JP2020082408A - Repairing method for existing pipe and repairing system for existing pipe - Google Patents

Repairing method for existing pipe and repairing system for existing pipe Download PDF

Info

Publication number
JP2020082408A
JP2020082408A JP2018216164A JP2018216164A JP2020082408A JP 2020082408 A JP2020082408 A JP 2020082408A JP 2018216164 A JP2018216164 A JP 2018216164A JP 2018216164 A JP2018216164 A JP 2018216164A JP 2020082408 A JP2020082408 A JP 2020082408A
Authority
JP
Japan
Prior art keywords
surface temperature
lining material
light irradiation
temperature sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018216164A
Other languages
Japanese (ja)
Other versions
JP7217506B2 (en
Inventor
太郎 大岡
Taro Ooka
太郎 大岡
伸吉 大岡
Shinkichi Ooka
伸吉 大岡
張 満良
Mitsuyoshi Cho
満良 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshika Engineering Co Ltd
Original Assignee
Yoshika Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshika Engineering Co Ltd filed Critical Yoshika Engineering Co Ltd
Priority to JP2018216164A priority Critical patent/JP7217506B2/en
Publication of JP2020082408A publication Critical patent/JP2020082408A/en
Application granted granted Critical
Publication of JP7217506B2 publication Critical patent/JP7217506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Pipe Accessories (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To provide a repairing method for an existing pipe and a repairing system for the existing pipe capable of efficiently curing a photocurable lining material according to the existing pipe or the circumstances of its surroundings while preventing degradation of the lining material due to a temperature rise.SOLUTION: A repairing method for an existing pipe of this invention includes a curing step of causing a tubular lining material 20 to adhere to an inner wall face of an existing pipe 70 and curing the lining material by radiating light using a mobile light radiation device 30 introduced into an inside of the lining material. The light radiation device 30 includes radiation sections 31 and surface temperature sensors 34 that measure surface temperatures of the lining material 20. In the curing step, at least one of the followings is performed: lowering outputs of the radiation sections and increasing a supply amount of compressed air, when a measured temperature by one of the surface temperature sensors 34 is equal to or lower than a predetermined light radiation allowable temperature Tand the measured temperature is equal to or higher than a first surface temperature T.SELECTED DRAWING: Figure 1

Description

本発明は既設管の補修方法及び既設管の補修システムに関し、特に、光硬化性のライニング材を用いた既設管の補修方法及び既設管の補修システムに関する。 The present invention relates to an existing pipe repair method and an existing pipe repair system, and more particularly to an existing pipe repair method and an existing pipe repair system using a photo-curable lining material.

地中に埋設された既設管、例えば下水管等は、長年の使用により劣化し、その耐用年数は一般に約50年とされている。近年、耐用年数を超える下水管が増加しており、老朽化した下水管は、管路に生じた亀裂等から下水管周囲の地下水や土砂が管路内に流入し、その結果、地中に空洞が生じて地面陥没の原因となっている。また、下水管は地震等の地盤変動による影響を受けやすい等、種々の事情から所定の時期に何らかの補修が必要となる。 Existing pipes buried in the ground, such as sewer pipes, have deteriorated due to long-term use, and their useful lives are generally about 50 years. In recent years, the number of sewer pipes that have exceeded the service life is increasing, and as a result of dilapidated sewer pipes, groundwater and sediment around the sewer pipes flow into the pipe line due to cracks in the pipe line, etc. Cavities are created, causing the ground to sink. In addition, the sewer pipes are susceptible to ground movements such as earthquakes, and for some reasons, some kind of repair is required at a predetermined time.

このような埋設された既設管の補修方法として、光硬化性のライニング材により内層管を形成する方法が知られている(例えば、特許文献1)。 As a method of repairing such a buried existing pipe, a method of forming an inner layer pipe with a photocurable lining material is known (for example, Patent Document 1).

この補修方法では、未硬化状態の管状の光硬化性のライニング材を折り畳まれた状態で既設管内に導入した後、ライニング材の両端部を閉鎖部材で閉鎖し、その閉鎖空間内に圧縮空気を供給して、ライニング材を折り畳まれた状態から既設管の内壁面に密着させる。この状態で、ライニング材の内部に熱風を供給してライニング材を昇温させる。その後、ライニング材の内部に導入した移動式の光照射装置によってライニング材の内面に光を照射することによりライニング材を硬化させ、既設管内面を硬化したライニング材(内層管)で被覆している。 In this repair method, after introducing an uncured tubular light-curable lining material into the existing pipe in a folded state, both ends of the lining material are closed by closing members, and compressed air is injected into the closed space. The lining material is supplied and brought into close contact with the inner wall surface of the existing pipe from the folded state. In this state, hot air is supplied into the lining material to raise the temperature of the lining material. After that, the lining material is hardened by irradiating the inner surface of the lining material with light by a movable light irradiation device introduced inside the lining material, and the inner surface of the existing pipe is covered with the hardened lining material (inner layer pipe). ..

特開2008−000924号公報JP, 2008-000924, A

特許文献1に記載の補修方法では、光照射装置によってライニング材に光を照射する前に、ライニング材の内部温度を上昇させておくことにより、光照射による硬化時間を短縮して硬化効率を高めることができる。 In the repair method described in Patent Document 1, the internal temperature of the lining material is raised before the light is applied to the lining material by the light irradiation device, thereby shortening the curing time by the light irradiation and increasing the curing efficiency. be able to.

しかしながら、ライニング材の硬化に必要な時間は、既設管の周囲の地下水の有無、既設管の材料、光硬化の反応熱にともなう温度変化など、光照射時の既設管やその周辺の環境状況に応じて変化するため、例えば、光照射による反応熱により、ライニング材の温度が必要以上に過熱されてしまってその一部が劣化したり、逆に、既設管の周辺の地下水によりライニング材が冷却されて硬化に要する時間が長くなったりすることがある。 However, the time required to cure the lining material depends on the environmental conditions of the existing pipe and its surroundings during light irradiation, such as the presence or absence of groundwater around the existing pipe, the material of the existing pipe, and the temperature change due to the reaction heat of light curing. Since the temperature of the lining material is overheated more than necessary due to the reaction heat from light irradiation, part of it deteriorates, or conversely, the lining material is cooled by the groundwater around the existing pipe. As a result, the time required for curing may increase.

本発明は、上記課題に鑑みてなされたものであり、その目的は、光硬化性のライニング材に対して光照射を行う際に、ライニング材の温度上昇による劣化を防止しながら、既設管やその周辺の環境状況に応じて効率的にライニング材を硬化させることができる既設管の補修方法及び既設管の補修システムを提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to prevent the deterioration of the lining material due to the temperature rise when performing light irradiation on the photo-curable lining material, while preserving the existing pipe or An object of the present invention is to provide a method for repairing an existing pipe and a system for repairing an existing pipe, which can efficiently harden a lining material according to the environmental conditions around it.

上記目的を達成するための請求項1に記載の発明は、
地中に埋設された既設管の内壁面に管状のライニング材を密着させ、前記ライニング材の内部に圧縮空気を供給しつつ、前記ライニング材の内部に導入された移動式の光照射装置により、前記ライニング材の内面に光を照射して前記ライニング材を硬化させる硬化工程を含む既設管の補修方法において、
前記光照射装置は、光を照射する照射部と、前記ライニング材の表面温度を測定する表面温度センサとを有し、
前記硬化工程において、
前記表面温度センサによる測定温度が予め設定された光照射許容温度以下であって、且つ前記測定温度が所定の第1表面温度以上の場合に、前記照射部の出力の低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行うことを特徴とする。
The invention according to claim 1 for achieving the above object,
By adhering the tubular lining material to the inner wall surface of the existing pipe buried in the ground, while supplying compressed air to the inside of the lining material, by the movable light irradiation device introduced inside the lining material, In a method of repairing an existing pipe including a curing step of curing the lining material by irradiating the inner surface of the lining material with light,
The light irradiation device has an irradiation unit that irradiates light, and a surface temperature sensor that measures the surface temperature of the lining material,
In the curing step,
When the temperature measured by the surface temperature sensor is equal to or lower than a preset allowable light irradiation temperature and the measured temperature is equal to or higher than a predetermined first surface temperature, a decrease in output of the irradiation unit and a supply amount of compressed air Of at least one of the above.

この構成によれば、表面温度センサによる測定温度が、予め設定された光照射許容温度以下、すなわち、ライニング材の過熱が起こらない温度であって、且つ測定温度が所定の第1表面温度以上となる高温状態の場合に、照射部の出力低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行うことにより、ライニング材の表面温度の上昇を抑えることができる。これにより、ライニング材の過熱を防止しながら光照射を継続して行い、効率的にライニング材を硬化させることができる。 According to this configuration, the temperature measured by the surface temperature sensor is equal to or lower than the preset allowable light irradiation temperature, that is, the temperature at which overheating of the lining material does not occur, and the measured temperature is equal to or higher than the predetermined first surface temperature. In such a high temperature state, by increasing at least one of the output of the irradiation unit and the supply of compressed air, it is possible to suppress an increase in the surface temperature of the lining material. Thereby, the lining material can be efficiently cured by continuously performing light irradiation while preventing overheating of the lining material.

請求項2に記載の発明は、請求項1に記載の既設管の補修方法において、
前記表面温度センサは、前記光照射装置の移動方向に間隔をあけて複数設けられ、
前記硬化工程において、
全ての表面温度センサの測定温度が予め設定された光照射許容温度以下であって、且つ予め選択された少なくとも一つの表面温度センサの測定温度が前記第1表面温度以上の場合に、前記照射部の出力の低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行うことを特徴とする。
The invention according to claim 2 is the method for repairing an existing pipe according to claim 1,
A plurality of the surface temperature sensors are provided at intervals in the moving direction of the light irradiation device,
In the curing step,
When the measured temperature of all the surface temperature sensors is equal to or lower than a preset light irradiation allowable temperature and the measured temperature of at least one surface temperature sensor selected in advance is equal to or higher than the first surface temperature, the irradiation unit Is reduced and at least one of the compressed air is increased.

この構成によれば、複数の表面温度センサによって、ライニング材の表面温度をより的確に検知することができるとともに、複数の表面温度センサのうち、予め選択された少なくとも一つが所定の第1表面温度以上となった場合に、ライニング材の表面温度の上昇を抑えることで、ライニング材の過熱をより確実に防止して、ライニング材の硬化品質をより高めることができる。 According to this configuration, the surface temperature of the lining material can be detected more accurately by the plurality of surface temperature sensors, and at least one preselected one of the plurality of surface temperature sensors has a predetermined first surface temperature. In the above case, by suppressing the rise in the surface temperature of the lining material, it is possible to more reliably prevent the lining material from overheating and further improve the curing quality of the lining material.

請求項3に記載の発明は、請求項2に記載の既設管の補修方法において、
前記硬化工程において、
全ての表面温度センサの測定温度が予め設定された光照射許容温度以下であって、且つ予め選択された少なくとも一つの表面温度センサの測定温度が前記第1表面温度よりも低い所定の第2表面温度以下の場合に、前記光照射装置の移動速度の減少、前記照射部の出力の増加、及び圧縮空気の供給量の低減のうち、少なくとも一つを行うことを特徴とする。
The invention according to claim 3 is the method for repairing an existing pipe according to claim 2,
In the curing step,
A predetermined second surface in which the measured temperatures of all the surface temperature sensors are equal to or lower than a preset allowable light irradiation temperature and the measured temperature of at least one surface temperature sensor selected in advance is lower than the first surface temperature. When the temperature is equal to or lower than the temperature, at least one of a decrease in moving speed of the light irradiation device, an increase in output of the irradiation unit, and a decrease in compressed air supply amount is performed.

この構成によれば、全ての表面温度センサによる測定温度が、ライニング材の過熱が起こらない温度範囲内であって、且つ予め選択された表面温度センサの検知表面温度が第1表面温度よりも低い所定の第2表面温度以下である低温状態の場合に、光照射装置の移動速度の低下、出力の増加、及び圧縮空気の供給量の低減のうち、少なくとも一つを行うことにより、ライニング材に十分に光を照射したり、温度を上昇させたりして硬化を促進することができる。 According to this configuration, the temperature measured by all the surface temperature sensors is within the temperature range in which overheating of the lining material does not occur, and the surface temperature sensor detected in advance is lower than the first surface temperature. When the temperature is lower than the predetermined second surface temperature, at least one of the decrease of the moving speed of the light irradiation device, the increase of the output, and the decrease of the compressed air supply amount is applied to the lining material. Curing can be accelerated by sufficiently irradiating light or raising the temperature.

請求項4に記載の発明は、請求項2又は3に記載の既設管の補修方法において、
前記表面温度センサは、前記光照射装置の移動方向最前部に位置する前部表面温度センサと、移動方向最後部に位置する後部表面温度センサと、前記先端表面温度センサ及び前記後端表面温度センサの間に位置する一以上の中間部表面温度センサとを有し、
前記硬化工程において、少なくとも一つの中間部表面温度センサの測定温度が、前記後部表面温度センサの測定温度以上となるように、前記光照射装置の移動速度、前記照射部の出力及び圧縮空気の供給量のうちの少なくとも一つを制御することを特徴とする。
The invention according to claim 4 is the method for repairing an existing pipe according to claim 2 or 3,
The surface temperature sensor is a front surface temperature sensor located at the frontmost part in the moving direction of the light irradiation device, a rear surface temperature sensor located at the rearmost part in the moving direction, the front surface temperature sensor and the rear surface temperature sensor. And one or more intermediate surface temperature sensors located between
In the curing step, the moving speed of the light irradiation device, the output of the irradiation unit, and the supply of compressed air so that the measured temperature of at least one intermediate surface temperature sensor is equal to or higher than the measured temperature of the rear surface temperature sensor. It is characterized by controlling at least one of the quantities.

この構成によれば、ライニング材は、光硬化反応が開始すると温度が上昇し、光硬化反応が終了すると表面温度が低下し始めるため、少なくとも一つの中間部表面温度センサの測定温度が後部表面温度センサの測定温度以上となるように制御することで、後部表面温度センサが通過する際に光硬化反応が終了した状態とすることができる。これにより、ライニング材を確実に硬化させることが可能である。 According to this configuration, since the temperature of the lining material rises when the photo-curing reaction starts and the surface temperature starts to decrease when the photo-curing reaction ends, the measured temperature of at least one middle surface temperature sensor is the rear surface temperature. By controlling the temperature to be equal to or higher than the temperature measured by the sensor, the photocuring reaction can be completed when the rear surface temperature sensor passes. This makes it possible to surely cure the lining material.

請求項5に記載の発明は、請求項4に記載の既設管の補修方法において、
前記複数の表面温度センサのうち、前記後部表面温度センサと隣り合う中間部表面温度センサの測定温度が前記後部表面温度センサの測定温度以上且つ最も高い温度となるように、前記光照射装置の移動速度、前記照射部の出力及び圧縮空気の供給量のうちの少なくとも一つを制御することを特徴とする。
The invention according to claim 5 is the method for repairing an existing pipe according to claim 4,
Of the plurality of surface temperature sensors, the movement of the light irradiation device is such that the measured temperature of the intermediate surface temperature sensor adjacent to the rear surface temperature sensor is equal to or higher than the measured temperature of the rear surface temperature sensor and is the highest temperature. At least one of the speed, the output of the irradiation unit, and the supply amount of compressed air is controlled.

この構成によれば、ライニング材の硬化を確実にしながら、不要な光照射を低減して、ライニング材の硬化効率を高めることができる。 According to this configuration, it is possible to reduce unnecessary irradiation of light and increase the curing efficiency of the lining material while ensuring the curing of the lining material.

請求項6に記載の発明は、請求項1〜5の何れか1項に記載の既設管の補修方法において、
前記既設管と前記ライニング材との間に配置されて、前記ライニング材の外周面の温度を測定する外表面温度センサを含み、
前記硬化工程において、前記外表面温度センサによる測定温度が、所定の低閾値温度以下の場合に、前記光照射装置の移動速度の低下、前記照射部の出力の増加、及び圧縮空気の供給量の低減のうち、少なくとも一つを行うことを特徴とする。
The invention according to claim 6 is the method for repairing an existing pipe according to any one of claims 1 to 5,
It is arranged between the existing pipe and the lining material, and includes an outer surface temperature sensor for measuring the temperature of the outer peripheral surface of the lining material,
In the curing step, when the temperature measured by the outer surface temperature sensor is equal to or lower than a predetermined low threshold temperature, the moving speed of the light irradiation device decreases, the output of the irradiation unit increases, and the amount of compressed air supplied. At least one of the reductions is performed.

この構成によれば、既設管の内壁と接触するライニング材の外周面は、周辺の地下水により冷却された既設管の影響により冷やされるが、ライニング材の外周面の温度を測定して、これが所定の低閾値温度以下の場合、すなわち、ライニング材の外周面の温度が低い場合に、光照射装置の移動速度を低下させる及び/又は照射部の出力を増加させることで、ライニング材の外周面温度を高めて適切にライニング材を硬化させることができる。 According to this configuration, the outer peripheral surface of the lining material that comes into contact with the inner wall of the existing pipe is cooled by the effect of the existing pipe cooled by the surrounding groundwater. When the temperature of the outer peripheral surface of the lining material is low, that is, when the temperature of the outer peripheral surface of the lining material is low, the outer peripheral surface temperature of the lining material is decreased by decreasing the moving speed of the light irradiation device and/or increasing the output of the irradiation unit. Can be increased to properly cure the lining material.

また、請求項7に記載の発明は、
地中に埋設された既設管内に導入される管状のライニング材と、
該ライニング材の内部に圧縮空気を供給する空気供給手段と、
前記ライニング材の表面温度を測定する表面温度センサ及び光を照射する照射部を有する移動式の光照射装置と、
前記空気供給手段及び前記光照射装置と接続され、前記表面温度センサの測定温度に基づいて前記空気供給手段及び前記光照射装置を制御する制御装置と、を備え、
前記ライニング材の内部に導入した前記光照射装置により、前記ライニング材の内側から光を照射して該ライニング材を硬化させる既設管の補修システムにおいて、
前記制御装置は、
前記表面温度センサによる測定温度が予め設定された光照射許容温度以下であって、且つ前記測定温度が所定の第1表面温度以上の場合に、前記照射部の出力の低下及び前記空気供給手段による圧縮空気の供給量の増加のうち、少なくとも一つを行うことを特徴とする。
The invention according to claim 7 is
With a tubular lining material that is introduced into the existing pipe buried in the ground,
Air supply means for supplying compressed air to the inside of the lining material,
A movable light irradiation device having a surface temperature sensor for measuring the surface temperature of the lining material and an irradiation unit for irradiating light,
A control device that is connected to the air supply unit and the light irradiation device, and controls the air supply unit and the light irradiation device based on the temperature measured by the surface temperature sensor;
By the light irradiation device introduced into the inside of the lining material, in the repair system of the existing pipe for irradiating light from the inside of the lining material to cure the lining material,
The control device is
When the temperature measured by the surface temperature sensor is equal to or lower than the preset light irradiation allowable temperature and the measured temperature is equal to or higher than the predetermined first surface temperature, the output of the irradiation unit is reduced and the air supply means is used. At least one of the increase of the compressed air supply amount is performed.

この構成によれば、表面温度センサによる測定温度が、予め設定された光照射許容温度以下、すなわち、ライニング材の過熱が起こらない温度範囲内であって、且つ検知表面温度が所定の第1表面温度以上である高温状態の場合に、照射部の出力低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行うことにより、ライニング材の表面温度の上昇を抑えることができる。これにより、ライニング材の過熱を防止しながら光照射を継続して行い、効率的にライニング材を硬化させることができる。 According to this configuration, the temperature measured by the surface temperature sensor is equal to or lower than the preset light irradiation allowable temperature, that is, within the temperature range in which overheating of the lining material does not occur, and the detected surface temperature is the predetermined first surface. When the temperature is higher than or equal to the temperature, at least one of decreasing the output of the irradiation unit and increasing the amount of compressed air supplied can suppress an increase in the surface temperature of the lining material. Thereby, the lining material can be efficiently cured by continuously performing light irradiation while preventing overheating of the lining material.

本発明の既設管の補修方法及び既設管の補修システムによれば、光硬化性のライニング材に対して光照射を行う際に、ライニング材の温度上昇による劣化を防止しながら、既設管やその周辺の環境状況に応じて効率的にライニング材を硬化させることができる。 According to the existing pipe repairing method and the existing pipe repairing system of the present invention, when performing light irradiation on the photo-curing lining material, the existing pipe and its part are prevented while preventing deterioration due to temperature rise of the lining material. The lining material can be efficiently cured according to the surrounding environmental conditions.

本発明に係る既設管の補修システムを模式的に示す断面図。Sectional drawing which shows typically the repair system of the existing pipe which concerns on this invention. 補修システムの構成図。Configuration diagram of the repair system. 光照射装置を示す側面図。The side view which shows a light irradiation device. 補修工程を説明する図。The figure explaining a repair process. 補修工程を説明する図。The figure explaining a repair process. 表面温度センサによる温度分布の例を示すグラフ。The graph which shows the example of temperature distribution by a surface temperature sensor. 補修工程を説明する図。The figure explaining a repair process. 光照射装置の変形例を示す側面図。The side view which shows the modification of a light irradiation device. 補修システムの変更例を説明する断面図。Sectional drawing explaining the example of a change of a repair system.

図1は、本発明に係る既設管の補修システム10を模式的に示す断面図であり、図2は、補修システム10の構成図である。本実施の形態の補修システム10は、地中に埋設された既設管である下水管70の補修に適用される。下水管70は、2つのマンホール72,73の間に配設されており、これらを連通している。下水管70の上流側及び下流側には、補修作業の際に下水の流れを堰き止めるための止水部材74,75が設置される。止水部材74,75としては、内部に空気等の流体を供給することにより膨張するゴム製のパッカーを用いることができる。 FIG. 1 is a sectional view schematically showing an existing pipe repair system 10 according to the present invention, and FIG. 2 is a configuration diagram of the repair system 10. The repair system 10 of the present embodiment is applied to repair a sewer pipe 70 which is an existing pipe buried in the ground. The sewer pipe 70 is disposed between the two manholes 72 and 73 and communicates them. On the upstream side and the downstream side of the sewer pipe 70, water stop members 74 and 75 for blocking the flow of the sewage at the time of repair work are installed. As the water blocking members 74 and 75, a rubber packer that expands by supplying a fluid such as air to the inside can be used.

補修システム10は、更生管を形成するライニング材20と、ライニング材20に光を照射する光照射装置30とを備えるとともに、コンプレッサ(空気供給手段)12と、スチレン濃度検知器14と、一酸化炭素濃度検知器16と、脱臭装置18と、制御装置40とを備える。制御装置40は、光照射装置30、コンプレッサ12、スチレン濃度検知器14、一酸化炭素濃度検知器16及び脱臭装置18のそれぞれの有線又は無線で接続されており、これらの機器から受信したデータを記録可能であって、さらに受信データに基づいて、光照射装置30、コンプレッサ12及び脱臭装置18の運転状態を制御することが可能である。 The repair system 10 includes a lining material 20 that forms a rehabilitation pipe, and a light irradiation device 30 that irradiates the lining material 20 with light, and also includes a compressor (air supply means) 12, a styrene concentration detector 14, and monoxide. A carbon concentration detector 16, a deodorizing device 18, and a control device 40 are provided. The control device 40 is connected to each of the light irradiation device 30, the compressor 12, the styrene concentration detector 14, the carbon monoxide concentration detector 16 and the deodorizing device 18 by wire or wirelessly, and receives data received from these devices. It is possible to record, and it is possible to control the operating states of the light irradiation device 30, the compressor 12, and the deodorizing device 18 based on the received data.

ライニング材20は、未硬化状態では可撓性を有し、硬化後に下水管70の内径と対応する外径を有するように、下水管70の形状に適合させた筒状に形成される。ライニング材20の材料としては、例えば、繊維等からなる含浸基材(例として、ガラス繊維、ポリエステル繊維などの繊維基材やフェルトなどの不織布)に光硬化性樹脂組成物を含浸したものを使用することができる。光硬化性樹脂組成物は、重合性樹脂、重合性不飽和モノマー及び光重合開始剤を含むものとすることができ、例えば、不飽和ポリエステル樹脂やビニルエステル樹脂等の重合性樹脂をスチレン等の溶媒に溶かしたものを使用することができる。光重合開始剤としては、例えば、紫外線により樹脂の重合を促進する紫外線用重合開始剤や紫外線及び可視光線の両方の作用で樹脂の重合を促進できる光重合開始剤を使用することができる。 The lining material 20 is flexible in the uncured state, and is formed into a tubular shape that conforms to the shape of the sewer pipe 70 so as to have an outer diameter corresponding to the inner diameter of the sewer pipe 70 after curing. As the material of the lining material 20, for example, an impregnated base material made of fiber or the like (as an example, a fiber base material such as glass fiber or polyester fiber or a nonwoven fabric such as felt) is impregnated with a photocurable resin composition. can do. The photocurable resin composition may include a polymerizable resin, a polymerizable unsaturated monomer and a photopolymerization initiator, for example, a polymerizable resin such as an unsaturated polyester resin or a vinyl ester resin in a solvent such as styrene. A melted product can be used. As the photopolymerization initiator, for example, a polymerization initiator for ultraviolet rays which accelerates the polymerization of the resin by ultraviolet rays or a photopolymerization initiator which can accelerate the polymerization of the resin by the actions of both ultraviolet rays and visible rays can be used.

ライニング材20は、内面及び外面のそれぞれを保護するインナーフィルム及びアウターフィルムを含む。インナーフィルム及びアウターフィルムの材料としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルムなどを用いることができる。インナーフィルムは、少なくとも光照射装置30から照射される光に対して透過性を有し、アウターフィルムは、光照射装置30から照射された光が光硬化性のライニング材20の外部に透過せず、光硬化反応に使われるように遮光性フィルムを用いることが好ましい。遮光フィルムとしては、例えば、2枚の透明ポリエチレンフィルムの間に黄色等の着色皮膜層を有する積層フィルムを用いることができる。なお、インナーフィルムはライニング材20を硬化させた後に剥離される。 The lining material 20 includes an inner film and an outer film that protect the inner surface and the outer surface, respectively. As a material for the inner film and the outer film, for example, a polyethylene film, a polypropylene film, a polyethylene terephthalate film or the like can be used. The inner film is transparent to at least the light emitted from the light irradiation device 30, and the outer film does not transmit the light emitted from the light irradiation device 30 to the outside of the photocurable lining material 20. It is preferable to use a light-shielding film as used in the photo-curing reaction. As the light-shielding film, for example, a laminated film having a colored film layer such as yellow between two transparent polyethylene films can be used. The inner film is peeled off after the lining material 20 is cured.

光照射装置30は、移動可能に構成され、図1及び図3に示すように、照射部31と、表面温度センサ34と、雰囲気温度センサ36と、撮像手段37とを備える。また、光照射装置30はケーブル材49を介して地上の施工車50に搭載された制御装置40に接続されている。光硬化作業において、光照射装置30は、ケーブル材49を牽引することにより下水管70内を移動する。以下の説明では、光照射装置30において、移動方向前方となるケーブル材49が取り付けられている側を前方側といい、移動方向後方となる撮像装置37が取り付けられている側を後方側という。 The light irradiation device 30 is configured to be movable, and includes an irradiation unit 31, a surface temperature sensor 34, an atmosphere temperature sensor 36, and an imaging unit 37, as shown in FIGS. 1 and 3. Further, the light irradiation device 30 is connected to the control device 40 mounted on the ground construction vehicle 50 via the cable material 49. In the light curing operation, the light irradiation device 30 moves in the sewer pipe 70 by pulling the cable material 49. In the following description, in the light irradiation device 30, the side on which the cable material 49 that is forward in the moving direction is attached is referred to as the front side, and the side on which the imaging device 37 that is backward in the moving direction is attached is referred to as the rear side.

照射部31は光照射装置30の移動方向に列をなすように複数設けられ、本実施の形態では、前方側から、第1照射部31A、第2照射部31B、第3照射部31C、第4照射部31D及び第5照射部31Eの5つの照射部が設けられている。各照射部31の両端は支持体32により支持されている。本実施の形態の照射部31は、管型のランプ(例えば、紫外線〜可視光の範囲の波長を照射することが可能な、メタルハライドランプ、水銀ランプ、ガリウムランプ等)である。なお、照射部31の数はこれに限られず一つ以上であればよい。隣り合う支持体32の間には、一本以上のパイプ体33が架設されており、好ましくは照射部31の周方向に等間隔となるように3本のパイプ体33が架設される。パイプ体33及び支持体32の内部には、各照射部31に電力を供給するための導線が挿通されている。この導線は、支持体32に取付けられたケーブル材49の内部を通って地上の施工車50に搭載された電源部に接続されており、各照射部31は、制御装置40によって個別に点灯・消灯が制御可能であり、個別に照射出力を調節することができる。各照射部31の間には、照射部31が管状のライニング材20の内壁に衝突することを防止しながら管路内を移動可能にする走行手段38が設けられている。 A plurality of irradiation units 31 are provided so as to form a line in the moving direction of the light irradiation device 30, and in the present embodiment, from the front side, the first irradiation unit 31A, the second irradiation unit 31B, the third irradiation unit 31C, and the third irradiation unit 31C. Five irradiation units, that is, a four irradiation unit 31D and a fifth irradiation unit 31E are provided. Both ends of each irradiation unit 31 are supported by the support 32. The irradiation unit 31 of the present embodiment is a tubular lamp (for example, a metal halide lamp, a mercury lamp, a gallium lamp, or the like that can irradiate a wavelength in the range of ultraviolet rays to visible light). The number of irradiation units 31 is not limited to this and may be one or more. One or more pipe bodies 33 are provided between adjacent support bodies 32, and preferably three pipe bodies 33 are provided so as to be equidistant in the circumferential direction of the irradiation unit 31. Inside the pipe body 33 and the support body 32, a lead wire for supplying electric power to each irradiation unit 31 is inserted. This conducting wire is connected to the power supply unit mounted on the ground construction vehicle 50 through the inside of the cable material 49 attached to the support 32, and each irradiation unit 31 is individually turned on by the control device 40. The extinction can be controlled and the irradiation output can be adjusted individually. Between each irradiation part 31, a traveling means 38 is provided which is movable in the pipeline while preventing the irradiation part 31 from colliding with the inner wall of the tubular lining material 20.

表面温度センサ34は、ライニング材20の内表面温度を測定するものであって、光照射装置30の移動方向に間隔をあけて複数設けられており、本実施の形態では、等間隔となるように4つの支持体32のそれぞれに表面温度センサ34が取付けられている。表面温度センサ34としては、例えば、非接触型のIRセンサ(赤外線温度センサ)を用いることができる。本実施の形態では、光照射装置30の移動方向最前部に位置する前部表面温度センサ34Aと、移動方向最後部に位置する後部表面温度センサ34Eと、前部表面温度センサ34A及び後部表面温度センサ34Eの間に位置する一以上の中間部表面温度センサ34B,34C,34Dとを有する。このように表面温度センサ34を複数設けることで、ライニング材20の管軸方向の複数箇所の表面温度を同時に検知することができる。 The surface temperature sensor 34 measures the inner surface temperature of the lining material 20, and a plurality of surface temperature sensors 34 are provided at intervals in the moving direction of the light irradiation device 30. In the present embodiment, the surface temperature sensors 34 are arranged at equal intervals. A surface temperature sensor 34 is attached to each of the four supports 32. As the surface temperature sensor 34, for example, a non-contact type IR sensor (infrared temperature sensor) can be used. In the present embodiment, the front surface temperature sensor 34A located at the frontmost part in the moving direction of the light irradiation device 30, the rear surface temperature sensor 34E located at the rearmost part in the moving direction, the front surface temperature sensor 34A and the rear surface temperature. It has one or more intermediate surface temperature sensors 34B, 34C, 34D located between the sensors 34E. By providing a plurality of surface temperature sensors 34 in this way, it is possible to simultaneously detect the surface temperatures of the lining material 20 at a plurality of locations in the pipe axis direction.

雰囲気温度センサ36は、ライニング材20内の雰囲気温度を測定するためのものであり、光照射装置30の移動方向の中央部に位置する支持体32に設けられている。雰囲気温度センサ36としては、例えば、白金抵抗温度センサを用いることができる。なお、雰囲気温度センサ36は複数設けられていてもよく、かかる場合には、移動方向に間隔をあけて配置され、特に、光照射装置30の前方側及び後方側のそれぞれに配置されることが好ましい。表面温度センサ34及び雰囲気温度センサ36の測定データは、ケーブル材49内の導線を介して制御装置40に送信される。 The ambient temperature sensor 36 is for measuring the ambient temperature in the lining material 20, and is provided on the support 32 located at the center in the moving direction of the light irradiation device 30. As the ambient temperature sensor 36, for example, a platinum resistance temperature sensor can be used. Note that a plurality of ambient temperature sensors 36 may be provided, and in such a case, they are arranged at intervals in the moving direction, and in particular, they may be arranged on the front side and the rear side of the light irradiation device 30, respectively. preferable. The measurement data of the surface temperature sensor 34 and the ambient temperature sensor 36 are transmitted to the control device 40 via a conductor in the cable material 49.

撮像手段37は、例えば、管路内を撮像可能なテレビカメラであって、光照射装置30の後端部に設置されている。撮像データは制御装置40へ送信され、制御装置40の表示手段46(例えば、モニタ画面など)に表示される。なお、撮像手段37は、光照射装置30の前端部及び後端部のそれぞれに取付けられていてもよい。 The image pickup unit 37 is, for example, a television camera capable of picking up an image of the inside of the conduit, and is installed at the rear end of the light irradiation device 30. The imaging data is transmitted to the control device 40 and displayed on the display means 46 (for example, a monitor screen) of the control device 40. The image pickup means 37 may be attached to each of the front end portion and the rear end portion of the light irradiation device 30.

コンプレッサ12は地上の施工車50に搭載され、ホース52を介してライニング材20の内部に圧縮空気を供給する。コンプレッサ12による圧縮空気の供給量は、制御装置40により自動で又は操作手段42により手動で調節することができる。また、補修システム10は、コンプレッサ12とともに空気を冷却する冷却機を備え、冷却された圧縮空気を供給可能な構成としてもよい。 The compressor 12 is mounted on a construction vehicle 50 on the ground and supplies compressed air to the inside of the lining material 20 via a hose 52. The amount of compressed air supplied by the compressor 12 can be adjusted automatically by the controller 40 or manually by the operating means 42. Further, the repair system 10 may include a cooler that cools air together with the compressor 12, and may be configured to be able to supply cooled compressed air.

スチレン濃度検知器14及び一酸化炭素濃度検知器16は、それぞれ、ライニング材20に対して圧縮空気の送気方向の下流側、且つ脱臭装置18の上流側に配置され、ライニング材20内を通過した空気中のスチレン濃度及び一酸化炭素濃度のそれぞれを測定する。 The styrene concentration detector 14 and the carbon monoxide concentration detector 16 are arranged downstream of the lining material 20 in the compressed air feeding direction and upstream of the deodorizing device 18, and pass through the lining material 20. The styrene concentration and the carbon monoxide concentration in the air are measured.

脱臭装置18は地上に配置され、ライニング材20内を通過した気体に含まれる臭気原因物質を除去する処理を行う。具体的には、ライニング材20から排出された空気が、ホース54を介して地上に配置された脱臭装置18に取り込まれ、臭気処理が行われてから外部に排出される。脱臭装置18は、脱臭処理部に流入する前の気体中の臭気原因物質の濃度を測定するための濃度測定器を上流側に設けた構造とすることができる。 The deodorizing device 18 is disposed on the ground and performs a process of removing an odor-causing substance contained in the gas that has passed through the lining material 20. Specifically, the air discharged from the lining material 20 is taken into the deodorizing device 18 arranged on the ground via the hose 54, is subjected to odor treatment, and is then discharged to the outside. The deodorization device 18 may have a structure in which a concentration measuring device for measuring the concentration of the odor-causing substance in the gas before flowing into the deodorization processing unit is provided on the upstream side.

制御装置40は、例えば、操作パネルやスイッチボタン等の操作手段42及びモニタ画面等の表示手段46とともに、CPU等の情報処理手段、RAMやROM等の記憶手段44、入出力インターフェイス等からなるマイクロコンピュータを備えて構成される。制御装置40は、表面温度センサ34の測定結果に基づいて、光照射装置30の走行速度、照射部31の照射出力及びコンプレッサ12による圧縮空気の供給量を制御可能に構成されている。制御装置40による他の接続機器の制御は、受信データに基づく自動制御や、操作手段42を用いて作業者が行う手動制御のいずれか一方又は両方によって実施することができる。 The control device 40 includes, for example, an operation means 42 such as an operation panel and a switch button and a display means 46 such as a monitor screen, an information processing means such as a CPU, a storage means 44 such as a RAM and a ROM, an input/output interface and the like. It is configured with a computer. The control device 40 is configured to control the traveling speed of the light irradiation device 30, the irradiation output of the irradiation unit 31, and the supply amount of compressed air by the compressor 12 based on the measurement result of the surface temperature sensor 34. The control of the other connected devices by the control device 40 can be performed by either one or both of automatic control based on the received data and manual control performed by the operator using the operation unit 42.

記憶手段44には、ライニング材20に対する所定の光照射許容温度T、所定の第1表面温度T及び所定の第2表面温度Tが設定されている。光照射許容温度Tは、ライニング材20に過熱による劣化が生じることのない管理温度値である。第1表面温度Tは光照射許容温度Tよりも低い温度、第2表面温度Tは第1表面温度Tよりも低い温度であって、光照射装置30やコンプレッサ12の運転状態を変更する基準となる温度値である。光照射許容温度T、第1表面温度T及び第2表面温度Tは、ライニング材20の材料等に応じて変化するが、一例として、光照射許容温度Tpを150℃、第1表面温度Tを120℃、第2表面温度Tを25℃とすることができる。 A predetermined light irradiation allowable temperature T P , a predetermined first surface temperature T 1, and a predetermined second surface temperature T 2 for the lining material 20 are set in the storage means 44. The light irradiation allowable temperature T P is a control temperature value at which the lining material 20 does not deteriorate due to overheating. The first surface temperature T 1 is lower than the light irradiation allowable temperature T P , and the second surface temperature T 2 is lower than the first surface temperature T 1 , so that the operating states of the light irradiation device 30 and the compressor 12 are controlled. This is the reference temperature value to be changed. The light irradiation allowable temperature T p , the first surface temperature T 1, and the second surface temperature T 2 change depending on the material of the lining material 20. As an example, the light irradiation allowable temperature Tp is 150° C., the first surface The temperature T 1 can be 120° C. and the second surface temperature T 2 can be 25° C.

また、記憶手段44には、ライニング材20内の雰囲気温度に対する所定の雰囲気温度管理値が設定されている。雰囲気温度管理値は、ライニング材20が過熱により劣化することのない温度値である。さらに、記憶手段44には、スチレン濃度及び一酸化炭素濃度のそれぞれに対し、安全性を確保するための管理値であるスチレン濃度管理値及び一酸化炭素濃度管理値のそれぞれが設定されている。 Further, in the storage means 44, a predetermined ambient temperature control value for the ambient temperature inside the lining material 20 is set. The ambient temperature control value is a temperature value at which the lining material 20 does not deteriorate due to overheating. Further, in the storage means 44, a styrene concentration control value and a carbon monoxide concentration control value, which are control values for ensuring safety, are set for the styrene concentration and the carbon monoxide concentration, respectively.

制御装置40は、さらに、各温度センサ34,36や各検知器14,16による測定結果が上述した所定の管理値に達したことを視覚的及び/又は聴覚的な方法で作業者に通知する通知手段46を備える。通知手段46は、例えば、管理値を超えた際に警報音を発生する警報器とすることができる。各温度センサ34,36及び各検知器14,16による測定結果のうち、少なくとも一つが所定の管理値を超えた場合に、通知手段46による通知を行う。また、表面温度センサ34が管理値である光照射許容温度Tを超えたことによる通知の基準は、複数の表面温度センサ34A,34B,34C,34D,34Eのうち、任意に定めた一つ以上の表面温度センサ34が光照射許容温度Tを越えたときとすることができる。本実施の形態では、後部表面温度センサ34Eと隣り合う中間部表面温度センサ34Dの測定値が光照射許容温度Tを超えたときに通知を行うとともに、照射部31を消灯して、光照射装置30の移動を停止する。その後、継続的に表面温度の測定を行い、測定値が所定の作業可能範囲内となった後に、硬化作業を再開する。 The control device 40 further notifies the operator by a visual and/or audible method that the measurement result by each of the temperature sensors 34, 36 and each of the detectors 14, 16 has reached the above-mentioned predetermined control value. The notification means 46 is provided. The notification unit 46 can be, for example, an alarm device that generates an alarm sound when the control value is exceeded. When at least one of the measurement results of the temperature sensors 34 and 36 and the detectors 14 and 16 exceeds a predetermined control value, the notification unit 46 notifies. In addition, the reference of the notification when the surface temperature sensor 34 exceeds the light irradiation allowable temperature T P which is the control value is one of a plurality of surface temperature sensors 34A, 34B, 34C, 34D, 34E that is arbitrarily determined. It can be set when the surface temperature sensor 34 exceeds the allowable light irradiation temperature T P. In the present embodiment, when the measured value of the intermediate surface temperature sensor 34D adjacent to the rear surface temperature sensor 34E exceeds the allowable light irradiation temperature T P , notification is given, and the irradiation unit 31 is turned off to perform light irradiation. The movement of the device 30 is stopped. After that, the surface temperature is continuously measured, and after the measured value falls within a predetermined workable range, the curing work is restarted.

また、制御装置40の記憶手段44には、ライニング材20の厚さや、補修対象となる下水管70の材質、内径、厚さ等に基づいて、硬化作業を行う際のコンプレッサ12による圧縮空気の単位時間あたりの標準供給量、光照射装置30の標準移動速度、及び各照射部30の標準出力値(すなわち、単位時間あたりの標準光照射量)が設定される。後述する硬化工程において、制御装置40は、この標準送風量、標準移動速度、及び標準出力値を初期値として、コンプレッサ12や光照射装置30を制御する。 In addition, the storage means 44 of the control device 40 stores the compressed air by the compressor 12 when performing the hardening work based on the thickness of the lining material 20, the material, the inner diameter, the thickness, etc. of the sewer pipe 70 to be repaired. The standard supply amount per unit time, the standard moving speed of the light irradiation device 30, and the standard output value of each irradiation unit 30 (that is, the standard light irradiation amount per unit time) are set. In the curing step described below, the control device 40 controls the compressor 12 and the light irradiation device 30 by using the standard air flow rate, the standard moving speed, and the standard output value as initial values.

次に、補修システム10を用いた下水管70の補修方法について説明する。 Next, a method of repairing the sewer pipe 70 using the repair system 10 will be described.

まず、図4に示すように、地上に設置された牽引装置60の牽引動作によって未硬化状態のライニング材20を一方のマンホール72から下水管70の内部に導入する(ライニング材導入工程)。牽引装置60は牽引用ロープ62を備え、ライニング材20の先端部に取付けられた牽引用ロープ62を他方のマンホール73側から引っ張ることでライニング材20が下水管70内に引き込まれる。 First, as shown in FIG. 4, the uncured lining material 20 is introduced into the sewer pipe 70 from one manhole 72 by the traction operation of the traction device 60 installed on the ground (lining material introducing step). The towing device 60 includes a towing rope 62, and the towing rope 62 attached to the tip end of the lining material 20 is pulled from the other manhole 73 side so that the lining material 20 is drawn into the sewer pipe 70.

次に、導入されたライニング材20の内部にコンプレッサ12により圧縮空気を供給し、ライニング材20を膨張・拡径させて下水管70の内壁面に密着させる。ライニング材20の両端部は、必要な貫通孔が形成されたエンドパッカ24,25により閉塞される。その後、膨張したライニング材20の内部に光照射装置30を導入する。 Next, compressed air is supplied to the inside of the introduced lining material 20 by the compressor 12 to expand and expand the diameter of the lining material 20 and bring it into close contact with the inner wall surface of the sewer pipe 70. Both ends of the lining material 20 are closed by end packers 24 and 25 having necessary through holes. Then, the light irradiation device 30 is introduced into the expanded lining material 20.

光照射装置30は、一方のマンホール72から下水管70内に導入され、図示していない牽引ロープを用いて他方のマンホール73まで牽引することにより、図5に示す下水管70の硬化作業開始位置まで移動させることができる。この移動の際、撮像手段37によってライニング材20の内面を撮像して制御装置40の表示手段46で視認することで、ライニング材20の異常の有無、例えば、インナーフィルムに損傷がないか等を調査することができる。その後、必要に応じて、ライニング材20の内部に熱風を供給し、ライニング材20を昇温させる。 The light irradiation device 30 is introduced into the sewer pipe 70 from one manhole 72, and is pulled to the other manhole 73 by using a tow rope (not shown), so that the curing work start position of the sewer pipe 70 shown in FIG. Can be moved up to. During this movement, by imaging the inner surface of the lining material 20 by the imaging means 37 and visually recognizing it on the display means 46 of the control device 40, it is possible to determine whether the lining material 20 is abnormal, for example, whether the inner film is damaged or not. Can be investigated. Then, if necessary, hot air is supplied into the lining material 20 to raise the temperature of the lining material 20.

次に、ライニング材20の内部に圧縮空気を供給しつつ、照射部31を点灯してライニング材20の内部に光を照射し、ライニング材20に含まれる硬化性樹脂組成物を硬化させる(硬化工程)。ライニング材20は、圧縮空気の供給により下水管70の内壁への押圧状態を保持しながら硬化される。硬化作業中の空気供給動作では、光硬化による発熱を冷却できるように、比較的低温の空気(例えば、ライニング材20の内部の温度よりも低温の大気、より好ましくは、冷却機により冷却された空気)が導入される。本実施の形態では、白抜き矢印で示す圧縮空気の送風方向と、光照射装置30の移動方向とが逆方向となるように、一方のマンホール73から他方のマンホール72へ光照射装置30を移動させながら光照射を行う。また、硬化作業中、撮像手段37によってライニング材20の内面を撮像し、硬化不良等がないか確認する。 Next, while supplying compressed air to the inside of the lining material 20, the irradiation part 31 is turned on to irradiate the inside of the lining material 20 with light to cure the curable resin composition contained in the lining material 20 (curing). Process). The lining material 20 is hardened while being pressed against the inner wall of the sewer pipe 70 by supplying compressed air. In the air supply operation during the curing operation, relatively low temperature air (for example, an atmosphere having a temperature lower than the temperature inside the lining material 20, more preferably, a cooler is used to cool the heat generated by light curing. Air) is introduced. In the present embodiment, the light irradiation device 30 is moved from one manhole 73 to the other manhole 72 so that the blowing direction of the compressed air indicated by the white arrow and the moving direction of the light irradiation device 30 are opposite directions. While irradiating light. Further, during the curing work, an image of the inner surface of the lining material 20 is picked up by the image pickup means 37 and it is confirmed whether or not there is a hardening defect.

図5に示す硬化作業開始位置では、第5照射部31Eから、第4照射部31D、第3照射部31C、第2照射部31B、第1照射部31Aの順に、所定の時間をあけて各照射部31を点灯する。全ての照射部31が点灯して出力値が所定の標準出力値となった後、光照射装置30を所定の標準移動速度で移動させる。この時、コンプレッサ12による圧縮空気の供給量は所定の標準供給量となっている。硬化工程では、各センサ34,36及び各検知器14,16により、測定温度や測定濃度が所定の管理値の範囲内にあることを確認しながら作業を行う。 At the curing work start position shown in FIG. 5, a predetermined time is opened in the order of the fifth irradiation unit 31E, the fourth irradiation unit 31D, the third irradiation unit 31C, the second irradiation unit 31B, and the first irradiation unit 31A. The irradiation unit 31 is turned on. After all the irradiation units 31 are turned on and the output value reaches a predetermined standard output value, the light irradiation device 30 is moved at a predetermined standard moving speed. At this time, the amount of compressed air supplied by the compressor 12 is a predetermined standard amount of supply. In the curing step, the operation is performed while confirming that the measured temperature and the measured concentration are within the predetermined control values by the respective sensors 34, 36 and the respective detectors 14, 16.

硬化工程において、全ての照射部31が点灯して、光照射装置30が移動を開始すると、制御装置40は、各表面温度センサ34の測定結果に基づいて、光照射装置30の移動速度、照射部31の照射出力及びコンプレッサ12による圧縮空気の供給量の制御を行う。図1は、硬化工程における光照射装置30の移動状態を示している。図6は、各表面温度センサ34が測定した温度分布の例を示すグラフであり、図6において、Aは前部表面温度センサ34A、Bは第1の中間部表面温度センサ34B、Cは第2の中間部表面温度センサ34C、Dは第3の中間部表面温度センサ34D、Eは後部表面温度センサ34Eを示している。 In the curing process, when all the irradiation units 31 are turned on and the light irradiation device 30 starts moving, the control device 40 determines the moving speed of the light irradiation device 30 and the irradiation based on the measurement result of each surface temperature sensor 34. The irradiation output of the unit 31 and the amount of compressed air supplied by the compressor 12 are controlled. FIG. 1 shows a moving state of the light irradiation device 30 in the curing step. FIG. 6 is a graph showing an example of the temperature distribution measured by each surface temperature sensor 34. In FIG. 6, A is the front surface temperature sensor 34A, B is the first intermediate surface temperature sensor 34B, and C is the first surface temperature sensor 34B. Second intermediate surface temperature sensors 34C and 34D are third intermediate surface temperature sensors 34D and E are rear surface temperature sensors 34E.

制御装置40は、全ての表面温度センサ34の測定温度が光照射許容温度T以下であって、且つ予め選択された少なくとも一つの表面温度センサ34の測定温度が第1表面温度T以上の場合に、照射部31の出力の低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行う。本実施の形態では、中間部表面温度センサ34B,34Cが、第1表面温度T以上の場合(図6の高温状態の温度分布を参照)に、中間部表面温度センサ34B及び/又は中間部表面温度センサ34Cと隣接する少なくとも一つの照射部31の出力を標準出力値よりも低下させるとともに、光照射装置30の移動速度を標準移動速度よりも遅くする。なお、これに代えて、またこれと同時に、圧縮空気の供給量を標準供給量よりも増加させてもよい。このような制御を行うことにより、ライニング材20の表面温度の急激な上昇を抑えながら、ライニング材20の硬化に必要な光照射量を確保することができる。また、ライニング材20の過熱を防止しながら光照射を継続して行うことができるので、効率的にライニング材20を硬化させることができる。 The control device 40 determines that the measured temperatures of all the surface temperature sensors 34 are equal to or lower than the light irradiation allowable temperature T P and that the measured temperature of at least one surface temperature sensor 34 selected in advance is equal to or higher than the first surface temperature T 1 . In this case, at least one of decreasing the output of the irradiation unit 31 and increasing the supply amount of compressed air is performed. In the present embodiment, when the intermediate surface temperature sensors 34B and 34C have the first surface temperature T 1 or higher (see the temperature distribution in the high temperature state of FIG. 6), the intermediate surface temperature sensor 34B and/or the intermediate surface temperature sensor 34B. The output of at least one irradiation unit 31 adjacent to the surface temperature sensor 34C is decreased below the standard output value, and the moving speed of the light irradiation device 30 is set lower than the standard moving speed. Instead of this, or at the same time, the supply amount of compressed air may be increased above the standard supply amount. By performing such control, it is possible to secure a light irradiation amount necessary for curing the lining material 20 while suppressing a rapid increase in the surface temperature of the lining material 20. Further, since the light irradiation can be continuously performed while preventing the lining material 20 from overheating, the lining material 20 can be efficiently cured.

なお、高温状態の際の制御はこれに限られず、例えば、最初に照射部31の出力低下を行い、その後、高温状態が解消されない場合に、圧縮空気の供給量を増加させてもよい。 The control in the high temperature state is not limited to this. For example, when the output of the irradiation unit 31 is first reduced and then the high temperature state is not resolved, the supply amount of the compressed air may be increased.

また、制御装置40は、全ての表面温度センサ34の測定温度が予め設定された光照射許容温度T以下であって、且つ予め選択された少なくとも一つの表面温度センサ34の測定温度が第2表面温度T以下の場合に、光照射装置30の移動速度の減少、少なくとも一つの照射部31の出力の増加及び圧縮空気の供給量の低減のうち、少なくとも一つを行う。を行う。本実施の形態では、3つの中間部表面温度センサ34B,34C,34Dのうち、少なくとも一つの中間部表面温度センサ34が第2表面温度T以下の場合(図6の低温状態の温度分布を参照)に、全ての照射部31の出力を標準出力値よりも大きくし、光照射装置30の移動速度を標準移動速度よりも減少させる。このような制御を行うことにより、ライニング材20に十分に光を照射したり、ライニング材20の温度を上昇させたりして硬化を促進することができる。 Further, the control device 40 determines that the measured temperatures of all the surface temperature sensors 34 are equal to or lower than the preset light irradiation allowable temperature T P , and the measured temperature of at least one surface temperature sensor 34 selected in advance is the second. When the surface temperature is equal to or lower than T 2 , at least one of decreasing the moving speed of the light irradiation device 30, increasing the output of at least one irradiation unit 31 and reducing the supply amount of compressed air is performed. I do. In the present embodiment, when at least one intermediate surface temperature sensor 34 among the three intermediate surface temperature sensors 34B, 34C, 34D has a second surface temperature T 2 or less (the temperature distribution in the low temperature state of FIG. (See), the outputs of all the irradiation units 31 are made larger than the standard output value, and the moving speed of the light irradiation device 30 is made lower than the standard moving speed. By performing such control, the lining material 20 can be sufficiently irradiated with light and the temperature of the lining material 20 can be raised to accelerate the curing.

なお、低温状態の際の制御はこれに限られず、例えば、最初に照射部31の出力を増加し、その後、低温状態が解消されない場合に、光照射装置30の移動速度を低下し、さらに解消されない場合に、圧縮空気の供給量を標準供給量よりも低減させるようにしてもよい。 The control in the low temperature state is not limited to this. For example, when the output of the irradiation unit 31 is increased first, and then the low temperature state is not eliminated, the moving speed of the light irradiation device 30 is reduced and further eliminated. If this is not the case, the supply amount of compressed air may be made lower than the standard supply amount.

なお、制御の切り換えの基準となる表面温度センサ34は、任意に選択することができるが、少なくとも一つの中間部表面温度センサ34を含むことが好ましい。また、光照射量、移動速度及び圧縮空気の供給量の増減の程度は、制御装置40において予め設定しておくことが可能である。上述した制御では、図6に示す適正状態1や適正状態2の場合に、光照射装置30やコンプレッサ12の設定を変更せずに硬化作業を継続する。 The surface temperature sensor 34 that serves as a reference for switching the control can be arbitrarily selected, but it is preferable to include at least one intermediate surface temperature sensor 34. Further, the light irradiation amount, the moving speed, and the degree of increase or decrease in the compressed air supply amount can be set in advance in the control device 40. In the control described above, in the case of the proper state 1 or the proper state 2 shown in FIG. 6, the curing work is continued without changing the settings of the light irradiation device 30 and the compressor 12.

また、さらに好ましい制御方法として、制御装置40は、少なくとも一つの中間部表面温度センサ34の測定温度が、前部表面温度センサ34Aの測定温度よりも高く、且つ後部表面温度センサ34Eの測定温度以上(すなわち、後部表面温度センサ34Eの測定温度と同じかそれより高い温度)となるように、光照射装置30の移動速度、少なくとも一つの照射部31の出力及び圧縮空気の供給量のうちの少なくとも一つを制御するようにしてもよい。かかる場合には、図6の適正状態2のライニング材20に対して、光照射量、光照射装置30の移動速度及び圧縮空気の供給量のうちの少なくとも一つを変化させる。一般に、ライニング材20は、光照射による重合反応により硬化が開始すると時間の経過とともに温度が上昇し、ピーク温度に達して重合反応が終了すると、温度が下降し始める。それ故、かかる制御を行うことで、後部表面温度センサ34Eが通過する際に光硬化反応が終了した状態とすることができ、ライニング材20の硬化をより確実にすることができる。 Further, as a more preferable control method, the control device 40 is configured such that the measured temperature of the at least one intermediate surface temperature sensor 34 is higher than the measured temperature of the front surface temperature sensor 34A and is equal to or higher than the measured temperature of the rear surface temperature sensor 34E. (That is, a temperature equal to or higher than the temperature measured by the rear surface temperature sensor 34E), at least the moving speed of the light irradiation device 30, the output of at least one irradiation unit 31, and the supply amount of compressed air. You may make it control one. In such a case, at least one of the light irradiation amount, the moving speed of the light irradiation device 30, and the compressed air supply amount is changed with respect to the lining material 20 in the proper state 2 of FIG. Generally, the temperature of the lining material 20 rises with the lapse of time when curing starts due to the polymerization reaction due to light irradiation, and the temperature starts to drop when the peak temperature is reached and the polymerization reaction ends. Therefore, by performing such control, the photo-curing reaction can be completed when the rear surface temperature sensor 34E passes, and the lining material 20 can be more reliably cured.

また、より好ましい制御方法として、図6の適正状態1の温度分布のように、全ての表面温度センサ34のうち、後部表面温度センサ34Eと隣り合う中間部表面温度センサ34Dの測定温度が、後部表面温度センサ34Eの測定温度以上、且つ最も高い温度となるように、光照射装置30の移動速度、少なくとも一つの照射部31の出力及び圧縮空気の供給量のうちの少なくとも一つを制御することができる。かかる制御を行うことで、光照射装置30の後端部近くでライニング材20がピーク温度に達するようにでき、その結果、ライニング材20の硬化を確実にしながら、不要な光照射を低減して硬化効率を高めることができる。 As a more preferable control method, as in the temperature distribution in the proper state 1 of FIG. 6, among all the surface temperature sensors 34, the measured temperature of the intermediate surface temperature sensor 34D adjacent to the rear surface temperature sensor 34E is the rear surface temperature sensor 34E. To control at least one of the moving speed of the light irradiation device 30, the output of at least one irradiation unit 31, and the supply amount of compressed air so that the temperature becomes equal to or higher than the measurement temperature of the surface temperature sensor 34E. You can By performing such control, it is possible to make the lining material 20 reach the peak temperature near the rear end portion of the light irradiation device 30, and as a result, while curing the lining material 20 reliably, unnecessary light irradiation is reduced. The curing efficiency can be increased.

また、制御装置40は、雰囲気温度センサ36による測定温度が雰囲気温度管理値以上になると、光照射装置30の走行を停止し、照射部31を消灯する。これにより、ライニング材20の過熱を防止することができる。その後、継続的に雰囲気温度の測定を行い、測定値が所定の作業可能範囲内となった後に、硬化作業を再開する。 Further, when the temperature measured by the atmosphere temperature sensor 36 becomes equal to or higher than the atmosphere temperature control value, the control device 40 stops the traveling of the light irradiation device 30 and turns off the irradiation unit 31. As a result, overheating of the lining material 20 can be prevented. After that, the ambient temperature is continuously measured, and after the measured value falls within a predetermined workable range, the curing work is restarted.

また、硬化工程では、スチレン濃度検知器14によりライニング材20内を通過した空気中のスチレン濃度を測定し、濃度がスチレン濃度管理値未満にあることを確認しながら作業を行う。スチレン濃度が管理値以上の場合、表面温度センサ34及び雰囲気温度センサ36の測定結果にかかわらず、警報器を作動させて、光照射装置30の照射部31を消灯し、走行を停止するとともに、コンプレッサ12による送気量を増加する。その後、継続的にスチレン濃度の測定を行い、濃度の測定値が所定の作業可能範囲内となった後に、硬化作業を再開する。このように、可燃性のスチレンの濃度が管理値以上となって、火災等による温度上昇が懸念される場合に、光照射装置30の照射部31を消灯して温度上昇を防止するとともに、送気量を増加させてスチレン濃度が低下するように換気を行うことで、火災の発生を防止し、ライニング材20の過熱を防止することができる。 In the curing step, the styrene concentration detector 14 measures the styrene concentration in the air that has passed through the lining material 20, and the work is performed while confirming that the concentration is below the styrene concentration control value. When the styrene concentration is equal to or higher than the control value, regardless of the measurement results of the surface temperature sensor 34 and the ambient temperature sensor 36, the alarm device is activated, the irradiation unit 31 of the light irradiation device 30 is turned off, and the traveling is stopped. The amount of air sent by the compressor 12 is increased. Then, the styrene concentration is continuously measured, and after the measured concentration value falls within a predetermined workable range, the curing work is restarted. In this way, when the concentration of flammable styrene exceeds the control value and there is a concern that the temperature will rise due to a fire or the like, the irradiation unit 31 of the light irradiation device 30 is turned off to prevent the temperature rise and to send the light. Ventilation is performed so that the amount of styrene is decreased by increasing the amount of air, so that a fire can be prevented and the lining material 20 can be prevented from overheating.

さらに、硬化工程では、一酸化炭素濃度検知器16によりライニング材20内を通過した空気中の一酸化炭素濃度を測定し、一酸化炭素濃度が所定の限界値未満にあることを確認しながら作業を行う。一酸化炭素濃度が所定の限界値以上の場合、表面温度センサ34及び雰囲気温度センサ36の検知結果にかかわらず、警報器を作動させて、光照射装置30の照射部31を消灯し、走行を停止する。その後、継続的に一酸化炭素濃度の測定を行い、濃度の測定値が所定の作業可能範囲内となった後に、硬化作業を再開する。これにより、例えば、ライニング材20のくすぶり燃焼等により一酸化炭素濃度が限界値以上になった場合に、光照射装置30による照射を停止して、燃焼による温度上昇や火災の発生を防止することができる。 Further, in the curing step, the carbon monoxide concentration detector 16 measures the carbon monoxide concentration in the air that has passed through the lining material 20 to confirm that the carbon monoxide concentration is below a predetermined limit value. I do. When the concentration of carbon monoxide is equal to or higher than a predetermined limit value, the alarm device is activated to turn off the irradiation unit 31 of the light irradiation device 30 regardless of the detection results of the surface temperature sensor 34 and the ambient temperature sensor 36, and the vehicle travels. Stop. Then, the carbon monoxide concentration is continuously measured, and after the measured concentration value falls within a predetermined workable range, the curing work is restarted. Thus, for example, when the carbon monoxide concentration exceeds the limit value due to the smoldering combustion of the lining material 20 or the like, the irradiation by the light irradiation device 30 is stopped to prevent the temperature rise and the fire from being generated by the combustion. You can

硬化作業が終了した後、図7に示すように、光照射装置30を撤去し、インナーフィルムを剥離して、硬化したライニング材20の管口処理を行い、止水部材74,75を撤去する。管口処理工程では、下水管70とマンホール72,73との接合部において、ライニング材20を開口形状に合わせて切除する。ライニング材20の切除は、例えば、切断機のカッターで硬化後のライニング材20を円状に切り取ることにより行うことができる。これにより、下水管70の内壁がこれと一体的に硬化形成されたライニング材20で被覆される。 After the curing work is completed, as shown in FIG. 7, the light irradiation device 30 is removed, the inner film is peeled off, the cured lining material 20 is subjected to the pipe mouth treatment, and the water blocking members 74 and 75 are removed. .. In the pipe mouth treatment step, the lining material 20 is cut off in accordance with the opening shape at the joint between the sewer pipe 70 and the manholes 72, 73. The cutting of the lining material 20 can be performed, for example, by cutting the cured lining material 20 into a circular shape with a cutter of a cutting machine. As a result, the inner wall of the sewer pipe 70 is covered with the lining material 20 that is hardened and formed integrally therewith.

上述したとおり、本実施の形態の補修システム10では、表面温度センサ34の測定温度に基づいて、光照射装置30やコンプレッサ12の制御を行うことにより、硬化作業において、補修対象となる下水管70やその周辺の環境状況、例えば、下水管70の周囲の地下水の有無、下水管70の材料、光硬化の反応熱にともなう温度変化などに応じて、ライニング材20の温度上昇による劣化を防止しながら効率的にライニング材20を硬化させることができる。さらに、制御装置40により、表面温度、雰囲気温度、一酸化炭素濃度及びスチレン濃度のそれぞれの測定値を経時的に記録することで、異常発生時の状況分析や、光照射による硬化効率の向上に役立てることができる。 As described above, in the repair system 10 of the present embodiment, by controlling the light irradiation device 30 and the compressor 12 based on the temperature measured by the surface temperature sensor 34, the sewage pipe 70 to be repaired in the curing operation is controlled. In order to prevent the lining material 20 from deteriorating due to a rise in temperature, the lining material 20 can be prevented from deteriorating depending on environmental conditions around the sewage pipe 70, such as the presence or absence of groundwater around the sewage pipe 70, the material of the sewage pipe 70, and the temperature change associated with the reaction heat of photocuring. However, the lining material 20 can be efficiently cured. Further, by recording the measured values of the surface temperature, the atmospheric temperature, the carbon monoxide concentration, and the styrene concentration with time by the control device 40, it is possible to analyze the situation when an abnormality occurs and improve the curing efficiency by light irradiation. It can be useful.

次に、図8を用いて光照射装置30の変更例を説明する。この光照射装置30では、照射部31が、筒状の本体部と、本体部の外周面に設けられた複数のLED(発光ダイオード)35とにより構成されている。本体部37は、円筒状又は角柱状に形成することができ、角柱状の場合、LED35は、各側面壁に等間隔に配置されることが好ましい。なお、光照射装置30のその他の構成は、上述した実施の形態と同様であるため、記載を省略する。 Next, a modified example of the light irradiation device 30 will be described with reference to FIG. In the light irradiation device 30, the irradiation unit 31 includes a cylindrical main body and a plurality of LEDs (light emitting diodes) 35 provided on the outer peripheral surface of the main body. The body portion 37 can be formed in a cylindrical shape or a prism shape, and in the case of the prism shape, the LEDs 35 are preferably arranged at equal intervals on each side wall. Note that the other configuration of the light irradiation device 30 is the same as that of the above-described embodiment, and thus the description thereof is omitted.

次に、図9を用いて本発明の補修システム10の変形例を説明する。なお、図9は、補修システム10による硬化工程を示す要部拡大断面図である Next, a modified example of the repair system 10 of the present invention will be described with reference to FIG. Note that FIG. 9 is an enlarged sectional view of an essential part showing a curing process by the repair system 10.

変形例の補修システム10では、ライニング材20の導入工程において、下水管70の内壁面とライニング材20の外周面との間に、ライニング材20の外表面の温度を測定する外表面温度センサ39が設けられる。 In the repair system 10 of the modified example, in the step of introducing the lining material 20, the outer surface temperature sensor 39 that measures the temperature of the outer surface of the lining material 20 between the inner wall surface of the sewer pipe 70 and the outer peripheral surface of the lining material 20. Is provided.

外表面温度センサ39は、薄厚のシート状であって、予めライニング材20の外表面に張り付けられた構造とすることができ、ライニング材20の筒軸方向に所定の間隔をあけて複数設けられる。各外表面温度センサ39は、図示していない導線を介して制御装置40と接続されている。 The outer surface temperature sensor 39 is in the form of a thin sheet, and can be configured to be attached to the outer surface of the lining material 20 in advance, and a plurality of outer surface temperature sensors 39 are provided at a predetermined interval in the cylinder axis direction of the lining material 20. .. Each outer surface temperature sensor 39 is connected to the control device 40 via a conductor (not shown).

硬化工程では、各外表面温度センサ39によってライニング材20の外表面の温度を継続的に測定する。一般的に、光硬化による発熱反応が生じているライニング材20の外表面では測定温度が高くなる。制御装置40は、各外表面温度センサ39が測定した温度値のうち、最も測定温度の高いものを選択し、選択された測定温度が、予め設定された低閾値温度以下の場合に、光照射装置30の移動速度を低下、照射部31の出力の増加、及び圧縮空気の供給量の低減のうち、少なくとも一つを行う。本変形例において低閾値温度は、上述した第2表面温度T以下の温度に設定されている。複数の照射部31のうち、出力が増加される照射部31は、最も測定温度の高い外表面温度センサ39よりも光照射装置30の移動方向前方側に位置するものであることが好ましい。 In the curing step, the temperature of the outer surface of the lining material 20 is continuously measured by each outer surface temperature sensor 39. In general, the measurement temperature is high on the outer surface of the lining material 20 where an exothermic reaction due to photocuring occurs. The control device 40 selects the one having the highest measured temperature among the temperature values measured by each outer surface temperature sensor 39, and when the selected measured temperature is equal to or lower than the preset low threshold temperature, the light irradiation is performed. At least one of reducing the moving speed of the device 30, increasing the output of the irradiation unit 31, and reducing the supply amount of compressed air is performed. In this modification, the low threshold temperature is set to a temperature equal to or lower than the above-mentioned second surface temperature T 2 . Of the plurality of irradiation units 31, the irradiation unit 31 whose output is increased is preferably located on the front side in the moving direction of the light irradiation device 30 with respect to the outer surface temperature sensor 39 having the highest measured temperature.

外表面温度センサ39は、ライニング材20の硬化作業後に導線を切断することにより、撤去せずに下水管70内に残留させることが可能である。 The outer surface temperature sensor 39 can be left in the sewer pipe 70 without being removed by cutting the conducting wire after the hardening work of the lining material 20.

下水管70の内壁と接触するライニング材20の外周面は、地下水により冷却された下水管70の影響により冷やされるが、本変形例のように、ライニング材20の外周面の温度を測定して、測定温度が低い場合に、光照射装置30の移動速度を低下させたり、照射部31の出力を増加させたりすることで、ライニング材20の外周面温度を高めることができる。これにより、より適切にライニング材20を硬化させることができる。 The outer peripheral surface of the lining material 20 that comes into contact with the inner wall of the sewer pipe 70 is cooled by the influence of the sewer pipe 70 cooled by groundwater. However, as in this modification, the temperature of the outer peripheral surface of the lining material 20 is measured. When the measured temperature is low, the outer peripheral surface temperature of the lining material 20 can be increased by decreasing the moving speed of the light irradiation device 30 or increasing the output of the irradiation unit 31. Thereby, the lining material 20 can be hardened more appropriately.

なお、本発明は上述した実施形態や変形例に限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the above-described embodiments and modified examples, and various modifications can be made without departing from the spirit of the invention.

例えば、表面温度センサ34は複数ではなく、光照射装置30に一つ設置される構成であってもよい。表面温度センサ34が一つである場合、この表面温度センサ34の測定温度が光照射許容温度P以下であって、且つ所定の第1表面温度T以上の場合に、照射部31の出力の低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行うまた、この表面温度センサ34の測定温度が第2表面温度T以下の場合に、光照射装置30の移動速度の減少、照射部31の出力の増加、及び照射部31の出力の増加のうち、少なくとも一つを行う。また、この場合、表面温度センサ34は、光照射装置30の移動方向の中央位置又は中央位置よりも後方に取付けられることが好ましい。 For example, the surface temperature sensor 34 may be installed in the light irradiation device 30 in place of the plurality of surface temperature sensors 34. When there is one surface temperature sensor 34, when the measured temperature of the surface temperature sensor 34 is equal to or lower than the light irradiation allowable temperature P 1 and is equal to or higher than the predetermined first surface temperature T 1 , the output of the irradiation unit 31. And at least one of the increase in the supply amount of compressed air are performed, and when the temperature measured by the surface temperature sensor 34 is the second surface temperature T 2 or less, the moving speed of the light irradiation device 30 is decreased. At least one of increasing the output of the irradiation unit 31 and increasing the output of the irradiation unit 31 is performed. Further, in this case, it is preferable that the surface temperature sensor 34 is attached to the center position in the moving direction of the light irradiation device 30 or to the rear of the center position.

10 補修システム
12 コンプレッサ(空気供給手段)
14 スチレン濃度検知器
16 一酸化炭素濃度検知器
18 脱臭装置
20 ライニング材
30 光照射装置
31 照射部
32 支持体
34A 前部表面温度センサ
34B,34C,34D 中間部表面温度センサ
34E 後部表面温度センサ
36 雰囲気温度センサ
40 制御装置
70 下水管
72,73 マンホール
10 Repair system 12 Compressor (air supply means)
14 Styrene concentration detector 16 Carbon monoxide concentration detector 18 Deodorizer 20 Lining material 30 Light irradiation device 31 Irradiation part 32 Support 34A Front surface temperature sensor 34B, 34C, 34D Intermediate surface temperature sensor 34E Rear surface temperature sensor 36 Atmosphere temperature sensor 40 Control device 70 Sewer pipe 72,73 Manhole

Claims (7)

地中に埋設された既設管の内壁面に管状のライニング材を密着させ、前記ライニング材の内部に圧縮空気を供給しつつ、前記ライニング材の内部に導入された移動式の光照射装置により、前記ライニング材の内面に光を照射して前記ライニング材を硬化させる硬化工程を含む既設管の補修方法において、
前記光照射装置は、光を照射する照射部と、前記ライニング材の表面温度を測定する表面温度センサとを有し、
前記硬化工程において、
前記表面温度センサによる測定温度が予め設定された光照射許容温度以下であって、且つ前記測定温度が所定の第1表面温度以上の場合に、前記照射部の出力の低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行うことを特徴とする既設管の補修方法。
By adhering the tubular lining material to the inner wall surface of the existing pipe buried in the ground, while supplying compressed air to the inside of the lining material, by the movable light irradiation device introduced inside the lining material, In a method of repairing an existing pipe including a curing step of curing the lining material by irradiating the inner surface of the lining material with light,
The light irradiation device has an irradiation unit that irradiates light, and a surface temperature sensor that measures the surface temperature of the lining material,
In the curing step,
When the temperature measured by the surface temperature sensor is equal to or lower than a preset allowable light irradiation temperature and the measured temperature is equal to or higher than a predetermined first surface temperature, a decrease in output of the irradiation unit and a supply amount of compressed air The method for repairing an existing pipe is characterized by performing at least one of the above.
前記表面温度センサは、前記光照射装置の移動方向に間隔をあけて複数設けられ、
前記硬化工程において、
全ての表面温度センサの測定温度が予め設定された光照射許容温度以下であって、且つ予め選択された少なくとも一つの表面温度センサの測定温度が前記第1表面温度以上の場合に、前記照射部の出力の低下及び圧縮空気の供給量の増加のうち、少なくとも一つを行うことを特徴とする請求項1に記載の既設管の補修方法。
A plurality of the surface temperature sensors are provided at intervals in the moving direction of the light irradiation device,
In the curing step,
When the measured temperature of all the surface temperature sensors is equal to or lower than a preset light irradiation allowable temperature and the measured temperature of at least one surface temperature sensor selected in advance is equal to or higher than the first surface temperature, the irradiation unit 2. The method for repairing an existing pipe according to claim 1, wherein at least one of the reduction of the output of the device and the increase of the supply amount of the compressed air is performed.
前記硬化工程において、
全ての表面温度センサの測定温度が予め設定された光照射許容温度以下であって、且つ予め選択された少なくとも一つの表面温度センサの測定温度が前記第1表面温度よりも低い所定の第2表面温度以下の場合に、前記光照射装置の移動速度の減少、前記照射部の出力の増加、及び圧縮空気の供給量の低減のうち、少なくとも一つを行うことを特徴とする請求項2に記載の既設管の補修方法。
In the curing step,
A predetermined second surface in which the measured temperatures of all the surface temperature sensors are equal to or lower than a preset allowable light irradiation temperature and the measured temperature of at least one surface temperature sensor selected in advance is lower than the first surface temperature. The method according to claim 2, wherein at least one of the moving speed of the light irradiation device, the output of the irradiation unit, and the supply amount of compressed air is reduced when the temperature is equal to or lower than the temperature. Repairing existing pipes.
前記表面温度センサは、前記光照射装置の移動方向最前部に位置する前部表面温度センサと、移動方向最後部に位置する後部表面温度センサと、前記先端表面温度センサ及び前記後端表面温度センサの間に位置する一以上の中間部表面温度センサとを有し、
前記硬化工程において、少なくとも一つの中間部表面温度センサの測定温度が、前記後部表面温度センサの測定温度以上となるように、前記光照射装置の移動速度、前記照射部の出力及び圧縮空気の供給量のうちの少なくとも一つを制御することを特徴とする請求項2又は3に記載の既設管の補修方法。
The surface temperature sensor is a front surface temperature sensor located at the frontmost part in the moving direction of the light irradiation device, a rear surface temperature sensor located at the rearmost part in the moving direction, the front surface temperature sensor and the rear surface temperature sensor. And one or more intermediate surface temperature sensors located between
In the curing step, the moving speed of the light irradiation device, the output of the irradiation unit, and the supply of compressed air so that the measured temperature of at least one intermediate surface temperature sensor is equal to or higher than the measured temperature of the rear surface temperature sensor. The method for repairing an existing pipe according to claim 2, wherein at least one of the quantities is controlled.
前記複数の表面温度センサのうち、前記後部表面温度センサと隣り合う中間部表面温度センサの測定温度が前記後部表面温度センサの測定温度以上且つ最も高い温度となるように、前記光照射装置の移動速度、前記照射部の出力及び圧縮空気の供給量のうちの少なくとも一つを制御することを特徴とする請求項4に記載の既設管の補修方法。 Of the plurality of surface temperature sensors, the movement of the light irradiation device is such that the measured temperature of the intermediate surface temperature sensor adjacent to the rear surface temperature sensor is equal to or higher than the measured temperature of the rear surface temperature sensor and is the highest temperature. The method of repairing an existing pipe according to claim 4, wherein at least one of a speed, an output of the irradiation unit, and a supply amount of compressed air is controlled. 前記既設管と前記ライニング材との間に配置されて、前記ライニング材の外周面の温度を測定する外表面温度センサを含み、
前記硬化工程において、前記外表面温度センサによる測定温度が、所定の低閾値温度以下の場合に、前記光照射装置の移動速度の低下、前記照射部の出力の増加、及び圧縮空気の供給量の低減のうち、少なくとも一つを行うことを特徴とする請求項1〜5の何れか1項に記載の既設管の補修方法。
It is arranged between the existing pipe and the lining material, and includes an outer surface temperature sensor for measuring the temperature of the outer peripheral surface of the lining material,
In the curing step, when the temperature measured by the outer surface temperature sensor is equal to or lower than a predetermined low threshold temperature, the moving speed of the light irradiation device decreases, the output of the irradiation unit increases, and the amount of compressed air supplied. At least 1 is performed among reduction, The repair method of the existing pipe of any one of Claims 1-5 characterized by the above-mentioned.
地中に埋設された既設管内に導入される管状のライニング材と、
該ライニング材の内部に圧縮空気を供給する空気供給手段と、
前記ライニング材の表面温度を測定する表面温度センサ及び光を照射する照射部を有する移動式の光照射装置と、
前記空気供給手段及び前記光照射装置と接続され、前記表面温度センサの測定温度に基づいて前記空気供給手段及び前記光照射装置を制御する制御装置と、を備え、
前記ライニング材の内部に導入した前記光照射装置により、前記ライニング材の内側から光を照射して該ライニング材を硬化させる既設管の補修システムにおいて、
前記制御装置は、
前記表面温度センサによる測定温度が予め設定された光照射許容温度以下であって、且つ前記測定温度が所定の第1表面温度以上の場合に、前記照射部の出力の低下及び前記空気供給手段による圧縮空気の供給量の増加のうち、少なくとも一つを行うことを特徴とする既設管の補修システム。
With a tubular lining material that is introduced into the existing pipe buried in the ground,
Air supply means for supplying compressed air to the inside of the lining material,
A movable light irradiation device having a surface temperature sensor for measuring the surface temperature of the lining material and an irradiation unit for irradiating light,
A control device that is connected to the air supply unit and the light irradiation device, and controls the air supply unit and the light irradiation device based on the temperature measured by the surface temperature sensor;
By the light irradiation device introduced into the inside of the lining material, in the repair system of the existing pipe for irradiating light from the inside of the lining material to cure the lining material,
The control device is
When the temperature measured by the surface temperature sensor is equal to or lower than the preset light irradiation allowable temperature and the measured temperature is equal to or higher than the predetermined first surface temperature, the output of the irradiation unit is reduced and the air supply means is used. An existing pipe repair system characterized by performing at least one of increasing the amount of compressed air supplied.
JP2018216164A 2018-11-19 2018-11-19 Existing pipe repair method and existing pipe repair system Active JP7217506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018216164A JP7217506B2 (en) 2018-11-19 2018-11-19 Existing pipe repair method and existing pipe repair system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216164A JP7217506B2 (en) 2018-11-19 2018-11-19 Existing pipe repair method and existing pipe repair system

Publications (2)

Publication Number Publication Date
JP2020082408A true JP2020082408A (en) 2020-06-04
JP7217506B2 JP7217506B2 (en) 2023-02-03

Family

ID=70905748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216164A Active JP7217506B2 (en) 2018-11-19 2018-11-19 Existing pipe repair method and existing pipe repair system

Country Status (1)

Country Link
JP (1) JP7217506B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289953B1 (en) * 2020-12-22 2021-08-13 주식회사 성심산업 Non-excavation type pipeline repair method for both water and sewage using a liner for pressure piping
KR102496879B1 (en) * 2022-02-04 2023-02-07 (주)로터스지이오 Photo stiffen non-extraction overall repair reinforcement method using a UV irradiation device capable of extinguishing a fire by flame detection
WO2023017853A1 (en) * 2021-08-13 2023-02-16 昭和電工株式会社 Lining material
KR102546744B1 (en) * 2022-12-21 2023-06-22 주식회사 힘센기술 Control method for uv lamp for uv induration tube liner method for repairing and reinforcing underground pipe using this same
KR20240029781A (en) 2021-08-13 2024-03-06 가부시끼가이샤 레조낙 How to rehabilitate a pipe
KR20240032095A (en) 2021-08-13 2024-03-08 가부시끼가이샤 레조낙 Resin composition and method for producing the same, and composite material
KR20240033014A (en) 2021-08-13 2024-03-12 가부시끼가이샤 레조낙 Resin compositions and materials for lining materials
KR20240054353A (en) 2021-10-08 2024-04-25 가부시끼가이샤 레조낙 Resin compositions and lining materials for pipe rehabilitation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60501001A (en) * 1983-04-06 1985-07-04 インパイプ・スウェーデン・アクチエボラーグ Method and apparatus for lining pipelines with flexible hoses containing hardenable plastics
JP2000104330A (en) * 1998-09-29 2000-04-11 Fumito Hinuma Pipe inner face repair device
US6942426B1 (en) * 2003-05-05 2005-09-13 Inliner Technologies, Llc Process and apparatus for repairing pipes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60501001A (en) * 1983-04-06 1985-07-04 インパイプ・スウェーデン・アクチエボラーグ Method and apparatus for lining pipelines with flexible hoses containing hardenable plastics
JP2000104330A (en) * 1998-09-29 2000-04-11 Fumito Hinuma Pipe inner face repair device
US6942426B1 (en) * 2003-05-05 2005-09-13 Inliner Technologies, Llc Process and apparatus for repairing pipes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289953B1 (en) * 2020-12-22 2021-08-13 주식회사 성심산업 Non-excavation type pipeline repair method for both water and sewage using a liner for pressure piping
WO2023017853A1 (en) * 2021-08-13 2023-02-16 昭和電工株式会社 Lining material
KR20240029781A (en) 2021-08-13 2024-03-06 가부시끼가이샤 레조낙 How to rehabilitate a pipe
KR20240029779A (en) 2021-08-13 2024-03-06 가부시끼가이샤 레조낙 Lining material
KR20240032095A (en) 2021-08-13 2024-03-08 가부시끼가이샤 레조낙 Resin composition and method for producing the same, and composite material
KR20240033014A (en) 2021-08-13 2024-03-12 가부시끼가이샤 레조낙 Resin compositions and materials for lining materials
DE112022003953T5 (en) 2021-08-13 2024-06-20 Resonac Corporation LINING MATERIAL
DE112022003942T5 (en) 2021-08-13 2024-06-20 Resonac Corporation PIPE RENOVATION PROCESS
DE112022003933T5 (en) 2021-08-13 2024-06-20 Resonac Corporation RESIN COMPOSITION AND MATERIAL FOR LINING MATERIAL
KR20240054353A (en) 2021-10-08 2024-04-25 가부시끼가이샤 레조낙 Resin compositions and lining materials for pipe rehabilitation
KR102496879B1 (en) * 2022-02-04 2023-02-07 (주)로터스지이오 Photo stiffen non-extraction overall repair reinforcement method using a UV irradiation device capable of extinguishing a fire by flame detection
KR102546744B1 (en) * 2022-12-21 2023-06-22 주식회사 힘센기술 Control method for uv lamp for uv induration tube liner method for repairing and reinforcing underground pipe using this same

Also Published As

Publication number Publication date
JP7217506B2 (en) 2023-02-03

Similar Documents

Publication Publication Date Title
JP2020082408A (en) Repairing method for existing pipe and repairing system for existing pipe
JP4143328B2 (en) Conduit repair and regeneration method
JP4964015B2 (en) Photocuring method for photocurable lining material and photocuring system used for the method
EP1959183A1 (en) An apparatus and a method for curing a liner of a pipeline
JP2622495B2 (en) Curing device for curing UV curable resin
KR102186483B1 (en) Smart optical investigation automatic hardening system and method for repairing underground pipe using this same
JP2008142996A (en) Method for lining piping and photocuring apparatus
JP2009083251A (en) Device and system for irradiating pipeline repair lining material and photo-curing method by use of the device or system
JP2008000924A (en) Photosetting method of photosetting lining material and photosetting system used therein
JP7292716B2 (en) Existing pipe repair system and existing pipe repair method
JP2000104330A (en) Pipe inner face repair device
KR102289953B1 (en) Non-excavation type pipeline repair method for both water and sewage using a liner for pressure piping
JP3005208B2 (en) Existing pipe lining method, safety management device for lining work by the method, and light train for ultraviolet irradiation
JP2013223939A (en) Method of repairing existing pipe
JP2009248410A (en) Repair material and repairing process
GB2479374A (en) A method of lining a pipeline or passageway
KR102620932B1 (en) A smart UV device for repairing and reinforcing of long-distance non-excavated underground pipes and a method for repairing and reinforcing of long-distance non-excavated underground pipes using it
US20240117915A1 (en) Mobile irradiation platform for hollow-body laminates and method for curing a hollow-body laminate
JPH11294684A (en) Repairing method and device for inner surface of photo-curing-type duct
JP7106139B2 (en) Existing pipe repair system and repair method, hardening device and control device
JPH06201085A (en) Resin coating type pipe inner surface repairing method and resin coating type pipe inner surface repairing device
JP2911330B2 (en) Pipe repair method and tube hardening equipment for pipe repair
RU2698224C1 (en) Device for solidification of polymer sleeve inserted into pipeline
KR102496879B1 (en) Photo stiffen non-extraction overall repair reinforcement method using a UV irradiation device capable of extinguishing a fire by flame detection
JP6680964B2 (en) Pipe repair device and pipe repair method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7217506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150