JP2020082031A - Process for treating waste slurry - Google Patents

Process for treating waste slurry Download PDF

Info

Publication number
JP2020082031A
JP2020082031A JP2018224470A JP2018224470A JP2020082031A JP 2020082031 A JP2020082031 A JP 2020082031A JP 2018224470 A JP2018224470 A JP 2018224470A JP 2018224470 A JP2018224470 A JP 2018224470A JP 2020082031 A JP2020082031 A JP 2020082031A
Authority
JP
Japan
Prior art keywords
organic coagulant
liquid
coagulant
waste
cationic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018224470A
Other languages
Japanese (ja)
Other versions
JP7198647B2 (en
Inventor
三浦 俊彦
Toshihiko Miura
俊彦 三浦
智貴 森下
Tomoki Morishita
智貴 森下
真 荒川
Makoto Arakawa
真 荒川
田中 稔
Minoru Tanaka
稔 田中
唐澤 豊
Yutaka Karasawa
豊 唐澤
佐藤 俊介
Shunsuke Sato
俊介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Taimei Chemicals Co Ltd
Original Assignee
Obayashi Corp
Taimei Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Taimei Chemicals Co Ltd filed Critical Obayashi Corp
Priority to JP2018224470A priority Critical patent/JP7198647B2/en
Publication of JP2020082031A publication Critical patent/JP2020082031A/en
Application granted granted Critical
Publication of JP7198647B2 publication Critical patent/JP7198647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

To provide effective reduction of a volume of suspended matter in separated water when waste slurry is treated by a centrifugal separator.SOLUTION: The process includes step 1 of adding one or more cationic organic coagulants to waste slurry, step 2 of adding one or more anionic organic coagulants to the waste slurry, and step 3 of solid-liquid separating the waste slurry in which the cationic organic coagulant(s) and the anionic organic coagulant(s) have been added, by using a centrifugal separator.SELECTED DRAWING: Figure 15

Description

本発明は、安定液の廃液処理方法に関する。 The present invention relates to a waste liquid treatment method for a stable liquid.

杭工事や連続地中壁工事では、掘削溝壁の安定や掘削土砂の運搬分離等を目的として、水(作液水)、ベントナイト、ポリマー等を含有する安定液を使用する。性能が劣化した安定液は、廃液(建設汚泥)として処分しなければならない(以下、安定液の廃液を廃安定液という)。しかし、都市部での大規模工事では、日々発生する廃安定液の処理に時間を掛けることができない。このため、バキューム車で回収し、建設汚泥として処理を行っていた。 In pile construction and continuous underground wall construction, a stabilizing solution containing water (making water), bentonite, polymer, etc. is used for the purpose of stabilizing the excavation trench wall and transporting and separating the excavated soil. The stable liquid with degraded performance must be disposed of as waste liquid (construction sludge) (hereinafter, the waste liquid of the stable liquid is referred to as waste stable liquid). However, in large-scale construction in urban areas, it is not possible to take time to dispose of waste stabilizing liquid that is generated every day. For this reason, they were collected by vacuum trucks and treated as construction sludge.

廃安定液を下水放流することにより建設汚泥としての処理コストを削減できるが、それには下水道への放流基準を満たす必要がある。この際、問題となるのは浮遊物質量(SS)とpHであり、特に浮遊物質量(SS)の低減が困難である。浮遊物質量(SS)は、現地で固液分離処理を行うことにより低減され、浮遊物質は、固液分離処理に先立って廃安定液に凝集剤を添加することにより、凝集されると考えられる。例えば、特許文献1には、カチオン系有機凝集剤から選ばれる1種以上と、アニオン系有機凝集剤から選ばれる1種以上とを予め配合して固液分離剤を作製し、当該固液分離剤を廃安定液に添加する固液分離方法が開示されている。 Discharging waste stabilization liquid can reduce the treatment cost as construction sludge, but it is necessary to meet the discharge standard for sewerage. At this time, problems are the amount of suspended solids (SS) and pH, and it is particularly difficult to reduce the amount of suspended solids (SS). It is considered that the amount of suspended solids (SS) is reduced by performing solid-liquid separation treatment on site, and suspended solids are aggregated by adding a flocculant to the waste stabilization liquid prior to solid-liquid separation treatment. .. For example, in Patent Document 1, one or more kinds selected from cationic organic coagulants and one or more kinds selected from anionic organic coagulants are preliminarily blended to prepare a solid-liquid separation agent, and the solid-liquid separation is performed. A solid-liquid separation method in which an agent is added to a waste stabilizing solution is disclosed.

特開2007−7535号公報JP, 2007-7535, A

通常、廃安定液中の土砂等は負に帯電しており、これらの土砂は粒子間が互いに反発することにより分散状態にあると考えられる。このため、上記特許文献1記載の技術のように、カチオン系有機凝集剤とアニオン系有機凝集剤とを予め配合した固液分離剤を、貯留槽内に貯留された廃安定液に添加すると、貯留槽内ではフロックの形成が期待できるものの、遠心分離機への移送過程にてポンプにより汲み上げる際に、フロックの破壊を招くといった課題がある。廃安定液中のフロックが破壊されると、遠心分離機では浮遊物質を十分に遠心分離することができず、分離水における単位容積あたりの浮遊物質量が下水道への放流基準値(600mg/L以下)を満たさない可能性がある。 Usually, the earth and sand in the waste stabilization liquid are negatively charged, and these earth and sand are considered to be in a dispersed state due to repulsion between particles. Therefore, when the solid-liquid separating agent in which the cationic organic coagulant and the anionic organic coagulant are blended in advance is added to the waste stabilizing liquid stored in the storage tank, as in the technique described in Patent Document 1, Although formation of flocs can be expected in the storage tank, there is a problem that the flocs are destroyed when pumped up by the pump during the transfer process to the centrifuge. If the flocs in the waste stabilization liquid are destroyed, the suspended solids cannot be sufficiently centrifuged by the centrifuge, and the amount of suspended solids per unit volume in the separated water is the discharge standard value (600 mg/L) to the sewer. The following may not be satisfied.

本発明は、このような事情に鑑みてなされたものであり、その目的は、廃安定液を遠心分離機によって処理する際に、分離水に含まれる浮遊物質量を効果的に低減することにある。 The present invention has been made in view of such circumstances, and an object thereof is to effectively reduce the amount of suspended solids contained in separated water when treating a waste stabilization liquid with a centrifuge. is there.

前述の目的を達成するため、本発明に係る安定液の廃液処理方法は、安定液の廃液にカチオン系有機凝集剤から選ばれる1種以上を添加する第1工程と、前記廃液にアニオン系有機凝集剤から選ばれる1種以上を添加する第2工程と、前記カチオン系有機凝集剤及び前記アニオン系有機凝集剤が添加された前記廃液を遠心分離機により固液分離する第3工程と、を含むことを特徴とする。 In order to achieve the above-mentioned object, a method for treating a waste liquid of a stable liquid according to the present invention comprises a first step of adding at least one selected from cationic organic coagulants to a waste liquid of a stable liquid, and an anionic organic liquid in the waste liquid. A second step of adding at least one selected from a flocculant, and a third step of solid-liquid separating the waste liquid to which the cationic organic flocculant and the anionic organic flocculant have been added by a centrifuge. It is characterized by including.

また、本発明に係る安定液の廃液処理方法は、安定液の廃液にアニオン系有機凝集剤から選ばれる1種以上を添加する第1工程と、前記廃液にカチオン系有機凝集剤から選ばれる1種以上を添加する第2工程と、前記アニオン系有機凝集剤及び前記カチオン系有機凝集剤が添加された前記廃液を遠心分離機により固液分離する第3工程と、を含むことを特徴とする。 Further, the method for treating a waste liquid of a stable liquid according to the present invention comprises a first step of adding at least one kind selected from anionic organic coagulants to the waste liquid of a stable liquid, and a step 1 selected from a cationic organic coagulant to the waste liquid. A second step of adding at least one species, and a third step of solid-liquid separating the waste liquid to which the anionic organic flocculant and the cationic organic flocculant have been added by a centrifuge. ..

また、前記第1工程と前記第2工程との間に、前記第1工程で添加された有機凝集剤をラインミキサーにより前記廃液と撹拌混合する工程をさらに含むことが好ましい。 Further, it is preferable to further include a step of stirring and mixing the organic coagulant added in the first step with the waste liquid by a line mixer between the first step and the second step.

また、前記第3工程で固液分離により得られる分離水に対して炭酸ガスによる中和処理を施す工程をさらに含むことが好ましい。 Further, it is preferable to further include a step of subjecting the separated water obtained by the solid-liquid separation in the third step to a neutralization treatment with carbon dioxide gas.

また、前記第3工程で固液分離により得られる分離水に対して、少なくともベントナイト及び、ポリマー剤を添加して新たな安定液を作製する工程をさらに含むことが好ましい。 Further, it is preferable to further include a step of adding at least bentonite and a polymer agent to the separated water obtained by solid-liquid separation in the third step to prepare a new stabilizing solution.

また、前記カチオン系有機凝集剤は、10%溶液の粘度が12cps以下であることが好ましい。 Further, the cationic organic coagulant preferably has a 10% solution viscosity of 12 cps or less.

また、前記カチオン系有機凝集剤は、P−DADMAC系有機凝集剤、又は、ポリアミン系有機凝集剤の少なくとも一種であることが好ましい。 The cationic organic coagulant is preferably at least one of a P-DADMAC organic coagulant and a polyamine organic coagulant.

また、前記アニオン系有機凝集剤は、アクリルアミド・アクリル酸ソーダ共重合物の有機凝集剤であることが好ましい。 The anionic organic coagulant is preferably an organic coagulant of acrylamide/sodium acrylate copolymer.

本発明によれば、廃安定液を遠心分離機によって処理する際に、分離水に含まれる浮遊物質量を効果的に低減することができる。 According to the present invention, the amount of suspended solids contained in the separated water can be effectively reduced when the waste stabilizing solution is processed by the centrifuge.

対象となるカチオン系有機凝集剤について物性を説明する図である。It is a figure explaining the physical property about the target cationic organic flocculant. カチオン系有機凝集剤の選定試験に用いた廃液サンプルにおける物性を説明する図である。It is a figure explaining the physical property in the waste liquid sample used for the selection test of a cationic organic coagulant. カチオン系有機凝集剤の選定試験の結果を説明する図である。It is a figure explaining the result of the selection test of a cationic organic flocculant. 対象となるアニオン系有機凝集剤について説明する図である。It is a figure explaining the anionic organic flocculant used as object. アニオン系有機凝集剤の確認試験の結果を説明する図である。It is a figure explaining the result of the confirmation test of an anionic organic flocculant. 各試験サンプルのカチオン系有機凝集剤の添加濃度と、浮遊物質量(SS)との測定結果を説明する図である。It is a figure explaining the measurement result of the amount of suspended solids (SS) and the addition concentration of the cationic organic coagulant of each test sample. 各試験サンプルのカチオン系有機凝集剤の添加濃度と、上澄み液量との測定結果を説明する図である。It is a figure explaining the measurement result of the addition density|concentration of the cationic organic coagulant of each test sample, and the amount of supernatant liquids. 二段階添加サンプル及び、混合添加サンプルのカチオン系有機凝集剤の添加濃度と、浮遊物質量(SS)との測定結果を説明する図である。It is a figure explaining the measurement result of the amount of suspended solids (SS) and the addition concentration of the cationic organic coagulant of a two-step addition sample and a mixed addition sample. 二段階添加サンプル及び、混合添加サンプルのカチオン系有機凝集剤の添加濃度と、上澄み液量との測定結果を説明する図である。It is a figure explaining the measurement result of the addition density|concentration of the cationic organic coagulant of a two-step addition sample, and a mixing addition sample, and the amount of supernatant liquids. 凝集剤の二段階添加による凝集効果を説明する図である。It is a figure explaining the aggregation effect by two-step addition of an aggregating agent. 実証試験に用いた3種類の廃安定液サンプルを説明する図である。It is a figure explaining three kinds of waste stabilization liquid samples used for the verification test. 実証試験に用いた試験装置の概要を説明する図である。It is a figure explaining the outline of the test device used for the verification test. スクリューデカンタ型遠心分離機の内部構造を説明する図である。It is a figure explaining the internal structure of a screw decanter type centrifuge. 凝集効果の実証試験結果を説明する図である。It is a figure explaining the verification test result of an aggregation effect. 安定液の廃液処理方法を説明するフロー図である。It is a flowchart explaining the waste liquid processing method of a stabilizing liquid. 安定液の廃液処理方法を説明するフロー図である。It is a flowchart explaining the waste liquid processing method of a stabilizing liquid. 分離水の再利用試験の結果を説明する図である。It is a figure explaining the result of the reuse test of separated water.

以下、添付図面に基づいて、本実施形態に係る安定液の廃液処理方法について説明する。本発明者等は、鋭意検討を重ねた結果、土木工事で発生する汚泥のうち、特に、廃安定液に対して、本開示の技術を適用することにより、分離水が下水道の放流基準を満たすことを見出した。以下、この着想を具現化するために各試験を行った。 Hereinafter, a waste liquid treatment method for stabilizing liquid according to the present embodiment will be described with reference to the accompanying drawings. As a result of intensive studies, the inventors of the present invention have applied the technology of the present disclosure to sludge generated in civil engineering, in particular, to a waste stabilization liquid, whereby separated water satisfies the discharge standard of sewerage. I found that. Hereinafter, each test was conducted in order to embody this idea.

〔カチオン系有機凝集剤〕
まず、図1を参照し、対象となる5種類のカチオン系有機凝集剤について物性を説明する。なお、カチオン系有機凝集剤については、粘度が効果に大きく影響するため、B型粘度計を用いて粘度を計測した。以下に示す粘度は、B型粘度計のNo.1ローターを使用し、回転数60rpmで計測した値である。
[Cationic organic flocculant]
First, with reference to FIG. 1, the physical properties of the five target cationic organic coagulants will be described. Regarding the cationic organic coagulant, the viscosity greatly affects the effect, so the viscosity was measured using a B-type viscometer. The viscosities shown below are those of No. B type viscometer. It is a value measured at a rotation speed of 60 rpm using one rotor.

1番目のカチオン系凝集剤C1は、ダドマック系有機凝集剤(例えば、大明化学工業株式会社の高分子凝集剤、商品名:TC−7400)である。この凝集剤は、ポリ−ジアリルジメチルアンモニウムクロライド(P−DADMAC)を主成分として含有する。P−DADMACは、次式(1)に示す構造の重合体であり、液体状である。本実施形態では、原液を体積濃度で10%に希釈した希釈液を用いた。この希釈液の粘度は9.5cpsである。 The first cationic flocculant C1 is a Dadomac organic flocculant (for example, a polymer flocculant manufactured by Daimei Chemical Co., Ltd., trade name: TC-7400). This coagulant contains poly-diallyldimethylammonium chloride (P-DADMAC) as a main component. P-DADMAC is a polymer having a structure represented by the following formula (1) and is in a liquid state. In this embodiment, a diluting solution obtained by diluting the stock solution to 10% in volume concentration was used. The viscosity of this diluted solution is 9.5 cps.

[[(CH)(CHCH=CH]Cl ・・・ (1) [[(CH 3) 2 N + (CH 2 CH = CH 2) 2] Cl -] n ··· (1)

2番目のカチオン系凝集剤C2は、ポリアミン系有機凝集剤である。この凝集剤は、例えば次式(2)に示す構造を有する液体状の重合体である。本実施形態では、原液を体積濃度で10%に希釈した希釈液を用いた。この希釈液の粘度は12.0cpsである。 The second cationic flocculant C2 is a polyamine organic flocculant. This aggregating agent is, for example, a liquid polymer having a structure represented by the following formula (2). In this embodiment, a diluting solution obtained by diluting the stock solution to 10% in volume concentration was used. The viscosity of this diluent is 12.0 cps.

(CClOCN) ・・・ (2) (C 3 H 5 ClOC 2 H 8 N 2 C 2 H 7 N) n ··· (2)

3番目のカチオン系凝集剤C3は、メタクリレート系カチオン性有機高分子凝集剤である。この凝集剤は粉体状である。本実施形態では、0.1重量%の濃度で溶媒(水)に溶解した溶解液を用いた。溶解液の粘度は44.5cpsである。 The third cationic flocculant C3 is a methacrylate cationic organic polymer flocculant. This coagulant is in powder form. In the present embodiment, a solution that is dissolved in a solvent (water) at a concentration of 0.1% by weight is used. The viscosity of the solution is 44.5 cps.

4番目のカチオン系凝集剤C4は、アクリレート系カチオン性有機高分子凝集剤である。この凝集剤は粉体状である。本実施形態では、0.1重量%の濃度で溶媒(水)に溶解した溶解液を用いた。溶解液の粘度は31.0cpsである。 The fourth cationic flocculant C4 is an acrylate cationic organic polymer flocculant. This coagulant is in powder form. In the present embodiment, a solution that is dissolved in a solvent (water) at a concentration of 0.1% by weight is used. The viscosity of the lysate is 31.0 cps.

5番目のカチオン系凝集剤C5は、アクリレート系カチオン性有機高分子凝集剤である。この凝集剤は粉体状である。本実施形態では、0.1重量%の濃度で溶媒(水)に溶解した溶解液を用いた。溶解液の粘度は15.0cpsである。 The fifth cationic flocculant C5 is an acrylate cationic organic polymer flocculant. This coagulant is in powder form. In the present embodiment, a solution that is dissolved in a solvent (water) at a concentration of 0.1% by weight is used. The viscosity of the solution is 15.0 cps.

〔カチオン系有機凝集剤の選定試験〕
前述の5種類のカチオン系有機凝集剤C1〜C5を用いて選定試験を行った。この選定試験には、ベントナイト系安定液の廃液として、図2に示す廃液サンプルを用いた。この廃液サンプルは、ベントナイト、CMC、分散剤を含んだ泥水であり、pHが10.5、単位容積あたりの浮遊物質量(SS)が56000mg/L、電気伝導度が285mS/m、比重1.038g/cmであった。また、溶存イオン濃度は、Naが662mg/L、Kが13mg/L、Ca2+が28mg/L、Clが309mg/L、SO 2−が298mg/Lであり、多くのベントナイトが残存していた。
[Cationic organic flocculant selection test]
A selection test was conducted using the above-mentioned five types of cationic organic flocculants C1 to C5. In this selection test, the waste liquid sample shown in FIG. 2 was used as the waste liquid of the bentonite-based stabilizing liquid. This waste liquid sample was muddy water containing bentonite, CMC, and a dispersant, had a pH of 10.5, a suspended solid amount (SS) per unit volume of 56000 mg/L, an electric conductivity of 285 mS/m, and a specific gravity of 1. It was 038 g/cm 3 . Further, the dissolved ion concentration was 662 mg/L for Na + , 13 mg/L for K + , 28 mg/L for Ca 2+ , 309 mg/L for Cl , 298 mg/L for SO 4 2− , and many bentonites were It remained.

選定試験では、廃液サンプルを容積85mLの複数の遠沈管のそれぞれに50mL秤り取った。秤り取った各廃液サンプルに対して硫酸(pH調整剤)を添加し、pHを中性域(pH6〜8の範囲内)に調整した。各廃液サンプルに対して、前述の5種類のカチオン系有機凝集剤C1〜C5をそれぞれ、10000mg/L(原液換算で10000mg/L)、20000mg/L(原液換算で20000mg/L)の濃度となるように添加した。各廃液サンプルを遠心分離機にセットし、回転数2600rpm、5秒間の条件で遠心分離を行った。 In the selection test, 50 mL of the waste liquid sample was weighed into each of a plurality of centrifuge tubes having a volume of 85 mL. Sulfuric acid (pH adjuster) was added to each of the weighed waste liquid samples to adjust the pH to the neutral range (pH 6 to 8). With respect to each waste liquid sample, the above-mentioned five kinds of cationic organic coagulants C1 to C5 are respectively concentrated to 10000 mg/L (10000 mg/L in terms of undiluted solution) and 20000 mg/L (20,000 mg/L in terms of undiluted solution). So added. Each waste liquid sample was set in a centrifuge and centrifuged at a rotation speed of 2600 rpm for 5 seconds.

遠心分離後の上澄み液を分離水としてデカンテーションにより採取し、分離水の量を記録した。記録した量を採取量(50mL)で除し、分離水割合(%)を算出した。分離水については濁度を測定し、予め測定しておいた濁度と浮遊物質量(SS)との関係式を適用することで浮遊物質量(SS)に換算した。また、分離水のpHを測定した。 The supernatant after centrifugation was collected by decantation as separated water, and the amount of separated water was recorded. The recorded amount was divided by the collected amount (50 mL) to calculate the separated water ratio (%). The turbidity of the separated water was measured, and the suspended matter amount (SS) was converted by applying the relational expression of the previously measured turbidity and the suspended matter amount (SS). In addition, the pH of the separated water was measured.

〔カチオン系有機凝集剤の選定結果〕
選定試験の結果を図3に示す。ここで、分離水割合については、30%以上を合格の判定基準とした。浮遊物質量(SS)については、下水道への放流基準値である600mg/L以下を合格の判定基準とした。そして、分離水割合と浮遊物質量に関し、分離水割合が40%以上であって浮遊物質量が600mg/L以下の条件を満たす場合には優良評価(◎)とし、分離水割合が30%以上40%未満であって浮遊物質量が600mg/L以下の条件を満たす場合には良評価(○)とし、分離水割合が30%未満であって浮遊物質量が600mg/Lを超える場合には不可評価(×)とした。なお、分離水のpHについては全ての凝集剤で中性域(pH6〜8)を示した。
[Selection results of cationic organic flocculants]
The results of the selection test are shown in FIG. Here, with respect to the separated water ratio, 30% or more was used as the acceptance criterion. Regarding the amount of suspended solids (SS), 600 mg/L or less, which is the standard value for discharge into the sewer, was used as the acceptance criterion. Regarding the ratio of separated water and the amount of suspended solids, when the ratio of separated water is 40% or more and the amount of suspended solids is 600 mg/L or less, an excellent evaluation (⊚) is given, and the separated water ratio is 30% or more. When it is less than 40% and the amount of suspended solids is 600 mg/L or less, it is evaluated as good (○), and when the separated water ratio is less than 30% and the suspended solid amount exceeds 600 mg/L. It was rated as unacceptable (x). Regarding the pH of the separated water, all coagulants showed a neutral range (pH 6 to 8).

1番目のカチオン系有機凝集剤C1について説明する。分離水割合に関しては、凝集剤添加濃度を10000mg/Lにした場合には40%であり、20,000mg/Lにした場合には60%であった。何れも40%以上であり、判定基準を満たしていた。浮遊物質量(SS)に関し、凝集剤添加濃度を10000mg/Lにした場合には251mg/Lであり、20000mg/Lにした場合には92mg/Lであった。何れも600mg/L以下であり、判定基準を満たしていた。この結果、1番目のカチオン系有機凝集剤C1については優良評価となった。 The first cationic organic coagulant C1 will be described. The ratio of separated water was 40% when the coagulant addition concentration was 10,000 mg/L, and 60% when it was 20,000 mg/L. All were 40% or more, which satisfied the criterion. Regarding the amount of suspended solids (SS), it was 251 mg/L when the coagulant addition concentration was 10,000 mg/L, and 92 mg/L when it was 20,000 mg/L. Both were 600 mg/L or less, which satisfied the criterion. As a result, the first cationic organic coagulant C1 was evaluated as excellent.

2番目のカチオン系有機凝集剤C2について説明する。分離水割合に関しては、凝集剤添加濃度を10000mg/Lにした場合には30%であり、20000mg/Lにした場合には54%であった。何れも30%以上であり、判定基準を満たしていた。浮遊物質量(SS)に関し、凝集剤添加濃度を10000mg/Lにした場合には254mg/Lであり、20000mg/Lにした場合には197mg/Lであった。何れも600mg/L以下であり、判定基準を満たしていた。この結果、2番目のカチオン系有機凝集剤C2については良評価となった。 The second cationic organic coagulant C2 will be described. The ratio of separated water was 30% when the coagulant addition concentration was 10,000 mg/L, and 54% when it was 20000 mg/L. All were 30% or more, which satisfied the criterion. Regarding the amount of suspended solids (SS), it was 254 mg/L when the coagulant addition concentration was 10,000 mg/L, and 197 mg/L when it was 20000 mg/L. Both were 600 mg/L or less, which satisfied the criterion. As a result, the second cationic organic coagulant C2 was evaluated as good.

3番目のカチオン系凝集剤C3について説明する。分離水割合に関しては、凝集剤添加濃度を10000mg/Lにした場合、20000mg/Lにした場合のそれぞれにおいて10%であった。何れも30%未満であり、判定基準を満たさなかった。浮遊物質量(SS)に関しては、分離水(試料)が少なすぎたため測定できなかった。この結果、3番目のカチオン系有機凝集剤C3については不可評価となった。 The third cationic flocculant C3 will be described. The ratio of separated water was 10% when the coagulant addition concentration was 10,000 mg/L and 20,000 mg/L, respectively. Both were less than 30% and did not satisfy the criterion. The amount of suspended solids (SS) could not be measured because the amount of separated water (sample) was too small. As a result, the third cationic organic coagulant C3 was not evaluated.

4番目のカチオン系凝集剤C4について説明する。分離水割合に関しては、凝集剤添加濃度を10000mg/Lにした場合、20000mg/Lにした場合のそれぞれにおいて10%であった。何れも30%未満であり、判定基準を満たさなかった。浮遊物質量(SS)に関しては、分離水が少なすぎたため測定できなかった。この結果、4番目のカチオン系有機凝集剤C4については不可評価となった。 The fourth cationic flocculant C4 will be described. The ratio of separated water was 10% when the coagulant addition concentration was 10,000 mg/L and 20,000 mg/L, respectively. Both were less than 30% and did not satisfy the criterion. The amount of suspended solids (SS) could not be measured because the amount of separated water was too small. As a result, the fourth cationic organic coagulant C4 was not evaluated.

5番目のカチオン系凝集剤C5について説明する。分離水割合に関しては、凝集剤添加濃度を10000mg/Lにした場合、20000mg/Lにした場合のそれぞれにおいて20%であった。何れも30%未満であり、判定基準を満たさなかった。浮遊物質量(SS)に関しては、20000mg/Lにした場合のみ測定が行え、950mg/Lであり、600mg/L以下に達しなかった。この結果、5番目のカチオン系有機凝集剤C5については不可評価となった。 The fifth cationic flocculant C5 will be described. The separated water ratio was 20% when the coagulant addition concentration was 10,000 mg/L and 20,000 mg/L, respectively. Both were less than 30% and did not satisfy the criterion. Regarding the amount of suspended solids (SS), measurement was possible only when the amount was 20000 mg/L, which was 950 mg/L, and did not reach 600 mg/L or less. As a result, the fifth cationic organic coagulant C5 was not evaluated.

以上より、これら5種類のカチオン系有機凝集剤C1〜C5のうち、1番目のカチオン系有機凝集剤C1について優良評価が得られ、2番目のカチオン系有機凝集剤C2について良評価が得られた。この結果から、本実施形態では、1番目のカチオン系有機凝集剤C1を凝集剤として選定した。 From the above, out of these five types of cationic organic coagulants C1 to C5, excellent evaluation was obtained for the first cationic organic coagulant C1 and good evaluation was obtained for the second cationic organic coagulant C2. .. From this result, in this embodiment, the first cationic organic coagulant C1 was selected as the coagulant.

1、2番目のカチオン系有機凝集剤C1,C2について優良評価又は良評価が得られ、3〜5番目のカチオン系有機凝集剤C3〜C5について不可評価又は可評価となった理由について考察する。図1に示される凝集剤の濃度は、一般的に現場で使用される濃度である。これ以上濃度を増加させると粘度が上昇し、作業性が悪くなるため利用できない。1,2番目のカチオン系有機凝集剤C1,C2は比較的粘度が低いため、3〜5番目のカチオン系有機凝集剤C3〜C5よりも10%溶液と高濃度の溶液を廃安定液に適用できる。また、10%溶液の粘度が12cpsと低いため、凝集剤の分子は廃安定液中に容易に分散することができる。そのため、粘土粒子に効率よく吸着することが可能となり、凝集が促進されたものと考えられる。なお、本実施形態では10%溶液を使用したが、10%以下の溶液、例えば2%〜8溶液であっても同様の作用効果が得られると考えられる。 The reasons why the first and second cationic organic coagulants C1 and C2 were evaluated as good or good and the third to fifth cationic organic coagulants C3 to C5 were evaluated as non-evaluable or evaluable will be considered. The flocculant concentration shown in FIG. 1 is a concentration generally used in the field. If the concentration is further increased, the viscosity will increase and the workability will be deteriorated, so it cannot be used. Since the first and second cationic organic coagulants C1 and C2 have relatively low viscosities, a 10% solution and a high-concentration solution than the third to fifth cationic organic coagulants C3 to C5 are applied to the waste stabilization liquid. it can. Further, since the viscosity of the 10% solution is as low as 12 cps, the molecules of the flocculant can be easily dispersed in the waste stabilization liquid. Therefore, it is considered that the clay particles can be efficiently adsorbed and the aggregation is promoted. Although the 10% solution is used in this embodiment, it is considered that the same action and effect can be obtained even if the solution is 10% or less, for example, 2% to 8 solution.

〔アニオン系有機凝集剤〕
次に、図4を参照し、使用したアニオン系有機凝集剤について説明する。
[Anionic organic flocculant]
Next, the anionic organic coagulant used will be described with reference to FIG.

アニオン系有機凝集剤A1は、アクリルアミド・アクリル酸ソーダ共重合物の凝集剤(例えば、大明化学工業株式会社の高分子凝集剤、商品名:TA−310)であり、粉体状である。本実施形態では、0.2重量%の濃度で溶媒(水)に溶解した溶解液を用いた。 The anionic organic coagulant A1 is a coagulant of an acrylamide/sodium acrylate copolymer (for example, a polymer coagulant manufactured by Daimei Chemical Co., Ltd., trade name: TA-310), and is in powder form. In the present embodiment, a solution that is dissolved in a solvent (water) at a concentration of 0.2% by weight is used.

〔アニオン系有機凝集剤の確認試験〕
前述のアニオン系有機凝集剤A1を用いて確認試験を行った。確認試験は、人工的に作製した模擬廃安定液に対して、アニオン系有機凝集剤を前述のカチオン系有機凝集剤C1と組み合わせて添加した後の状況を観察することにより行った。模擬廃安定液は、工業用水にベントナイト2%、ポリマー剤0.2%、笠岡粘土19%、セメント2%を添加して、撹拌することにより作製した。
[Confirmation test of anionic organic coagulant]
A confirmation test was conducted using the above-mentioned anionic organic coagulant A1. The confirmation test was carried out by observing the situation after adding the anionic organic coagulant in combination with the above-mentioned cationic organic coagulant C1 to the artificial waste stabilization liquid produced artificially. The simulated waste stabilizer was prepared by adding 2% bentonite, 0.2% polymer agent, 19% Kasaoka clay, and 2% cement to industrial water and stirring.

確認試験では、ビーカーに秤取した200mlの複数の模擬廃安定液サンプルに対して、カチオン系有機凝集剤C1をそれぞれ1000mg/L、2000mg/L、3000mg/Lの濃度となるように添加して約10秒撹拌した。撹拌後の模擬廃安定液サンプルに、前述のアニオン系有機凝集剤A1を200mg/L、300mg/Lの濃度となるように添加して約10秒撹拌し、フロック径を目視により確認した。フロック径が1mm以上確認できた模擬廃安定液サンプルについては遠心分離機にセットし、遠心力200G、30秒間の条件で遠心分離を行い、上澄み液量を測定した。 In the confirmation test, the cationic organic coagulant C1 was added to each of 200 ml of a plurality of simulated waste stabilizing solution samples weighed in a beaker so that the concentrations thereof were 1000 mg/L, 2000 mg/L, and 3000 mg/L, respectively. Stir for about 10 seconds. The above-mentioned anionic organic coagulant A1 was added to the sample of the simulated waste stabilizing solution after stirring so as to have a concentration of 200 mg/L and 300 mg/L, and the mixture was stirred for about 10 seconds, and the floc diameter was visually confirmed. The sample of the waste waste stabilizing solution in which the floc diameter was confirmed to be 1 mm or more was set in a centrifuge and centrifuged under conditions of a centrifugal force of 200 G and 30 seconds, and the amount of supernatant was measured.

〔アニオン系有機凝集剤の確認試験結果〕
確認試験の結果を図5に示す。ここで、フロック径については、1mm以上を合格の判定基準とした。カチオン系有機凝集剤C1とアニオン系有機凝集剤A1との組み合わせでは、(1)カチオン系有機凝集剤C1を1000mg/L、アニオン系有機凝集剤A1を300mg/L添加したケース、(2)カチオン系有機凝集剤C1を2000mg/L、アニオン系有機凝集剤A1を200mg/L添加したケース、(3)カチオン系有機凝集剤C1を2000mg/L、アニオン系有機凝集剤A1を300mg/L添加したケースにてフロック径が1mm以上に成長し、上澄み液量が98〜100mLとなった。
[Results of confirmation test of anionic organic coagulant]
The result of the confirmation test is shown in FIG. Here, with respect to the flock diameter, 1 mm or more was used as the acceptance criterion. In the combination of the cationic organic coagulant C1 and the anionic organic coagulant A1, (1) a case of adding 1000 mg/L of the cationic organic coagulant C1 and 300 mg/L of the anionic organic coagulant A1, (2) cation 2000 mg/L of the organic coagulant C1 and 200 mg/L of the anionic organic coagulant A1 were added, (3) 2000 mg/L of the cationic organic coagulant C1 and 300 mg/L of the anionic organic coagulant A1 were added. In the case, the floc diameter grew to 1 mm or more, and the amount of the supernatant became 98 to 100 mL.

以上より、アニオン系有機凝集剤A1の添加量については、概ね300mg/Lが適正値であり、カチオン系有機凝集剤及びアニオン系有機凝集剤ともに低い濃度領域(少ない添加量)でフロックの成長を促進させることができる結果が得られた。 From the above, an appropriate amount of the anionic organic coagulant A1 is approximately 300 mg/L, and both of the cationic organic coagulant and the anionic organic coagulant can grow flocs in a low concentration region (small amount of addition). Results were obtained that could be accelerated.

〔凝集効果確認試験.1〕
上述のアニオン系有機凝集剤A1をカチオン系有機凝集剤C1に添加することによる凝集効果の確認試験を行った。この確認試験では、模擬廃安定液に対して、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を添加した試験サンプルAの凝集効果と、硫酸及びカチオン系有機凝集剤C1を添加した試験サンプルBの凝集効果とを比較することにより行った。
[Agglutination effect confirmation test. 1]
The confirmation test of the aggregation effect by adding the above-mentioned anionic organic coagulant A1 to the cationic organic coagulant C1 was conducted. In this confirmation test, the coagulation effect of the test sample A to which the cationic organic coagulant C1 and the anionic organic coagulant A1 were added, and the sulfuric acid and the cationic organic coagulant C1 were added to the simulated waste stabilization liquid This was done by comparing the agglutination effect of sample B.

カチオン系有機凝集剤C1は、原液を体積濃度で約10%に希釈した希釈液を用いた。アニオン系有機凝集剤A1は、0.2重量%の濃度で溶媒(水)に溶解した溶解液を用いた。模擬廃安定液は、工業用水にベントナイト2%、CMC0.2%、分散剤0.2%を添加した安定液に笠岡粘土を加えて比重を1.05g/cmに調整し、セメント0.5%を添加して所定時間放置することにより作製した。 As the cationic organic coagulant C1, a diluting solution prepared by diluting the stock solution to a volume concentration of about 10% was used. The anionic organic coagulant A1 used was a solution dissolved in a solvent (water) at a concentration of 0.2% by weight. The simulated waste stabilizing solution was prepared by adding Kasaoka clay to a stabilizing solution prepared by adding 2% bentonite, 0.2% CMC, and 0.2% dispersant to industrial water to adjust the specific gravity to 1.05 g/cm 3 , and then cement 0. It was prepared by adding 5% and leaving it for a predetermined time.

試験サンプルAは、ビーカーに秤取した200mlの複数の模擬廃安定液に対してカチオン系有機凝集剤C1をそれぞれ1000mg/L、2000mg/L、3000mg/L、4000mg/L、5000mg/L、5500mg/L、6000mg/Lを添加して30秒間に亘って撹拌後、アニオン系有機凝集剤A1をそれぞれ120mg/Lを添加して30秒間に亘って撹拌した。撹拌後の試験サンプルAに対して遠心分離を行った。遠心分離の条件は、回転数2600rpm、5秒間とした。 In the test sample A, the cationic organic coagulant C1 was added to 200 ml of a plurality of simulated waste stabilizing liquids weighed in a beaker, and the cationic organic coagulant C1 was used in the amount of 1000 mg/L, 2000 mg/L, 3000 mg/L, 4000 mg/L, 5000 mg/L, 5500 mg, respectively. /L and 6000 mg/L were added and stirred for 30 seconds, and then 120 mg/L of the anionic organic coagulant A1 was added and stirred for 30 seconds. The test sample A after stirring was centrifuged. The centrifugation conditions were a rotation speed of 2600 rpm and 5 seconds.

試験サンプルBは、ビーカーに秤取した200mlの複数の模擬廃安定液に硫酸を添加してpH8に調整後、カチオン系有機凝集剤C1をそれぞれ1000mg/L、2000mg/L、3000mg/L、4000mg/L、5000mg/L、5500mg/L、6000mg/Lを添加して30秒間に亘って撹拌した。撹拌後の試験サンプルBに対して遠心分離を行った。遠心分離の条件は、回転数2600rpm、5秒間とした。 The test sample B was prepared by adding sulfuric acid to 200 ml of a plurality of simulated waste stabilizing liquids weighed in a beaker and adjusting the pH to 8, and then adding 1000 mg/L, 2000 mg/L, 3000 mg/L, 4000 mg of the cationic organic coagulant C1 respectively. /L, 5000 mg/L, 5500 mg/L, 6000 mg/L were added and stirred for 30 seconds. The test sample B after stirring was centrifuged. The centrifugation conditions were a rotation speed of 2600 rpm and 5 seconds.

これらの試験サンプルA,Bに対して、遠心分離後の上澄み液を分離水としてデカンテーションにより採取し、上澄み液の量を記録した。分離水については濁度を測定し、予め測定しておいた濁度と浮遊物質量(SS)との関係式を適用することで浮遊物質量に換算した。 For these test samples A and B, the supernatant liquid after centrifugation was collected by decantation as separation water, and the amount of the supernatant liquid was recorded. The turbidity of the separated water was measured, and it was converted into the amount of suspended matter by applying the relational expression of the previously measured turbidity and the amount of suspended matter (SS).

以下、凝集効果確認試験の結果について説明する。図6は、試験サンプルA,Bのカチオン系有機凝集剤C1の添加濃度と、浮遊物質量(SS)との関係を示す測定結果である。図7は、試験サンプルA,Bのカチオン系有機凝集剤C1の添加濃度と、上澄み液量との関係を示す測定結果である。 The results of the aggregation effect confirmation test will be described below. FIG. 6 is a measurement result showing the relationship between the concentration of the cationic organic coagulant C1 added to the test samples A and B and the amount of suspended solids (SS). FIG. 7 is a measurement result showing the relationship between the addition concentration of the cationic organic coagulant C1 of the test samples A and B and the amount of the supernatant liquid.

まず、図6に示す浮遊物質量(SS)について説明する。カチオン系有機凝集剤C1の添加濃度が同じ場合には、硫酸で中和する試験サンプルBよりも、アニオン系有機凝集剤A1を120ppm添加した試験サンプルAの方が全体的に浮遊物質量(SS)は低下する傾向を示した。また、試験サンプルAについては、カチオン系有機凝集剤C1を2000mg/L以上添加すれば、浮遊物質量(SS)は下水道への放流基準値(600mg/L以下)を満たした。一方、試験サンプルBについては、カチオン系有機凝集剤C1を3000mg/L以上添加しなければ、浮遊物質量(SS)は下水道への放流基準値(600mg/L以下)を満たさなかった。 First, the amount of suspended solids (SS) shown in FIG. 6 will be described. When the addition concentration of the cationic organic coagulant C1 is the same, the amount of suspended solids (SS) in the test sample A in which 120 ppm of the anionic organic coagulant A1 is added is higher than that in the test sample B neutralized with sulfuric acid. ) Showed a tendency to decrease. Regarding the test sample A, when the cationic organic coagulant C1 was added in an amount of 2000 mg/L or more, the amount of suspended solids (SS) satisfied the discharge standard value (600 mg/L or less) into the sewer. On the other hand, in the test sample B, the amount of suspended solids (SS) did not satisfy the discharge standard value (600 mg/L or less) into the sewer unless the cationic organic coagulant C1 was added in an amount of 3000 mg/L or more.

次に、図7に示す上澄み液量について説明する。上澄み液量についても、カチオン系有機凝集剤C1を5000mg/L添加したケースを除き、硫酸で中和後にカチオン系有機凝集剤C1を添加した試験サンプルBよりも、カチオン系有機凝集剤C1及びアニオン系有機凝集剤A1を添加した試験サンプルAの方が、上澄み液量は多くなる傾向を示した。 Next, the amount of supernatant liquid shown in FIG. 7 will be described. Regarding the amount of the supernatant liquid, except for the case where 5000 mg/L of the cationic organic coagulant C1 was added, the amount of the supernatant of the cationic organic coagulant C1 and the anion was higher than that of the test sample B in which the cationic organic coagulant C1 was added after neutralization with sulfuric acid. The test sample A to which the organic flocculant A1 was added tended to have a larger amount of supernatant liquid.

以上の結果より、硫酸で中和後にカチオン系有機凝集剤C1のみで凝集処理するよりも、カチオン系有機凝集剤C1及びアニオン系有機凝集剤A1を添加して凝集処理する方が、凝集効果は高くなることが確認された。すなわち、凝集剤としては、カチオン系有機凝集剤C1のみならず、カチオン系有機凝集剤C1にアニオン系有機凝集剤A1を添加して用いる方が高い凝集効果を得られることを確認できた。 From the above results, the aggregating effect is obtained by adding the cationic organic aggregating agent C1 and the anionic organic aggregating agent A1 rather than the aggregating treatment with only the cationic organic aggregating agent C1 after neutralization with sulfuric acid. It was confirmed to be high. That is, as the aggregating agent, it was confirmed that not only the cationic organic aggregating agent C1 but also the anionic organic aggregating agent A1 added to the cationic organic aggregating agent C1 was used to obtain a higher aggregating effect.

〔凝集効果確認試験.2〕
上述のカチオン系有機凝集剤C1及びアニオン系有機凝集剤A1の添加順序による凝集効果の確認試験を行った。この確認試験では、模擬廃安定液に対して、順にカチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を添加する二段階添加サンプルAと、カチオン系有機凝集剤C1及びアニオン系有機凝集剤A1を予め混合して添加する混合添加サンプルBとを比較することにより行った。
[Agglutination effect confirmation test. 2]
A confirmation test of the aggregating effect by the order of addition of the above-mentioned cationic organic aggregating agent C1 and anionic organic aggregating agent A1 was conducted. In this confirmation test, a two-step addition sample A in which a cationic organic coagulant C1 and an anionic organic coagulant A1 are sequentially added to the simulated waste stabilizing liquid, a cationic organic coagulant C1 and an anionic organic coagulant are added. It was carried out by comparing with the mixed addition sample B in which A1 was premixed and added.

カチオン系有機凝集剤C1は、原液を体積濃度で約10%に希釈した希釈液を用いた。アニオン系有機凝集剤A1は、0.2重量%の濃度で溶媒(水)に溶解した溶解液を用いた。模擬廃安定液は、工業用水にベントナイト2%、CMC0.2%、分散剤0.2%を添加して笠岡粘土で比重を1.05g/cmに調整し、セメント0.5%を添加して所定時間放置することにより作製した。 As the cationic organic coagulant C1, a diluting solution prepared by diluting the stock solution to a volume concentration of about 10% was used. The anionic organic coagulant A1 used was a solution dissolved in a solvent (water) at a concentration of 0.2% by weight. The simulated waste stabilization liquid was prepared by adding 2% bentonite, 0.2% CMC and 0.2% dispersant to industrial water, adjusting the specific gravity to 1.05 g/cm 3 with Kasaoka clay, and adding 0.5% cement. Then, it was prepared by leaving it for a predetermined time.

二段階添加サンプルAは、ビーカーに秤取した200mlの複数の模擬廃安定液に対してカチオン系有機凝集剤C1をそれぞれ1000mg/L、2000mg/L、3000mg/L、4000mg/L、5000mg/L、5500mg/L、6000mg/L添加して30秒間に亘って撹拌後、アニオン系有機凝集剤A1をそれぞれ120mg/L添加して30秒間に亘って撹拌した。撹拌後の二段階添加サンプルAに対して遠心分離を行った。遠心分離の条件は、回転数2600rpm、5秒間とした。 The two-stage added sample A was prepared by adding 1,000 mg/L, 2000 mg/L, 3000 mg/L, 4000 mg/L, and 5000 mg/L of the cationic organic coagulant C1 to 200 ml of a plurality of simulated waste stabilizers weighed in a beaker. After adding 5500 mg/L and 6000 mg/L and stirring for 30 seconds, 120 mg/L of anionic organic coagulant A1 was added and stirred for 30 seconds. Centrifugation was performed on the two-stage added sample A after stirring. The centrifugation conditions were a rotation speed of 2600 rpm and 5 seconds.

混合添加サンプルBは、複数のビーカーにカチオン系有機凝集剤C1をそれぞれ1000mg/L、2000mg/L、3000mg/L、4000mg/L、5000mg/L、5500mg/L、6000mg/L、アニオン系有機凝集剤A1をそれぞれ120mg/L添加して10分間に亘って撹拌して混合溶液を作製した。作製した混合溶液を、ビーカーに秤取した200mlの複数の模擬廃安定液にそれぞれ添加して30秒間に亘って撹拌した。撹拌後の混合添加サンプルBに対して遠心分離を行った。遠心分離の条件は、回転数2600rpm、5秒間とした。 The mixed addition sample B is 1000 mg/L, 2000 mg/L, 3000 mg/L, 4000 mg/L, 5000 mg/L, 5500 mg/L, 6000 mg/L, and anionic organic coagulation agent C1 in a plurality of beakers, respectively. Agent A1 was added in an amount of 120 mg/L and stirred for 10 minutes to prepare a mixed solution. The prepared mixed solution was added to each of 200 ml of a plurality of simulated waste stabilizers weighed in a beaker, and stirred for 30 seconds. The mixed addition sample B after stirring was centrifuged. The centrifugation conditions were a rotation speed of 2600 rpm and 5 seconds.

これらの二段階添加サンプルA及び、混合添加サンプルBに対して、遠心分離後の上澄み液を分離水としてデカンテーションにより採取し、上澄み液量を記録した。分離水については濁度を測定し、予め測定しておいた濁度と浮遊物質量(SS)との関係式を適用することで浮遊物質量に換算した。 For these two-stage added sample A and mixed added sample B, the supernatant after centrifugation was collected by decantation as separated water, and the amount of the supernatant was recorded. The turbidity of the separated water was measured, and it was converted into the amount of suspended matter by applying the relational expression of the previously measured turbidity and the amount of suspended matter (SS).

以下、凝集効果確認試験の結果について説明する。図8は、二段階添加サンプルA及び、混合添加サンプルBのカチオン系有機凝集剤C1の添加濃度と、浮遊物質量(SS)との関係を示す測定結果である。図9は、二段階添加サンプルA及び、混合添加サンプルBのカチオン系有機凝集剤C1の添加濃度と、上澄み液量との関係を示す測定結果である。 The results of the aggregation effect confirmation test will be described below. FIG. 8 is a measurement result showing the relationship between the added concentration of the cationic organic coagulant C1 of the two-step addition sample A and the mixed addition sample B, and the amount of suspended solids (SS). FIG. 9 is a measurement result showing the relationship between the addition concentration of the cationic organic coagulant C1 of the two-step addition sample A and the mixed addition sample B, and the amount of the supernatant liquid.

まず、図8に示す浮遊物質量について説明する。二段階添加サンプルAについては、カチオン系有機凝集剤C1を2000mg/L以上添加すれば、浮遊物質量(SS)は下水道への放流基準値(600mg/L以下)を満たした。混合添加サンプルBについては、カチオン系有機凝集剤C1を5000mg/L以上添加しなければ、浮遊物質量(SS)は下水道への放流基準値(600mg/L以下)を満たさなかった。 First, the amount of suspended solids shown in FIG. 8 will be described. Regarding the two-step addition sample A, when the cationic organic coagulant C1 was added in an amount of 2000 mg/L or more, the amount of suspended solids (SS) satisfied the discharge standard value (600 mg/L or less) into the sewer. Regarding the mixed addition sample B, the amount of suspended solids (SS) did not satisfy the discharge standard value (600 mg/L or less) into the sewer unless the cationic organic coagulant C1 was added in an amount of 5000 mg/L or more.

次に、図9に示す上澄み液量について説明する。カチオン系有機凝集剤C1を5000mg/L添加したケースでは、二段階添加サンプルA及び混合添加サンプルBは略同程度の上澄み液量を示したが、カチオン系有機凝集剤C1を5500mg/L、6000mg/L添加したケースでは、何れも二段階添加サンプルAの方が混合添加サンプルBよりも上澄み液量は多くなる傾向を示した。 Next, the amount of supernatant liquid shown in FIG. 9 will be described. In the case where 5000 mg/L of the cationic organic coagulant C1 was added, the two-step addition sample A and the mixed addition sample B showed almost the same amount of supernatant liquid, but the cationic organic coagulant C1 was 5500 mg/L, 6000 mg. In all cases where /L was added, the amount of supernatant in the two-step addition sample A tended to be larger than that in the mixed addition sample B.

以上の結果より、カチオン系有機凝集剤C1及びアニオン系有機凝集剤A1を予め混合して添加する混合添加よりも、カチオン系有機凝集剤C1及びアニオン系有機凝集剤A1を順に添加する二段階添加の方が、高い凝集効果を得られることが確認された。 From the above results, the two-step addition of sequentially adding the cationic organic coagulant C1 and the anionic organic coagulant A1 rather than the mixed addition of mixing the cationic organic coagulant C1 and the anionic organic coagulant A1 in advance. It was confirmed that the above can obtain a higher aggregation effect.

〔結果の考察〕
凝集剤を二段階添加する方が、凝集剤を混合添加するよりも高い凝集効果を得られた理由について考察する。
[Discussion of results]
The reason why a higher coagulant effect is obtained by adding the coagulant in two stages than by mixing and adding the coagulant will be discussed.

泥水の土粒子は負に帯電しており、これらは互いに反発しあうことで、図10(A)に示すような分散状態にある。まず、土粒子が分散状態にある泥水に、正電荷を持つカチオン系有機凝集剤C1を添加すると、カチオン系有機凝集剤C1は土粒子の負電荷に作用して反発力を低減させることで、図10(B)に示すような微細フロックを形成する(以下、凝結作用ともいう)。次いで、微細フロックが形成された泥水に対して、アニオン系有機凝集剤A1をさらに添加すると、アニオン系有機凝集剤A1が微細フロック同士を架橋して物理的に凝集させることにより、図10(C)に示すような粗大フロックを形成する(以下、凝集作用ともいう)。粗大フロックは見かけのフロック径が大きいため沈殿する。すなわち、凝集剤を二段階添加すると、カチオン系有機凝集剤C1の凝結作用及び、アニオン系有機凝集剤A1の凝集作用の両方の作用が効果的に発揮されるものと考えられる。 The dirt particles in the muddy water are negatively charged, and these particles repel each other, resulting in a dispersed state as shown in FIG. First, when the cationic organic coagulant C1 having a positive charge is added to the muddy water in which the soil particles are in a dispersed state, the cationic organic coagulant C1 acts on the negative charge of the soil particles to reduce the repulsive force, Fine flocs as shown in FIG. 10(B) are formed (hereinafter, also referred to as a condensation action). Next, when the anionic organic coagulant A1 is further added to the muddy water in which the fine flocs are formed, the anionic organic coagulant A1 cross-links the fine flocs to physically agglomerate them, and thus FIG. (3) Coarse flocs are formed (hereinafter, also referred to as agglomeration action). Coarse flocs have a large apparent flock diameter and therefore settle. That is, it is considered that when the coagulant is added in two steps, both the coagulating action of the cationic organic coagulant C1 and the aggregating action of the anionic organic coagulant A1 are effectively exhibited.

一方、凝集剤を混合添加すると、カチオン系有機凝集剤C1の正電荷とアニオン系有機凝集剤A1の負電荷とが相殺されることにより、カチオン系有機凝集剤C1の凝結作用及び、アニオン系有機凝集剤A1の凝集作用は薄められてしまうと考えられる。すなわち、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を混合添加するのではなく、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を二段階で添加することにより、カチオン系有機凝集剤C1の凝結作用及び、アニオン系有機凝集剤A1の凝集作用が高められるようになり、凝集が促進されたものと考えられる。 On the other hand, when the coagulant is mixed and added, the positive charge of the cationic organic coagulant C1 and the negative charge of the anionic organic coagulant A1 cancel each other, so that the coagulating action of the cationic organic coagulant C1 and the anionic organic coagulant C1 It is considered that the aggregating action of the aggregating agent A1 is weakened. That is, the cationic organic coagulant C1 and the anionic organic coagulant A1 are not mixed and added, but the cationic organic coagulant C1 and the anionic organic coagulant A1 are added in two stages to obtain the cationic organic coagulant. It is considered that the aggregation action of the aggregating agent C1 and the aggregating action of the anionic organic aggregating agent A1 came to be enhanced, and the aggregation was promoted.

〔実証試験〕
上述のカチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を用いて、現場スケールの試験装置で凝集処理を行うことにより、(1)凝集剤とスクリューデカンタ型遠心分離機との組み合わせによる廃液処理効果及び、(2)分離水の安定液材料としての再利用の可能性につき、実証試験を行った。
〔Verification test〕
By using the above-mentioned cationic organic coagulant C1 and anionic organic coagulant A1 to perform coagulation treatment in a field-scale test device, (1) a waste liquid obtained by combining a coagulant and a screw decanter centrifuge. A verification test was conducted on the treatment effect and (2) the possibility of reuse of the separated water as a stable liquid material.

カチオン系有機凝集剤C1は、原液を体積濃度で約10%に希釈した希釈液を用いた。アニオン系有機凝集剤A1は、0.2重量%の濃度で溶媒(水)に溶解した溶解液を用いた。廃安定液としては、図11に示す3種類の廃安定液サンプル(1)〜(3)を用いた。廃安定液(1)及び、廃安定液(2)は、人工的に作製した模擬安定液である。廃安定液(3)は、実際の現場にて採取した実安定液である。 As the cationic organic coagulant C1, a diluting solution prepared by diluting the stock solution to a volume concentration of about 10% was used. The anionic organic coagulant A1 used was a solution dissolved in a solvent (water) at a concentration of 0.2% by weight. As the waste stabilizer, three kinds of waste stabilizer samples (1) to (3) shown in FIG. 11 were used. The waste stabilizing solution (1) and the waste stabilizing solution (2) are artificially prepared simulated stabilizing solutions. The waste stabilizing solution (3) is an actual stabilizing solution collected at an actual site.

廃安定液(1)は、工業用水にベントナイト2%、CMC0.2%を添加して笠岡粘土で比重を1.05g/cmに調整した後、ミキサーに投入して1時間撹拌した。撹拌後にセメント0.8%を添加してさらに1時間撹拌することにより作製した。廃安定液(1)のpHは12.1、浮遊物質量(SS)は56000mg/Lである。廃安定液(2)は、工業用水にベントナイト2%、CMC0.2%を添加して笠岡粘土で比重を1.09g/cmに調整した後、ミキサーに投入して1時間撹拌した。撹拌後にセメント0.8%を添加してさらに1時間撹拌することにより作製した。廃安定液(2)のpHは11.8、浮遊物質量(SS)は120000mg/Lである。廃安定液(3)の比重は1.05g/cm、pHは9.1、浮遊物質量(SS)は45000mg/Lである。 The waste stabilization liquid (1) was adjusted to a specific gravity of 1.05 g/cm 3 with Kasaoka clay by adding 2% of bentonite and 0.2% of CMC to industrial water, and then added to a mixer and stirred for 1 hour. It was prepared by adding 0.8% of cement after stirring and further stirring for 1 hour. The pH of the waste stabilization liquid (1) is 12.1 and the amount of suspended solids (SS) is 56000 mg/L. The waste stabilization liquid (2) was adjusted to a specific gravity of 1.09 g/cm 3 with Kasaoka clay by adding 2% of bentonite and 0.2% of CMC to industrial water, and then added to a mixer and stirred for 1 hour. It was prepared by adding 0.8% of cement after stirring and further stirring for 1 hour. The pH of the waste stabilization liquid (2) is 11.8 and the amount of suspended solids (SS) is 120,000 mg/L. The waste stabilizing solution (3) has a specific gravity of 1.05 g/cm 3 , a pH of 9.1, and an amount of suspended solids (SS) of 45000 mg/L.

〔試験装置〕
次に、図12及び、13に基づいて、実証試験に用いた試験装置の概要を説明する。図12に示すように、試験装置10は、貯留槽11と、水中ポンプ12と、上流側流通ライン13と、ラインミキサー14と、下流側流通ライン15と、スクリューデカンタ型遠心分離機(以下、単に遠心分離機という)40と、上流側定量ポンプ20と、下流側定量ポンプ30とを備えている。
[Test equipment]
Next, based on FIGS. 12 and 13, an outline of the test apparatus used for the verification test will be described. As shown in FIG. 12, the test apparatus 10 includes a storage tank 11, a submersible pump 12, an upstream distribution line 13, a line mixer 14, a downstream distribution line 15, and a screw decanter centrifuge (hereinafter, A centrifugal separator 40), an upstream metering pump 20, and a downstream metering pump 30.

貯留槽11は、廃安定液2aを貯留する。水中ポンプ12は、貯留槽11内に貯留された廃安定液2aに浸漬されている。水中ポンプ12の吐出口には、上流側供給ライン13の上流口が接続されている。すなわち、水中ポンプ12を駆動させると、貯留槽11内の廃安定液2aが水中ポンプ12により汲み上げられて上流側供給ライン13に圧送されるようになっている。 The storage tank 11 stores the waste stabilizing liquid 2a. The submersible pump 12 is immersed in the waste stabilizing liquid 2a stored in the storage tank 11. The upstream port of the upstream supply line 13 is connected to the discharge port of the submersible pump 12. That is, when the submersible pump 12 is driven, the waste stabilizing liquid 2a in the storage tank 11 is pumped up by the submersible pump 12 and pumped to the upstream supply line 13.

上流側流通ライン13には、上流側添加ライン21が接続されており、さらに、上流側添加ライン21には、カチオン系有機凝集剤C1を送出する上流側定量ポンプ20が接続されている。すなわち、上流側流通ライン13を流通する廃安定液2aに対して、上流側添加ライン21を介してカチオン系有機凝集剤C1が添加されるようになっている。 An upstream addition line 21 is connected to the upstream distribution line 13, and an upstream metering pump 20 that sends out the cationic organic coagulant C1 is connected to the upstream addition line 21. That is, the cationic organic coagulant C1 is added to the waste stabilization liquid 2a flowing through the upstream distribution line 13 via the upstream addition line 21.

上流側添加ライン21の下流側軸心は、上流側流通ライン13の軸心に対して略45度の角度で傾斜しており、カチオン系有機凝集剤C1が廃安定液2aに対して略45度の注入角度で添加される。上流側添加ライン21には、好ましくは逆止弁22が設けられている。 The downstream axis of the upstream addition line 21 is inclined at an angle of approximately 45 degrees with respect to the axis of the upstream distribution line 13, and the cationic organic coagulant C1 is approximately 45 with respect to the waste stabilizing solution 2a. Added at an injection angle of degrees. The upstream addition line 21 is preferably provided with a check valve 22.

ラインミキサー14は、上流側流通ライン13の下流口と下流側流通ライン15の上流口とを接続する。ラインミキサー14は、上流側流通ライン13にてカチオン系有機凝集剤C1が添加された廃安定液2bを流通させて撹拌することにより、カチオン系有機凝集剤C1の混合を促進させる。このように、ラインミキサー14にて、凝結効果を有するカチオン系有機凝集剤C1を廃安定液2bと効果的に混合することにより、廃安定液2b’に微細フロックの形成が促進される。 The line mixer 14 connects the downstream opening of the upstream distribution line 13 and the upstream opening of the downstream distribution line 15. The line mixer 14 promotes the mixing of the cationic organic coagulant C1 by circulating and stirring the waste stabilization liquid 2b to which the cationic organic coagulant C1 has been added in the upstream distribution line 13. Thus, the line mixer 14 effectively mixes the cationic organic coagulant C1 having a coagulating effect with the waste stabilizing solution 2b, thereby promoting the formation of fine flocs in the waste stabilizing solution 2b'.

下流側流通ライン15には、下流側添加ライン31が接続されており、さらに、下流側添加ライン31には、アニオン系有機凝集剤A1を送出する下流側定量ポンプ30が接続されている。すなわち、下流側流通ライン15を流通する廃安定液2b’に対して、下流側添加ライン31を介してアニオン系有機凝集剤A1が添加されるようになっている。 A downstream side addition line 31 is connected to the downstream side distribution line 15, and a downstream side fixed pump 30 for sending out the anionic organic coagulant A1 is connected to the downstream side addition line 31. That is, the anionic organic coagulant A1 is added to the waste stabilization liquid 2b' flowing through the downstream distribution line 15 via the downstream addition line 31.

下流側添加ライン31の下流側軸心は、下流側流通ライン15の軸心に対して略45度の角度で傾斜しており、アニオン系有機凝集剤A1が廃安定液2b’に対して略45度の注入角度で添加される。下流側添加ライン31には、好ましくは逆止弁32が設けられている。 The downstream side axis of the downstream side addition line 31 is inclined at an angle of approximately 45 degrees with respect to the axis of the downstream side distribution line 15, and the anionic organic coagulant A1 is substantially inclined with respect to the waste stabilization liquid 2b′. Added at a 45 degree implant angle. A check valve 32 is preferably provided in the downstream addition line 31.

ラインミキサー14から下流側流通ライン15に流れ込む廃安定液2b’には、細かいフロックが形成されている。このような廃安定液2b’に対して、凝集効果を持つアニオン系有機凝集剤A1を添加することにより、微細フロック同士が互いに結合し、フロックの粗大化が促進される。フロックが粗大化された廃安定液2cは、下流側流通ライン15から遠心分離機40に送られる。 Fine flocs are formed in the waste stabilization liquid 2b' flowing from the line mixer 14 into the downstream distribution line 15. By adding the anionic organic flocculant A1 having a flocculating effect to such waste stabilizing liquid 2b', the fine flocs are bonded to each other and the flocc coarsening is promoted. The waste stabilization liquid 2c in which the flocs are coarsened is sent from the downstream distribution line 15 to the centrifuge 40.

図13に示すように、遠心分離機40は、所定方向に回転する外筒41と、外筒41の内部空間に配置され、外筒41と同軸で回転するスクリュー42と、下流側流通ライン15(図12参照)を通じて導入された廃安定液2c(被処理液)を、外筒41とスクリュー42の間に供給する被処理液供給管43(液体供給部)とを備えている。この遠心分離機40では、外筒41の回転によって、回転中心から半径方向に向かう遠心力が廃安定液2cに作用する。外筒41とスクリュー42の回転速度差により、廃安定液2cの固形分3がスクリュー42の羽根部に押され、外筒41の縮径部41aへ向かって移動する。その後、固形分3は、縮径部41aの先端側部分に設けられた固形分排出口44から、外筒41の外部に排出される。一方、廃安定液2cの分離水4は、縮径部41aとは反対側の側面41bに設けられた液体分排出口45から外筒41の外部に排出される。その結果、廃安定液2cに含まれる固形分3と分離水4とが分離される。 As shown in FIG. 13, the centrifuge 40 includes an outer cylinder 41 that rotates in a predetermined direction, a screw 42 that is arranged in an inner space of the outer cylinder 41, and that rotates coaxially with the outer cylinder 41, and a downstream distribution line 15. The waste stabilizing liquid 2c (the liquid to be treated) introduced through (see FIG. 12) is provided with a liquid to be treated supply pipe 43 (a liquid supply portion) that supplies between the outer cylinder 41 and the screw 42. In the centrifugal separator 40, the rotation of the outer cylinder 41 causes a centrifugal force in the radial direction from the center of rotation to act on the waste stabilizing liquid 2c. Due to the difference in rotational speed between the outer cylinder 41 and the screw 42, the solid content 3 of the waste stabilizing liquid 2c is pushed by the blade portion of the screw 42 and moves toward the reduced diameter portion 41a of the outer cylinder 41. Thereafter, the solid content 3 is discharged to the outside of the outer cylinder 41 from the solid content discharge port 44 provided at the tip side portion of the reduced diameter portion 41a. On the other hand, the separated water 4 of the waste stabilization liquid 2c is discharged to the outside of the outer cylinder 41 from the liquid component discharge port 45 provided on the side surface 41b opposite to the reduced diameter portion 41a. As a result, the solid content 3 and the separated water 4 contained in the waste stabilization liquid 2c are separated.

なお、図12において、試験装置10は、廃安定液に対して凝集剤をカチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1の順(C1→A1)に添加するものとして説明したが、アニオン系有機凝集剤A1及び、カチオン系有機凝集剤C1の順(A1→C1)に添加することもできる。この場合は、上流側流通ライン13を流通する廃安定液2aに対して、アニオン系有機凝集剤A1を上流側定量ポンプ20により添加し、下流側流通ライン15を流通する廃安定液2b’に対して、カチオン系有機凝集剤C1を下流側定量ポンプ30により添加すればよい。 In addition, in FIG. 12, the test apparatus 10 is described as adding the coagulant to the waste stabilization liquid in the order of the cationic organic coagulant C1 and the anionic organic coagulant A1 (C1→A1). It is also possible to add the anionic organic coagulant A1 and the cation organic coagulant C1 in this order (A1→C1). In this case, the anionic organic coagulant A1 is added to the waste stabilization liquid 2a flowing through the upstream distribution line 13 by the upstream metering pump 20, and the waste stabilization liquid 2b′ flowing through the downstream distribution line 15 is added. On the other hand, the cationic organic coagulant C1 may be added by the downstream metering pump 30.

〔試験手順〕
上述の廃安定液(1)、(2)をそれぞれ試験装置10の貯留槽11に投入し、水中ポンプ12により送出される廃安定液に対して、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を何れも添加することなく遠心力900G、1300Gの遠心分離機40を通過させ、固液分離により得られた分離水を採取した。
〔Test procedure〕
The waste stabilization liquids (1) and (2) described above were respectively charged into the storage tank 11 of the test apparatus 10, and the waste stabilization liquid delivered by the submersible pump 12 was treated with the cationic organic coagulant C1 and the anionic organic flocculant. The separated water obtained by solid-liquid separation was collected by passing through the centrifuge 40 having a centrifugal force of 900 G and 1300 G without adding any coagulant A1.

また、上述の廃安定液(1)、(2)、(3)をそれぞれ試験装置10の貯留槽11に投入し、水中ポンプ12により送出される廃安定液に対して、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1をそれぞれ最適値で順に添加(C1→A1)して遠心力900G、1300Gの遠心分離機40を通過させ、固液分離により得られた分離水を採取した。 In addition, the waste stabilizing solutions (1), (2), and (3) described above are respectively put into the storage tank 11 of the test apparatus 10 and the cationic stabilizing agent is added to the waste stabilizing solution delivered by the submersible pump 12. C1 and anionic organic coagulant A1 were sequentially added at optimum values (C1→A1) and passed through a centrifuge 40 having a centrifugal force of 900G and 1300G, and separated water obtained by solid-liquid separation was collected.

さらに、上述の廃安定液(1)、(2)をそれぞれ試験装置10の貯留槽11に投入し、水中ポンプ12により送出される廃安定液に対して、アニオン系有機凝集剤A1及び、カチオン系有機凝集剤C1をそれぞれ最適値で順に添加(A1→C1)して遠心力900G、1300Gの遠心分離機40を通過させ、固液分離により得られた分離水を採取した。 Furthermore, the waste stabilization liquids (1) and (2) described above are respectively charged into the storage tank 11 of the test apparatus 10, and the waste stabilization liquid delivered by the submersible pump 12 is treated with an anionic organic coagulant A1 and a cation. The system organic coagulant C1 was added in the order of optimum values (A1→C1) and passed through the centrifuge 40 having a centrifugal force of 900G and 1300G, and the separated water obtained by solid-liquid separation was collected.

採取した各分離水については、浮遊物質量(SS)、pH及び、比重を測定した。最適値は、遠心分離機40から得られる分離水の状況(フロックや透明度等)を観察しながら添加量を適宜に調整した濃度である。 For each separated water sampled, the amount of suspended solids (SS), pH, and specific gravity were measured. The optimum value is a concentration at which the addition amount is appropriately adjusted while observing the state of the separated water obtained from the centrifuge 40 (flock, transparency, etc.).

〔凝集効果の実証試験結果〕
凝集効果の実証試験結果を図14に示す。廃安定液(1)、(2)に対して、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を何れも添加しなかったケースでは、分離水の浮遊物質量(SS)は半分以下に低下したものの、下水道への放流基準値(600mg/L以下)を満たさなかった。
[Results of proof test of aggregation effect]
The results of the proof test of the aggregation effect are shown in FIG. In the case where neither the cationic organic coagulant C1 nor the anionic organic coagulant A1 was added to the waste stabilization liquids (1) and (2), the suspended solid amount (SS) of the separated water was half or less. However, the standard value of discharge into sewer (600 mg/L or less) was not satisfied.

廃安定液(1)、(2)、(3)に対して、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を最適値で順に添加したケース(C1→A1)では、分離水の浮遊物質量(SS)は大きく低下し、下水道への放流基準値(600mg/L以下)を満たした。また、遠心分離機40の遠心力を900Gから1300Gに増加させると、浮遊物質量(SS)の削減効果が大きくなることが確認できた。また、廃安定液(1)、(2)に対して、アニオン系有機凝集剤A1及び、カチオン系有機凝集剤C1を最適値で順に添加したケース(A1→C1)においても、分離水の浮遊物質量(SS)は大きく低下し、下水道への放流基準値(600mg/L以下)を満たした。 In the case (C1→A1) in which the cationic organic coagulant C1 and the anionic organic coagulant A1 were sequentially added to the waste stabilization liquids (1), (2), and (3) at optimum values, the separated water was separated. The amount of suspended solids (SS) decreased significantly, and the discharge standard value (600 mg/L or less) into the sewer was satisfied. Moreover, it was confirmed that when the centrifugal force of the centrifuge 40 was increased from 900 G to 1300 G, the effect of reducing the amount of suspended solids (SS) was increased. In addition, in the case where the anionic organic coagulant A1 and the cationic organic coagulant C1 were sequentially added to the waste stabilization liquids (1) and (2) at the optimum values (A1→C1), the separated water floated. The substance amount (SS) was greatly reduced, and the discharge standard value (600 mg/L or less) into the sewer was satisfied.

以上の結果より、廃安定液に対して、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1を最適値で順に添加して凝集処理を施す場合(C1→A1)、さらには、廃安定液に対して、アニオン系有機凝集剤A1及び、カチオン系有機凝集剤C1を最適値で順に添加して凝集処理を施す場合(A1→C1)の何れにおいても、分離水の浮遊物質量(SS)は下水道への放流基準値(600mg/L以下)を満たすことが確認できた。また、分離水の比重は初期値(図11参照)よりも低い約1.00g/cmを示し、廃安定液の比重削減効果があることも確認できた。分離水に対しては、炭酸ガスにより中和処理を施すことで、pH8.6以下に調整することが可能である。 From the above results, when the cationic stabilizing agent C1 and the anionic stabilizing agent A1 are sequentially added to the waste stabilizing solution at the optimum values to perform the flocculation treatment (C1→A1), In both cases where an anionic organic coagulant A1 and a cationic organic coagulant C1 are sequentially added to the liquid at optimal values to perform coagulation treatment (A1→C1), the amount of suspended solids (SS ) Was confirmed to meet the standard value for discharge into sewer (600 mg/L or less). Further, the specific gravity of the separated water was about 1.00 g/cm 3 lower than the initial value (see FIG. 11), and it was also confirmed that there is an effect of reducing the specific gravity of the waste stabilizing solution. The separated water can be adjusted to pH 8.6 or less by performing a neutralization treatment with carbon dioxide gas.

以上の結果を総括すると、現場にて安定液を廃液処理する場合には、ポンプにより汲み上げた廃安定液に対してカチオン系有機凝集剤C1を添加する第1工程(図15のステップS100)と、カチオン系有機凝集剤C1が添加された廃安定液に対してアニオン系有機凝集剤A1を添加する第2工程(図15のステップS110)と、カチオン系有機凝集剤C1及び、アニオン系有機凝集剤A1が添加された廃安定液を遠心分離機で固液分離する第3工程(図15のステップS120)とを順に実施すれば、浮遊物質の凝集が効果的に促進されるようになり、分離水の浮遊物質量(SS)は下水道への放流基準値(600mg/L以下)を満たすことが確認できた。 To summarize the above results, in the case of treating waste liquid in the field with the waste liquid, the first step (step S100 of FIG. 15) of adding the cationic organic coagulant C1 to the waste liquid that has been pumped up by the pump is performed. A second step (step S110 in FIG. 15) of adding the anionic organic coagulant A1 to the waste stabilization liquid to which the cationic organic coagulant C1 has been added, and the cationic organic coagulant C1 and the anionic organic coagulant If the third step (step S120 in FIG. 15) of solid-liquid separation of the waste stabilizing solution to which the agent A1 is added by a centrifuge is sequentially performed, aggregation of suspended solids can be effectively promoted, It was confirmed that the amount of suspended solids (SS) in the separated water satisfied the discharge standard value (600 mg/L or less) to the sewer.

また、現場にて安定液を廃液処理する場合には、ポンプにより汲み上げた廃安定液に対してアニオン系有機凝集剤A1を添加する第1工程(図16のステップS200)と、アニオン系有機凝集剤A1が添加された廃安定液に対してカチオン系有機凝集剤C1を添加する第2工程(図16のステップS210)と、アニオン系有機凝集剤A1及び、カチオン系有機凝集剤C1が添加された廃安定液を遠心分離機で固液分離する第3工程(図16のステップS220)とを順に実施すれば、浮遊物質の凝集が効果的に促進されるようになり、分離水の浮遊物質量(SS)は下水道への放流基準値(600mg/L以下)を満たすことが確認できた。 Further, in the case of performing waste liquid treatment on the spot, the first step (step S200 of FIG. 16) of adding the anionic organic coagulant A1 to the waste stable liquid pumped by the pump and the anionic organic coagulation The second step (step S210 of FIG. 16) of adding the cationic organic coagulant C1 to the waste stabilization liquid to which the agent A1 is added, and the anionic organic coagulant A1 and the cationic organic coagulant C1 are added. If the third step (step S220 in FIG. 16) of solid-liquid separation of the waste stabilization liquid with a centrifuge is sequentially performed, the flocculation of suspended solids can be effectively promoted, and the suspended solids of separated water It was confirmed that the amount (SS) satisfied the discharge standard value for sewerage (600 mg/L or less).

図15,16に示す何れの処理方法においても、第3工程(S120、S220)の後に、分離水に対して炭酸ガスにより中和処理を施すことで、pH8.6以下に調整すればよい。また、何れの処理方法においても、第1工程(S100、S200)と第2工程(S110、S210)と間に、ラインミキサー等を用いて凝集剤と廃安定液とを撹拌混合する工程を含めることが好ましい。 In any of the treatment methods shown in FIGS. 15 and 16, after the third step (S120, S220), the separated water may be neutralized with carbon dioxide gas to adjust the pH to 8.6 or less. Further, in any of the processing methods, a step of stirring and mixing the coagulant and the waste stabilizing solution using a line mixer or the like is included between the first step (S100, S200) and the second step (S110, S210). Preferably.

〔分離水の再利用試験〕
上述の凝集効果の実証試験で得られた分離水を用いて、当該分離水が新しく作液する安定液の材料(作液水)として再利用できるかを確認した。上記実証試験にて得られた廃安定液(1)〜(3)の分離水に、ベントナイト2%、ポリマー剤0.2%を添加して新たな安定液を作製し、ファンネル粘度及び、ろ水量を測定した。
[Reuse test of separated water]
By using the separated water obtained in the above-described verification test of the agglomeration effect, it was confirmed whether the separated water can be reused as a material of a stable liquid to be newly made (liquid making water). 2% of bentonite and 0.2% of a polymer agent were added to the separated water of the waste stabilization liquids (1) to (3) obtained in the above verification test to prepare a new stabilization liquid, and the funnel viscosity and The amount of water was measured.

ファンネル粘度は現場で管理する安定液の粘性を示す値である。ファンネル粘度は、漏斗状のファンネル粘度計に安定液を500ml投入し、全量が流下するのに要する時間を計測した。ろ水量は安定液の造壁性を表す劣化の指標となる値である。ろ水量は、API規格(American Petroleum Institute:アメリカ石油協会)の加圧ろ過試験器を用いて測定した。具体的には、加圧ろ過試験器のシリンダーセルに安定液を290ml投入して、圧力0.3MPaを30分間付与し、容器下端から流出するろ水量をメスシリンダで計測した。 The funnel viscosity is a value indicating the viscosity of the stabilizing liquid that is controlled on site. Regarding the funnel viscosity, 500 ml of the stabilizing solution was charged into a funnel-shaped funnel viscometer, and the time required for the entire amount to flow down was measured. The amount of drainage is a value that is an index of deterioration showing the wall-forming property of the stabilizing solution. The amount of filtered water was measured using a pressure filtration tester of API (American Petroleum Institute). Specifically, 290 ml of the stabilizing solution was introduced into the cylinder cell of the pressure filtration tester, a pressure of 0.3 MPa was applied for 30 minutes, and the amount of filtrate flowing out from the lower end of the container was measured with a graduated cylinder.

試験結果を図17に示す。ファンネル粘度は、廃安定液(1)〜(3)の何れにおいても、工業用水で作製した安定液と略同等の値を示した。廃安定液(3)の7日目で、ファンネル粘度は21と若干低い値を示したが、管理値の範囲内であり問題ないといえる。ろ水量は、廃安定液(1)〜(3)の何れにおいても、直後、3日目、7日目で管理値よりも低い値を示した。 The test results are shown in FIG. The funnel viscosity of each of the waste stabilizing liquids (1) to (3) showed a value substantially equal to that of the stabilizing liquid prepared with industrial water. On day 7 of the waste stabilizing solution (3), the funnel viscosity showed a slightly low value of 21, but it is within the range of the control value, and it can be said that there is no problem. The amount of drainage was lower than the control value immediately after the 3rd and 7th days in all of the waste stabilization liquids (1) to (3).

以上の結果より、廃安定液(1)〜(3)の何れも、ファンネル粘度及び、ろ水量は、直後、3日目、7日目にて管理値内を示しており、新たな安定液の作液水として再利用できることが確認できた。 From the above results, all of the waste stabilizing solutions (1) to (3) show that the funnel viscosity and the amount of drainage are within the control values immediately after the 3rd and 7th days, and the new stabilizing solution is obtained. It was confirmed that the water can be reused as the water for producing.

以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。 The above description of the embodiments is for facilitating the understanding of the present invention and is not intended to limit the present invention. The present invention can be modified and improved without departing from the gist thereof and the present invention includes equivalents thereof.

例えば、カチオン系有機凝集剤に関し、前述の実施形態では、1番目のカチオン系有機凝集剤C1を例示したが、2番目のカチオン系有機凝集剤C2を用いてもよい。すなわち、10%溶液の粘度が12cps以下である有機凝集剤であれば、他の種類の有機凝集剤であっても使用可能である。また、カチオン系有機凝集剤及び、アニオン系有機凝集剤は、それぞれ1種を添加するものに限定されず、1種以上を添加するようにしてもよい。 For example, regarding the cation-based organic coagulant, the first cation-based organic coagulant C1 is exemplified in the above embodiment, but the second cation-based organic coagulant C2 may be used. That is, as long as the viscosity of the 10% solution is 12 cps or less, other types of organic flocculants can be used. Further, the cationic organic coagulant and the anionic organic coagulant are not limited to those in which one kind is added, respectively, and one or more kinds may be added.

また、分離水は炭酸ガスにより中和処理を施すものとして説明したが、硫酸等のpH調整剤を用いて中和処理を施してもよい。 Although the separated water has been described as being neutralized with carbon dioxide gas, it may be neutralized with a pH adjusting agent such as sulfuric acid.

10…試験装置,11…貯留槽,12…水中ポンプ,13…上流側流通ライン,14…ラインミキサー,15…下流側流通ライン,20…上流側定量ポンプ,21…上流側添加ライン,30…下流側定量ポンプ,31…下流側添加ライン,40…スクリューデカンタ型遠心分離機(遠心分離機) DESCRIPTION OF SYMBOLS 10... Test device, 11... Storage tank, 12... Submersible pump, 13... Upstream distribution line, 14... Line mixer, 15... Downstream distribution line, 20... Upstream metering pump, 21... Upstream addition line, 30... Downstream metering pump, 31... Downstream addition line, 40... Screw decanter centrifuge (centrifuge)

Claims (8)

安定液の廃液にカチオン系有機凝集剤から選ばれる1種以上を添加する第1工程と、
前記廃液にアニオン系有機凝集剤から選ばれる1種以上を添加する第2工程と、
前記カチオン系有機凝集剤及び前記アニオン系有機凝集剤が添加された前記廃液を遠心分離機により固液分離する第3工程と、を含む
ことを特徴とする安定液の廃液処理方法。
A first step of adding at least one selected from cationic organic coagulants to a waste liquid of a stabilizing solution;
A second step of adding at least one selected from anionic organic flocculants to the waste liquid;
A third step of solid-liquid separating the waste liquid, to which the cationic organic coagulant and the anionic organic coagulant have been added, by a centrifuge.
安定液の廃液にアニオン系有機凝集剤から選ばれる1種以上を添加する第1工程と、
前記廃液にカチオン系有機凝集剤から選ばれる1種以上を添加する第2工程と、
前記アニオン系有機凝集剤及び前記カチオン系有機凝集剤が添加された前記廃液を遠心分離機により固液分離する第3工程と、を含む
ことを特徴とする安定液の廃液処理方法。
A first step of adding at least one selected from anionic organic flocculants to the waste liquid of the stabilizing solution;
A second step of adding at least one selected from cationic organic flocculants to the waste liquid,
A third step of solid-liquid separating the waste liquid, to which the anionic organic coagulant and the cationic organic coagulant have been added, by a centrifuge.
前記第1工程と前記第2工程との間に、前記第1工程で添加された有機凝集剤をラインミキサーにより前記廃液と撹拌混合する工程をさらに含む
請求項1又は2に記載の安定液の廃液処理方法。
The stabilizing solution according to claim 1 or 2, further comprising a step of stirring and mixing the organic coagulant added in the first step with the waste liquid by a line mixer between the first step and the second step. Waste liquid treatment method.
前記第3工程で固液分離により得られる分離水に対して炭酸ガスによる中和処理を施す工程をさらに含む
請求項1から3の何れか一項に記載の安定液の廃液処理方法。
The waste liquid treatment method for a stable liquid according to claim 1, further comprising a step of subjecting the separated water obtained by solid-liquid separation in the third step to a neutralization treatment with carbon dioxide gas.
前記第3工程で固液分離により得られる分離水に対して、少なくともベントナイト及び、ポリマー剤を添加して新たな安定液を作製する工程をさらに含む
請求項1から3の何れか一項に記載の安定液の廃液処理方法。
4. The method according to claim 1, further comprising a step of adding at least bentonite and a polymer agent to the separated water obtained by solid-liquid separation in the third step to prepare a new stabilizing solution. Wastewater treatment method for stable liquids.
前記カチオン系有機凝集剤は、10%溶液の粘度が12cps以下である
請求項1から5の何れか一項に記載の安定液の廃液処理方法。
The waste liquid treatment method for a stabilizing solution according to claim 1, wherein the 10% solution of the cationic organic coagulant has a viscosity of 12 cps or less.
前記カチオン系有機凝集剤は、P−DADMAC系有機凝集剤、又は、ポリアミン系有機凝集剤の少なくとも一種である
請求項6に記載の安定液の廃液処理方法。
The waste liquid treatment method for a stabilizing solution according to claim 6, wherein the cationic organic coagulant is at least one of a P-DADMAC organic coagulant and a polyamine organic coagulant.
前記アニオン系有機凝集剤は、アクリルアミド・アクリル酸ソーダ共重合物の有機凝集剤である
請求項1から7の何れか一項に記載の安定液の廃液処理方法。
The waste liquid treatment method for a stabilizing solution according to any one of claims 1 to 7, wherein the anionic organic coagulant is an organic coagulant of an acrylamide-sodium acrylate copolymer.
JP2018224470A 2018-11-30 2018-11-30 Waste liquid treatment method for stabilizing liquid Active JP7198647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018224470A JP7198647B2 (en) 2018-11-30 2018-11-30 Waste liquid treatment method for stabilizing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018224470A JP7198647B2 (en) 2018-11-30 2018-11-30 Waste liquid treatment method for stabilizing liquid

Publications (2)

Publication Number Publication Date
JP2020082031A true JP2020082031A (en) 2020-06-04
JP7198647B2 JP7198647B2 (en) 2023-01-04

Family

ID=70905786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224470A Active JP7198647B2 (en) 2018-11-30 2018-11-30 Waste liquid treatment method for stabilizing liquid

Country Status (1)

Country Link
JP (1) JP7198647B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110972A (en) * 1974-01-11 1975-09-01
JPS553036B2 (en) * 1973-02-09 1980-01-23
JPS5516718B2 (en) * 1972-05-29 1980-05-06
JPH0538404A (en) * 1991-08-06 1993-02-19 Toagosei Chem Ind Co Ltd Dewatering agent for bentonite sludge
JPH11286930A (en) * 1998-04-03 1999-10-19 Nishimatsu Constr Co Ltd Deterioration regeneration chart of stable slurry and regenerant adding method using the same
JPH11323322A (en) * 1998-05-15 1999-11-26 Kunimine Ind Co Ltd Self-dispersive molding excavation stabilizing solution and preparation of excavation stabilizing solution and method for recovery
US20100108616A1 (en) * 2007-01-25 2010-05-06 Geo Grounding Engineering Operations Chemical composition and process for treating geotechnical slurries
JP2015000389A (en) * 2013-06-18 2015-01-05 水ing株式会社 Sludge treatment method and device
JP2017047358A (en) * 2015-09-01 2017-03-09 株式会社大林組 Effluent treatment method for bentonite based stable liquid, and organic coagulant used therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516718B2 (en) * 1972-05-29 1980-05-06
JPS553036B2 (en) * 1973-02-09 1980-01-23
JPS50110972A (en) * 1974-01-11 1975-09-01
JPH0538404A (en) * 1991-08-06 1993-02-19 Toagosei Chem Ind Co Ltd Dewatering agent for bentonite sludge
JPH11286930A (en) * 1998-04-03 1999-10-19 Nishimatsu Constr Co Ltd Deterioration regeneration chart of stable slurry and regenerant adding method using the same
JPH11323322A (en) * 1998-05-15 1999-11-26 Kunimine Ind Co Ltd Self-dispersive molding excavation stabilizing solution and preparation of excavation stabilizing solution and method for recovery
US20100108616A1 (en) * 2007-01-25 2010-05-06 Geo Grounding Engineering Operations Chemical composition and process for treating geotechnical slurries
JP2015000389A (en) * 2013-06-18 2015-01-05 水ing株式会社 Sludge treatment method and device
JP2017047358A (en) * 2015-09-01 2017-03-09 株式会社大林組 Effluent treatment method for bentonite based stable liquid, and organic coagulant used therefor

Also Published As

Publication number Publication date
JP7198647B2 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
EP2010457B1 (en) Method for removal of materials from a liquid stream
US20200016553A1 (en) In-line dynamic mixing apparatus for flocculating and dewatering oil sands fine tailings
US20170247271A1 (en) Improved process for treating aqueous mineral suspensions
JP2015073942A (en) Water treatment system
JPS5939475B2 (en) Sediment-containing water treatment method
JP5589430B2 (en) Treatment method of inorganic waste water
US20190276345A1 (en) Process for tailings remediation
JP2020082031A (en) Process for treating waste slurry
JP2019171309A (en) Coagulation sedimentation apparatus and coagulation sedimentation method
JP2019198806A (en) Water treatment method, and water treatment device
JP2008155188A (en) Mud and muddy water treatment method
JP4828378B2 (en) Powdered muddy water treatment agent, muddy water dewatering method, and muddy water volume reducing treatment device
JP6692618B2 (en) Method for treating waste liquid of bentonite-based stabilizer, and organic coagulant used therefor
JP3705012B2 (en) Muddy water dehydration
US20210371316A1 (en) Process for dewatering an aqueous process stream
CN102276083B (en) A kind for the treatment of process of banana stem papermaking pulp wastewater
US11407668B1 (en) Method for processing sludge
JP2019025459A (en) Water treatment chemical, water treatment method and water treatment device
DE102014116682B4 (en) Process for dewatering bentonite suspensions
JP7260393B2 (en) Slurry shield method
JP6318872B2 (en) Muddy water treatment method
KR102035971B1 (en) System for coagulating and dewatering sludge
JP2002219470A (en) Method and system for drainage treatment
JPH11276807A (en) Flocculant and flocculation sedimentation equipment using the same
JP7109970B2 (en) Coagulating sedimentation device and coagulating sedimentation method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210323

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20210922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7198647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150