amorphous coating layer, and an exposure rate of the transition metal is 80% or larger and 100% or smaller.SELECTED DRAWING: Figure 1

Description

本発明は、非晶質の被覆層を有する遷移金属担持体およびその製造方法に関する。 The present invention relates to a transition metal carrier having an amorphous coating layer and a method for producing the same.

遷移金属、その中でも特に貴金属は、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム及びオスミウムの総称であって、装身具、電子材料、触媒といった様々な分野で使用されている。 A transition metal, especially a noble metal, is a general term for gold, silver, platinum, palladium, rhodium, iridium, ruthenium and osmium, and is used in various fields such as jewelry, electronic materials and catalysts.

貴金属を触媒に用いる場合、貴金属は微粒子の状態で使用されることが多い。これは、貴金属を微粒子にして貴金属の表面を増やすことで、触媒活性を高めるためである。また、このような貴金属の微粒子は、その広い表面を最大限生かすため、表面積の大きい担体に分散担持されるのが一般的である。このような貴金属の微粒子が担体に担持された触媒は、種々の触媒反応に高い触媒活性を示すものの、例えば、高温で使用すると貴金属の微粒子が熱によって移動・接触して成長してしまい(シンタリング)、貴金属の表面が少なくなるという問題がある。このような問題を解決する方法は種々検討されており、例えば特許文献1には、金属成分担持ゼオライトの表面をシート状のシリカである層状ケイ酸塩で被覆した排気ガス浄化用触媒が開示されている。また、特許文献2には、Ptを担持した担体の表面がFe23で被覆された触媒が開示されている。更に、特許文献3には、貴金属粒子を包接材で包接した後に、担体の外表面に担持する方法も開示されている。 When a precious metal is used as a catalyst, the precious metal is often used in the form of fine particles. This is because the noble metal is made into fine particles and the surface of the noble metal is increased to enhance the catalytic activity. In addition, such fine particles of noble metal are generally dispersed and supported on a carrier having a large surface area in order to make the best use of the large surface thereof. Such a catalyst in which fine particles of a noble metal are supported on a carrier has high catalytic activity for various catalytic reactions, but, for example, when used at a high temperature, the fine particles of a precious metal move and contact due to heat to grow (sinter). Ring), there is a problem that the surface of the precious metal is reduced. Various methods for solving such a problem have been studied. For example, Patent Document 1 discloses an exhaust gas purifying catalyst in which the surface of a metal component-supporting zeolite is coated with a layered silicate that is sheet-like silica. ing. Further, Patent Document 2 discloses a catalyst in which the surface of a carrier supporting Pt is coated with Fe 2 O 3 . Further, Patent Document 3 also discloses a method in which the noble metal particles are clathrated by the clathrate and then supported on the outer surface of the carrier.

特開平11−76826号公報Japanese Patent Laid-Open No. 11-76826 国際公開WO2004/068071号公報International publication WO2004/068071 国際公開WO2006/064684号公報International publication WO2006/064684

特許文献1〜3のような被覆層を有する触媒は、遷移金属同士の移動をなくし、シンタリングを抑制することができるという課題を解決することができる。しかし、これを触媒反応に用いる場合は、触媒反応の活性種となる遷移金属が被覆層で覆われているため、反応原料が遷移金属まで到達しにくくなり、触媒活性が低下しやすいという課題を有していた。 The catalyst having a coating layer as disclosed in Patent Documents 1 to 3 can solve the problem that transition metals can be eliminated and sintering can be suppressed. However, when this is used in a catalytic reaction, the transition metal, which is the active species of the catalytic reaction, is covered with the coating layer, so that the reaction raw material becomes difficult to reach the transition metal, and the problem that the catalytic activity tends to decrease I had.

遷移金属担持体の表面を非晶質の被覆層(以下、「非晶質層」ともいう。)で覆い、かつ遷移金属の露出率(表面に露出した遷移金属の割合)が80%以上、100%以下とすることで、遷移金属担持体を触媒として用いた場合の触媒活性の低下を防ぎつつ遷移金属のシンタリングを抑制することができる。具体的には、遷移金属が担体に担持された遷移金属担持体であって、前記遷移金属のサイズが0.3nm以上、20nm以下であり、前記担体のサイズが10nm以上、100μm以下であり、前記遷移金属担持体の表面に非晶質の被覆層を有し、前記遷移金属の露出率が80%以上、100%以下である、非晶質の被覆層を有する遷移金属担持体を用いること。 The surface of the transition metal carrier is covered with an amorphous coating layer (hereinafter, also referred to as “amorphous layer”), and the transition metal exposure rate (the ratio of the transition metal exposed on the surface) is 80% or more, When the content is 100% or less, it is possible to suppress the sintering of the transition metal while preventing the reduction of the catalytic activity when the transition metal support is used as the catalyst. Specifically, a transition metal carrier in which a transition metal is supported on a carrier, the size of the transition metal is 0.3 nm or more and 20 nm or less, and the size of the carrier is 10 nm or more and 100 μm or less, Use of a transition metal carrier having an amorphous coating layer having an amorphous coating layer on the surface of the transition metal carrier, and the exposure rate of the transition metal being 80% or more and 100% or less. ..

遷移金属のシンタリングを抑制することができるという従来の効果に加え、これを触媒反応に用いた場合に触媒活性が低下しにくくなる。 In addition to the conventional effect of suppressing sintering of transition metal, when this is used for a catalytic reaction, the catalytic activity is less likely to decrease.

本発明の遷移金属担持体のイメージ図。The image figure of the transition metal support body of the present invention. 実施例1において得られた遷移金属担持体の透過型電子顕微鏡画像である。3 is a transmission electron microscope image of the transition metal carrier obtained in Example 1. 実施例2において得られた遷移金属担持体の透過型電子顕微鏡画像である。3 is a transmission electron microscope image of the transition metal carrier obtained in Example 2. 実施例3において得られた遷移金属担持体の透過型電子顕微鏡画像である。5 is a transmission electron microscope image of the transition metal carrier obtained in Example 3.

以下、本発明の非晶質の被覆層を有する遷移金属担持体(以下、「本発明の担持体」ともいう。)の概要および先行技術との相違について説明する。 Hereinafter, an outline of the transition metal carrier having an amorphous coating layer of the present invention (hereinafter, also referred to as “support of the present invention”) and differences from the prior art will be described.

[本発明のゼオライトの概要]
本発明の担持体は、遷移金属が担体に担持された遷移金属担持体であって、前記遷移金属のサイズが0.3nm以上、20nm以下であり、前記担体のサイズが10nm以上、100μm以下であり、前記遷移金属担持体の表面に非晶質の被覆層を有し、前記遷移金属の露出率が80%以上、100%以下である。そのイメージを図1に示した。
[Outline of Zeolite of the Present Invention]
The support of the present invention is a transition metal support in which a transition metal is supported on a carrier, the size of the transition metal is 0.3 nm or more and 20 nm or less, and the size of the carrier is 10 nm or more and 100 μm or less. And an amorphous coating layer is provided on the surface of the transition metal carrier, and the exposure rate of the transition metal is 80% or more and 100% or less. The image is shown in FIG.

[先行技術との相違]
本発明の担持体は、前述の特許文献1〜3の被覆層を有する担持体と比較して、「前記遷移金属担持体の表面に非晶質の被覆層を有し、前記遷移金属の露出率が80%以上、100%以下である」という点で少なくとも相違する。特許文献1、2には、担持体に含まれる金属粒子の露出率は記載されていないが、少なくとも本発明のような「非晶質の被覆層を有しつつ、遷移金属の露出率を高める」という技術思想は開示されていない。また、特許文献3には、金属を包接材によって包接した後、耐熱性の担体の外表面に担持する触媒が開示されている。この触媒は、まず金属粒子を包接材で被覆した後で担体の外表面に担持するものであって、本発明の担持体のように遷移金属が担体に担持された担持体を被覆しているものではないが、特許文献3には金属の露出率に関する開示がある。特許文献3では、この露出率が高いほど排ガス浄化性能が高くなることが開示されている。そして、実施例では、包接材を有さず露出率が98%である比較例1と、包接材を有し露出率が78%である実施例1が開示されており、この記載に基づけば比較例1のほうが触媒活性が高くなるものと理解できる。そして、比較例1と実施例1の熱処理(700℃×3hr焼成)を行った後の触媒活性を比較すると、露出率の高い比較例1のほうが触媒活性が低くなっていることが読み取れる。このように、露出率と触媒活性は利益相反の関係にあり、露出率が高いと触媒活性は高いが熱に弱く、露出率が低いと熱には強いが触媒活性は低くなる。しかし、本発明の担持体は、非晶質の被覆層を有しつつ、遷移金属の露出率を高める、具体的には80%以上、100%以下とすることで、これらの先行技術にない、熱に強く触媒活性が高いという従来の担持体とは異なる発明の効果が得られる。
[Difference from Prior Art]
Compared with the carrier having the coating layer of the above-mentioned Patent Documents 1 to 3, the carrier of the present invention has "an amorphous coating layer on the surface of the transition metal carrier, and the transition metal is exposed. The ratio is 80% or more and 100% or less." Although Patent Documents 1 and 2 do not describe the exposure ratio of the metal particles contained in the carrier, at least the “exposure ratio of the transition metal is increased while having an amorphous coating layer as in the present invention”. The technical idea of "" is not disclosed. Further, Patent Document 3 discloses a catalyst in which a metal is clathrated by a clathrate and then supported on the outer surface of a heat-resistant carrier. This catalyst is one in which metal particles are first coated with an encapsulating material and then supported on the outer surface of the carrier, and a carrier in which a transition metal is supported on the carrier like the carrier of the present invention is coated. However, Patent Document 3 discloses a metal exposure rate. Patent Document 3 discloses that the higher the exposure rate, the higher the exhaust gas purification performance. Then, in Examples, Comparative Example 1 having no clathrate and an exposure rate of 98% and Example 1 having a clathrate and an exposure rate of 78% are disclosed. It can be understood that the catalytic activity is higher in Comparative Example 1 based on the above. Then, comparing the catalytic activities after the heat treatments of Comparative Example 1 and Example 1 (calcination at 700° C.×3 hr), it can be seen that Comparative Example 1 having a higher exposure rate has a lower catalytic activity. As described above, the exposure rate and the catalytic activity have a conflicting relationship of interests. When the exposure rate is high, the catalytic activity is high but weak to heat, and when the exposure rate is low, the catalytic activity is strong but the catalytic activity is low. However, the support of the present invention has an amorphous coating layer, but increases the exposure rate of the transition metal, specifically 80% or more and 100% or less. In addition, the effect of the invention that is strong against heat and high in catalytic activity, which is different from the conventional carrier, can be obtained.

以下、本発明の担持体の実施形態について、詳述する。 Hereinafter, embodiments of the carrier of the present invention will be described in detail.

[本発明の担持体]
本発明の担持体は、遷移金属が担体に担持された遷移金属担持体である。本発明の担持体における遷移金属は、周期表で第3族元素から第11族元素の間に存在する元素の1種類以上を含む粒子を指すものである。遷移金属の中でも、特に、Au、Ag、Pt、Pd、Rh、Ir、Ru、Osから選ばれる少なくとも1種の元素を含む貴金属であることが好ましい。この貴金属金属の中でも、Pt、Pd、Rh、Ruから選ばれる少なくとも1種の元素を含む粒子であることが特に好ましい。これらの元素は、例えば、炭化水素の水素化反応に用いる触媒の活性成分として好適である。なお、前記遷移金属は、金属単体であってもよく、化合物であってもよい。化合物としては、例えば、酸化物でもよく、また配位子を含む錯体であってもよい。また、前記遷移金属のサイズは、0.3nm以上、20nm以下であり、0.5nm以上、10nm以下であることが好ましく、1nm以上、5nm以下であることがより好ましい。このサイズが小さいほど、遷移金属の表面積が増加するので、これを触媒の活性成分として用いると高い活性が期待できる。
[Support of the present invention]
The carrier of the present invention is a transition metal carrier in which a transition metal is supported on a carrier. The transition metal in the carrier of the present invention refers to particles containing at least one kind of element existing between Group 3 elements and Group 11 elements in the periodic table. Among the transition metals, a noble metal containing at least one element selected from Au, Ag, Pt, Pd, Rh, Ir, Ru and Os is particularly preferable. Among these precious metal metals, particles containing at least one element selected from Pt, Pd, Rh, and Ru are particularly preferable. These elements are suitable, for example, as the active component of the catalyst used in the hydrogenation reaction of hydrocarbons. The transition metal may be a simple metal or a compound. The compound may be, for example, an oxide or a complex containing a ligand. The size of the transition metal is 0.3 nm or more and 20 nm or less, preferably 0.5 nm or more and 10 nm or less, and more preferably 1 nm or more and 5 nm or less. The smaller the size, the larger the surface area of the transition metal. Therefore, when this is used as the active component of the catalyst, high activity can be expected.

本発明の担持体に含まれる担体は、Si、Al、Ti、Pから選ばれる少なくとも1種類の元素を含む化合物であることが好ましい。前述の化合物の中でも比表面積が特に大きい化合物が好ましく、化合物の具体例としては、シリカ、アルミナ、チタニアまたはこれらの複合酸化物であってもよく、ゼオライトであってもよい。本発明の担持体に含まれる担体としては、比表面積の大きいゼオライトが好ましく、ゼオライトの中でもFAU、MFI、またはCHA構造を有するゼオライトがより好ましい。担体のサイズは、10nm以上、100μm以下であればよく、100nm以上、10μm以下であることが好ましく、500nm以上、5μm以下であることがより好ましい。担体のサイズが前述の範囲にあることで、遷移金属を担体の表面に分散した状態で担持することができる。 The carrier contained in the carrier of the present invention is preferably a compound containing at least one element selected from Si, Al, Ti and P. Among the above-mentioned compounds, a compound having a particularly large specific surface area is preferable, and specific examples of the compound may be silica, alumina, titania or a composite oxide thereof, or zeolite. As the carrier contained in the carrier of the present invention, a zeolite having a large specific surface area is preferable, and among the zeolites, a zeolite having a FAU, MFI or CHA structure is more preferable. The size of the carrier may be 10 nm or more and 100 μm or less, preferably 100 nm or more and 10 μm or less, and more preferably 500 nm or more and 5 μm or less. When the size of the carrier is within the above range, the transition metal can be supported in a dispersed state on the surface of the carrier.

本発明の担持体における遷移金属の含有量は、本発明の担持体の質量に対して0.01質量%以上、10質量%以下の範囲にあることが好ましく、0.01質量%以上、5質量%以下の範囲にあることが好ましく0.01質量%以上、1質量%以下の範囲にあることが特に好ましい。遷移金属の含有量が少ないほうが、本発明の担持体に含まれる担体の表面に遷移金属をより均一に分散させやすくなる。 The content of the transition metal in the carrier of the present invention is preferably in the range of 0.01% by mass or more and 10% by mass or less with respect to the mass of the carrier of the present invention, and 0.01% by mass or more and 5% by mass. It is preferably in the range of not more than mass%, more preferably in the range of not less than 0.01 mass% and not more than 1 mass%. The smaller the content of the transition metal, the easier the dispersion of the transition metal on the surface of the carrier contained in the carrier of the present invention.

本発明の担持体は、その表面に非晶質の被覆層を有する。本発明の担持体に含まれる非晶質の被覆層とは、Si、Al、Ti、Pから選ばれる少なくとも1種類の元素を含み、透過型電子顕微鏡(TEM)で格子縞が観察されない層である。本発明の担持体の表面には、前述の元素を含む非常に小さな粒子が集合した層が形成されており、この層はTEMで観察することができるが、非晶質であることから格子縞は観察されない。本発明の担持体の被覆層は、担持体の表面が全て覆われていることが好ましく、1つの担持体の表面が全て覆われていることがより好ましい。担持体の表面がすべて覆われていなくても、担持体が凝集した状態で覆われていても本発明の効果は得られるが、一つの担持体の表面をすべて覆っているほうがより本発明の効果を得ることができる。 The carrier of the present invention has an amorphous coating layer on its surface. The amorphous coating layer contained in the carrier of the present invention is a layer containing at least one element selected from Si, Al, Ti and P, and no lattice fringes are observed by a transmission electron microscope (TEM). .. On the surface of the carrier of the present invention, a layer in which very small particles containing the above-mentioned elements are aggregated is formed, and this layer can be observed by TEM. Not observed. The coating layer of the carrier of the present invention preferably covers the entire surface of the carrier, and more preferably covers the entire surface of one carrier. Even if the surface of the carrier is not entirely covered, the effect of the present invention can be obtained even if the carrier is covered in an agglomerated state, but it is more preferable to cover all the surfaces of one carrier. The effect can be obtained.

本発明の担持体は、遷移金属の露出率が80%以上、100%以下であり、90%以上、100%以下であることが好ましい。本発明における遷移金属の露出率は、特許文献3と同様に、ガス吸着試験により測定した遷移金属の比表面積と、TEM観察により得られた遷移金属の粒子径から算出される表面積の割合から求めた値であって、表面積(ガス吸着)/表面積(TEM観察粒子径から算出)×100で表される。具体的には、後述の実施例の方法で算出することができる。なお、この値がTEM観察粒子径のばらつき等によって100%を超える場合があるが、このような場合は100%とみなすものとする。本発明の担持体に含まれる遷移金属は、その表面が被覆層で覆われているにもかかわらず、露出率が高い。この理由は、必ずしも明確ではないが、本発明の担持体が、図1の拡大図のような、非晶質の被覆層を構成する粒子の隙間が多い構造を有しているためと考えられる。そして、このような構造は、後述する製造方法によって発現するものと考えられる。 In the carrier of the present invention, the exposure rate of the transition metal is 80% or more and 100% or less, preferably 90% or more and 100% or less. The exposure ratio of the transition metal in the present invention is obtained from the ratio of the specific surface area of the transition metal measured by the gas adsorption test and the surface area calculated from the particle size of the transition metal obtained by TEM observation, as in Patent Document 3. And the surface area (gas adsorption)/surface area (calculated from TEM observation particle size)×100. Specifically, it can be calculated by the method of the embodiment described later. Note that this value may exceed 100% due to variations in the TEM observation particle size, etc., but in such a case, it is considered as 100%. The transition metal contained in the carrier of the present invention has a high exposure rate even though the surface thereof is covered with the coating layer. The reason for this is not necessarily clear, but it is considered that the carrier of the present invention has a structure such as the enlarged view of FIG. 1 in which there are many gaps between the particles forming the amorphous coating layer. .. It is considered that such a structure is developed by the manufacturing method described later.

[本発明の担持体の製造方法の概要]
本発明の担持体の製造方法(以下、「本発明の製造方法」ともいう。)は、あらかじめ担体を調製または準備しておき、その表面に遷移金属を担持し、その表面に非晶質層を形成する製造方法である。具体的には、非晶質の被覆層を有する遷移金属担持体の製造方法であって、担体の表面をアミノ基を有するシランカップリング剤で表面処理して表面処理担体を調製する工程(以下、「表面処理工程」ともいう。)、前記表面処理担体と遷移金属とを混合して遷移金属担持体を調製する工程(以下、「遷移金属担持工程」ともいう。)、前記遷移金属担持体の表面に非晶質の被覆層を形成する工程(以下、「非晶質層形成工程」ともいう。)、とを含む、製造方法である。
[Outline of production method of carrier according to the present invention]
In the method for producing a carrier of the present invention (hereinafter, also referred to as “the production method of the present invention”), a carrier is prepared or prepared in advance, a transition metal is supported on the surface thereof, and an amorphous layer is formed on the surface thereof. It is a manufacturing method of forming. Specifically, a method for producing a transition metal carrier having an amorphous coating layer, the step of preparing a surface-treated carrier by surface-treating the surface of the carrier with a silane coupling agent having an amino group (hereinafter , "Surface treatment step"), a step of preparing a transition metal carrier by mixing the surface-treated carrier and a transition metal (hereinafter, also referred to as "transition metal supporting step"), the transition metal carrier. And a step of forming an amorphous coating layer on the surface of (hereinafter, also referred to as "amorphous layer forming step").

[先行技術との相違]
本発明の製造方法は、前述の特許文献1〜3の製造方法と比較して、「担体の表面をアミノ基を有するシランカップリング剤で表面処理して表面処理担体を調製する工程、前記表面処理担体と遷移金属とを混合して遷移金属担持体を調製する工程」を含むという点で少なくとも相違する。本発明の製造方法は、このように前述の特許文献1〜3の製造方法にない工程を有しており、これにより、遷移金属の表面が被覆層で覆われているにもかかわらず、その露出率が高い本発明の担持体を得ることができる。そして、このような担持体は、前述のとおり遷移金属のシンタリングを抑制することができると共に、これを触媒反応に用いた場合に触媒活性が低下しにくくなる。
[Difference from Prior Art]
The production method of the present invention is, compared with the production methods of the above-mentioned Patent Documents 1 to 3, "a step of preparing a surface-treated support by surface-treating the surface of the support with a silane coupling agent having an amino group, the surface. And the step of preparing a transition metal support by mixing the treated carrier and the transition metal". The production method of the present invention thus has steps not included in the production methods of Patent Documents 1 to 3 described above, whereby the surface of the transition metal is covered with the coating layer, even though The carrier of the present invention having a high exposure rate can be obtained. Then, such a support can suppress the sintering of the transition metal as described above, and when it is used for the catalytic reaction, the catalytic activity is less likely to decrease.

以下、本発明の製造方法の実施形態について、詳述する。 Hereinafter, an embodiment of the manufacturing method of the present invention will be described in detail.

[表面処理工程]
本発明の製造方法は、前述の表面処理工程を含む。この工程では、担体の表面をアミノ基を有するシランカップリング剤で表面処理して、表面処理担体を調製する。例えば、担体の分散液中にアミノ基を有するシランカップリング剤を適量添加して、そのまま撹拌混合することで、担体を表面処理することができる。
[Surface treatment process]
The manufacturing method of the present invention includes the above-mentioned surface treatment step. In this step, the surface of the carrier is surface-treated with a silane coupling agent having an amino group to prepare a surface-treated carrier. For example, the carrier can be surface-treated by adding an appropriate amount of a silane coupling agent having an amino group to the dispersion liquid of the carrier and stirring and mixing as it is.

この工程で用いる担体は、Si、Al、Ti、Pから選ばれる少なくとも1種類の元素を含む化合物であることが好ましい。前述の化合物の中でも比表面積が特に大きい化合物が好ましく、化合物の具体例としては、シリカ、アルミナ、チタニアまたはこれらの複合酸化物であってもよく、ゼオライトであってもよい。この工程で用いる担体としては、比表面積の大きいゼオライトが好ましく、ゼオライトの中でもFAU、MFI、またはCHA構造を有するゼオライトがより好ましい。担体のサイズは、10nm以上、100μm以下であればよく、100nm以上、10μm以下であることが好ましく、500nm以上、5μm以下であることがより好ましい。担体のサイズが前述の範囲にあることで、後述の遷移金属担持工程において、遷移金属を担体の表面に分散した状態で担持しやすくなる。 The carrier used in this step is preferably a compound containing at least one element selected from Si, Al, Ti and P. Among the above-mentioned compounds, a compound having a particularly large specific surface area is preferable, and specific examples of the compound may be silica, alumina, titania or a composite oxide thereof, or zeolite. As the carrier used in this step, a zeolite having a large specific surface area is preferable, and among the zeolites, a zeolite having a FAU, MFI or CHA structure is more preferable. The size of the carrier may be 10 nm or more and 100 μm or less, preferably 100 nm or more and 10 μm or less, and more preferably 500 nm or more and 5 μm or less. When the size of the carrier is within the above range, it becomes easy to carry the transition metal in a state of being dispersed on the surface of the carrier in the transition metal supporting step described later.

この工程で用いるアミノ基を有するシランカップリング剤は、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、トリメトキシ[3−(フェニルアミノ)プロピルシラン]等を使用することができる。このように担体の表面をアミノ基を有するシランカップリング剤で表面処理しておくことで、後述する遷移金属担持工程において、遷移金属が担体の表面に分散して固定化される。なお、担体が、水酸化物である場合、表面OH基を多く有する場合、またはゼオライトである場合、このアミノ基を有するシランカップリング剤の効果はより顕著に発揮される。特に、ゼオライトがNH4型ゼオライトである場合、その効果が最大限発揮されるので好ましい。 The silane coupling agent having an amino group used in this step is N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3- Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, trimethoxy[3-(phenylamino)propylsilane] and the like can be used. By thus surface-treating the surface of the carrier with the silane coupling agent having an amino group, the transition metal is dispersed and immobilized on the surface of the carrier in the transition metal supporting step described later. When the carrier is a hydroxide, has many surface OH groups, or is a zeolite, the effect of the silane coupling agent having an amino group is more remarkably exhibited. In particular, when the zeolite is NH 4 type zeolite, the effect is maximized, which is preferable.

[遷移金属担持工程]
本発明の製造方法は、前述の遷移金属担持工程を含む。この工程では、前述の表面処理担体に遷移金属を担持して、遷移金属担持体を調製する。例えば、表面処理担体の分散液と、遷移金属の分散液を混合する方法で、遷移金属担持体を得ることができる。
[Transition metal loading process]
The manufacturing method of the present invention includes the above-mentioned transition metal supporting step. In this step, a transition metal is supported on the surface-treated carrier to prepare a transition metal carrier. For example, the transition metal carrier can be obtained by a method of mixing the dispersion liquid of the surface-treated carrier and the dispersion liquid of the transition metal.

この工程で用いる遷移金属は、周期表で第3族元素から第11族元素の間に存在する元素の1種類以上を含む粒子を指すものである。遷移金属の中でも、特に、Au、Ag、Pt、Pd、Rh、Ir、Ru、Osから選ばれる少なくとも1種の元素を含む貴金属であることが好ましい。この貴金属金属の中でも、Pt、Pd、Rh、Ruから選ばれる少なくとも1種の元素を含む粒子であることが特に好ましい。これらの元素は、例えば、炭化水素の水素化反応に用いる触媒の活性成分として好適である。なお、前述の遷移金属は、金属単体であってもよく、化合物であってもよい。化合物としては、例えば、酸化物でもよく、また配位子を含む錯体であってもよい。また、前記遷移金属のサイズ(平均粒子径)は、0.3nm以上、20nmであり、0.5nm以上、10nm以下であることが好ましく、1nm以上、5nm以下であることがより好ましい。このサイズが小さいほど、遷移金属の表面積が増加するので、これを触媒の活性成分として用いると高い活性が期待できる。なお、この工程で用いる遷移金属は、ゾルの状態で溶媒中に分散していることが好ましい。遷移金属が分散したゾルは、市販品を購入してもよく、従来公知の方法で溶媒中に遷移金属を析出させる方法で調製してもよい。 The transition metal used in this step refers to particles containing one or more kinds of elements existing between the Group 3 element and the Group 11 element in the periodic table. Among the transition metals, a noble metal containing at least one element selected from Au, Ag, Pt, Pd, Rh, Ir, Ru and Os is particularly preferable. Among these precious metal metals, particles containing at least one element selected from Pt, Pd, Rh, and Ru are particularly preferable. These elements are suitable, for example, as the active component of the catalyst used in the hydrogenation reaction of hydrocarbons. The above-mentioned transition metal may be a simple metal or a compound. The compound may be, for example, an oxide or a complex containing a ligand. The size (average particle diameter) of the transition metal is 0.3 nm or more and 20 nm, preferably 0.5 nm or more and 10 nm or less, and more preferably 1 nm or more and 5 nm or less. The smaller the size, the larger the surface area of the transition metal. Therefore, when this is used as the active component of the catalyst, high activity can be expected. The transition metal used in this step is preferably dispersed in the solvent in a sol state. As the sol in which the transition metal is dispersed, a commercially available product may be purchased, or a sol in which a transition metal is precipitated in a solvent by a conventionally known method may be prepared.

この工程において表面処理担体の分散液と、遷移金属の分散液を混合する方法を用いる場合は、表面処理担体が分散したスラリーと、遷移金属が分散したゾルとを混合することが好ましい。このとき、混合後の溶媒中に含まれる表面処理担体と遷移金属の質量は、最終的に得られる本発明の担持体の遷移金属の含有量が前述の範囲になるように、後述する工程を考慮しつつ適宜調整される。また、表面処理担体が分散したスラリーに含まれる表面処理担体の濃度は、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。更に、遷移金属が分散したゾルに含まれる遷移金属の濃度は、金属換算で、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。前述の濃度の範囲内であれば、両方の液を混合した際に凝集が起こりにくく、遷移金属が凝集せず分散して表面処理担体に担持されるので好ましい。 When the method of mixing the dispersion liquid of the surface-treated carrier and the dispersion liquid of the transition metal is used in this step, it is preferable to mix the slurry in which the surface-treated carrier is dispersed and the sol in which the transition metal is dispersed. At this time, the mass of the surface-treated support and the transition metal contained in the solvent after mixing is such that the content of the transition metal of the finally obtained support of the present invention falls within the above range, and the steps described below are performed. It will be adjusted accordingly while taking into consideration. Further, the concentration of the surface-treated carrier contained in the slurry in which the surface-treated carrier is dispersed is preferably 40% by mass or less, and more preferably 30% by mass or less. Furthermore, the concentration of the transition metal contained in the sol in which the transition metal is dispersed is preferably 5% by mass or less, and more preferably 1% by mass or less, in terms of metal. When the concentration is within the above-mentioned range, aggregation is less likely to occur when both liquids are mixed, and the transition metal is dispersed without being aggregated and is supported on the surface-treated carrier, which is preferable.

[非晶質層形成工程]
本発明の製造方法は、前述の非晶質層形成工程を含む。この工程では、前述の遷移金属担持体の表面に非晶質の被覆層を形成して、本発明の担持体を得る工程である。例えば、沈殿法を用いて非晶質の被覆層を遷移金属担持体の表面に形成することができる。
[Amorphous layer forming step]
The manufacturing method of the present invention includes the above-mentioned amorphous layer forming step. In this step, an amorphous coating layer is formed on the surface of the above-mentioned transition metal carrier to obtain the carrier of the present invention. For example, a precipitation method can be used to form an amorphous coating layer on the surface of the transition metal support.

この工程で形成する非晶質の被覆層は、Si、Al、Ti、Pから選ばれる1種類以上の元素を含む非晶質の被覆層であることが好ましく、Si、Alの元素を含む非晶質の被覆層であることがより好ましい。このような非晶質の被覆層を沈殿法で形成する方法の一例として、ケイ酸イオンを含む酸溶液とアルミニウムイオンを含むアルカリ溶液を準備し、これらを同時に遷移金属担持体が分散した液に添加する方法がある。また、非晶質の被覆層をゾルゲル法で形成する方法の一例として、遷移金属担持ゼオライトが分散した液にSiアルコキシドとAlアルコキシドとを添加し、これらのアルコキシドを加水分解する方法もある。以下、沈殿法を用いて遷移金属担持体の表面に非晶質の被覆層を形成する方法を例に、この工程について詳述する。 The amorphous coating layer formed in this step is preferably an amorphous coating layer containing one or more kinds of elements selected from Si, Al, Ti, and P. More preferably, it is a crystalline coating layer. As an example of a method of forming such an amorphous coating layer by a precipitation method, an acid solution containing silicate ions and an alkaline solution containing aluminum ions are prepared, and at the same time, a solution in which a transition metal carrier is dispersed is prepared. There is a method of adding. Further, as an example of a method of forming an amorphous coating layer by a sol-gel method, there is a method of adding Si alkoxide and Al alkoxide to a liquid in which a transition metal-supported zeolite is dispersed and hydrolyzing these alkoxides. Hereinafter, this step will be described in detail by taking as an example a method of forming an amorphous coating layer on the surface of the transition metal carrier by using a precipitation method.

この工程で沈殿法を用いる場合、酸溶液およびアルカリ溶液を準備し、これらのどちらか一方または両方にSi、Al、Ti、Pから選ばれる1種類以上の元素を含ませ、遷移金属担持体の分散液中でこれらを混合することが好ましい。このとき、酸溶液とアルカリ溶液の中和反応によって、遷移金属担持体の表面に前述の元素を含む非晶質の被覆層が形成される。この工程で沈殿法を用いる場合、酸溶液、アルカリ溶液のどちらか一方またはその両方に含まれる前述の元素の含有量は、それぞれ酸化物換算(SiはSiO2換算、AlはAl23換算、TiはTiO2換算、PはP25換算)で5質量%以下であることが好ましく、1質量%以下であることがより好ましい。また、酸溶液とアルカリ溶液の添加量は、遷移金属担持体の表面に形成する非晶質の被覆層の厚さによって、前述の濃度とともに適宜調整される。 When the precipitation method is used in this step, an acid solution and an alkaline solution are prepared, and one or both of these are included to contain one or more elements selected from Si, Al, Ti, and P, and It is preferable to mix these in the dispersion. At this time, an amorphous coating layer containing the above-mentioned elements is formed on the surface of the transition metal carrier by the neutralization reaction of the acid solution and the alkaline solution. When the precipitation method is used in this step, the contents of the above-mentioned elements contained in either one or both of the acid solution and the alkaline solution are converted into oxides (Si is converted to SiO 2 and Al is converted to Al 2 O 3 ). , Ti in terms of TiO 2 and P in terms of P 2 O 5 ) are preferably 5% by mass or less, and more preferably 1% by mass or less. Further, the addition amounts of the acid solution and the alkali solution are appropriately adjusted together with the above-mentioned concentration depending on the thickness of the amorphous coating layer formed on the surface of the transition metal carrier.

この工程で形成される非晶質の被覆層の厚さは、遷移金属担持体に含まれる遷移金属のサイズに対して、5倍以上、200倍以下であることが好ましく、10倍以上、100倍以下であることがより好ましい。非晶質の被覆層が薄すぎると遷移金属がシンタリングしやすくなるので好ましくない。また、非晶質の被覆層が厚くなりすぎると、遷移金属の露出率が低下しやすくなるので好ましくない。 The thickness of the amorphous coating layer formed in this step is preferably 5 times or more and 200 times or less, and preferably 10 times or more, 100 times or more the size of the transition metal contained in the transition metal carrier. It is more preferable that the amount is not more than twice. If the amorphous coating layer is too thin, the transition metal is likely to sinter, which is not preferable. Further, if the amorphous coating layer is too thick, the exposure rate of the transition metal is likely to decrease, which is not preferable.

この工程では、必要によって、非晶質の被覆層を有する遷移金属担持体を溶媒から分離してもよい。また、この非晶質の被覆層を有する遷移金属担持体を500℃以上、600℃以下の温度で焼成することで、遷移金属の露出率をより高めることができる。この工程によって露出率が高まる理由は定かではないが、非晶質の被覆層に含まれる溶媒が除去されることによって非晶質の被覆層に細孔が形成されるため、表面処理担体に含まれる官能基が酸化される過程で発生するガスにより遷移金属と非晶質の被覆層の間に隙間ができるため、ではないかと考えられる。 In this step, the transition metal support having an amorphous coating layer may be separated from the solvent, if necessary. In addition, the transition metal exposure rate can be further increased by firing the transition metal carrier having the amorphous coating layer at a temperature of 500° C. or higher and 600° C. or lower. The reason why the exposure rate is increased by this step is not clear, but since the solvent contained in the amorphous coating layer is removed to form pores in the amorphous coating layer, it is not included in the surface-treated carrier. It is considered that this is because a gas generated in the process of oxidizing the functional group generated causes a gap between the transition metal and the amorphous coating layer.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施範囲に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

[実施例1]
<表面処理工程>
イオン交換水100gに3−アミノプロピルトリメトキシシラン1.27gを加え、室温で撹拌し、その後MFI構造を有するNH4型ゼオライト(サイズ:4.2μm、SiO2/Al23モル比=30)20gを加えた。これを室温で2時間撹拌して、表面処理担体の分散液を得た。
[Example 1]
<Surface treatment process>
1.27 g of 3-aminopropyltrimethoxysilane was added to 100 g of ion-exchanged water, and the mixture was stirred at room temperature, and then NH 4 type zeolite having a MFI structure (size: 4.2 μm, SiO 2 /Al 2 O 3 molar ratio=30). ) 20 g was added. This was stirred at room temperature for 2 hours to obtain a dispersion liquid of the surface-treated carrier.

<遷移金属担持工程>
純水7240gに塩化白金酸6水和物2.39g(Ptとして0.9g)を溶解した水溶液に、錯化安定剤として濃度1.0質量%のクエン酸三ナトリウム水溶液746gと還元剤として濃度0.1質量%の水素化ホウ素ナトリウム水溶液62.8gとを加え、窒素雰囲気下において20℃で1時間攪拌して、白金の分散液を得た。この分散液を限外濾過膜法洗浄により精製した後濃縮し、金属換算で濃度0.04質量%の白金の分散液を得た。後述の透過型電子顕微鏡を用いた平均粒子径測定によって算出した分散液に含まれる白金のサイズは3.1nmであった。この白金の分散液20.4gを前述の表面処理担体の分散液に添加して、30分間撹拌し、遷移金属担持体の分散液を得た。
<Transition metal supporting step>
In an aqueous solution in which 2.39 g of chloroplatinic acid hexahydrate (0.9 g as Pt) was dissolved in 7240 g of pure water, 746 g of an aqueous solution of trisodium citrate having a concentration of 1.0 mass% as a complexing stabilizer and a concentration of a reducing agent were used. A 0.1 mass% sodium borohydride aqueous solution (62.8 g) was added, and the mixture was stirred at 20° C. for 1 hour in a nitrogen atmosphere to obtain a platinum dispersion liquid. This dispersion was purified by washing with an ultrafiltration membrane and then concentrated to obtain a platinum dispersion having a concentration of 0.04 mass% in terms of metal. The size of platinum contained in the dispersion liquid calculated by measuring the average particle size using a transmission electron microscope described later was 3.1 nm. 20.4 g of this platinum dispersion was added to the above surface-treated carrier dispersion and stirred for 30 minutes to obtain a transition metal-supported dispersion.

<非晶質層形成工程>
Si濃度が24.0質量%(SiO2濃度換算)のケイ酸ナトリウム水溶液(SiO2/Na2Oモル比3.1)を準備し、これをイオン交換水で希釈したあと水素型陽イオン交換樹脂が充填されたカラムに通過させて、Si濃度が4.6質量%(SiO2換算)、pHが2.65の酸性ケイ酸液を得た。これをさらにイオン交換水で希釈し、Si濃度0.46質量%(SiO2濃度換算)の酸性ケイ酸液を調製した。その後、この酸性ケイ酸液225gと、Al濃度が0.060質量%(Al23濃度換算)でありNa濃度が0.046質量%(Na2O濃度換算)であるアルミン酸ナトリウム水溶液100gとを一定速度で22.5時間かけて前述の遷移金属担持体の分散液に添加した後、室温で1.5時間攪拌した。この分散液に含まれる固形分を濾過して分離し、更にイオン交換水で洗浄後110℃で乾燥した。これを、2℃/minの昇温速度で550℃まで昇温し、空気中で4時間焼成し、非晶質の被覆層を有する遷移金属担持体を得た。
<Amorphous layer forming step>
An aqueous sodium silicate solution (SiO 2 /Na 2 O molar ratio 3.1) having a Si concentration of 24.0 mass% (converted to SiO 2 concentration) was prepared, diluted with ion-exchanged water, and then hydrogen-type cation exchange was performed. The solution was passed through a column filled with a resin to obtain an acidic silicic acid solution having a Si concentration of 4.6 mass% (SiO 2 conversion) and a pH of 2.65. This was further diluted with ion-exchanged water to prepare an acidic silicic acid solution having a Si concentration of 0.46% by mass (SiO 2 concentration conversion). Thereafter, 225 g of this acidic silicic acid solution and 100 g of an aqueous sodium aluminate solution having an Al concentration of 0.060 mass% (converted to Al 2 O 3 concentration) and a Na concentration of 0.046 mass% (converted to Na 2 O concentration). And were added at a constant rate over 22.5 hours to the dispersion liquid of the above-mentioned transition metal support, and then the mixture was stirred at room temperature for 1.5 hours. The solid content contained in this dispersion was separated by filtration, washed with ion-exchanged water, and dried at 110°C. This was heated to 550° C. at a heating rate of 2° C./min, and baked in air for 4 hours to obtain a transition metal carrier having an amorphous coating layer.

[実施例2]
表面処理工程で3−アミノプロピルトリメトキシシランを2.00gとしたこと、遷移金属担持工程で白金の分散液を120.0gとしたこと以外は実施例1と同様にして非晶質の被覆層を有する遷移金属担持体を得た。
[Example 2]
Amorphous coating layer as in Example 1 except that 2.00 g of 3-aminopropyltrimethoxysilane was used in the surface treatment step and 120.0 g of platinum dispersion was used in the transition metal supporting step. A transition metal carrier having

[実施例3]
表面処理工程で3−アミノプロピルトリメトキシシランを2.00gとしたこと、遷移金属担持工程で白金の分散液を240.0gとしたこと以外は実施例1と同様にして非晶質の被覆層を有する遷移金属担持体を得た
[Example 3]
Amorphous coating layer as in Example 1 except that 2.00 g of 3-aminopropyltrimethoxysilane was used in the surface treatment step and 240.0 g of platinum dispersion was used in the transition metal supporting step. A transition metal support having

[比較例1]
実施例1で用いたNH4型ゼオライト400gに0.25Mの塩化ナトリウム水溶液4Lを加えて80℃で20分間イオン交換をし、その後濾過した。これを4回繰り返してイオン交換水で十分に洗浄した後110℃で乾燥し、Na型ゼオライトを調製した。このNa型ゼオライト5.0gに、実施例1と同様の方法で得られた白金の分散液5.1gをポアフィリング法で含浸させ、110℃で乾燥した。これを1℃/minで550℃まで昇温し、空気中で2時間焼成することで、非晶質の被覆層を有さない遷移金属担持体を得た。
[Comparative Example 1]
To 400 g of the NH 4 type zeolite used in Example 1, 4 L of a 0.25 M sodium chloride aqueous solution was added, ion exchange was performed at 80° C. for 20 minutes, and then filtration was performed. This was repeated 4 times, thoroughly washed with ion-exchanged water, and then dried at 110° C. to prepare Na-type zeolite. 5.0 g of this Na-type zeolite was impregnated with 5.1 g of a platinum dispersion obtained by the same method as in Example 1 by the pore filling method, and dried at 110°C. The temperature was raised to 550° C. at 1° C./min, and the mixture was baked in air for 2 hours to obtain a transition metal carrier having no amorphous coating layer.

上記実施例1−3及び比較例1で用いた白金の分散液、及び、上記実施例1−3及び比較例1の方法で得られたサンプル中の遷移金属のサイズを以下の方法で測定した。その結果を、表1に示した。 The platinum dispersions used in Examples 1-3 and Comparative Example 1 and the sizes of transition metals in the samples obtained by the methods of Examples 1-3 and Comparative Example 1 were measured by the following method. .. The results are shown in Table 1.

[透過型電子顕微鏡測定:遷移金属の平均粒子径、表面積]
透過型電子顕微鏡(HF−2200、日立ハイテクノロジーズ製)を用いて実施例1−3及び比較例1で用いた遷移金属の分散液中の遷移金属、及び、実施例1−3及び比較例1の方法で得られた担体上の遷移金属を観察した。複数の画像から、100個の遷移金属について、その粒子径dをそれぞれ測り、これを平均したものを遷移金属の平均粒子径Dとした。なお、粒子径dは,次の式(1)によって算出した。
d=(Ll/ + Ls)/2 ・・・・・・(1)
d:遷移金属の粒子径(nm)
Ll:遷移金属の長径(nm)
Ls:遷移金属の短径(nm)
ここで、遷移金属の長径とは、遷移金属の外縁と外縁を結ぶ最も長い直線の長さとし、遷移金属の短径とは、前述の直線の中点を通り遷移金属の外縁と外縁を結ぶ最も短い直線の長さとした。
実施例1−3及び比較例1の方法で得られた担体上の遷移金属に関して、平均粒子径Dを用いて以下の式(2)、(3)で遷移金属の表面積STEMを算出した。
STEM = 4 × π × (D/2)2 × n × 10-18 ・・・・・・(2)
n = 4/3 × π × (D/2)3 ÷ (ρ×10-21) ・・・・・・(3)
D:透過型電子顕微鏡観察から求めた遷移金属の平均粒子径(nm)
STEM:平均粒子径Dから理論的に求めた遷移金属1gあたりの表面積(m2/g)
n:遷移金属1gあたりに含まれる平均粒子径D(nm)の粒子の数(個)
ρ:遷移金属の密度(g/cm3
[Transmission electron microscope measurement: average particle size and surface area of transition metal]
The transition metal in the dispersion liquid of the transition metal used in Examples 1-3 and Comparative Example 1 using a transmission electron microscope (HF-2200, manufactured by Hitachi High-Technologies Corporation), and Examples 1-3 and Comparative Example 1 The transition metal on the carrier obtained by the above method was observed. The particle diameters d of 100 transition metals were respectively measured from a plurality of images, and the average thereof was taken as the average particle diameter D of the transition metals. The particle diameter d was calculated by the following equation (1).
d=(Ll/ + Ls)/2 ・・・・・・ (1)
d: Particle size of transition metal (nm)
Ll: major axis of transition metal (nm)
Ls: short diameter of transition metal (nm)
Here, the major axis of the transition metal is the length of the longest straight line connecting the outer edge and the outer edge of the transition metal, and the minor axis of the transition metal is the most connecting the outer edge and the outer edge of the transition metal passing through the midpoint of the straight line. The length of the straight line is short.
With respect to the transition metal on the carrier obtained by the methods of Examples 1-3 and Comparative Example 1, the average particle diameter D was used to calculate the surface area S TEM of the transition metal by the following equations (2) and (3).
S TEM = 4 × π × (D/2) 2 × n × 10 -18・・・・・・(2)
n = 4/3 × π × (D/2) 3 ÷ (ρ × 10 -21 )・・・・・・(3)
D: Average particle size (nm) of transition metal determined by transmission electron microscopy
S TEM : Surface area per 1 g of transition metal (m 2 /g) calculated theoretically from average particle diameter D
n: Number of particles having an average particle diameter D (nm) contained in 1 g of the transition metal (pieces)
ρ: Density of transition metal (g/cm 3 )

[ガス吸着測定:遷移金属の表面積算出]
実施例1〜3の方法で得られた担持体について、COパルス吸着法により、遷移金属の表面積を算出した。
装置名:BELCAT(日本ベル株式会社)
前処理温度:450℃
前処理時間:Heを15分流通し、その後H2を1時間流通し、更にその後Heを15分流通
前処理ガス流量:30cc/min
サンプル量:0.5〜1.0g
パルス吸着:50℃、100%CO
実施例1−3の方法で得られた担体上の遷移金属の表面積SCを以下の式(4)で算出した。なお、実施例1−3では、遷移金属として白金を使用したので、白金の表面積をガス吸着で測定する際に一般的なCOを吸着ガスとして使用した。
SC= MC × A ×σ ÷ R ・・・・・・(4)
SC:COパルス吸着法から求めた遷移金属1gあたりの表面積(m2/g)
MC:遷移金属1gあたりのCO吸着量(mol)
A:アボガドロ定数(mol-1
σ:遷移金属の原子断面積(m2
R:遷移金属1原子に吸着するCOの分子数
[Gas adsorption measurement: calculation of surface area of transition metal]
The surface area of the transition metal of the support obtained by the method of Examples 1 to 3 was calculated by the CO pulse adsorption method.
Device name: BELCAT (Nippon Bell Co., Ltd.)
Pretreatment temperature: 450℃
Pretreatment time: He was circulated for 15 minutes, H 2 was circulated for 1 hour, and then He was circulated for 15 minutes Pretreatment gas flow rate: 30 cc/min
Sample amount: 0.5-1.0g
Pulse adsorption: 50°C, 100% CO
The surface area S C of the transition metal on the carrier obtained by the method of Example 1-3 was calculated by the following formula (4). In addition, in Example 1-3, since platinum was used as a transition metal, general CO was used as an adsorption gas when measuring the surface area of platinum by gas adsorption.
S C = M C × A × σ ÷ R ・・・・・・ (4)
S C : Surface area per 1 g of transition metal (m 2 /g) determined by CO pulse adsorption method
M C : CO adsorption amount (mol) per 1 g of transition metal
A: Avogadro constant (mol -1 )
σ: atomic cross section of transition metal (m 2 )
R: Number of CO molecules adsorbed on one atom of transition metal

[露出率]
露出率は、前述のCOパルス吸着法により算出した遷移金属の表面積SCと、透過型電子顕微鏡観察により求めた遷移金属の平均粒子径から理論的に算出した表面積STEMの比から式(5)によって算出したものであり、担体上に存在する遷移金属のうち、表面に露出している遷移金属の割合をいう。
露出率(%) = SC/STEM × 100 ・・・・・・(5)
透過型電子顕微鏡では、表面に露出していない遷移金属も観察することが可能である。このため、担体上の遷移金属がすべて露出している場合には、透過型電子顕微鏡観察により求めた遷移金属の粒子径から理論的に算出した表面積STEMとCO吸着により算出した遷移金属の表面積SCは等しくなり、露出率は100%となる。担体上の遷移金属が完全に被覆されている場合には、CO等のガスが遷移金属の表面に吸着できなくなり、露出率は低下する。
[Exposure rate]
The exposure rate is calculated from the ratio of the surface area S C of the transition metal calculated by the CO pulse adsorption method and the surface area S TEM theoretically calculated from the average particle diameter of the transition metal obtained by observation with a transmission electron microscope (5). The ratio of the transition metal exposed on the surface of the transition metal existing on the carrier.
Exposure rate (%) = S C /S TEM × 100 ・・・・・・ (5)
With a transmission electron microscope, it is possible to observe the transition metal that is not exposed on the surface. Therefore, when all the transition metals on the carrier are exposed, the surface area S TEM theoretically calculated from the particle size of the transition metal obtained by transmission electron microscope observation and the surface area of the transition metal calculated by CO adsorption S C becomes equal and the exposure rate becomes 100%. When the transition metal on the carrier is completely covered, a gas such as CO cannot be adsorbed on the surface of the transition metal, and the exposure rate decreases.

[担体のサイズ測定]
走査型電子顕微鏡(S−5500、日立ハイテクノロジーズ製)を用いて実施例1−3及び比較例1に用いた担体を観察した。複数の画像から、100個の担体について、その粒子径をそれぞれ測り、これを平均したものを担体のサイズとした。
[Measurement of carrier size]
The carriers used in Examples 1-3 and Comparative Example 1 were observed using a scanning electron microscope (S-5500, manufactured by Hitachi High-Technologies Corporation). The particle size of each of 100 carriers was measured from a plurality of images, and the average was taken as the carrier size.

実施例1−3の担持体に含まれる遷移金属の平均粒子径が、550℃焼成後であっても、担持前と同程度(担持前3.1nm、焼成後3.0〜3.3nm)であるのに対し、比較例1の担持体に含まれる遷移金属の平均粒子径は、550℃焼成によって、19nmまで大きくなっている。この結果から、遷移金属を非晶質の被覆層で覆うことによって、高温に晒されても遷移金属の凝集が抑制されることを確認した。
更に、実施例1−3の遷移金属の露出率は93〜100%の間にある。実施例1−3の担持体は、図1のような極小の非晶質粒子で構成される被覆層で遷移金属が被覆されているので、高温に晒されても遷移金属の凝集が抑制されると共に、被覆層には多数の隙間があるので遷移金属の露出率が高く、これを触媒に使用しても高い活性が期待できる。
Even if the average particle diameter of the transition metal contained in the support of Example 1-3 was 550° C. even after firing, it was about the same as before loading (3.1 nm before loading, 3.0 to 3.3 nm after firing). On the other hand, the average particle diameter of the transition metal contained in the support of Comparative Example 1 increased to 19 nm by firing at 550° C. From this result, it was confirmed that by covering the transition metal with the amorphous coating layer, the aggregation of the transition metal was suppressed even when the transition metal was exposed to high temperature.
Furthermore, the exposure rate of the transition metal of Examples 1-3 is between 93 and 100%. In the carrier of Example 1-3, the transition metal is coated with the coating layer composed of extremely small amorphous particles as shown in FIG. 1, so that the aggregation of the transition metal is suppressed even when exposed to high temperature. In addition, since the coating layer has a large number of gaps, the exposure ratio of the transition metal is high, and high activity can be expected even if this is used as a catalyst.

Claims (2)

遷移金属が担体に担持された遷移金属担持体であって、
前記遷移金属のサイズが0.3nm以上、20nm以下であり、
前記担体のサイズが10nm以上、100μm以下であり、
前記遷移金属担持体の表面に非晶質の被覆層を有し、
前記遷移金属の露出率が80%以上、100%以下である、
非晶質の被覆層を有する遷移金属担持体。
A transition metal carrier in which a transition metal is supported on a carrier,
The size of the transition metal is 0.3 nm or more and 20 nm or less,
The carrier has a size of 10 nm or more and 100 μm or less,
The surface of the transition metal carrier has an amorphous coating layer,
The exposure rate of the transition metal is 80% or more and 100% or less,
A transition metal support having an amorphous coating layer.
非晶質の被覆層を有する遷移金属担持体の製造方法であって、
担体の表面をアミノ基を有するシランカップリング剤で表面処理して表面処理担体を調製する工程、
前記表面処理担体と遷移金属とを混合して遷移金属担持体を調製する工程、
前記遷移金属担持体の表面に非晶質の被覆層を形成する工程、とを含む、非晶質の被覆層を有する遷移金属担持体の製造方法。
A method for producing a transition metal support having an amorphous coating layer,
A step of preparing a surface-treated carrier by surface-treating the surface of the carrier with a silane coupling agent having an amino group,
A step of preparing a transition metal support by mixing the surface-treated support and a transition metal,
And a step of forming an amorphous coating layer on the surface of the transition metal carrier, the method for producing a transition metal carrier having an amorphous coating layer.
JP2018222636A 2018-11-28 2018-11-28 TRANSITION METAL CARRIER HAVING AMORPHOUS COATING LAYER AND METHOD FOR MANUFACTURING THE SAME Active JP7198646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018222636A JP7198646B2 (en) 2018-11-28 2018-11-28 TRANSITION METAL CARRIER HAVING AMORPHOUS COATING LAYER AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222636A JP7198646B2 (en) 2018-11-28 2018-11-28 TRANSITION METAL CARRIER HAVING AMORPHOUS COATING LAYER AND METHOD FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
JP2020083720A true JP2020083720A (en) 2020-06-04
JP7198646B2 JP7198646B2 (en) 2023-01-04

Family

ID=70909700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222636A Active JP7198646B2 (en) 2018-11-28 2018-11-28 TRANSITION METAL CARRIER HAVING AMORPHOUS COATING LAYER AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP7198646B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485141A (en) * 1987-09-26 1989-03-30 Jgc Corp Manufacture of catalyst with surface layer of noble metal carried by silica
JP2007069120A (en) * 2005-09-07 2007-03-22 Mitsubishi Motors Corp Particulate filter
JP2013063420A (en) * 2011-08-26 2013-04-11 Sumitomo Osaka Cement Co Ltd Exhaust gas purification filter
WO2015119234A1 (en) * 2014-02-07 2015-08-13 株式会社Gsiクレオス Catalyst carrier, intermediate thereof, fuel cell, and method for producing catalyst carrier
JP2016032789A (en) * 2014-07-31 2016-03-10 住友大阪セメント株式会社 Catalyst for purifying nitrogen oxide, and apparatus and filter for purifying exhaust gas of internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3867232B2 (en) 2004-03-25 2007-01-10 株式会社 東北テクノアーチ Catalyst nanoparticles
CN100406117C (en) 2006-10-12 2008-07-30 武汉科技大学 Magnetic photocatalyst and its preparing method
JP6151321B2 (en) 2015-08-27 2017-06-21 株式会社ノリタケカンパニーリミテド Electrode material
JP2018075510A (en) 2016-11-08 2018-05-17 国立研究開発法人産業技術総合研究所 Immobilized complex catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485141A (en) * 1987-09-26 1989-03-30 Jgc Corp Manufacture of catalyst with surface layer of noble metal carried by silica
JP2007069120A (en) * 2005-09-07 2007-03-22 Mitsubishi Motors Corp Particulate filter
JP2013063420A (en) * 2011-08-26 2013-04-11 Sumitomo Osaka Cement Co Ltd Exhaust gas purification filter
WO2015119234A1 (en) * 2014-02-07 2015-08-13 株式会社Gsiクレオス Catalyst carrier, intermediate thereof, fuel cell, and method for producing catalyst carrier
JP2016032789A (en) * 2014-07-31 2016-03-10 住友大阪セメント株式会社 Catalyst for purifying nitrogen oxide, and apparatus and filter for purifying exhaust gas of internal combustion engine

Also Published As

Publication number Publication date
JP7198646B2 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
TWI432258B (en) Catalyst support material and methods of manufacture
JP5389660B2 (en) High metallic siliceous composition and method for producing the same
RU2730496C2 (en) Rhodium-containing catalysts for treating automotive exhausts
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
JP4547935B2 (en) Exhaust gas purification catalyst, exhaust gas purification catalyst, and catalyst manufacturing method
WO2005123594A2 (en) Sols comprising mixed transitional metal oxide nanoparticles
JP7093885B2 (en) Supported catalyst particles
CN107020147A (en) A kind of MFI structure sheet molecular sieve catalyst, the preparation method and the usage of package metals oxide or metal nanoparticle
WO2012120711A1 (en) Metal particles, catalyst for exhaust gas purification containing same, and production method therefor
CN102639242A (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
JP6815893B2 (en) Metal-containing nanoparticle-supported catalyst and carbon dioxide reduction device
EP2576055A1 (en) Tungsten oxide photocatalyst and method for producing the same
JP5840475B2 (en) Porous oxide-coated particles, supported catalyst, and production method thereof
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP2010089031A (en) Metal-particle supporting catalyst, and method of producing the same
EP2944609B1 (en) Method for preparing superoxide-generating composition, and superoxide-generating composition prepared by method
RU2374172C1 (en) Method of control of dispersability of carbon-metallic catalysts (versions)
JP3030328B2 (en) Ultrafine noble metal dispersed titanium oxide thin film and its manufacturing method
JP7198646B2 (en) TRANSITION METAL CARRIER HAVING AMORPHOUS COATING LAYER AND METHOD FOR MANUFACTURING THE SAME
JP7129063B2 (en) Zeolite containing transition metal near surface and method for producing the same
JP5313051B2 (en) Zirconium oxalate sol
KR102342524B1 (en) Single atom catalyst and method of forming the same
JP5806101B2 (en) Porous silica oligomer-coated particles, supported catalyst, and production method thereof
JP7449123B2 (en) Transition metal support coated with a material having micropores and its manufacturing method
JP2009279546A (en) Method for producing core-shell structure and catalyst comprising the structure produced thereby and for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7198646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150