JP2020082043A - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
JP2020082043A
JP2020082043A JP2018226027A JP2018226027A JP2020082043A JP 2020082043 A JP2020082043 A JP 2020082043A JP 2018226027 A JP2018226027 A JP 2018226027A JP 2018226027 A JP2018226027 A JP 2018226027A JP 2020082043 A JP2020082043 A JP 2020082043A
Authority
JP
Japan
Prior art keywords
voltage
discharge
unit
applied voltage
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018226027A
Other languages
Japanese (ja)
Other versions
JP7275548B2 (en
Inventor
健太郎 永吉
Kentaro Nagayoshi
健太郎 永吉
加奈絵 栗田
Kanae Kurita
加奈絵 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018226027A priority Critical patent/JP7275548B2/en
Publication of JP2020082043A publication Critical patent/JP2020082043A/en
Application granted granted Critical
Publication of JP7275548B2 publication Critical patent/JP7275548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Abstract

To provide an electrostatic precipitator capable of suppressing wasteful power consumption while suppressing deterioration of dust collection performance even when corona discharge is generated in a dust collection section.SOLUTION: An electrostatic precipitator includes: a charging section; a dust collection section; a power supply section; and a control section. The charging section electrically charges dust. The dust collection section has a plurality of dust collecting electrodes and a plurality of high voltage electrodes formed of a semi-insulating resin, which are alternately arranged, and collects dust charged in the charging section. The power supply section applies voltage to the high voltage electrodes. The control section determines the presence or absence of generation of corona discharge in the dust collection section. When determining the generation of corona discharge, the control section detects discharge start applied voltage in which corona discharge is started and causes the power supply section to apply voltage smaller than the detected discharge start applied voltage to the high voltage electrodes.SELECTED DRAWING: Figure 7

Description

本発明は、電気集塵機に関する。 The present invention relates to an electrostatic precipitator.

従来、吸引した空気から塵埃を除去する電気集塵機として、コロナ放電により塵埃を帯電させる荷電部と、複数の接地電極(集塵電極)と半絶縁性樹脂で形成された複数の高圧電極とが交互に配置された集塵部とを備え、荷電部で帯電された塵埃をかかる集塵部により捕集する電気集塵機が知られている(例えば、特許文献1を参照)。 Conventionally, as an electrostatic precipitator that removes dust from sucked air, a charging unit that charges dust by corona discharge and multiple ground electrodes (dust collecting electrodes) and multiple high-voltage electrodes formed of semi-insulating resin alternate. An electrostatic precipitator having a dust collecting section arranged in the above and collecting the dust charged by the charging section by the dust collecting section is known (for example, refer to Patent Document 1).

上記特許文献1に開示された電気集塵機のように、高圧電極が半絶縁性樹脂で形成されている場合、高圧電極が金属で形成されたものなどに比べて体積抵抗値が大きいため、放電に必要な電流が大きい火花放電の発生については防止することが可能である。 When the high-voltage electrode is formed of a semi-insulating resin as in the electrostatic precipitator disclosed in Patent Document 1, the high-voltage electrode has a larger volume resistance value than that formed of a metal, so that the discharge is difficult. It is possible to prevent the occurrence of spark discharge that requires a large current.

特開平8−71451号公報JP-A-8-71451

しかしながら、集塵部の集塵電極と高圧電極間において、火花放電の発生は防止できたとしても、微小電流でも発生するコロナ放電については、その発生を防止することができない。集塵部でコロナ放電が発生すると、電気集塵機としての運転は継続できるものの、高圧電極からの放電により消費される電力が無駄になるとともに、放電による電圧降下が生じ、集塵部における電界強度が弱まって集塵性能が低下するおそれがある。このように、塵埃を帯電させるために意図的にコロナ放電を発生させる荷電部とは異なり、集塵部におけるコロナ放電の発生は電力の浪費や集塵性能の低下を招く。 However, even if the spark discharge can be prevented from occurring between the dust collecting electrode of the dust collecting portion and the high voltage electrode, it is not possible to prevent the corona discharge which is generated even with a minute current. When corona discharge occurs in the dust collector, the operation as an electrostatic precipitator can be continued, but the power consumed by the discharge from the high-voltage electrode is wasted, and a voltage drop occurs due to the discharge, and the electric field strength in the dust collector is reduced. It may weaken and the dust collection performance may deteriorate. As described above, unlike the charging section in which the corona discharge is intentionally generated in order to charge the dust, the generation of the corona discharge in the dust collecting section wastes electric power and lowers the dust collecting performance.

開示の技術は、上記に鑑みてなされたものであって、集塵部においてコロナ放電が発生した場合でも、集塵性能の低下を抑えつつ、無駄な電力消費を抑えることのできる電気集塵機を提供することを目的とする。 The disclosed technology is made in view of the above, and provides an electric dust collector that can suppress unnecessary power consumption while suppressing deterioration of dust collecting performance even when corona discharge occurs in the dust collecting portion. The purpose is to do.

本願の開示する電気集塵機の一態様は、荷電部と、集塵部と、電源部と、制御部とを備える。荷電部は、塵埃を帯電させる。集塵部は、複数の集塵電極と半絶縁性樹脂で形成された複数の高圧電極とが交互に配置されるとともに、荷電部で帯電された塵埃を捕集する。電源部は、高圧電極に電圧を印加する。制御部は、集塵部におけるコロナ放電の発生の有無を判定し、集塵部においてコロナ放電が発生したと判定すると、当該コロナ放電が開始される放電開始印加電圧を検出し、電源部に対し、検出した放電開始印加電圧よりも小さい電圧を高圧電極に印加させるよう制御する。 One aspect of the electrostatic precipitator disclosed in the present application includes a charging unit, a dust collecting unit, a power supply unit, and a control unit. The charging unit charges the dust. The dust collecting portion has a plurality of dust collecting electrodes and a plurality of high voltage electrodes formed of semi-insulating resin alternately arranged, and collects the dust charged by the charging portion. The power supply unit applies a voltage to the high voltage electrode. The control unit determines whether or not corona discharge has occurred in the dust collecting unit, and when determining that corona discharge has occurred in the dust collecting unit, detects a discharge start applied voltage at which the corona discharge is started, and The control is performed so that a voltage lower than the detected discharge start applied voltage is applied to the high voltage electrode.

本願の開示する電気集塵機の一態様によれば、集塵部でコロナ放電が発生しても集塵性能の低下を抑えつつ、無駄な電力消費を抑えることができる。 According to one aspect of the electrostatic precipitator disclosed in the present application, wasteful power consumption can be suppressed while suppressing deterioration of the dust collecting performance even if corona discharge occurs in the dust collecting portion.

図1は、実施例の電気集塵機を備える空気清浄機の概略構成図である。FIG. 1 is a schematic configuration diagram of an air cleaner including the electric dust collector of the embodiment. 図2Aは、実施例の電気集塵機を備える空気清浄機のブロック図である。FIG. 2A is a block diagram of an air cleaner including the electrostatic precipitator of the embodiment. 図2Bは、図2Aに示す集塵部出力制御部の説明図である。FIG. 2B is an explanatory diagram of the dust collecting unit output control unit shown in FIG. 2A. 図3は、実施例の電気集塵機の集塵部を示す模式図である。FIG. 3 is a schematic view showing a dust collecting portion of the electric dust collector of the embodiment. 図4は、電気集塵機の集塵部の高圧電極への印加電圧に対応する放電電流の変化特性を示すグラフである。FIG. 4 is a graph showing the change characteristics of the discharge current corresponding to the voltage applied to the high voltage electrode of the dust collector of the electrostatic precipitator. 図5は、電気集塵機の集塵部の高圧電極への印加電圧に対応する電界強度の変化特性を示すグラフである。FIG. 5 is a graph showing the change characteristics of the electric field strength corresponding to the voltage applied to the high-voltage electrode of the dust collector of the electrostatic precipitator. 図6は、電気集塵機における集塵部の高圧電極への印加電圧に対応する電流および放電箇所以遠の電位の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the current corresponding to the voltage applied to the high voltage electrode of the dust collector of the electrostatic precipitator and the potential beyond the discharge point. 図7は、実施例における電気集塵機の制御部が行う放電抑制印加電圧制御の処理の流れを示す説明図である。FIG. 7 is an explanatory diagram showing a flow of processing of discharge suppression applied voltage control performed by the control unit of the electrostatic precipitator in the embodiment. 図8は、実施例の電気集塵機の集塵部の等価回路を示す説明図である。FIG. 8: is explanatory drawing which shows the equivalent circuit of the dust collection part of the electrostatic precipitator of an Example.

以下に、本願の開示する電気集塵機の実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示する電気集塵機の構造および制御方法が限定されるものではない。また、以下の説明による構成要素には、当業者が置換可能かつ容易なもの、或いは実質的同一のもの、いわゆる均等の範囲のものが含まれる。 Hereinafter, embodiments of the electrostatic precipitator disclosed in the present application will be described in detail with reference to the drawings. The structure and control method of the electrostatic precipitator disclosed in the present application are not limited by the following embodiments. Further, the constituent elements according to the following description include those that can be easily replaced by those skilled in the art, or those that are substantially the same, that is, those in the so-called equivalent range.

まず、実施例の電気集塵機を備える空気清浄機の概略について説明する。図1は、実施例の電気集塵機を備える空気清浄機の概略構成図である。実施例に係る空気清浄機1は、図1に示すように、空気を清浄化するための装置類を収納する筐体10を備えている。筐体10は、合成樹脂材で略直方体状に形成されており、室内の空気を吸引する吸込口11と、清浄化された空気を室内に吹き出す吹出口12とが形成されている。 First, an outline of an air cleaner including the electric dust collector of the embodiment will be described. FIG. 1 is a schematic configuration diagram of an air cleaner including the electric dust collector of the embodiment. As shown in FIG. 1, the air cleaner 1 according to the embodiment includes a housing 10 that houses devices for cleaning the air. The housing 10 is formed of a synthetic resin material into a substantially rectangular parallelepiped shape, and has an inlet 11 for sucking air in the room and an outlet 12 for blowing the cleaned air into the room.

筐体10内には、吸引された空気から大きな塵埃を除去するプレフィルタ14と、プレフィルタ14を通過した空気中の塵埃を静電気力によって集塵する複数の電気集塵機2と、電気集塵機2を通過した空気を脱臭処理する脱臭フィルタ5とが設けられる。電気集塵機2は、荷電部3と、後に詳述する集塵部4とを備える。なお、本実施例においては、筐体10に3つの電気集塵機2が筐体10内に配置されているが、配置される数は何ら限定されない。 In the housing 10, there are provided a prefilter 14 for removing large dust from the sucked air, a plurality of electric dust collectors 2 for collecting dust in the air passing through the prefilter 14 by electrostatic force, and an electric dust collector 2. A deodorizing filter 5 that deodorizes the passing air is provided. The electrostatic precipitator 2 includes a charging unit 3 and a dust collecting unit 4 described in detail later. In addition, in the present embodiment, the three electrostatic precipitators 2 are arranged in the housing 10 in the housing 10, but the number of the electrostatic precipitators 2 arranged is not limited at all.

プレフィルタ14は、例えば糸状のPET材を編みこんだ網目構造を有し、図示しない樹脂枠で保持される。プレフィルタ14は、筐体10の内部に吸い込まれた空気に含まれている比較的大きな塵埃を捕集する。脱臭フィルタ5は、プレフィルタ14および電気集塵機2で塵埃が除かれた空気から、触媒フィルタによって、例えばアンモニアやメチルメルカプタン等の臭気成分やホルムアルデヒド等の有害成分を取り除く脱臭処理を行う。 The pre-filter 14 has a mesh structure in which, for example, a thread-shaped PET material is woven, and is held by a resin frame (not shown). The pre-filter 14 collects relatively large dust contained in the air sucked into the housing 10. The deodorizing filter 5 performs a deodorizing process for removing odorous components such as ammonia and methyl mercaptan and harmful components such as formaldehyde from the air from which dust has been removed by the prefilter 14 and the electrostatic precipitator 2, by using a catalyst filter.

また、筐体10内には、脱臭フィルタ5の下流側に配置されるファン6と、ファン6を回転させるファンモータ61と、電気集塵機2やファンモータ61を制御する制御部7として機能する電源制御基板とが設けられる。 Further, in the housing 10, a fan 6 arranged on the downstream side of the deodorizing filter 5, a fan motor 61 for rotating the fan 6, and a power supply functioning as a control unit 7 for controlling the electrostatic precipitator 2 and the fan motor 61. A control board is provided.

さらに、筐体10内には、吸込口11から吸引された空気の塵埃濃度を検出する埃センサ13と、運転開始操作、運転停止操作などを行う操作表示基板15とが設けられる。 Further, in the housing 10, a dust sensor 13 that detects the dust concentration of air sucked from the suction port 11 and an operation display board 15 that performs operation start operation, operation stop operation, and the like are provided.

本実施例においては、筐体10には、各電気集塵機2の各集塵部4に電力を供給する単一の集塵部用の定電圧高圧電源部40が配置されている。なお、荷電部3に電力を供給する荷電部用の定電流高圧電源部30は、3つの荷電部3にそれぞれ配置されている。 In the present embodiment, the housing 10 is provided with a single constant-voltage high-voltage power supply unit 40 for supplying dust to each dust collecting unit 4 of each electrostatic dust collector 2. The constant-current high-voltage power supply unit 30 for the charging unit that supplies electric power to the charging unit 3 is arranged in each of the three charging units 3.

こうして、吸込口11から吸引された室内の空気は、矢印fで示されるように、空気中の塵埃がプレフィルタ14と電気集塵機2とにより捕集されることで除塵されるとともに、脱臭フィルタ5により脱臭された清浄空気が吹出口12から室内に吹き出される。 Thus, the indoor air sucked from the suction port 11 is dedusted by the dust in the air being collected by the prefilter 14 and the electrostatic precipitator 2 as shown by the arrow f, and the deodorizing filter 5 The deodorized clean air is blown out into the room through the air outlet 12.

ここで、電気集塵機2の集塵作用について簡単に説明する。電気集塵機2の荷電部3が備える複数の放電電極(不図示)に、予め設定された正極性の高電圧(例えば+4.5kV)を印加し、複数の対向電極(不図示)を定電流高圧電源部30の接地極(アース)に接続する。こうすることで、放電電極と対向電極との間でコロナ放電が起こる。なお、複数の放電電極と複数の対向電極とは、異なる極性をもち、図示しない枠部に保持された状態で、交互に配置されている。なお、ここでの異なる極性とは、正極性、負極性、そして無極性(アース)の3つの極性のうちの、2つの極性の組合せのことを意味する。 Here, the dust collecting action of the electrostatic precipitator 2 will be briefly described. A preset positive high voltage (for example, +4.5 kV) is applied to a plurality of discharge electrodes (not shown) included in the charging unit 3 of the electrostatic precipitator 2, and a plurality of counter electrodes (not shown) are supplied with a constant current and high voltage. It is connected to the ground electrode (ground) of the power supply unit 30. By doing so, corona discharge occurs between the discharge electrode and the counter electrode. The plurality of discharge electrodes and the plurality of counter electrodes have different polarities and are alternately arranged in a state of being held by a frame portion (not shown). Here, the different polarities mean a combination of two polarities among three polarities of positive polarity, negative polarity, and nonpolarity (earth).

放電電極と対向電極との間でコロナ放電が起こると、放電電極と対向電極との間の空間は、正に帯電したイオンを含む空気で満たされる。そして、正イオンで満たされた空間を塵埃が通過する際に、その通過時間と放電電極と対向電極とで作られる電界の強さに応じて、イオンと塵埃の衝突による電荷の移動が起こり、塵埃に正の電荷が帯電する。 When corona discharge occurs between the discharge electrode and the counter electrode, the space between the discharge electrode and the counter electrode is filled with air containing positively charged ions. Then, when the dust passes through the space filled with positive ions, depending on the passing time and the strength of the electric field created by the discharge electrode and the counter electrode, the movement of charges due to the collision of the ions and the dust occurs, The dust is charged with a positive charge.

一方、集塵部4では、高圧側の電極部を形成する複数の高圧電極42(図3参照)に予め設定された正極性の高電圧(例えば+4.5kV)が印加される。他方、集塵側の電極部を形成する複数の接地電極43(図3参照)は、定電圧高圧電源部40の接地極(アース)に接続される。こうすることにより、両電極間に所定の静電界が形成される。 On the other hand, in the dust collecting part 4, a preset high positive voltage (for example, +4.5 kV) is applied to the plurality of high voltage electrodes 42 (see FIG. 3) forming the high voltage side electrode part. On the other hand, the plurality of ground electrodes 43 (see FIG. 3) forming the electrode part on the dust collecting side are connected to the ground electrode (earth) of the constant voltage high voltage power supply part 40. By doing so, a predetermined electrostatic field is formed between both electrodes.

図1において、荷電部3で正に帯電した塵埃は、集塵部4に移動すると、同極性の高圧側の電極部における高圧電極42からの斥力を受ける。そして、かかる塵埃は、塵埃と反対極性の接地電極43に吸引される方向に引力を受けて接地電極43に到達する。こうして、接地電極43に塵埃が付着することで塵埃が捕集される。さらに、正に帯電されていた塵埃が接地電極43に触れると、塵埃に帯電していた正の電荷がアースに流される。そのため、帯電した塵埃の付着により接地電極43が正極に帯電してしまうことが防止され、捕集力の低下が抑制される。 In FIG. 1, when the dust positively charged by the charging unit 3 moves to the dust collecting unit 4, it receives a repulsive force from the high-voltage electrode 42 in the high-voltage side electrode unit having the same polarity. Then, the dust reaches the ground electrode 43 by receiving an attractive force in the direction of being attracted by the ground electrode 43 having a polarity opposite to that of the dust. In this way, dust is collected by the dust adhering to the ground electrode 43. Further, when the positively charged dust touches the ground electrode 43, the positively charged dust is flown to the ground. Therefore, it is possible to prevent the ground electrode 43 from being charged to the positive electrode due to the adhesion of the charged dust, and to suppress the decrease in the collection force.

次に、図2Aおよび図2Bを参照しながら、実施例の電気集塵機2を備える空気清浄機1の機能を中心に説明する。図2Aは、実施例の電気集塵機2を備える空気清浄機1のブロック図、図2Bは、図2Aに示す集塵部出力制御部の説明図である。 Next, the function of the air cleaner 1 including the electrostatic precipitator 2 of the embodiment will be mainly described with reference to FIGS. 2A and 2B. FIG. 2A is a block diagram of an air cleaner 1 including the electric dust collector 2 of the embodiment, and FIG. 2B is an explanatory diagram of a dust collector output control unit shown in FIG. 2A.

図2Aに示すように、空気清浄機1は、本実施例に係る電気集塵機2やファン6およびファンモータ61に加え、AC入力処理部8、ADコンバータ9、制御部7、定電流高圧電源部30と定電圧高圧電源部40とを備える。 As shown in FIG. 2A, the air purifier 1 includes, in addition to the electric dust collector 2 and the fan 6 and the fan motor 61 according to the present embodiment, an AC input processing unit 8, an AD converter 9, a control unit 7, a constant current high voltage power supply unit. 30 and a constant-voltage high-voltage power supply unit 40.

本実施例に係る電気集塵機2は、前述したように、荷電部3と集塵部4とを備えており、図示するように、集塵部4には電位計測部48(図3参照)が設けられる。電位計測部48としては、たとえば、高圧電極42の電位を非接触で測定可能な検知電極を有する周知の表面電位測定器を用いることができ、高圧電極42における実際の電位を測定することができる。 As described above, the electric dust collector 2 according to the present embodiment includes the charging unit 3 and the dust collecting unit 4, and as shown in the figure, the dust collecting unit 4 has the potential measuring unit 48 (see FIG. 3). It is provided. As the potential measuring unit 48, for example, a well-known surface potential measuring device having a detection electrode capable of measuring the potential of the high voltage electrode 42 in a non-contact manner can be used, and the actual potential at the high voltage electrode 42 can be measured. ..

AC入力処理部8は、たとえば商用電源から100Vの交流を入力する。ADコンバータ9は、AC入力処理部8で入力処理された100Vの交流を、たとえば12Vの直流に変換する。 The AC input processing unit 8 inputs 100 V AC from a commercial power source, for example. The AD converter 9 converts the 100V alternating current input by the AC input processing unit 8 into, for example, 12V direct current.

制御部7は、荷電部出力制御部71、集塵部出力制御部72およびモータ出力制御部73を備える。制御部7は、たとえばCPUやメモリなどのマイクロコンピュータを有し、所定のプログラムを読み出して処理することで荷電部出力制御部71、集塵部出力制御部72およびモータ出力制御部73としての機能を果たす。なお、モータ出力制御部73は、風量設定などを行う風量切替スイッチ62と電気的に接続されており、風量切替スイッチ62の操作に応じてファンモータ61の出力を制御する。 The control unit 7 includes a charging unit output control unit 71, a dust collection unit output control unit 72, and a motor output control unit 73. The control unit 7 has, for example, a microcomputer such as a CPU and a memory, and functions as the charging unit output control unit 71, the dust collection unit output control unit 72, and the motor output control unit 73 by reading and processing a predetermined program. Fulfill. The motor output control unit 73 is electrically connected to the air volume changeover switch 62 for setting the air volume and controls the output of the fan motor 61 according to the operation of the air volume changeover switch 62.

定電流高圧電源部30は、荷電部3に対して定電流の高電圧を印加するための電源であり、制御部7の荷電部出力制御部71により印加電圧が制御される。また、定電圧高圧電源部40は、集塵部4に対して定電圧の高電圧を印加するための電源(電源部)であり、制御部7の集塵部出力制御部72により印加電圧が制御される。すなわち、集塵効率をできるだけ高めるためには、荷電部3には一定の大電流を供給し、集塵部4には一定の高電圧を供給することが望ましいことから、荷電部3と集塵部4とに対し、それぞれ独立した電源を用意している。 The constant-current high-voltage power supply unit 30 is a power supply for applying a constant-current high voltage to the charging unit 3, and the applied voltage is controlled by the charging-unit output control unit 71 of the control unit 7. The constant voltage/high voltage power supply unit 40 is a power supply (power supply unit) for applying a constant high voltage to the dust collecting unit 4, and the applied voltage is controlled by the dust collecting unit output control unit 72 of the control unit 7. Controlled. That is, in order to increase the dust collection efficiency as much as possible, it is desirable to supply a constant large current to the charging unit 3 and a constant high voltage to the dust collecting unit 4, so Separate power supplies are provided for the unit 4 and the unit 4, respectively.

図2Bに示すように、集塵部出力制御部72は、放電判定部721、印加電圧制御部722、および予想電位算出部723を備える。 As shown in FIG. 2B, the dust collector output control unit 72 includes a discharge determination unit 721, an applied voltage control unit 722, and an expected potential calculation unit 723.

放電判定部721は、集塵部4におけるコロナ放電の発生の有無を判定する。詳しくは後述するが、集塵部4は、複数の高圧電極42と複数の接地電極(集塵電極)43とが平行かつ交互に配置された電極部41(図3参照)を備えており、定電圧高圧電源部(電源部)40から高圧電極42に高電圧が印加されると、湿気や経年劣化による電極汚染のために、隣り合う高圧電極42と接地電極43との間でコロナ放電が発生することがある。放電判定部721は、集塵部4の電極部41においてコロナ放電が発生したかどうかを判定する。 The discharge determination unit 721 determines whether corona discharge has occurred in the dust collection unit 4. As will be described later in detail, the dust collecting unit 4 includes an electrode unit 41 (see FIG. 3) in which a plurality of high-voltage electrodes 42 and a plurality of ground electrodes (dust collecting electrodes) 43 are arranged in parallel and alternately, When a high voltage is applied to the high-voltage electrode 42 from the constant-voltage high-voltage power supply unit (power supply unit) 40, corona discharge is generated between the adjacent high-voltage electrode 42 and the ground electrode 43 due to electrode contamination due to moisture and deterioration over time. May occur. The discharge determining unit 721 determines whether corona discharge has occurred in the electrode unit 41 of the dust collecting unit 4.

印加電圧制御部722は、放電判定部721によって集塵部4の電極部41でコロナ放電が発生したと判定すると、定電圧高圧電源部40に対し、後述する放電開始印加電圧よりも小さい電圧を電極部41の高圧電極42に印加させて集塵運転を継続させることができる。 When the applied voltage control unit 722 determines by the discharge determination unit 721 that corona discharge has occurred in the electrode unit 41 of the dust collecting unit 4, the applied voltage control unit 722 applies a voltage smaller than a discharge start applied voltage described later to the constant voltage high voltage power supply unit 40. The high voltage electrode 42 of the electrode portion 41 can be applied to continue the dust collection operation.

すなわち、電極部41でコロナ放電が発生して放電電流(空気の絶縁破壊を起こして流れる電流)が流れてしまうと、電圧降下が生じて集塵性能が低下する。そこで、集塵性能の低下をできるだけ抑えるために、コロナ放電が発生することなく、なおかつ支障なく集塵処理が行えるだけの印加電圧になるように、印加電圧制御部722は定電圧高圧電源部40を制御する。 That is, when corona discharge occurs in the electrode portion 41 and a discharge current (a current flowing by causing insulation breakdown of air) flows, a voltage drop occurs and the dust collection performance deteriorates. Therefore, in order to suppress the deterioration of the dust collecting performance as much as possible, the applied voltage control unit 722 sets the constant voltage and high voltage power supply unit 40 so that the applied voltage is such that the corona discharge does not occur and the dust collecting process can be performed without any trouble. To control.

より具体的には、印加電圧制御部722は、放電判定部721が集塵部4の電極部41においてコロナ放電が発生したと判定した場合、放電開始印加電圧を探索する放電開始電圧探索処理を実行する。そして、印加電圧制御部722は、放電開始電圧探索処理を行った後、探索した放電開始印加電圧よりも小さい電圧で高圧電極42に印加させる制御を行うようにしている。なお、コロナ放電が発生したか否かの詳細な判定方法については後述する。 More specifically, when the discharge determination unit 721 determines that the corona discharge has occurred in the electrode unit 41 of the dust collecting unit 4, the applied voltage control unit 722 performs the discharge start voltage search process of searching the discharge start applied voltage. Run. Then, the applied voltage control unit 722 performs the discharge start voltage search process and then controls the high voltage electrode 42 to be applied with a voltage smaller than the searched discharge start applied voltage. A detailed method of determining whether corona discharge has occurred will be described later.

予想電位算出部723は、集塵部4の電極部41でコロナ放電が発生していないと仮定した場合に、電位計測部48での計測が予想される予想電位を算出する。なお、予想電位の詳細な算出方法についても後述する。 The expected potential calculation unit 723 calculates an expected potential that is expected to be measured by the potential measurement unit 48, assuming that corona discharge has not occurred in the electrode unit 41 of the dust collecting unit 4. The detailed method of calculating the expected potential will also be described later.

本実施例における放電判定部721は、詳しくは後述するが、電位計測部48により計測された実測電位に基づいてコロナ放電の有無を判定するようにしている。 As will be described in detail later, the discharge determination unit 721 in the present embodiment is configured to determine the presence or absence of corona discharge based on the actually measured potential measured by the potential measurement unit 48.

図3は、実施例の電気集塵機2の集塵部4を示す模式図である。図3に示すように、集塵部4は、複数の高圧電極42と複数の接地電極(集塵電極)43とが平行かつ交互に配置された電極部41を備える。複数の高圧電極42は、それぞれシート状に形成され、各基部が絶縁性保持部材45に保持されるとともに高圧給電部材46に接続される。また、複数の接地電極43もそれぞれシート状に形成されるとともに、各基部が絶縁性保持部材45に保持されるとともに接地用給電部材47に接続されている。また、絶縁性保持部材45および接地用給電部材47には、放電防止絶縁部材44が設けられている。 FIG. 3 is a schematic diagram showing the dust collector 4 of the electric dust collector 2 of the embodiment. As shown in FIG. 3, the dust collecting part 4 includes an electrode part 41 in which a plurality of high voltage electrodes 42 and a plurality of ground electrodes (dust collecting electrodes) 43 are arranged in parallel and alternately. The plurality of high-voltage electrodes 42 are each formed in a sheet shape, and each base is held by the insulating holding member 45 and connected to the high-voltage power supply member 46. The plurality of ground electrodes 43 are also formed in a sheet shape, and each base is held by the insulating holding member 45 and connected to the ground power feeding member 47. Further, the insulating holding member 45 and the ground power supply member 47 are provided with a discharge prevention insulating member 44.

高圧電極42は、たとえばPA(ポリアミド)やABS樹脂を混合した、体積抵抗率が10Ωcm〜1013Ωcmの半絶縁性の樹脂により平板状に形成されている。また、接地電極43は、カーボンとABS樹脂を混合した、体積抵抗率が10Ωcm程度の半導電性の樹脂により平板状に形成されている。そして、高圧電極42と接地電極43とが、たとえば2mm以下の所定の間隔をあけて交互に配置される。 The high-voltage electrode 42 is formed in a flat plate shape with a semi-insulating resin having a volume resistivity of 10 9 Ωcm to 10 13 Ωcm mixed with, for example, PA (polyamide) or ABS resin. The ground electrode 43 is formed in a flat plate shape with a semiconductive resin having a volume resistivity of about 10 2 Ωcm, which is a mixture of carbon and ABS resin. Then, the high voltage electrodes 42 and the ground electrodes 43 are alternately arranged with a predetermined interval of, for example, 2 mm or less.

また、集塵部4には、前述したように電位計測部48が設けられている。電位計測部48としては、高圧電極42の電圧を非接触で測定可能な検知電極を有する周知の表面電位測定器を用いることができる。 Further, the dust collecting unit 4 is provided with the potential measuring unit 48 as described above. As the potential measuring unit 48, a well-known surface potential measuring device having a detection electrode capable of measuring the voltage of the high voltage electrode 42 in a non-contact manner can be used.

ここで、電気集塵機2が長時間使用されて高圧電極42の汚染が進んで経年劣化すると、高圧給電部材46から最も近く、隣り合う接地電極43と対向する位置Sの間でコロナ放電が生じやすくなる。そして、コロナ放電が発生すると、高圧電極42上で高圧給電部材46から見て、放電箇所(位置S)よりも遠い位置(以下、「放電箇所以遠」と記載)では電位が下がる。そこで、本実施例において、かかる電位計測部48は、高圧給電部材46から離れた位置、すなわち、高圧電極42の先端部側に設けられている。これによって、絶縁性保持部材45を介して高圧給電部材46に接続された高圧電極42における放電箇所以遠の電位(高圧電極42の先端部側の電位)を計測するようにしている。 Here, when the electrostatic precipitator 2 is used for a long time and the high voltage electrode 42 is contaminated and deteriorates over time, corona discharge is likely to occur between the position S that is the closest to the high voltage power supply member 46 and faces the adjacent ground electrode 43. Become. Then, when corona discharge occurs, the potential drops on the high-voltage electrode 42 at a position farther from the discharge point (position S) than the high-voltage power supply member 46 (hereinafter, referred to as “discharging point”). Therefore, in the present embodiment, the potential measuring unit 48 is provided at a position distant from the high voltage power supply member 46, that is, at the tip end side of the high voltage electrode 42. Thereby, the potential of the high-voltage electrode 42 connected to the high-voltage power supply member 46 via the insulating holding member 45 beyond the discharge point (potential on the tip end side of the high-voltage electrode 42) is measured.

特に、本実施例における高圧電極42は、上述したように、体積抵抗率が高い半絶縁性の樹脂により形成されているため、放電により流れる電流がたとえ微小なコロナ放電であっても、放電直後に電位が急激に低下する。したがって、電位計測部48によって、高圧電極42の電位の急激な変化を検出することで、コロナ放電の発生の有無を正確に測定することができる。 In particular, since the high-voltage electrode 42 in this embodiment is formed of the semi-insulating resin having a high volume resistivity as described above, even if the current flowing due to the discharge is a minute corona discharge, it is immediately after the discharge. The potential drops sharply. Therefore, the presence or absence of corona discharge can be accurately measured by detecting a rapid change in the potential of the high-voltage electrode 42 by the potential measuring unit 48.

ここで、図2〜図6を参照しながら、本実施例に係る電気集塵機2が行う放電防止制御の一例について説明する。ここで、放電防止制御とは、コロナ放電が開始される放電開始印加電圧よりも小さい印加電圧で集塵運転を実行する制御を指す。かかる制御は、集塵部出力制御部72により行われる。詳しくは後述するが、本実施例では、集塵部出力制御部72は、放電開始印加電圧を探索する放電開始電圧探索処理を行うとともに、放電開始電圧探索処理を行った後、探索した放電開始印加電圧よりも小さい電圧で高圧電極42に印加させる制御を行うようにしている。 Here, an example of discharge prevention control performed by the electrostatic precipitator 2 according to the present embodiment will be described with reference to FIGS. 2 to 6. Here, the discharge prevention control refers to control for executing the dust collection operation with an applied voltage that is smaller than the discharge start applied voltage at which corona discharge is started. Such control is performed by the dust collector output controller 72. As will be described later in detail, in the present embodiment, the dust collector output control unit 72 performs a discharge start voltage search process for searching for a discharge start applied voltage, and after performing the discharge start voltage search process, the searched discharge start The voltage applied to the high voltage electrode 42 is lower than the applied voltage.

図4は、電気集塵機2の集塵部4の高圧電極42への印加電圧に対応する放電電流の変化特性を示すグラフ、図5は、電気集塵機2の集塵部4の高圧電極42への印加電圧に対応する電界強度の変化特性を示すグラフである。また、図6は、電気集塵機2における集塵部4の高圧電極42への印加電圧に対応する電流および放電箇所以遠の電位の関係を示すグラフ、図7は、実施例における電気集塵機2の集塵部出力制御部72が行う放電抑制印加電圧制御の処理の流れを示す説明図である。 FIG. 4 is a graph showing the change characteristics of the discharge current corresponding to the voltage applied to the high voltage electrode 42 of the dust collector 4 of the electrostatic precipitator 2, and FIG. 5 shows the characteristics of the high voltage electrode 42 of the dust collector 4 of the electrostatic precipitator 2. It is a graph which shows the change characteristic of the electric field strength corresponding to an applied voltage. 6 is a graph showing the relationship between the current corresponding to the voltage applied to the high-voltage electrode 42 of the dust collector 4 of the electrostatic precipitator 2 and the potential beyond the discharge point, and FIG. 7 is the graph of the electrostatic precipitator 2 in the example. It is explanatory drawing which shows the flow of the process of discharge suppression applied voltage control which the dust part output control part 72 performs.

なお、図4および図5において、実線は長時間使用後、破線は使用開始時点(初期状態)における電気集塵機2の高圧電極42の電圧と電流の変化を示す。図4において、横軸に印加電圧(高圧電極42への印加電圧)を取り、縦軸には放電電流(高圧電極42に流れる放電電流)を取っている。また、図5においては、横軸に印加電圧(高圧電極42への印加電圧)を取り、縦軸には高圧電極42と接地電極43との間の電界強度(集塵能力を示す指標)を取っている。 4 and 5, the solid line indicates changes in voltage and current of the high-voltage electrode 42 of the electrostatic precipitator 2 at the start of use (initial state) after long-term use. In FIG. 4, the horizontal axis represents applied voltage (voltage applied to the high-voltage electrode 42), and the vertical axis represents discharge current (discharge current flowing in the high-voltage electrode 42). In FIG. 5, the horizontal axis represents the applied voltage (voltage applied to the high-voltage electrode 42), and the vertical axis represents the electric field strength (index indicating the dust collecting capability) between the high-voltage electrode 42 and the ground electrode 43. taking it.

電気集塵機2は、初期状態(使用開始時)でコロナ放電が起きないことが確認されている所定の基準となる電圧(以下、「基準電圧」)Vxを集塵部4の高圧電極42に印加する設定で使用することができる。但し、印加電圧を基準電圧Vxとする設定で使用し続けていると、湿気や経年劣化による高圧電極42および接地電極(集塵電極)43の汚染によって、集塵部4の高圧電極42と接地電極43との間でコロナ放電が発生し、集塵能力が低下することが知られている。たとえば、電気集塵機2の使用開始時(初期状態)と長時間使用後とでは、長時間使用後のコロナ放電の発生によって、高圧電極42に流れる電流が変化する。 The electrostatic precipitator 2 applies a predetermined reference voltage (hereinafter referred to as “reference voltage”) Vx, which has been confirmed that corona discharge does not occur in the initial state (at the start of use), to the high-voltage electrode 42 of the dust collector 4. Can be used in any setting. However, when the applied voltage is continuously set to the reference voltage Vx, the high voltage electrode 42 and the ground electrode (dust collecting electrode) 43 are contaminated due to moisture or deterioration over time, and the high voltage electrode 42 of the dust collecting part 4 is grounded. It is known that a corona discharge is generated between the electrode 43 and the dust collecting ability. For example, at the start of use (initial state) of the electrostatic precipitator 2 and after long-term use, the current flowing through the high-voltage electrode 42 changes due to the occurrence of corona discharge after long-term use.

ここで、図4における印加電圧に対する放電電流を示すグラフ上の点、および、図5における印加電圧に対する電界強度を示すグラフ上の点を、以下、「動作点」と呼ぶ。図4および図5におけるA〜Dは、それぞれ異なる動作点を表す。図4と図5とで動作点を示す記号が同じとき(例えば、図4における動作点Aと図5における動作点A)は、高圧電極42への印加電圧が同じときの特性であることを表す。 Here, the points on the graph showing the discharge current with respect to the applied voltage in FIG. 4 and the points on the graph showing the electric field strength with respect to the applied voltage in FIG. 5 are hereinafter referred to as “operating points”. A to D in FIGS. 4 and 5 represent different operating points. When the symbols indicating the operating points are the same in FIGS. 4 and 5 (for example, the operating point A in FIG. 4 and the operating point A in FIG. 5), the characteristics when the applied voltage to the high voltage electrode 42 is the same are shown. Represent

通常、電気集塵機2は、製造時において、コロナ放電が発生することなく良好な集塵動作が行われるよう、印加電圧が基準電圧Vxとなるよう設定される。製造時(使用開始時点)において設定される印加電圧Vxに対応する動作点を第1の動作点Aとすると、図4に示すように、第1の動作点Aは、放電電流値が0となる点、すなわち、コロナ放電が発生しない印加電圧に対応する動作点となる。たとえば、ここでは高圧電極42へ印加する印加電圧は4.5kVに設定される。また、この印加電圧を印加したときの電界強度(ここでは22.5kV/cm)である動作点Aは、図5に示すように、印加電圧と電界強度が比例する直線上の値をとる。 Normally, the electrostatic precipitator 2 is set so that the applied voltage becomes the reference voltage Vx so that a good dust collecting operation is performed without corona discharge during the manufacturing. Assuming that the operating point corresponding to the applied voltage Vx set at the time of manufacturing (at the start of use) is the first operating point A, the discharge current value is 0 at the first operating point A as shown in FIG. That is, the operating point corresponds to the applied voltage at which corona discharge does not occur. For example, the applied voltage applied to the high voltage electrode 42 is set here to 4.5 kV. The operating point A, which is the electric field strength (here, 22.5 kV/cm) when the applied voltage is applied, takes a linear value in which the applied voltage and the electric field strength are proportional, as shown in FIG.

しかしながら、電気集塵機2が長時間使用されることによって、高圧電極42の汚染が進むと、初期状態ではコロナ放電が発生しなかった大きさの印加電圧である基準電圧Vxでもコロナ放電が発生するようになる。そのため、長時間使用後には、たとえば、印加電圧(高圧電極42への印加電圧)を4.0kVとしたときにコロナ放電が発生するようになり、このときの印加電圧に対応する動作点はD点である。すなわち、初期状態と同じように4.5kVの電圧を印加した場合でもコロナ放電が発生するようになり、コロナ放電に伴いわずかながら放電電流が高圧電極42に流れることになる。そして、わずかでも放電電流が流れれば、半絶縁性樹脂で形成された高圧電極42の電気抵抗が大きいため、高圧電極42の電位は著しく低下する。その結果、印加電圧が4.5kVのままであっても、放電電流や電界強度は、初期状態の第1の動作点Aから、長時間使用後には第2の動作点Bへ移動する。このように、印加電圧に対する放電電流の特性、および、印加電圧に対する電界強度の特性は、初期状態と長時間使用後とで異なってしまう。そのため、放電電流の大きさに比例して高圧電極42の電位が大幅に低下し、それに伴い、図5に示すように、第2の動作点Bにおいては、集塵性能を示す電界強度が大きく低下する。ここでは、電界強度が22.5kV/cmから15.0kV/cmまで低下している。 However, when the electrostatic precipitator 2 is used for a long time and the high-voltage electrode 42 is contaminated, the corona discharge may be generated even at the reference voltage Vx which is the applied voltage of the magnitude that did not cause the corona discharge in the initial state. become. Therefore, after long-time use, for example, when the applied voltage (the voltage applied to the high voltage electrode 42) is set to 4.0 kV, corona discharge occurs, and the operating point corresponding to the applied voltage at this time is D It is a point. That is, corona discharge occurs even when a voltage of 4.5 kV is applied as in the initial state, and a slight discharge current flows through the high-voltage electrode 42 with corona discharge. If even a slight discharge current flows, the electric resistance of the high-voltage electrode 42 formed of the semi-insulating resin is large, so that the potential of the high-voltage electrode 42 drops significantly. As a result, even if the applied voltage remains 4.5 kV, the discharge current and the electric field strength move from the first operating point A in the initial state to the second operating point B after long-term use. In this way, the characteristics of the discharge current with respect to the applied voltage and the characteristics of the electric field strength with respect to the applied voltage differ between the initial state and after long-term use. Therefore, the potential of the high-voltage electrode 42 is significantly reduced in proportion to the magnitude of the discharge current, and as a result, at the second operating point B, the electric field strength indicating the dust collecting performance is large, as shown in FIG. descend. Here, the electric field strength is reduced from 22.5 kV/cm to 15.0 kV/cm.

一方、高圧電極42に印加する電圧を、コロナ放電が発生し始める印加電圧(放電開始印加電圧)である4.0kVよりも小さくすれば、集塵部4でコロナ放電が発生することがない。そこで、本実施例における制御部7の集塵部出力制御部72は、動作点がコロナ放電の発生しない第3の動作点Cとなるように、定電圧高圧電源部(電源部)40による印加電圧を制御する。つまり、放電開始印加電圧よりも低い印加電圧を高圧電極42に印加するよう制御する。図4に示すように、放電電流値が0となってコロナ放電が発生しない第3の動作点Cとなるよう、ここでは、印加電圧を3.8kVとしている。 On the other hand, if the voltage applied to the high-voltage electrode 42 is set to be smaller than 4.0 kV which is the applied voltage at which corona discharge starts (discharge start applied voltage), corona discharge does not occur in the dust collecting part 4. Therefore, the dust collector output control unit 72 of the control unit 7 in the present embodiment applies the constant voltage high-voltage power supply unit (power supply unit) 40 so that the operating point becomes the third operation point C at which corona discharge does not occur. Control the voltage. That is, control is performed so that an applied voltage lower than the discharge start applied voltage is applied to the high voltage electrode 42. As shown in FIG. 4, the applied voltage is set to 3.8 kV here so that the discharge current value becomes 0 and the third operating point C at which corona discharge does not occur.

このように、動作点が第3の動作点Cとなるように印加電圧を制御することにより、集塵運転を継続しつつ、何ら制御を行わずにコロナ放電が発生した結果として動作点が第2の動作点Bに移動する場合に比べ、より高い集塵性能を得ることが可能となる。すなわち、図5に示すように、何ら制御を行わない場合の電界強度15.0kV/cmに比べ、電界強度19.0kV/cmによる集塵運転が可能となる。 In this way, by controlling the applied voltage so that the operating point becomes the third operating point C, the operating point becomes the first point as a result of corona discharge occurring without any control while continuing the dust collecting operation. It is possible to obtain a higher dust collecting performance as compared with the case of moving to the second operation point B. That is, as shown in FIG. 5, compared to the electric field strength of 15.0 kV/cm when no control is performed, the dust collecting operation with the electric field strength of 19.0 kV/cm becomes possible.

しかしながら、放電開始印加電圧は、常に一定の値をとることはなく、電極の形状や材質のほか、温度や湿度といった使用環境、電極に堆積した汚れの種類などによっても変化してしまう。そのため、集塵部4でのコロナ放電の発生を検知した際に、高圧電極42への印加電圧を、予め所定の印加電圧(例えば3.8kV)となるように制御したとしても、コロナ放電が発生しなくなるとは限らない。そこで、本実施例では、使用環境や汚れの種類に関係なく放電開始印加電圧を検出できるように、以下に説明する放電開始電圧探索処理を行う。 However, the discharge start applied voltage does not always take a constant value, and changes depending on the shape and material of the electrode, the operating environment such as temperature and humidity, and the type of dirt accumulated on the electrode. Therefore, even when the voltage applied to the high-voltage electrode 42 is controlled to be a predetermined applied voltage (for example, 3.8 kV) in advance when the occurrence of corona discharge in the dust collecting portion 4 is detected, the corona discharge is generated. It does not always occur. Therefore, in the present embodiment, the discharge start voltage searching process described below is performed so that the discharge start applied voltage can be detected regardless of the use environment and the type of dirt.

ここで、図6を参照しながら、放電開始印加電圧を検出する放電開始電圧探索処理について簡単に説明する。図6における直線Lは、式1で示される一次関数で規定される。
E=pV・・・・・・・(式1)
E:放電箇所以遠の電位
V:印加電圧(V<V,V:放電開始印加電圧)
p:比例定数(p≒1)
Here, the discharge start voltage searching process for detecting the discharge start applied voltage will be briefly described with reference to FIG. The straight line L in FIG. 6 is defined by the linear function shown in Expression 1.
E=pV... (Equation 1)
E: Potential beyond the discharge point
V: Applied voltage (V<V 0 , V 0 : Applied voltage to start discharge)
p: Proportional constant (p≈1)

また、図6において、Iはリーク電流(物体表面を伝わって流れる電流)、Iは放電電流(空気の絶縁破壊を起こして流れる電流)であり、検出可能なコレクタ電流であるItotalは、Itotal=I+Iで表される。 Further, in FIG. 6, I L is a leak current (current flowing through the surface of the object), I D is a discharge current (current flowing due to dielectric breakdown of air), and I total which is a detectable collector current is , I total =I L +I D.

図6に示すように、先ず、制御部7の予想電位算出部723(図2B参照)は、コロナ放電が発生していないと仮定したときに電位計測部48(図2Aおよび図3参照)で計測されると予想される予想電位Eesを算出(推定)する。式1で示すように、コロナ放電が起きていないとき、高圧電極42の放電箇所以遠の電位Eは、高圧電極42への印加電圧Vに比例する(E=pV)。そのため、コロナ放電が発生していないと仮定すると、放電箇所以遠の電位Eは、印加電圧Vに基づいて算出(推定)することができる。つまり、予想電位Eesは、印加電圧との比例関係を示す直線Lの式(Ees=pV)によって求めることができる。比例定数p≒1であり、ここでは簡単のためp=1とおく。例えば、印加電圧Vが放電開始電圧以下の4.0kVのとき、予想電位EesはEes=pV=4.0kVとなる。 As shown in FIG. 6, first, the expected potential calculation unit 723 (see FIG. 2B) of the control unit 7 causes the potential measurement unit 48 (see FIGS. 2A and 3) to assume that corona discharge has not occurred. The expected potential E es expected to be measured is calculated (estimated). As shown in Expression 1, when corona discharge is not occurring, the potential E of the high voltage electrode 42 beyond the discharge point is proportional to the applied voltage V to the high voltage electrode 42 (E=pV). Therefore, assuming that no corona discharge has occurred, the potential E beyond the discharge point can be calculated (estimated) based on the applied voltage V. That is, the expected potential E es can be obtained by the equation (E es =pV) of the straight line L showing the proportional relationship with the applied voltage. The proportionality constant p≈1, and here p=1 for simplicity. For example, when the applied voltage V is 4.0 kV which is equal to or lower than the discharge start voltage, the expected potential E es is E es =pV=4.0 kV.

次いで、電位計測部48により計測された実際の電位である実測電位Eacと、予想電位Eesとを比較する。ここで、予想電位Eesは、コロナ放電が発生していないと仮定して算出している。そのため、仮にコロナ放電が発生していれば、電位計測部48により計測された実際の電位である実測電位Eacは、コロナ放電に伴う電圧降下により、予想電位Eesよりも大幅に小さい値になっていると想定される。そこで、実測電位Eacと予想電位Eesとの差が所定の閾値(例えば、コロナ放電が起きた場合に生じる電圧降下に伴う電位の変化量)よりも大きい場合、放電判定部721(図2B参照)はコロナ放電が発生していると判定する。 Then, the measured potential E ac , which is the actual potential measured by the potential measuring unit 48, is compared with the expected potential E es . Here, the expected potential E es is calculated on the assumption that no corona discharge has occurred. Therefore, if corona discharge has occurred, the measured potential E ac, which is the actual potential measured by the potential measuring unit 48, becomes a value significantly smaller than the expected potential E es due to the voltage drop accompanying the corona discharge. It is assumed that Therefore, when the difference between the measured potential E ac and the expected potential E es is larger than a predetermined threshold value (for example, the amount of change in potential due to voltage drop that occurs when corona discharge occurs), the discharge determination unit 721 (FIG. 2B). (See) determines that corona discharge has occurred.

次いで、制御部7は、コロナ放電が開始される放電開始印加電圧Vを探索する。ここでは、電位計測部48で計測された実測電位Eacに基づいて放電開始印加電圧Vを探索する。すなわち、印加電圧Vを徐々に変化させながら、各印加電圧Vと、それに対応する実測電位Eacとを比較して放電開始印加電圧Vを探索する。 Next, the control unit 7 searches for a discharge start applied voltage V 0 at which corona discharge is started. Here, the discharge start applied voltage V 0 is searched for on the basis of the actually measured potential E ac measured by the potential measuring unit 48. That is, while gradually changing the applied voltage V, each applied voltage V is compared with the corresponding actually measured potential E ac to search for the discharge start applied voltage V 0 .

すなわち、制御部7の印加電圧制御部722(図2B参照)は、放電開始電圧探索処理に際し、高圧電極42への印加電圧Vを漸次小さくなるように変化させて放電開始印加電圧Vを探索する。このとき、変化させていった印加電圧Vに対し、対応する実測電位Eacの変化量が、ある印加電圧V付近でこれまでの変化量よりも著しく大きくなった場合、放電電流Iが流れなくなったことにより実測電位Eacが急激に変化したと判断する。つまり、高圧電極42への印加電圧Vを漸次小さくなるように変化させたときに、実測電位Eacが急激に大きくなる変化(例えば、印加電圧Vの変化に伴う実測電位Eacの変動量が一定値以上であること)を検出したことをもって、コロナ放電が止まったと判断することができ、そのときに高圧電極42へ印加していた印加電圧Vを、放電開始印加電圧Vとして検出する。なお、検出可能な電流値であるItotal(リーク電流Iと放電電流Iの合計)の変動をもとにコロナ放電の発生の有無を判定することも考えられる。しかし、集塵部4でコロナ放電が発生した際に高圧電極42に流れる放電電流Iは微弱であるため、図6に示すように、放電開始印加電圧V付近でのItotalの変動は緩やかである。よって、変動が顕著な高圧電極42の電位の変化によってコロナ放電の有無を判定するのが望ましい。 That is, the applied voltage control unit 722 (see FIG. 2B) of the control unit 7 searches for the discharge start applied voltage V 0 by changing the applied voltage V to the high voltage electrode 42 so as to be gradually smaller in the discharge start voltage search process. To do. At this time, when the amount of change in the actually measured potential E ac corresponding to the applied voltage V that has been changed becomes significantly larger than the amount of change up to now in the vicinity of a certain applied voltage V, the discharge current ID flows. It is determined that the measured potential E ac has changed suddenly due to the disappearance. That is, when the applied voltage V to the high-voltage electrode 42 is changed to be gradually decreased, the measured potential E ac suddenly increases (for example, the fluctuation amount of the measured potential E ac accompanying the applied voltage V changes. with the detection of that) is equal to or greater than a predetermined value, it is possible to determine that the corona discharge is stopped, then the applied voltage V which has been applied to the high-voltage electrode 42 to be detected as the discharge starting voltage V applied 0. Note that it may be possible to determine whether corona discharge has occurred or not based on a change in I total ( total of leak current I L and discharge current I D ) that is a detectable current value. However, since the discharge current I D flowing through the high-voltage electrode 42 when the corona discharge occurs in the dust collecting part 4 is weak, the fluctuation of I total near the discharge start applied voltage V 0 is small as shown in FIG. It is loose. Therefore, it is desirable to determine the presence/absence of corona discharge based on the change in the potential of the high-voltage electrode 42, which changes significantly.

放電開始印加電圧Vを検出した後、印加電圧制御部722は、印加電圧Vと実測電位Eacとに基づき、高圧電極42(図3参照)への印加電圧Vの下限となる下限印加電圧Vminを設定する。そして、印加電圧制御部722は、その後については、定電圧高圧電源部40に対して放電開始印加電圧Vよりも小さい電圧を高圧電極42に印加させる。図6に示すように、下限印加電圧Vminは、例えば、コロナ放電が発生し電圧降下が起きている場合の実測電位Eac(印加電圧V=放電開始印加電圧Vの場合の実測電位Eacを含む)をEminとし、コロナ放電が発生していないと仮定した場合の予想電位Eesを示す直線L(E=pV)上において、予想電位Ees=Eminとなるときの印加電圧Vを、下限印加電圧Vminとすればよい。 After detecting the discharge start applied voltage V 0 , the applied voltage controller 722 determines the lower limit applied voltage that is the lower limit of the applied voltage V to the high voltage electrode 42 (see FIG. 3) based on the applied voltage V and the measured potential E ac . Set V min . Then, the applied voltage control unit 722 causes the constant voltage high voltage power supply unit 40 to apply a voltage smaller than the discharge start applied voltage V 0 to the high voltage electrode 42 thereafter. As shown in FIG. 6, the lower limit applied voltage V min is, for example, the measured potential E ac when corona discharge occurs and a voltage drop occurs (the measured potential E when applied voltage V=discharge start applied voltage V 0 ). (including ac ) is E min, and the applied voltage when the expected potential E es =E min on the straight line L (E=pV) showing the expected potential E es assuming that corona discharge is not generated V may be the lower limit applied voltage V min .

こうして、制御部7の集塵部出力制御部72(図2A参照)は、放電開始印加電圧Vを探索した後、定電圧高圧電源部40に対して放電開始印加電圧Vよりも小さい印加電圧を高圧電極42に印加させて、集塵運転を継続しつつコロナ放電を防止する放電防止運転制御を行う。ここでは、印加電圧Vを下限印加電圧Vminよりも大きな値とすることで、電界強度が15kV/cmより大きくなり、集塵部4でのコロナ放電によって電界強度が低下した際よりも高い集塵性能を保つことができるようにしている。かかる放電防止運転制御を実行しているときの印加電圧Vの範囲FはVmin〜Vmaxで示される範囲となる。 Thus, the dust collecting unit output control unit 72 of the control unit 7 (see FIG. 2A), after searching the discharge starting voltage applied V 0, than the discharge starting voltage applied V 0 to the constant-voltage high-voltage power supply unit 40 small applied A voltage is applied to the high-voltage electrode 42 to perform discharge prevention operation control for preventing corona discharge while continuing the dust collection operation. Here, by setting the applied voltage V to a value larger than the lower limit applied voltage V min , the electric field strength becomes larger than 15 kV/cm, and the electric field strength is higher than that when the electric field strength is lowered by the corona discharge in the dust collecting part 4. The dust performance is maintained. The range F of the applied voltage V when the discharge prevention operation control is executed is a range indicated by Vmin to Vmax.

ここで、図7を参照しながら、放電開始印加電圧Vを探索して放電防止運転制御を実行する放電抑制印加電圧制御について説明する。なお、図7の処理では、便宜上、印加電圧と放電箇所以遠の電位の関係における比例定数p=1としている。 Here, the discharge suppression applied voltage control for searching the discharge start applied voltage V 0 and executing the discharge prevention operation control will be described with reference to FIG. 7. In the process of FIG. 7, for the sake of convenience, the proportional constant p=1 in the relationship between the applied voltage and the potential beyond the discharge point is set.

図7に示すように、制御部7は、高圧電極42への印加電圧Vを基準電圧Vxに設定する(ステップS110)。基準電圧Vxは、電気集塵機2の製造時点で、放電電流値が0となり、コロナ放電が発生しないと想定される電圧に予め設定される。 As shown in FIG. 7, the control unit 7 sets the applied voltage V to the high voltage electrode 42 to the reference voltage Vx (step S110). The reference voltage Vx is preset to a voltage at which the discharge current value becomes 0 at the time of manufacturing the electrostatic precipitator 2 and no corona discharge is expected to occur.

ここで、集塵部4でコロナ放電が発生していれば、電位計測部48により計測された実際の電位である実測電位Eacは、コロナ放電に伴う電圧降下により、印加電圧Vよりも大幅に小さくなることが想定される。一方で、集塵部4でコロナ放電が発生していなければ、電圧降下は起きず、実測電位Eacが印加電圧Vよりも大幅に小さくなることはないと想定される。そこで、制御部7は、電位計測部48による実測電位Eacを計測し(ステップS120)、実測電位Eacが、印加電圧Vと閾値ΔEとの差以上である(印加電圧Vと実測電位Eacとの差は、閾値ΔE以下である)と判定されるとき(ステップS130:No)は、放電による電位の降下が起きていない、すなわちコロナ放電が発生していないと判定する。他方、実測電位Eacが、印加電圧Vと閾値ΔEとの差よりも小さい(印加電圧Vと実測電位Eacとの差が、所定の閾値ΔEよりも大きい)と判定される(ステップS130:Yes)と、高圧電極42にコロナ放電による放電電流が流れている、すなわちコロナ放電が発生していると判定し、処理をステップS140に移す。 Here, if corona discharge is occurring in the dust collecting unit 4, the measured potential E ac, which is the actual potential measured by the potential measuring unit 48, is larger than the applied voltage V due to the voltage drop due to the corona discharge. It is expected to become small. On the other hand, if corona discharge does not occur in the dust collecting unit 4, it is assumed that the voltage drop does not occur and the measured potential E ac does not become significantly smaller than the applied voltage V. Therefore, the control unit 7 measures the measured potential E ac by the potential measuring unit 48 (step S120), and the measured potential E ac is equal to or more than the difference between the applied voltage V and the threshold ΔE (applied voltage V and measured potential E ac ). When it is determined that the difference from ac is less than or equal to the threshold ΔE (step S130: No), it is determined that the potential drop due to discharge has not occurred, that is, corona discharge has not occurred. On the other hand, it is determined that the measured potential E ac is smaller than the difference between the applied voltage V and the threshold ΔE (the difference between the applied voltage V and the measured potential E ac is larger than the predetermined threshold ΔE) (step S130: Yes), it is determined that a discharge current due to corona discharge is flowing through the high-voltage electrode 42, that is, corona discharge is occurring, and the process proceeds to step S140.

コロナ放電が発生した際に印加していた印加電圧(放電開始印加電圧)を探索するために、制御部7は、ステップS140において、印加電圧Vを所定の下げ幅ΔVだけ小さくする(印加電圧VをV=V−ΔVに変更)するとともに、そのときの実測電位Eacを検出し(ステップS150)、実測電位Eacが印加電圧Vと閾値ΔEとの差よりも大きいか否か、換言すると印加電圧Vと実測電位Eacとの差が所定の閾値ΔEよりも小さいか否かを判定する(ステップS160)。 In order to search for the applied voltage (discharging start applied voltage) applied when the corona discharge occurs, the control unit 7 reduces the applied voltage V by a predetermined decrease width ΔV in step S140 (applied voltage V Is changed to V=V−ΔV), the measured potential E ac at that time is detected (step S150), and whether or not the measured potential E ac is larger than the difference between the applied voltage V and the threshold ΔE, in other words, It is determined whether the difference between the applied voltage V and the measured potential E ac is smaller than a predetermined threshold ΔE (step S160).

実測電位Eacが印加電圧Vと閾値ΔEとの差よりも小さい(印加電圧Vと実測電位Eacとの差が所定の閾値ΔEよりも大きい)と判定されると(ステップS160:No)、コロナ放電が依然として起きていると判断し、制御部7は、処理をステップS140に移す。そして、制御部7は、さらに印加電圧Vを所定の下げ幅ΔVだけ落とし、実測電位Eacが印加電圧Vと閾値ΔEとの差以上(印加電圧Vと実測電位Eacとの差が所定の閾値ΔE以下)と判定するまで、つまり、コロナ放電が起きなくなったと判断されるまで処理を繰り返す。このように、印加電圧を徐々に小さくしながら放電の発生の有無を判定することで、コロナ放電が起きていた印加電圧とコロナ放電が起きなくなった印加電圧との境界となる印加電圧、すなわちコロナ放電が開始された印加電圧(放電開始印加電圧V)を探索する。 When it is determined that the measured potential E ac is smaller than the difference between the applied voltage V and the threshold ΔE (the difference between the applied voltage V and the measured potential E ac is larger than the predetermined threshold ΔE) (step S160: No), The control unit 7 determines that the corona discharge still occurs, and moves the process to step S140. Then, the control unit 7 further lowers the applied voltage V by a predetermined decrease width ΔV, and the measured potential E ac is equal to or more than the difference between the applied voltage V and the threshold ΔE (the difference between the applied voltage V and the measured potential E ac is predetermined. The process is repeated until it is determined that the threshold value ΔE or less), that is, it is determined that the corona discharge has stopped. In this way, the applied voltage that is the boundary between the applied voltage at which corona discharge has occurred and the applied voltage at which corona discharge has stopped, that is, the corona The applied voltage at which the discharge is started (discharging start applied voltage V 0 ) is searched for.

そして、実測電位Eacが印加電圧Vと閾値ΔEとの差以上である(印加電圧Vと実測電位Eacとの差が所定の閾値ΔE以下である)と判定すると(ステップS160:Yes)、制御部7は、コロナ放電が起きなくなったと判定する。 Then, when it is determined that the measured potential E ac is equal to or larger than the difference between the applied voltage V and the threshold ΔE (the difference between the applied voltage V and the measured potential E ac is equal to or smaller than the predetermined threshold ΔE) (step S160: Yes), The control unit 7 determines that the corona discharge has stopped.

その後、制御部7は、時間経過による変動の影響を抑えるため、所定時間t1(例えば30分)が経過するまで待機し(ステップS170:No)、所定時間t1に達すると(ステップS170:Yes)、印加電圧Vが基準として設定された基準電圧Vxよりも小さいか否かを判定する(ステップS180)。 After that, the control unit 7 waits until a predetermined time t1 (for example, 30 minutes) elapses (step S170: No) in order to suppress the influence of the fluctuation due to the passage of time, and when the predetermined time t1 is reached (step S170: Yes). , It is determined whether the applied voltage V is lower than the reference voltage Vx set as the reference (step S180).

そして、印加電圧Vが基準として設定された基準電圧Vxよりも小さいと判定されると(ステップS180:Yes)、処理をステップS190に移す。一方、印加電圧Vが基準として設定された基準電圧Vx以上であると判定すると(ステップS180:No)、本処理を終了する。 When it is determined that the applied voltage V is lower than the reference voltage Vx set as the reference (step S180: Yes), the process proceeds to step S190. On the other hand, when it is determined that the applied voltage V is equal to or higher than the reference voltage Vx set as the reference (step S180: No), this processing ends.

ところで、電気集塵機2内の湿度の変化などにより、一時的に放電開始印加電圧Vが低下することがある。この場合、一時的に下がった放電開始印加電圧Vが時間の経過によって戻ることが想定される。 By the way, the discharge start applied voltage V 0 may temporarily drop due to changes in humidity in the electrostatic precipitator 2. In this case, it is assumed that the discharge start applied voltage V 0 that has dropped temporarily returns with the passage of time.

そこで、ステップS190において、制御部7は、今度は印加電圧を増加させるように変化させる。すなわち、ステップS190の時点での印加電圧が、コロナ放電が開始される正確な印加電圧よりも小さくなっていることが想定されるため、印加電圧Vを幅ΔVだけ上げながら実測電位Eacを検出する(ステップS200)。次いで、制御部7は、実測電位Eacが印加電圧Vと閾値ΔEとの差以上であるか否か、換言すれば、閾値ΔEが印加電圧Vと実測電位Eacの差以上であるか否かを判定する(ステップS210)。 Therefore, in step S190, the control unit 7 changes the applied voltage so as to increase this time. That is, since it is assumed that the applied voltage at the time of step S190 is smaller than the accurate applied voltage at which corona discharge is started, the measured potential E ac is detected while increasing the applied voltage V by the width ΔV. (Step S200). Next, the control unit 7 determines whether or not the measured potential E ac is greater than or equal to the difference between the applied voltage V and the threshold ΔE, in other words, whether or not the threshold ΔE is greater than or equal to the difference between the applied voltage V and the measured potential E ac. It is determined whether or not (step S210).

そして、実測電位Eacが印加電圧Vと閾値ΔEとの差よりも小さい(印加電圧Vと実測電位Eacとの差が所定の閾値ΔEよりも大きい)と判定すると(ステップS210:No)、制御部7は、処理をステップS140に移し、ステップS140〜ステップS200の処理を繰り返すことで、放電開始印加電圧を探索する。 Then, when it is determined that the measured potential E ac is smaller than the difference between the applied voltage V and the threshold ΔE (the difference between the applied voltage V and the measured potential E ac is larger than the predetermined threshold ΔE) (step S210: No), The control unit 7 moves the process to step S140 and repeats the processes of steps S140 to S200 to search for the discharge start applied voltage.

そして、実測電位Eacが印加電圧Vと閾値ΔEとの差以上である(印加電圧Vと実測電位Eacとの差が所定の閾値ΔE以下である)と判定したときに(ステップS210:Yes)、制御部7は、放電開始印加電圧を検出したことになる。 Then, the measured potential E ac is greater than or equal to the difference between the applied voltage V and the threshold Delta] E (applied voltage V and the measured potential difference between E ac is equal to or less than the predetermined threshold value Delta] E) when it is determined (step S210: Yes ), the control unit 7 has detected the discharge start applied voltage.

その後、制御部7は、所定時間t1が経過するまで待機し(ステップS220:No)、所定時間t1が経過すると(ステップS220:Yes)、印加電圧Vが、基準として設定された基準電圧Vx(電気集塵機2の製造時点でコロナ放電が発生しないと想定される電圧)以上であるか否かを判定する(ステップS230)。 After that, the control unit 7 waits until the predetermined time t1 elapses (step S220: No), and when the predetermined time t1 elapses (step S220: Yes), the applied voltage V is the reference voltage Vx(set as the reference). It is determined whether or not the voltage is equal to or higher than the voltage at which corona discharge does not occur at the time of manufacturing the electrostatic precipitator 2 (step S230).

制御部7は、印加電圧Vが基準として設定された基準電圧Vx以上であると判定されない限り、ステップS140〜ステップS220までの処理を繰り返し(ステップS230:No)、印加電圧Vが基準電圧Vx以上であると判定された場合に限り(ステップS230:Yes)、本放電抑制印加電圧制御処理を終了する。 Unless it is determined that the applied voltage V is equal to or higher than the reference voltage Vx set as the reference, the control unit 7 repeats the processing from step S140 to step S220 (step S230: No), and the applied voltage V is equal to or higher than the reference voltage Vx. Only when it is determined that (step S230: Yes), the main discharge suppression applied voltage control process ends.

上述の放電抑制印加電圧制御処理により、実施例に係る集塵部4における集塵性能が、放電抑制印加電圧制御処理を行わない場合に比べてどの程度改善されたかについて、図8および表1を用いて説明する。図8は、実施例に係る集塵部4の等価回路を示す説明図、表1は、新しい電気集塵機と、長時間使用した電気集塵機において、放電抑制印加電圧制御を行った場合と行わなかった場合の性能比較結果を示している。なお、簡単のため、図8において、集塵部4における接地電極(集塵電極)43の抵抗は0としている。 FIG. 8 and Table 1 show how the above-described discharge suppression applied voltage control process improves the dust collection performance of the dust collecting unit 4 according to the embodiment as compared with the case where the discharge suppression applied voltage control process is not performed. It will be explained using. FIG. 8 is an explanatory diagram showing an equivalent circuit of the dust collecting unit 4 according to the embodiment, and Table 1 shows a case where the discharge suppressing applied voltage control is performed in the new electric dust collector and an electric dust collector that has been used for a long time. The performance comparison result in the case is shown. For simplicity, the resistance of the ground electrode (dust collecting electrode) 43 in the dust collecting portion 4 is set to 0 in FIG.

Figure 2020082043
Figure 2020082043

図8および表1において、Vは電源電圧、Rhvは高圧電極抵抗(HV電極抵抗)、iは放電電流、Rは放電抵抗、Eは電極間電圧である。また、表1におけるVは放電開始電圧(実測値)である。 In FIG. 8 and Table 1, V is the power supply voltage, R hv is the high voltage electrode resistance (HV electrode resistance), i is the discharge current, R d is the discharge resistance, and E is the inter-electrode voltage. Further, V 0 in Table 1 is a discharge start voltage (actual measurement value).

集塵能力を示す電界強度は、電極間電圧Eに比例することが分かっている。表1に示すように、電気集塵機2を長時間使用した後に、上述した放電抑制印加電圧制御を実行した場合の電極間電圧Eは4kVであるのに対し、放電抑制印加電圧制御を実行しなかった場合の電極間電圧Eは3.29kVである。 It has been known that the electric field strength indicating the dust collecting capability is proportional to the interelectrode voltage E. As shown in Table 1, after the electrostatic precipitator 2 was used for a long time, the inter-electrode voltage E was 4 kV when the above-described discharge suppression applied voltage control was executed, whereas the discharge suppression applied voltage control was not executed. The inter-electrode voltage E in this case is 3.29 kV.

したがって、4kV/3.29kV=1.22となって、放電抑制印加電圧制御によって、集塵能力が22%改善したことが分かる。 Therefore, it becomes 4 kV/3.29 kV=1.22, and it can be seen that the dust collection capability is improved by 22% by the discharge suppression applied voltage control.

ところで、上述してきた実施例において、コロナ放電が発生したか否かについては、実測電位Eacに基づいて制御部7が演算することによって判定するものとした。しかし、集塵部4の電極部41におけるコロナ放電を検出する放電検出センサを、集塵部4内に別途設け、かかる放電検出センサの検出結果に基づいて、制御部7の放電判定部721がコロナ放電の発生の有無を判定するようにしてもよい。 By the way, in the above-described embodiments, whether or not the corona discharge has occurred is determined by the control unit 7 calculating based on the measured potential E ac . However, a discharge detection sensor that detects a corona discharge in the electrode portion 41 of the dust collecting portion 4 is separately provided in the dust collecting portion 4, and the discharge determining portion 721 of the control portion 7 determines whether or not the discharge determining sensor 721 of the dust collecting portion 4 detects the corona discharge. The presence or absence of corona discharge may be determined.

たとえば、放電検出センサとしては、光検知素子または音検知素子などが考えられる。そして、光検知素子または音検知素子のうち、少なくともいずれか一方を備えた構成として、コロナ放電の発生時に放出される光、または音を検知することで、制御部7の放電判定部721が集塵部4においてコロナ放電が発生していると判定することができる。 For example, as the discharge detection sensor, a light detection element or a sound detection element can be considered. The discharge determination unit 721 of the control unit 7 collects by detecting light or sound emitted when corona discharge occurs, as a configuration including at least one of the light detection element and the sound detection element. It can be determined that corona discharge is occurring in the dust section 4.

また、放電検出センサとして、除塵後の粒子数を、たとえばパーティクルカウンタで計測し、粒子数が急激に変化したタイミングが発見された場合、コロナ放電が発生したものと判定することもできる。 In addition, as the discharge detection sensor, the number of particles after dust removal is measured by, for example, a particle counter, and if a timing at which the number of particles suddenly changes is found, it can be determined that corona discharge has occurred.

さらに、集塵部4において、たとえばプローブなどの装置を配置して、電極部41の電界を監視し、電界が急激に変化したタイミングが発見された場合、コロナ放電が発生したものと判定することも可能である。 Further, a device such as a probe is arranged in the dust collecting unit 4, and the electric field of the electrode unit 41 is monitored. If a timing at which the electric field changes abruptly is found, it is determined that corona discharge has occurred. Is also possible.

以上、本願の実施例を図面に基づいて説明したが、あくまでも例示であって、当業者の知識に基づいて種々の変形、改良を施すことができる。 Although the embodiments of the present application have been described above with reference to the drawings, they are merely examples, and various modifications and improvements can be made based on the knowledge of those skilled in the art.

上述してきた実施例より、以下の電気集塵機2が実現される。 The following electrostatic precipitator 2 is realized from the embodiment described above.

(1)塵埃を帯電させる荷電部3と、複数の接地電極(集塵電極)43と半絶縁性樹脂で形成された複数の高圧電極42とが交互に配置されるとともに、荷電部3で帯電された塵埃を捕集する集塵部4と、高圧電極42に電圧を印加する定電圧高圧電源部(電源部)40と、集塵部4におけるコロナ放電の発生の有無を判定し、コロナ放電が発生したと判定すると、当該コロナ放電が開始される放電開始印加電圧Vを検出し、定電圧高圧電源部40に対し、検出した放電開始印加電圧Vよりも小さい電圧を高圧電極42に印加させる集塵部出力制御部72とを備える、電気集塵機2。 (1) The charging unit 3 for charging dust, the plurality of ground electrodes (dust collecting electrodes) 43 and the plurality of high-voltage electrodes 42 formed of semi-insulating resin are alternately arranged, and the charging unit 3 charges the particles. The dust collecting unit 4 for collecting the collected dust, the constant voltage high-voltage power supply unit (power supply unit) 40 for applying a voltage to the high-voltage electrode 42, and the presence or absence of corona discharge in the dust collecting unit 4 are determined to determine the corona discharge. When it is determined that the discharge start applied voltage V 0 at which the corona discharge is started is detected, a voltage smaller than the detected discharge start applied voltage V 0 is applied to the high voltage electrode 42 with respect to the constant voltage high voltage power supply unit 40. An electrostatic precipitator 2 including a dust collector output control unit 72 to be applied.

かかる電気集塵機2によれば、コロナ放電が発生しても集塵性能の低下を抑えつつ、無駄な電力消費を抑えることができる。 According to such an electric dust collector 2, it is possible to suppress wasteful power consumption while suppressing deterioration of the dust collecting performance even if corona discharge occurs.

(2)上記(1)において、集塵部出力制御部72は、集塵部4におけるコロナ放電の発生の有無を判定する放電判定部721と、放電判定部721がコロナ放電が発生したと判定した場合、放電開始印加電圧Vを探索する放電開始電圧探索処理を行う印加電圧制御部722と、を有し、印加電圧制御部722は、放電開始電圧探索処理を行った後、探索した放電開始印加電圧Vよりも小さい電圧で高圧電極42に印加させる制御を行う、電気集塵機2。 (2) In the above (1), the dust collector output control unit 72 determines that the dust collector 4 determines whether corona discharge has occurred, and the discharge determiner 721 determines that corona discharge has occurred. In this case, an applied voltage control unit 722 that performs a discharge start voltage search process that searches for the discharge start applied voltage V 0 , and the applied voltage control unit 722 performs the discharge start voltage search process and then the searched discharge. An electrostatic precipitator 2 that controls to apply to the high-voltage electrode 42 with a voltage lower than the start applied voltage V 0 .

(3)上記(2)において、印加電圧制御部722は、放電開始電圧探索処理に際し、高圧電極42への印加電圧を漸次小さくなるように変化させて放電開始印加電圧Vを探索する、電気集塵機2。 (3) In the above (2), the applied voltage control unit 722 searches for the discharge start applied voltage V 0 by changing the applied voltage to the high voltage electrode 42 so as to become gradually smaller during the discharge start voltage search process. Dust collector 2.

(4)上記(2)または(3)において、集塵部4は、高圧電極42の電位を測定する電位計測部48を備え、印加電圧制御部722は、電位計測部48で計測された実測電位Eacに基づいて、放電開始印加電圧Vを探索する、電気集塵機2。 (4) In the above (2) or (3), the dust collecting unit 4 includes a potential measuring unit 48 that measures the potential of the high-voltage electrode 42, and the applied voltage control unit 722 measures the measured value by the potential measuring unit 48. An electrostatic precipitator 2 that searches for a discharge start applied voltage V 0 based on the potential E ac .

集塵部4でコロナ放電が発生した際、高圧電極42に流れる放電電流Iが微弱であっても、半絶縁性樹脂で形成された高圧電極42の電位は急激に低下する。よって、かかる電気集塵機2によれば、電位計測部48で計測された実測電位Eacの変動に基づいてコロナ放電の発生の有無を判定することで、正確な放電開始印加電圧Vを探索することができる。 When corona discharge occurs in the dust collecting portion 4, even if the discharge current ID flowing through the high voltage electrode 42 is weak, the potential of the high voltage electrode 42 formed of the semi-insulating resin drops sharply. Therefore, according to the electrostatic precipitator 2, the accurate discharge start applied voltage V 0 is searched for by determining the presence or absence of the occurrence of corona discharge based on the fluctuation of the measured potential E ac measured by the potential measuring unit 48. be able to.

(5)上記(4)において、印加電圧制御部722は、集塵部4でコロナ放電が発生していないと仮定した場合に、電位計測部48での計測が予想される予想電位Eesを算出する予想電位算出部723をさらに備え、放電判定部721は、予想電位算出部723により算出した予想電位Eesと電位計測部48による実測電位Eacとの差が所定の閾値ΔEよりも大きい場合、集塵部4においてコロナ放電が発生したと判定する、電気集塵機2。 (5) In (4) above, the applied voltage control unit 722 determines the expected potential E es expected to be measured by the potential measuring unit 48, assuming that corona discharge has not occurred in the dust collecting unit 4. The discharge determination unit 721 further includes an expected potential calculation unit 723 for calculating, and the discharge determination unit 721 has a difference between the expected potential E es calculated by the expected potential calculation unit 723 and the actually measured potential E ac measured by the potential measurement unit 48 larger than a predetermined threshold ΔE. In this case, the electric dust collector 2 that determines that corona discharge has occurred in the dust collector 4.

(6)上記(5)において、印加電圧制御部722は、放電判定部721がコロナ放電が発生したと判定したときに、電位計測部48によって計測された実測電位Eacと、予想電位算出部723により算出された予想電位Eesとに基づき、高圧電極42への印加電圧の下限である下限印加電圧Vminを設定し、定電圧高圧電源部40に対し、下限印加電圧Vmin以上の電圧を高圧電極42に印加させる、電気集塵機2。 (6) In (5) above, the applied voltage control unit 722 determines the measured potential E ac measured by the potential measurement unit 48 and the expected potential calculation unit when the discharge determination unit 721 determines that corona discharge has occurred. based on the expected potential E es calculated by 723 to set the lower limit applied voltage V min is the lower limit of the voltage applied to the high-voltage electrode 42, with respect to the constant-voltage high-voltage power supply unit 40, the lower limit applied voltage V min or more voltage Is applied to the high voltage electrode 42.

(7)上記(2)〜(6)のいずれかにおいて、集塵部4におけるコロナ放電を検出する放電検出センサを備え、放電判定部721は、放電検出センサの検出結果に基づいて、コロナ放電の発生の有無を判定する、電気集塵機2。 (7) In any one of (2) to (6) above, a discharge detection sensor that detects corona discharge in the dust collecting unit 4 is provided, and the discharge determination unit 721 determines the corona discharge based on the detection result of the discharge detection sensor. An electrostatic precipitator 2 that determines the occurrence of

また、本実施例では、上記(2)〜(6)の構成を有することから、コロナ放電が発生しても、集塵性能の低下を十分に抑えるとともに、無駄な電力消費を抑制することが可能となる。 Further, in the present embodiment, since it has the configurations of (2) to (6) above, even if corona discharge occurs, it is possible to sufficiently suppress the deterioration of the dust collection performance and suppress unnecessary power consumption. It will be possible.

1 空気清浄機
2 電気集塵機
4 集塵部
7 制御部
40 定電圧高圧電源部
41 電極部
42 高圧電極
72 集塵部出力制御部
721 放電判定部
722 印加電圧制御部
723 予想電位算出部
1 Air Purifier 2 Electric Dust Collector 4 Dust Collection Part 7 Control Part 40 Constant Voltage High Voltage Power Supply Part 41 Electrode Part 42 High Voltage Electrode 72 Dust Collection Part Output Control Part 721 Discharge Judgment Part 722 Applied Voltage Control Part 723 Expected Potential Calculation Part

Claims (7)

塵埃を帯電させる荷電部と、
複数の集塵電極と半絶縁性樹脂で形成された複数の高圧電極とが交互に配置されるとともに、前記荷電部で帯電された塵埃を捕集する集塵部と、
前記高圧電極に電圧を印加する電源部と、
前記集塵部におけるコロナ放電の発生の有無を判定し、前記コロナ放電が発生したと判定すると、当該コロナ放電が開始される放電開始印加電圧を検出し、前記電源部に対し、検出した前記放電開始印加電圧よりも小さい電圧を前記高圧電極に印加させる制御部と、を備える電気集塵機。
A charging unit that charges dust,
A plurality of dust collecting electrodes and a plurality of high-voltage electrodes formed of a semi-insulating resin are alternately arranged, and a dust collecting portion that collects the dust charged by the charging portion,
A power supply unit for applying a voltage to the high-voltage electrode,
The presence or absence of corona discharge in the dust collecting portion is determined, and when it is determined that the corona discharge has occurred, the discharge start applied voltage at which the corona discharge is started is detected, and the detected discharge is detected with respect to the power supply unit. A control unit that applies a voltage lower than a start applied voltage to the high-voltage electrode, the electrostatic precipitator.
前記制御部は、
前記集塵部におけるコロナ放電の発生の有無を判定する放電判定部と、
前記放電判定部が前記コロナ放電が発生したと判定した場合、前記放電開始印加電圧を探索する放電開始電圧探索処理を行う印加電圧制御部と、を有し、
前記印加電圧制御部は、
前記放電開始電圧探索処理を行った後、探索した前記放電開始印加電圧よりも小さい電圧で前記高圧電極に印加させる制御を行う、請求項1に記載の電気集塵機。
The control unit is
A discharge determination unit that determines the presence or absence of corona discharge in the dust collection unit,
If the discharge determination unit determines that the corona discharge has occurred, an applied voltage control unit that performs a discharge start voltage search process for searching the discharge start applied voltage, and
The applied voltage control unit,
The electrostatic precipitator according to claim 1, wherein after performing the discharge start voltage searching process, control is performed to apply the voltage to the high-voltage electrode with a voltage lower than the searched discharge start applied voltage.
前記印加電圧制御部は、
前記放電開始電圧探索処理に際し、前記高圧電極への印加電圧を漸次小さくなるように変化させて前記放電開始印加電圧を探索する、請求項2に記載の電気集塵機。
The applied voltage control unit,
The electrostatic precipitator according to claim 2, wherein, in the discharge start voltage searching process, the discharge start applied voltage is searched by changing the voltage applied to the high-voltage electrode so as to be gradually decreased.
前記集塵部は、
前記高圧電極の電位を測定する電位計測部を備え、
前記印加電圧制御部は、
前記電位計測部で計測された実測電位に基づいて、前記放電開始印加電圧を探索する、請求項2または3に記載の電気集塵機。
The dust collecting section is
Equipped with a potential measuring unit for measuring the potential of the high voltage electrode,
The applied voltage control unit,
The electrostatic precipitator according to claim 2 or 3, wherein the discharge start applied voltage is searched for based on an actually measured potential measured by the potential measuring unit.
前記制御部は、
前記集塵部で前記コロナ放電が発生していないと仮定した場合に、前記電位計測部での計測が予想される予想電位を算出する予想電位算出部をさらに備え、
前記放電判定部は、
前記予想電位算出部により算出した前記予想電位と前記電位計測部による実測電位との差が所定の閾値よりも大きい場合、前記集塵部において前記コロナ放電が発生したと判定する、請求項4に記載の電気集塵機。
The control unit is
When it is assumed that the corona discharge has not occurred in the dust collecting unit, further comprises an expected potential calculation unit for calculating an expected potential expected to be measured by the potential measurement unit,
The discharge determination unit,
The corona discharge is determined to have occurred in the dust collecting unit when the difference between the predicted potential calculated by the predicted potential calculation unit and the measured potential by the potential measurement unit is larger than a predetermined threshold value. The described electrostatic precipitator.
前記印加電圧制御部は、
前記放電判定部が前記コロナ放電が発生したと判定したときに、前記電位計測部によって計測された実測電位と、前記予想電位算出部により算出された予想電位とに基づき、前記高圧電極への印加電圧の下限である下限印加電圧を設定し、前記電源部に対し、前記下限印加電圧以上の電圧を前記高圧電極に印加させる、請求項5に記載の電気集塵機。
The applied voltage control unit,
When the discharge determining unit determines that the corona discharge has occurred, application to the high-voltage electrode based on the actually measured potential measured by the potential measuring unit and the expected potential calculated by the expected potential calculating unit. The electrostatic precipitator according to claim 5, wherein a lower limit applied voltage that is a lower limit of the voltage is set, and a voltage equal to or higher than the lower limit applied voltage is applied to the high-voltage electrode with respect to the power supply unit.
前記集塵部におけるコロナ放電を検出する放電検出センサを備え、
前記放電判定部は、
前記放電検出センサの検出結果に基づいて、前記コロナ放電の発生の有無を判定する、請求項2から4のいずれか一つに記載の電気集塵機。
A discharge detection sensor for detecting corona discharge in the dust collecting portion is provided,
The discharge determination unit,
The electrostatic precipitator according to claim 2, wherein the presence or absence of the corona discharge is determined based on the detection result of the discharge detection sensor.
JP2018226027A 2018-11-30 2018-11-30 electric dust collector Active JP7275548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018226027A JP7275548B2 (en) 2018-11-30 2018-11-30 electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018226027A JP7275548B2 (en) 2018-11-30 2018-11-30 electric dust collector

Publications (2)

Publication Number Publication Date
JP2020082043A true JP2020082043A (en) 2020-06-04
JP7275548B2 JP7275548B2 (en) 2023-05-18

Family

ID=70905777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018226027A Active JP7275548B2 (en) 2018-11-30 2018-11-30 electric dust collector

Country Status (1)

Country Link
JP (1) JP7275548B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939594B1 (en) * 1970-11-11 1974-10-26
JPH0199658A (en) * 1987-10-08 1989-04-18 Sumitomo Heavy Ind Ltd Charge controlling method for pulse charge-type electrostatic precipitator
JPH0871451A (en) * 1994-09-05 1996-03-19 Midori Anzen Co Ltd Electrostatic precipitator
US20080264249A1 (en) * 2005-10-31 2008-10-30 Indigo Technologies Group Pty Ltd Precipitator Energisation Control System
JP2010029839A (en) * 2008-07-03 2010-02-12 Panasonic Corp Electrostatic dust collecting device
JP2014226661A (en) * 2013-05-21 2014-12-08 株式会社トルネックス Electric dust collector for habitable room ventilation and ventilation system incorporated with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939594B1 (en) * 1970-11-11 1974-10-26
JPH0199658A (en) * 1987-10-08 1989-04-18 Sumitomo Heavy Ind Ltd Charge controlling method for pulse charge-type electrostatic precipitator
JPH0871451A (en) * 1994-09-05 1996-03-19 Midori Anzen Co Ltd Electrostatic precipitator
US20080264249A1 (en) * 2005-10-31 2008-10-30 Indigo Technologies Group Pty Ltd Precipitator Energisation Control System
JP2010029839A (en) * 2008-07-03 2010-02-12 Panasonic Corp Electrostatic dust collecting device
JP2014226661A (en) * 2013-05-21 2014-12-08 株式会社トルネックス Electric dust collector for habitable room ventilation and ventilation system incorporated with the same

Also Published As

Publication number Publication date
JP7275548B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
KR101669295B1 (en) Apparatus, system, and method for enhancing air purification efficiency
CA2657506C (en) Air cleaner including constant current power supply
Wen et al. Novel electrodes of an electrostatic precipitator for air filtration
KR102085825B1 (en) Air conditioner and Control method of the same
WO2018089666A1 (en) Electrostatic air purification device and air purifier
JP2010075864A (en) Electric dust precipitator
KR102219778B1 (en) Self-cleaning electrostatic precipitator and air cleaner using thereof
JP2018126714A (en) Electrostatic precipitator and blower
US20190143339A1 (en) Charger, electric dust collector, ventilator, and air cleaner
JP7275548B2 (en) electric dust collector
KR20190129335A (en) Air cleaner calculating information for its used space
JP7416141B2 (en) Dust collectors and vacuum cleaners
JP2006281135A (en) Dust collector
JP7363058B2 (en) Charging devices and electrostatic precipitators
KR100694618B1 (en) A wet-type dust collecting apparatus
JP2011161348A (en) Apparatus and method for removing oil mist
JP2011031127A (en) Dust collector
JP2017124363A (en) Air cleaner
JP2008023445A (en) Dust collector
JP2022153185A (en) Ion generator and electric dust collector
JP2020048725A (en) Charging type vacuum cleaner
JP6701741B2 (en) Air cleaner
JP7187797B2 (en) Charging device
JP2015182000A (en) Air purifying device
JPH08155333A (en) Air cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R151 Written notification of patent or utility model registration

Ref document number: 7275548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151