JP2020082035A - Coal ash volume reduction method - Google Patents

Coal ash volume reduction method Download PDF

Info

Publication number
JP2020082035A
JP2020082035A JP2018224831A JP2018224831A JP2020082035A JP 2020082035 A JP2020082035 A JP 2020082035A JP 2018224831 A JP2018224831 A JP 2018224831A JP 2018224831 A JP2018224831 A JP 2018224831A JP 2020082035 A JP2020082035 A JP 2020082035A
Authority
JP
Japan
Prior art keywords
amount
coal ash
predetermined
cooling
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018224831A
Other languages
Japanese (ja)
Other versions
JP7140346B2 (en
Inventor
田中 等
Hitoshi Tanaka
等 田中
隆仁 及川
Takahito Oikawa
隆仁 及川
勝二 佃
Shoji Tsukuda
勝二 佃
渡辺 健一
Kenichi Watanabe
健一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Chugoku Koatsu Concrete Industries Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Chugoku Koatsu Concrete Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Chugoku Koatsu Concrete Industries Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2018224831A priority Critical patent/JP7140346B2/en
Publication of JP2020082035A publication Critical patent/JP2020082035A/en
Application granted granted Critical
Publication of JP7140346B2 publication Critical patent/JP7140346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To provide a coal ash volume reduction method where efficient coal ash volume reduction is achieved and the elution of heavy metals can be equal to a reference value or less.SOLUTION: A coal ash volume reduction method includes: an ignition loss amount adjustment step 100 adjusting the ignition loss amount of coal ash to a predetermined value; an Na amount adjustment step 200 adjusting an Na amount in an Na source mixed in coal ash to a predetermined value; a mixing step 300 mixing an Na source amount adjusted by the Na amount adjustment step 200 to coal ash whose ignition loss amount is adjusted by the ignition loss amount adjustment step 100; a heating step 400 where microwaves with a predetermined frequency are irradiated onto a mixture mixed by the mixing step 300 in a predetermined time for increasing the temperature of the mixture to a predetermined temperature and the mixture is sintered; and a cooling step 500 cooling a sintered material heated by the heating step 400 by a predetermined cooling method.SELECTED DRAWING: Figure 1

Description

本発明は、石炭灰を有効活用するための石炭灰減容化方法に関する。 The present invention relates to a coal ash volume reduction method for effectively utilizing coal ash.

特許文献1(特開2006−117478号公報)は、石炭灰硬化体の養生工程を常圧水蒸気養生といった製法を用いて、反応温度及び反応時間を大幅に低減することを目的としたもので、石炭灰、石灰質原料、補強繊維、水、およびケイ酸質原料と石灰質原料との混合物固形分100重量部に対して、固形分8重両部以下の水酸化ナトリウムを含有する混合材料を成形した後、所定の温度で前乾燥し、常圧水蒸気養生またはマイクロ波−水熱養生によって固化させ、後乾燥する石炭灰硬化体及びその省エネルギー製造方法を開示する。また、石炭灰と石灰質原料との混合物に水酸化ナトリウムを添加したことにより、養生工程での硬化が促進し、機械的強度が向上すると共に、乾燥工程における変形がなく、寸法安定性の優れた高強度成形体が得られることが開示され、さらに水酸化ナトリウム添加量は8重量部以下が望ましいことも開示される。さらにまた、前乾燥及び後乾燥にマイクロ波乾燥を用いることが開示される。 Patent Document 1 (Japanese Patent Laid-Open No. 2006-117478) is intended to significantly reduce the reaction temperature and reaction time by using a method such as atmospheric pressure steam curing for the curing process of the coal ash cured body, Coal ash, calcareous raw material, reinforcing fiber, water, and a mixture of siliceous raw material and calcareous raw material 100 parts by weight of solid content, a mixed material containing 8 parts by weight or less of solid content of sodium hydroxide was molded. Then, a coal ash cured product, which is pre-dried at a predetermined temperature, solidified by atmospheric pressure steam curing or microwave-hydrothermal curing, and post-dried, and an energy-saving production method thereof are disclosed. Further, by adding sodium hydroxide to the mixture of coal ash and calcareous raw material, curing in the curing step is promoted, mechanical strength is improved, and there is no deformation in the drying step, which is excellent in dimensional stability. It is disclosed that a high-strength molded product can be obtained, and it is further disclosed that the addition amount of sodium hydroxide is desirably 8 parts by weight or less. Furthermore, the use of microwave drying for pre-drying and post-drying is disclosed.

特許文献2(特開2018−58027号公報)は、石炭灰由来のセシウム、ストロンチウム吸着材であって、前記吸着材がゼオライト前駆体を主成分として含有する吸着材を提供するもので、非晶質のアルミナ珪酸塩とゼオライト化したアルミナ珪酸塩とを含む吸着材の製造方法を開示する。この特許文献2において、前記製造方法は、石炭灰にアルカリ水溶液を添加し、70〜120℃で加熱してゼオライト前駆体を得る工程と、ゼオライト前駆体を含む水溶液からゼオライト前駆体を分離する工程とを含むもので、加熱手段がマイクロ波であるが開示されている。 Patent Document 2 (Japanese Unexamined Patent Publication No. 2018-58027) is an adsorbent containing cesium and strontium derived from coal ash, wherein the adsorbent contains a zeolite precursor as a main component, and is amorphous. Disclosed is a method for producing an adsorbent containing a high quality alumina silicate and a zeolitized alumina silicate. In this patent document 2, the manufacturing method is a step of adding an alkaline aqueous solution to coal ash and heating at 70 to 120° C. to obtain a zeolite precursor, and a step of separating the zeolite precursor from the aqueous solution containing the zeolite precursor. It is disclosed that the heating means is a microwave.

特許文献3(特開平9−30857号公報)は、フライアッシュ、シンダーアッシュ、ボトムアッシュなど微粉炭燃焼石炭火力ボイラーより発生した石炭灰を成形後、焼結して形成された焼結体を開示する。この特許文献3では、未然カーボンを含む石炭灰について、従来のブレーン比表面積や強熱減量値などでは焼結体減量としての物性を十分に把握できないことから、未然カーボン量を、BET比表面積を指標として把握し、これをフルイ上残分量で表される粒度と共に管理指標とすることにより燒結体減量として良質な石炭灰を選別し、高強度でヒビ割れのない燒結体を得ることが開示される。 Patent Document 3 (Japanese Patent Laid-Open No. 9-30857) discloses a sintered body formed by sintering coal ash generated from a pulverized coal burning coal-fired boiler such as fly ash, cinder ash, and bottom ash, and then sintering the coal ash. To do. In Patent Document 3, since it is not possible to sufficiently grasp the physical properties as the weight loss of the sintered body by the conventional Blaine specific surface area, ignition loss value, etc., regarding the coal ash containing carbon, the carbon amount can be calculated as the BET specific surface area. It is disclosed that a good quality coal ash is selected as a sinter loss by selecting the quality index as a control index together with the particle size represented by the residual amount on the screen as a control index, and obtaining a high-strength, non-cracked sinter. It

特許文献4(特開昭56−54267号公報)は、石炭火力発電所等よりえられる石炭灰(フライアッシュ、クリンカーを含む)に、燐酸、重合燐酸、亜燐酸、次亜燐酸、及びそれらの塩類よりなる群から選ばれた少なくとも1種を混合して成る硬化性組成物を開示する。この特許文献4では、燐酸を石炭灰に混練することによって、石炭灰が硬化することが開示され、さらに希薄な燐酸を用いれば硬化時間が長くなって強度が低くなる傾向があり、濃厚な燐酸を用いれば硬化時間が短くなって強度が大となることが開示される。また、実施例では、イグロス2.78%の石炭灰を使用することが開示される。 Patent Document 4 (Japanese Patent Laid-Open No. 56-54267) discloses that coal ash (including fly ash and clinker) obtained from a coal-fired power plant, includes phosphoric acid, polymerized phosphoric acid, phosphorous acid, hypophosphorous acid, and those Disclosed is a curable composition obtained by mixing at least one selected from the group consisting of salts. This Patent Document 4 discloses that coal ash is hardened by kneading phosphoric acid with coal ash. Further, if dilute phosphoric acid is used, the hardening time tends to be long and the strength tends to be low. It is disclosed that when is used, the curing time is shortened and the strength is increased. Also, in the examples, it is disclosed to use 2.78% Igros coal ash.

特開2006−117478号公報JP, 2006-117478, A 特開2018−58027号公報JP, 2018-58027, A 特開平9−30857号公報JP-A-9-30857 特開昭56−54267号公報Japanese Patent Laid-Open No. 56-54267

近年、石炭灰のリサイクルの観点から、石炭灰の硬化・減量化が重要な課題となっている。石炭火力発電所では、粉砕された石炭粉がボイラーで燃焼され、その熱エネルギーが電気に変換されるが、石炭灰の粒子はこの燃焼によって溶融して高温の燃焼ガス中に浮遊し、ボイラーの出口に向かって温度が下がるにつれて球状になり、集塵機に捕捉される。これによって生じた石炭灰の主成分は、「シリカ」と「アルミナ」であり、これらを利用して、セメント原料や、コンクリート混和材、充填材、シールド材、土壌・地盤改良材等の原料として使用され、残りは埋立処分されている。しかしながら、現在では、コストと環境保護の観点から、新しい処分場の確保は困難になってきており、埋立地の使用を継続する場合には、プラントによって生産される石炭灰の量を減少させる必要がある。さらに、石炭灰の焼結および硬化は、新しい構造材料の開発をもたらすことも期待されている。 In recent years, from the viewpoint of recycling coal ash, hardening and weight reduction of coal ash have become important issues. In a coal-fired power plant, crushed coal powder is burned in a boiler and its thermal energy is converted into electricity, but the particles of coal ash are melted by this combustion and float in the hot combustion gas, As the temperature decreases toward the outlet, it becomes spherical and is captured by the dust collector. The main components of the coal ash generated by this are "silica" and "alumina", which are used as raw materials for cement raw materials, concrete admixtures, fillers, shielding materials, soil/ground improvement materials, etc. Used, the rest is landfilled. However, from the viewpoint of cost and environmental protection, it is now difficult to secure a new disposal site, and if the landfill site continues to be used, it is necessary to reduce the amount of coal ash produced by the plant. There is. Furthermore, the sintering and hardening of coal ash is also expected to lead to the development of new structural materials.

また、石炭灰及び燒結体には、微量ではあるが、六価クロム、ヒ素、セレン、フッ素、ホウ素などの重金属類が含まれており、最終製品からのこれら重金属類の溶出が基準値以下でなければならない。 In addition, coal ash and sintered body contain heavy metals such as hexavalent chromium, arsenic, selenium, fluorine, and boron, although the amount is small, and the elution of these heavy metals from the final product is below the standard value. There must be.

このため、本発明は、効率的な石炭灰の減容化を達成し、さらに重金属類の溶出を基準値以下とすることのできる石炭灰の減容化方法を提供するものである。 For this reason, the present invention provides a method for reducing the volume of coal ash that can achieve efficient volume reduction of coal ash and further reduce the elution of heavy metals to a reference value or less.

したがって、本発明に係る減容化方法は、石炭灰のイグロス量を所定の値に調整するイグロス量調整工程と、前記石炭灰に混合されるNa源のNa量を所定の値に調整するNa量調整工程と、前記イグロス量調整工程によってイグロス量が調整された石炭灰及び前記Na量調整工程によって調整された量のNa源を混合する混合工程と、混合工程によって混合された混合物を所定の温度まで上昇させるために、前記混合物に所定の周波数のマイクロ波を所定の時間照射して燒結させる加熱工程と、該加熱工程によって加熱された燒結物を所定の冷却方法で冷却する冷却工程とによって構成される。 Therefore, the volume-reducing method according to the present invention comprises an igross amount adjusting step of adjusting the igross amount of the coal ash to a predetermined value, and a Na amount of Na source mixed with the coal ash to a predetermined value. Amount adjustment step, a mixing step of mixing the coal ash of which the amount of igross has been adjusted by the igross amount adjusting step and the amount of the Na source adjusted by the Na amount adjusting step, and the mixture mixed by the mixing step have a predetermined In order to raise the temperature, a heating step of irradiating the mixture with microwaves of a predetermined frequency for a predetermined time to sinter, and a cooling step of cooling the sinter heated by the heating step by a predetermined cooling method Composed.

前記イグロス量の所定の値は、石炭灰重量を基準として10重量%以下、好ましくは4.4〜7.2重量%の範囲内、より好ましくは6重量%であることが望ましい。石炭灰のイグロス量の調整については、所定の発電所毎に生じるイグロス量(強熱減量)の異なる石炭灰を混合させることによって石炭灰のイグロス量を調整することが可能である。例えば、新小野田発電所で生じる石炭灰(新小野田灰)のイグロス量は3%程度であるのに対して、水島発電所で生じる石炭灰(水島灰)のイグロス量は17%程度であることから、新小野田灰の配合を多くするとイグロス量は低下し、水島灰の配合を多くするとイグロス量は上昇する。 It is desirable that the predetermined value of the Igros amount is 10% by weight or less based on the weight of coal ash, preferably in the range of 4.4 to 7.2% by weight, and more preferably 6% by weight. Regarding the adjustment of the amount of coal ash, it is possible to adjust the amount of coal ash by mixing coal ash with different amounts of ignition (ignition loss) generated at each predetermined power plant. For example, the amount of coal ash (Shin-Onoda ash) generated at the Shin-Onoda power plant is about 3%, whereas the amount of coal ash (Mizushima ash) generated at the Mizushima power plant is about 17%. Therefore, when the amount of Shin Onoda ash is increased, the amount of Igros decreases, and when the amount of Mizushima ash is increased, the amount of Igros increases.

前記Na量は、石炭灰重量を基準として0.5〜2.33重量%の範囲内、好ましくは1.0〜1.5重量%の範囲内、より好ましくは1.0重量%であることが望ましい。また、Na源としては、水酸化ナトリウム溶液若しくは塩化ナトリウム溶液であることが望ましく、さらに塩化ナトリウム溶液の代わりとして海水を用いることが望ましい。 The amount of Na is in the range of 0.5 to 2.33% by weight, preferably in the range of 1.0 to 1.5% by weight, and more preferably 1.0% by weight, based on the weight of coal ash. Is desirable. The Na source is preferably a sodium hydroxide solution or a sodium chloride solution, and seawater is preferably used instead of the sodium chloride solution.

前記加熱工程で照射されるマイクロ波の周波数は、2.45GHz±0.5GHzであることが望ましく、混合物に照射される成分が電界成分であることが望ましい。また、この加熱工程では、マイクロ波を照射することにより、800℃以上、特に1200℃以上の温度まで加熱することが望ましい。また、所定の温度までの到達時間は、前述したNa量によって変化する。 The frequency of the microwave applied in the heating step is preferably 2.45 GHz±0.5 GHz, and the component applied to the mixture is preferably the electric field component. Further, in this heating step, it is desirable to heat to a temperature of 800° C. or higher, particularly 1200° C. or higher by irradiating with microwaves. Also, the time required to reach the predetermined temperature changes depending on the amount of Na described above.

前記冷却工程の冷却方法は、最終生成物の用途によって異なるもので、燒結形状を保持した状態の最終生成物としたい場合には徐冷することが望ましく、クリンカ化した最終生成物としたい場合には急冷することが望ましい。さらに、急冷については、大気急冷と水中急冷とがある。 The cooling method of the cooling step differs depending on the use of the final product, and it is desirable to gradually cool the final product in a state where the sintered shape is retained, and it is preferable to use the clinker final product when the final product is desired. It is desirable to quench rapidly. Further, regarding rapid cooling, there are atmospheric quenching and underwater quenching.

本発明によれば、所定の割合のイグロスを有する石炭灰に、さらに所定のNa量を有するNa源を混合したことにより、短時間で所定の温度まで加熱することができ、溶融前後の密度比から、最大50%程度まで体積を減ずることが可能となるものである。また、消滅・溶融させた場合の重金属類の溶出を基準値以内にすることが可能となる。 According to the present invention, the coal ash having a predetermined proportion of Igros is further mixed with a Na source having a predetermined amount of Na, so that it can be heated to a predetermined temperature in a short time, and the density ratio before and after melting. Therefore, the volume can be reduced to about 50% at the maximum. Further, it becomes possible to keep the elution of heavy metals within the standard value when they are extinguished/melted.

本発明に係る減容化方法の概略を示したブロック図である。It is the block diagram which showed the outline of the volume reduction method which concerns on this invention. イグロス量が異なる組成に関するμ波照射時間と表面温度の関係を示した特性線図である。FIG. 5 is a characteristic diagram showing a relationship between μ wave irradiation time and surface temperature for compositions having different amounts of igross. Na量が異なる石炭灰に関するμ波照射時間と表面温度の関係を示した特性線図である。It is a characteristic diagram which showed the relationship between the μ wave irradiation time and the surface temperature of coal ash with different Na amounts. イグロス量10.0%の石炭灰において、NaOHの量を変化させた場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。FIG. 3 is a characteristic diagram showing the relationship between microwave irradiation time and surface temperature when the amount of NaOH is changed in coal ash with an Igros amount of 10.0%. イグロス量7.7%の石炭灰において、NaOHの量を変化させた場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。FIG. 6 is a characteristic diagram showing the relationship between the microwave irradiation time and the surface temperature when the amount of NaOH is changed in coal ash having an igloss amount of 7.7%. イグロス量6.5%の石炭灰において、NaOHの量を変化させた場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。FIG. 4 is a characteristic diagram showing the relationship between microwave irradiation time and surface temperature when the amount of NaOH is changed in coal ash with an Igros amount of 6.5%. イグロス量5.8%の石炭灰において、NaOHの量を変化させた場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。FIG. 7 is a characteristic diagram showing the relationship between microwave irradiation time and surface temperature when the amount of NaOH is changed in coal ash with an igloss amount of 5.8%. イグロス量5.0%の石炭灰において、NaOHの量を変化させた場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。It is a characteristic diagram which showed the relationship between the microwave irradiation time and the surface temperature when the amount of NaOH is changed in the coal ash with an amount of 5.0% of gross. イグロス量4.4%の石炭灰において、NaOHの量を変化させた場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。FIG. 7 is a characteristic diagram showing the relationship between microwave irradiation time and surface temperature when the amount of NaOH is changed in coal ash with an amount of 4.4% igross. イグロス量4.2%の石炭灰において、NaOHの量を変化させた場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。FIG. 4 is a characteristic diagram showing the relationship between the microwave irradiation time and the surface temperature when the amount of NaOH is changed in coal ash with an Igros amount of 4.2%. イグロス量5.8%の場合のNaOHの濃度と昇温時間の関係を示したグラフである。6 is a graph showing the relationship between the concentration of NaOH and the heating time when the amount of igloss is 5.8%. イグロス量5.8%の場合の食塩、海水、水道水の場合のマイクロ波照射時間と表面温度の関係を示した特性線図である。FIG. 4 is a characteristic diagram showing the relationship between microwave irradiation time and surface temperature in the case of salt, seawater, and tap water when the amount of igross is 5.8%. 石炭灰及び燒結体の重金属類の溶出試験結果を示した表である。It is the table which showed the elution test result of the heavy metals of coal ash and a sintered body.

以下、この発明の実施例について図面により説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本願発明に係る減容化方法は、図1で示すように、石炭灰のイグロス量を所定の値に調整するイグロス量調整工程100と、前記石炭灰に混合されるNa源のNa量を所定の値に調整するNa量調整工程200と、前記イグロス量調整工程によってイグロス量が調整された石炭灰及び前記Na量調整工程によって調整された量のNa源を混合する混合工程300と、混合工程300によって混合された混合物を所定の温度まで上昇させるために、前記混合物に所定の周波数のマイクロ波を所定の時間照射して燒結させる加熱工程400と、該加熱工程400によって加熱された燒結物を所定の冷却方法で冷却する冷却工程500とによって構成される。 The volume reduction method according to the present invention, as shown in FIG. 1, an igross amount adjusting step 100 for adjusting the igross amount of coal ash to a predetermined value, and a Na amount of a Na source mixed with the coal ash to a predetermined value. A Na amount adjusting step 200 of adjusting the value of the above, a mixing step 300 of mixing the coal ash having an igros amount adjusted by the igros amount adjusting step and a Na source of the amount adjusted by the Na amount adjusting step, and a mixing step. In order to raise the temperature of the mixture mixed by 300 to a predetermined temperature, a heating step 400 of irradiating the mixture with a microwave having a predetermined frequency for a predetermined time and sintering the mixture, and a sintered product heated by the heating step 400 And a cooling step 500 for cooling with a predetermined cooling method.

前記イグロス量調整工程100におけるイグロス量の調整は、例えばイグロス量(強熱減量)が3%前後と低い新小野田発電所から生じる石炭灰(新小野田灰)と、イグロス量が17%前後と高い水島発電所から生じる石炭灰(水島灰)とを混合することによって可能である。下記する表1は、イグロス量の調整を示すもので、Aは新小野田灰であり、Bは水島灰である。 The adjustment of the igross amount in the igross amount adjusting step 100 is performed by, for example, a coal ash (New Onoda ash) generated from the Shin-Onoda power plant having a low igross amount (ignition loss) of around 3% and a high igros amount of around 17%. It is possible by mixing with coal ash (Mizushima ash) generated from the Mizushima power plant. Table 1 below shows the adjustment of the amount of Igros, where A is Shin Onoda ash and B is Mizushima ash.

石炭灰に配合されるべき最適なイグロス量を決定するために、表1に記載された各試料1乃至7及び新小野田灰のみを容器(陶製)に投入し、断熱容器で囲った状態で、電子レンジにてマイクロ波(μ波)を照射し加熱(500W)を行った。μ波照射開始後、電子レンジから適宜取り出し、断熱容器の上部に設けられた穴から照射温度計にて試料の表面温度を計測した。目標温度は1100℃とした。加熱終了後、試料を断熱材で囲った状態で室内にて冷却し、燒結・溶融状況(試料の噴上げ、燒結、溶融)を確認した。この結果は、図2に示すものである。この図2において、試料1(点線+)、試料2(点線△)、試料3(点線◇)、試料4(点線□)、試料5(点線〇)、試料6(点線×)、試料7(点線■)、新小野田灰(実線×)の実験結果が特性線として示される。また、それぞれに記載されるラベルの凡例として(試料の噴上げ、燒結、溶融)が示される。噴き上げとしては、多、中、少、無が実験結果から選択され、燒結・溶融としては、〇:全体、□:大部分、△:中〜小部分、×:無しが実験結果から選択される。 In order to determine the optimum amount of Igros to be blended with the coal ash, only the samples 1 to 7 and Shin Onoda ash described in Table 1 were put into a container (ceramic) and surrounded by a heat insulating container, Microwaves (μ waves) were irradiated in a microwave oven to heat (500 W). After the start of μ wave irradiation, the sample was taken out from the microwave oven as appropriate, and the surface temperature of the sample was measured from the hole provided in the upper part of the heat insulating container with an irradiation thermometer. The target temperature was 1100°C. After completion of heating, the sample was cooled in a room while being surrounded by a heat insulating material, and the state of sintering and melting (spouting of sample, sintering, melting) was confirmed. The result is shown in FIG. In FIG. 2, sample 1 (dotted line +), sample 2 (dotted line Δ), sample 3 (dotted line ◇), sample 4 (dotted line □), sample 5 (dotted line ◯), sample 6 (dotted line ×), sample 7 ( The experimental results of the dotted line ■) and Shin Onoda ash (solid line ×) are shown as characteristic lines. In addition, the legend of the label described in each is shown (spouting of sample, sintering, melting). Large, medium, small, and nothing are selected from the experimental results as the spray, and ◯: whole, □: large part, Δ: medium to small part, ×: none is selected from the experimental result as the sintering/melting. ..

この図2に示される実験結果として、イグロス量が低下するにつれて、例えば試料1(イグロス量10%)から低下するにつれて、昇温温度が小さくなる傾向が概ね認められた。また、μ波の照射時間と温度昇温時間、及び噴上げ、燒結・溶融の実験結果から、試料2(イグロス量7.7%)〜試料6(イグロス量4.4%)までが良好な結果(噴上げ:無し、燒結:大部分(□))を示すことが判明し、さらに試料4(イグロス量5.8%)の実験結果が(噴上げ:無し、燒結:大部分(□)、溶融:大部分(□))であり、最も適していることが判明した。 As a result of the experiment shown in FIG. 2, it was generally observed that the temperature rise became smaller as the amount of igross decreased, for example, from Sample 1 (10% of the amount of igros). Also, from the irradiation time of the μ wave and the temperature rising time, and the experimental results of jetting, sintering and melting, Sample 2 (igloss amount 7.7%) to Sample 6 (igloss amount 4.4%) were favorable. It was found that the results (spouting: none, sintering: most (□)) were shown, and the experimental results of sample 4 (igloss amount 5.8%) were (squirt: none, sintering: most (□)). , Melting: Most (□)), which proved to be the most suitable.

これにより、イグロス量調整工程100では、イグロス量が大きい石炭灰(例えば水島灰)とイグロス量が低い石炭灰(新小野田灰)と混合してイグロス量10%以下の石炭灰混合物(混合灰)(試料1)を形成する。好ましくは、イグロス量が大きい石炭灰(例えば水島灰)とイグロス量が低い石炭灰(新小野田灰)と混合してイグロス量4.4〜7.7%の間のイグロス量を有する石炭灰混合物(混合灰)を形成する(試料2、3,5,6,7)。さらに好ましくは、イグロス量が大きい石炭灰(例えば水島灰)とイグロス量が低い石炭灰(新小野田灰)と混合してイグロス量5.8%を有する石炭灰混合物(混合灰)を形成する(試料4)。 As a result, in the igross amount adjusting step 100, a coal ash mixture (mixed ash) having an igross amount of 10% or less is obtained by mixing the coal ash having a large igross amount (for example, Mizushima ash) and the coal ash having a low igross amount (Shin Onoda ash). (Sample 1) is formed. Preferably, a coal ash mixture having a large amount of igros (for example, Mizushima ash) and a coal ash having a low amount of igros (Shin Onoda ash) and having an amount of igros between 4.4 and 7.7% is used. (Mixed ash) is formed (Samples 2, 3, 5, 6, 7). More preferably, a coal ash having a large amount of igros (for example, Mizushima ash) and a coal ash having a small amount of igros (Shin Onoda ash) are mixed to form a coal ash mixture (mixed ash) having an amount of 5.8% ( Sample 4).

前記イグロス量調整工程100で取得された混合灰に混合されるNa量について、図3に示すように、イグロス量5.8%の混合灰へのNaOHの添加量を10%〜1%まで変化させてマイクロ波で昇温させた結果、添加量10%〜3%までは昇温し易いことが判明したが、3%以上添加するとNa分の溶融とイグロスのガスの噴出の関係から噴き上がり減少が生じる場合があった。 As for the amount of Na mixed in the mixed ash obtained in the igross amount adjusting step 100, as shown in FIG. 3, the amount of NaOH added to the mixed ash having an amount of 5.8% was changed from 10% to 1%. As a result of heating with microwaves, it was found that the temperature could easily be raised up to the addition amount of 10% to 3%. There may be a decrease.

さらに、図4乃至図10では、異なるイグロス量を含む石炭灰混合物にNa添加量を変化させた実験結果が示される。これらの実験では、Na添加物として水酸化ナトリウム(NaOH)を使用した。それぞれの実験結果として、図4に示す実験結果では、イグロス量が10%、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が20分以下であった。図5に示す実験結果では、イグロス量が7.7%、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が20分以下であった。図6に示す実験結果では、イグロス量が6.5%、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が20分以下であった。図7に示す実験結果では、イグロス量が5.8%、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が30分以下であった。図8に示す実験結果では、イグロス量が5.0%、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が40分以下であった。図9に示す実験結果では、イグロス量が4.4%、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が40分以下であった。図10に示す実験結果では、イグロス量が4.2%、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が45分以下であった。また、新小野田灰のみ(イグロス量3%)の場合、NaOHが1%〜3%のときは、噴上げがなく、昇温時間(1200℃到達時間)が120分以下であった。 Further, FIGS. 4 to 10 show experimental results in which the amount of added Na was changed in the coal ash mixture containing different amounts of Igros. Sodium hydroxide (NaOH) was used as the Na additive in these experiments. As the respective experimental results, in the experimental results shown in FIG. 4, when the amount of Igros was 10% and the amount of NaOH was 1% to 3%, there was no jetting and the temperature rise time (1200°C arrival time) was 20 minutes or less. there were. In the experimental results shown in FIG. 5, when the amount of igloss was 7.7% and the amount of NaOH was 1% to 3%, there was no jetting and the temperature rise time (1200° C. arrival time) was 20 minutes or less. In the experimental results shown in FIG. 6, when the Igros amount was 6.5% and the NaOH was 1% to 3%, there was no jetting and the temperature rise time (1200° C. arrival time) was 20 minutes or less. In the experimental results shown in FIG. 7, when the amount of igloss was 5.8% and the amount of NaOH was 1% to 3%, there was no jetting and the temperature rise time (1200° C. arrival time) was 30 minutes or less. In the experimental results shown in FIG. 8, when the amount of Igros was 5.0% and the amount of NaOH was 1% to 3%, there was no jetting and the temperature rise time (1200° C. arrival time) was 40 minutes or less. In the experimental results shown in FIG. 9, when the amount of igross was 4.4% and the amount of NaOH was 1% to 3%, there was no jetting and the temperature rising time (1200° C. arrival time) was 40 minutes or less. According to the experimental results shown in FIG. 10, when the amount of Igros was 4.2% and the amount of NaOH was 1% to 3%, there was no jetting and the temperature rise time (1200° C. arrival time) was 45 minutes or less. Further, in the case of Shin Onoda ash only (igloss amount 3%), when NaOH was 1% to 3%, there was no jetting and the temperature rise time (1200°C arrival time) was 120 minutes or less.

以上のことから、最適条件としては、NaOH1〜3%、イグロス量は、5.8%〜10%の場合に、昇温時間が短く噴上げがなかったが、大部分燒結(□)となっている場合は、NaOHが1〜3%、イグロス量が5.8%=約6%であることから、これらの条件が最適条件であると推定可能である。さらに、図11に示すように、イグロス量(igloss)5.8%の場合のNaOHの濃度と昇温時間の関係を求める実験結果から、NaOH量が2.33%の場合が最も昇温時間が短いことが判明した。 From the above, as the optimum conditions, when the NaOH was 1 to 3% and the amount of Igros was 5.8% to 10%, the temperature rising time was short and there was no jetting, but it was mostly sintered (□). In this case, since the amount of NaOH is 1 to 3% and the amount of Igros is 5.8%=about 6%, it can be estimated that these conditions are the optimum conditions. Further, as shown in FIG. 11, from the experimental results for obtaining the relationship between the concentration of NaOH and the heating time when the igloss amount is 5.8%, the heating time is the highest when the NaOH amount is 2.33%. Turned out to be short.

さらに、図12で示すように、Na量添加物として、前述した水酸化ナトリウムに変えて塩化ナトリウム(NaCl)を使用することも可能である。イグロス量5.8%の混合灰に対して、食塩のナトリウム量を1.725%Naとした場合及び2.875%Naとした場合には、噴上げがなく1200℃到達まで30分であった。また、塩化ナトリウムの代わりに海水を使用することも可能である。海水の場合には、Na量を1.339%Naとして実験したが、噴上げが多く検出されたが、昇温時間は約20分と早かった。 Furthermore, as shown in FIG. 12, it is possible to use sodium chloride (NaCl) instead of the above-mentioned sodium hydroxide as the Na amount additive. When the sodium content of sodium chloride was set to 1.725% Na and 2.875% Na to the mixed ash having an igloss amount of 5.8%, it took 30 minutes to reach 1200°C without spraying. It was It is also possible to use seawater instead of sodium chloride. In the case of seawater, an experiment was conducted with a Na content of 1.339% Na, but many jettings were detected, but the temperature rising time was as short as about 20 minutes.

上述したイグロス量調整工程100によって所定のイグロス量に設定された石炭灰混合物は、混合工程300において、所定のNa量に設定されたNa源、例えば水酸化ナトリウム、塩化ナトリウム若しくは海水等と混合される。 In the mixing step 300, the coal ash mixture set to a predetermined igros amount by the above-mentioned igross amount adjusting step 100 is mixed with a Na source set to a predetermined Na amount, such as sodium hydroxide, sodium chloride or seawater. It

前記混合工程300において所定のNa量が混合された石炭灰混合物は、加熱工程400において加熱される。この加熱工程で照射されるマイクロ波の周波数は、2.45GHz±0.5GHzであることが望ましく、混合物に照射される成分が電界成分であることが望ましい。これは、マイクロ波より石炭灰混合物が受け取るエネルギーは、(複素誘電率)×(マイクロ波電界強度の2乗)と(複素透磁率)×(マイクロ波磁界強度の2乗)の和に比例する。共振摂動法の結果より、石炭灰混合物のマイクロ波加熱は、複素誘電率と電界による寄与が大きいことが明らかになった。そのため、マイクロ波電界を照射することで、効率的な加熱が達成できると推察される。これによって、加熱工程400では、上述した条件を有するマイクロ波を例えば1200℃まで昇温させるために照射する。 The coal ash mixture mixed with the predetermined amount of Na in the mixing step 300 is heated in the heating step 400. The frequency of the microwave irradiated in this heating step is preferably 2.45 GHz±0.5 GHz, and the component with which the mixture is irradiated is preferably the electric field component. This is because the energy received by the coal ash mixture from microwaves is proportional to the sum of (complex permittivity) x (microwave electric field strength squared) and (complex permeability) x (microwave magnetic field strength squared). .. From the results of the resonance perturbation method, it became clear that the microwave heating of the coal ash mixture has a large contribution by the complex permittivity and the electric field. Therefore, it is presumed that efficient heating can be achieved by irradiating the microwave electric field. Accordingly, in the heating step 400, the microwave having the above-described conditions is applied to raise the temperature to 1200° C., for example.

加熱工程400において加熱された石炭灰混合物は燒結され、その後冷却工程500で冷却される。この冷却工程500の冷却方法は、最終生成物の用途によって異なるもので、燒結形状を保持した状態の最終生成物としたい場合には徐冷する。また、砂代替材料等としてクリンカ化した最終生成物としたい場合には急冷する。これによって、要望された最終生成物を取得することが可能となる。 The coal ash mixture heated in the heating step 400 is sintered and then cooled in the cooling step 500. The cooling method in the cooling step 500 varies depending on the intended use of the final product, and when it is desired to obtain the final product in a state where the sintered shape is maintained, the cooling is performed gradually. If it is desired to use the clinkerized final product as a sand substitute material, etc., quench it. This makes it possible to obtain the desired end product.

この最終生成物についての重金属類の溶出試験の結果が、図13に示される。この溶出試験において、検液の作製方法は環告第46号付表によるもので、混合灰A(新小野田灰:水島灰=4;1)の場合と、混合灰B(三隅灰:水島灰=4:1)の場合で、Na源として水酸化ナトリウム1.5%の場合と1.0%の場合でそれぞれ比較したものである。この結果、水酸化ナトリウムを添加した場合には、全ての重金属類において溶出基準をクリアしたことが証明された。 The result of the heavy metal elution test for this final product is shown in FIG. In this dissolution test, the method for preparing the test solution is according to the Announcement No. 46 appendix, and the mixed ash A (Shin Onoda ash: Mizushima ash = 4; 1) and the mixed ash B (Misumi ash: Mizushima ash = In the case of 4:1), the comparison is made between the case where sodium hydroxide is 1.5% as the Na source and the case where it is 1.0%. As a result, it was proved that, when sodium hydroxide was added, the elution standard was cleared for all heavy metals.

このように、本発明の減容化方法によれば、所定の割合のイグロスを有する石炭灰に、さらに所定のNa量を有するNa源を混合したことにより、短時間で所定の温度まで加熱することができ、溶融前後の密度比から、最大50%程度まで体積を減ずることが可能となる。また、消滅・溶融させた場合の重金属類の溶出を基準値以内にすることが可能である。 As described above, according to the volume reduction method of the present invention, the coal ash having a predetermined proportion of igros is further mixed with the Na source having the predetermined Na amount, so that it is heated to the predetermined temperature in a short time. It is possible to reduce the volume up to about 50% from the density ratio before and after melting. In addition, it is possible to keep the elution of heavy metals within the standard value when they are extinguished/melted.

100 イグロス量調整工程
200 Na量調整工程
300 混合工程
400 加熱工程
500 冷却工程
100 Igros amount adjustment process 200 Na amount adjustment process 300 Mixing process 400 Heating process 500 Cooling process

Claims (7)

石炭灰のイグロス量を所定の値に調整するイグロス量調整工程と、
前記石炭灰に混合されるNa源のNa量を所定の値に調整するNa量調整工程と、
前記イグロス量調整工程によってイグロス量が調整された石炭灰及び前記Na量調整工程によって調整された量のNa源を混合する混合工程と、
混合工程によって混合された混合物を所定の温度まで上昇させるために、前記混合物に所定の周波数のマイクロ波を所定の時間照射して燒結させる加熱工程と、
該加熱工程によって加熱された燒結物を所定の冷却方法で冷却する冷却工程とによって構成されることを特徴とする減容化方法。
An igross amount adjusting step of adjusting the igross amount of the coal ash to a predetermined value,
A Na amount adjusting step of adjusting the Na amount of the Na source mixed with the coal ash to a predetermined value,
A mixing step of mixing the coal ash having the amount of igros adjusted by the amount of igros adjustment step and the amount of the Na source adjusted by the step of adjusting the amount of Na;
In order to raise the temperature of the mixture mixed by the mixing step to a predetermined temperature, a heating step in which the mixture is irradiated with microwaves of a predetermined frequency for a predetermined time and sintered,
And a cooling step of cooling the sintered product heated by the heating step by a predetermined cooling method.
前記イグロス量の所定の値は、石炭灰重量を基準として10重量%以下、好ましくは4.4〜7.7重量%の範囲内、より好ましくは6重量%であることを特徴とする請求項1記載の減容化方法。 The predetermined value of the Igros amount is 10% by weight or less, preferably within a range of 4.4 to 7.7% by weight, more preferably 6% by weight, based on the weight of coal ash. 1. The volume reduction method described in 1. 石炭灰のイグロス量の調整については、所定の発電所毎に生じるイグロス量(強熱減量)の異なる石炭灰を混合させることによって石炭灰のイグロス量を調
整することを特徴とする請求項1又は2記載の減容化方法。
Regarding the adjustment of the amount of the coal ash, the amount of the coal ash is adjusted by mixing the coal ash having a different amount of ignition (ignition loss) generated at each predetermined power plant. The volume reduction method described in 2.
前記Na量は、石炭灰重量を基準として0.5〜2.33重量%の範囲内、好ましくは1.0〜1.5重量%の範囲内、より好ましくは1.0重量%であることを特徴とする請求項1〜3のいずれか1つに記載の減容化方法。 The amount of Na is in the range of 0.5 to 2.33% by weight, preferably in the range of 1.0 to 1.5% by weight, and more preferably 1.0% by weight, based on the weight of coal ash. 4. The volume reducing method according to claim 1. 前記Na源としては、水酸化ナトリウム溶液若しくは塩化ナトリウム溶液であること、若しくは塩化ナトリウム溶液の代わりとして海水を用いることを特徴とする請求項1〜4のいずれか1つに記載の減容化方法。 The volume reduction method according to any one of claims 1 to 4, wherein the Na source is a sodium hydroxide solution or a sodium chloride solution, or seawater is used instead of the sodium chloride solution. .. 前記加熱工程で照射されるマイクロ波の周波数は、2.45GHz±0.5GHzであることが望ましく、混合物に照射される成分が電界成分であることを特徴とする請求項1〜5のいずれか1つに記載の減容化方法。 The frequency of the microwave irradiated in the heating step is preferably 2.45 GHz±0.5 GHz, and the component irradiated to the mixture is an electric field component. Volume reduction method according to one. 前記冷却工程の冷却方法は、最終生成物の用途によって、燒結形状を保持した状態の最終生成物としたい場合には徐冷すること、又は、クリンカ化した最終生成物としたい場合には急冷することを特徴とする請求項1〜6のいずれか1つに記載の減容化方法。
In the cooling method of the cooling step, depending on the intended use of the final product, gradual cooling may be performed when the final product is in a state where the sintered shape is maintained, or rapid cooling is performed when the clinkerized final product is desired. The volume reduction method according to any one of claims 1 to 6, characterized in that
JP2018224831A 2018-11-30 2018-11-30 Coal ash volume reduction method Active JP7140346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018224831A JP7140346B2 (en) 2018-11-30 2018-11-30 Coal ash volume reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018224831A JP7140346B2 (en) 2018-11-30 2018-11-30 Coal ash volume reduction method

Publications (2)

Publication Number Publication Date
JP2020082035A true JP2020082035A (en) 2020-06-04
JP7140346B2 JP7140346B2 (en) 2022-09-21

Family

ID=70905792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224831A Active JP7140346B2 (en) 2018-11-30 2018-11-30 Coal ash volume reduction method

Country Status (1)

Country Link
JP (1) JP7140346B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128881A (en) * 1997-10-31 1999-05-18 Hikari Harada Method for reforming coal ash
JP2006117478A (en) * 2004-10-22 2006-05-11 Kagawa Industry Support Foundation Method of solidifying coal ash and solidified body
JP2006347838A (en) * 2005-06-17 2006-12-28 Maeda Corp Method and apparatus for manufacturing artificial zeolite having faujasite structure
JP2018158888A (en) * 2018-07-19 2018-10-11 一般財団法人電力中央研究所 Method for producing zeolite-containing cured body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128881A (en) * 1997-10-31 1999-05-18 Hikari Harada Method for reforming coal ash
JP2006117478A (en) * 2004-10-22 2006-05-11 Kagawa Industry Support Foundation Method of solidifying coal ash and solidified body
JP2006347838A (en) * 2005-06-17 2006-12-28 Maeda Corp Method and apparatus for manufacturing artificial zeolite having faujasite structure
JP2018158888A (en) * 2018-07-19 2018-10-11 一般財団法人電力中央研究所 Method for producing zeolite-containing cured body

Also Published As

Publication number Publication date
JP7140346B2 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP6278148B1 (en) Fly ash, cement composition and method for producing fly ash
KR101459990B1 (en) block composition using the sludge Ash and manufacturing method block
JP2021512037A (en) Method for producing fast-growing high-strength geopolymer using coal bottom ash
CN104108946A (en) Garbage incineration fly ash -based foamed ceramic and preparation method thereof
KR20170075990A (en) A cement block method and lightweight cement method and lightweight cement high-strength containing graphene
KR101157956B1 (en) Method for manufacturing foamed glass from waste glass
KR20110058550A (en) Preparation and coating method of lightweight aggregates using bottom ash and waste glass
CN107266035A (en) A kind of ceramic base heat accumulating using copper ashes as raw material and preparation method thereof
JP2020082035A (en) Coal ash volume reduction method
CN104446571B (en) A kind of castable and preparation method thereof
KR100880587B1 (en) Self leveling bottom mortar agent manufacturing method
WO2021186531A1 (en) Method for producing carbon-dioxide-adsorbed sintered body, and carbon-dioxide-adsorbed sintered body
JP2017136557A (en) Method of manufacturing civil engineering material
KR102279744B1 (en) Manufacturing method of coal ash-based geopolymer foams by addition of silica fume as pore generating agent
KR102042777B1 (en) The soil fill materials using product of industry
KR101494421B1 (en) Method for manufacturing sidewalk bock using waste molding sand and the sidewalk bock thereof
CN105130491A (en) High-adsorption ceramic granule and preparation method thereof
KR101517099B1 (en) Method for making cement material from steelmaking slag
JP2013184843A (en) Method of manufacturing cement clinker
CN114907048B (en) Anti-cracking environment-friendly admixture for concrete and preparation method thereof
JP6195460B2 (en) Method for producing anti-bleeding agent for concrete and method for producing cement composition containing the anti-bleeding agent for concrete
JP2019151527A (en) Method of manufacturing lightweight aggregate
JP6182929B2 (en) Manufacturing method of steelmaking slag roadbed material
KR101651612B1 (en) Composites of alkali-activated binder for construction using by-product containing high water and manufacturing method thereof
KR20110091169A (en) Method for manufactruing cement using fly ash and water sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220826

R150 Certificate of patent or registration of utility model

Ref document number: 7140346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150