JP2020081904A - Filter fabric for bag filter and manufacturing method for the same - Google Patents

Filter fabric for bag filter and manufacturing method for the same Download PDF

Info

Publication number
JP2020081904A
JP2020081904A JP2018214719A JP2018214719A JP2020081904A JP 2020081904 A JP2020081904 A JP 2020081904A JP 2018214719 A JP2018214719 A JP 2018214719A JP 2018214719 A JP2018214719 A JP 2018214719A JP 2020081904 A JP2020081904 A JP 2020081904A
Authority
JP
Japan
Prior art keywords
fiber
dtex
woven fabric
filter
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018214719A
Other languages
Japanese (ja)
Inventor
光規 田邨
Koki Tamura
光規 田邨
三枝 神山
Mitsue Kamiyama
三枝 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2018214719A priority Critical patent/JP2020081904A/en
Publication of JP2020081904A publication Critical patent/JP2020081904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

To provide a filter fabric for a bag filter that is excellent in collection performance, low in pressure loss and can suppress fall-out of fluffs, and further can prevent deterioration in dust collection performance caused by abrasion and cracking, and can desirably detect unevenness of mixed fiber, and a manufacturing method for the same.SOLUTION: A filter fabric for a bag filter is manufactured by laminating an unwoven fabric A including short fiber a with monofilament fineness of 0.3-0.9 dtex and short fiber b with monofilament fineness of 0.9-4.0 dtex, a base cloth and an unwoven fabric B including short fiber c with monofilament fineness of 0.3-4.0 dtex in this order.SELECTED DRAWING: None

Description

本発明は、捕集性能に優れ低圧力損失であり、毛羽脱落抑制可能であり、好ましくは混繊斑感知可能なバグフィルター用ろ過布およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a filter cloth for a bag filter, which is excellent in collection performance, has low pressure loss, can suppress fluff shedding, and is preferably capable of detecting mixed fiber spots, and a method for producing the same.

バグフィルターは、集塵機の集塵室内に例えば吊設しておいて集塵を行うために使用されるものである。ダストの払い落としと集塵を繰り返すことにより、長期間の集塵が行えるようになっている。 The bag filter is used, for example, by suspending it in a dust collecting chamber of the dust collector to collect dust. By repeatedly removing dust and collecting dust, it is possible to collect dust for a long time.

従来このようなバグフィルターとしては、織布またはニードルパンチ等により交絡処理された不織布(フェルト)が用いられてきたが、近年、装置の小形化の観点から、通気度の大きい不織布を用いると共に、ダストの払い落としをパルスジェットで行う方法が広まっている。さらには微細なダストを捕集して回収し、再利用するため、細繊度材料を用いたフィルターやPTFEメンブレン膜を張り合わせたタイプのフィルターが使用されている(例えば、特許文献1、2参照)。 Conventionally, as such a bag filter, a woven fabric or a non-woven fabric (felt) entangled with a needle punch or the like has been used, but in recent years, from the viewpoint of downsizing of the device, a non-woven fabric with a large air permeability is used, A method of using a pulse jet to remove dust is becoming widespread. Furthermore, in order to collect, collect, and reuse fine dust, a filter using a fineness material or a filter of a type in which a PTFE membrane film is laminated is used (for example, see Patent Documents 1 and 2). ..

しかしながら、細繊度材料を用いたフィルターでは、繊維の構成本数が多くなるため毛羽脱落しやすくなり、圧力損失(圧損)も高くなって省エネ性が低下する。PTFEメンブレン膜を張り合わせたタイプのフィルターでは、薄層であるがゆえに、磨耗やクラックによる集塵性低下や寿命低下の問題があった。 However, in the filter using the fineness material, the number of fibers constituting the fiber becomes large, so that the fluff easily falls off, the pressure loss (pressure loss) also increases, and the energy saving performance decreases. The filter of the type in which the PTFE membrane film is laminated has a problem that the dust collecting property and the life are shortened due to wear and cracks because of the thin layer.

特開平9−313832号公報JP, 9-313832, A 特開平10−230119号公報JP, 10-230119, A

本発明は上記の背景に鑑みなされたものであり、その目的は、捕集性能に優れ低圧力損失であり、かつ毛羽脱落抑制可能であり、さらには磨耗やクラックによる集塵性低下が起こりにくく、好ましくは混繊斑感知可能なバグフィルター用ろ過布およびその製造方法を提供することにある。 The present invention has been made in view of the above background, the object thereof is excellent in the collection performance is a low pressure loss, and can be suppressed fluff shedding, further dust collection deterioration due to wear and cracks less likely to occur. The present invention is to provide a filter cloth for bag filters capable of detecting mixed filaments, and a method for producing the same.

本発明者らは上記の課題を達成するため鋭意検討した結果、バグフィルター用ろ過布において、構成する繊維の繊度等を巧みに工夫することにより、捕集性能に優れ低圧力損失であり、かつ毛羽脱落抑制可能であり、さらには磨耗やクラックによる集塵性低下が起こりにくく、好ましくは混繊斑感知可能なバグフィルター用ろ過布が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。 As a result of diligent studies to achieve the above-mentioned problems, the present inventors have found that in a filter cloth for a bag filter, by cleverly devising the fineness of the constituent fibers, the collection performance is excellent and the pressure loss is low, and It is possible to obtain a filter cloth for a bag filter that can suppress fluff shedding, further reduce deterioration of dust collecting property due to abrasion and cracks, and preferably find a filter cloth for a mixed fiber spot. Has been completed.

かくして、本発明によれば「単繊維繊度が0.3〜0.9dtexの短繊維aと単繊維繊度が0.9〜4.0dtexの短繊維bを含む不織布Aと、基布と、単繊維繊度が0.3〜4.0dtexの短繊維cを含む不織布Bとがこの順で積層してなることを特徴とするバグフィルター用ろ過布。」が提供される。 Thus, according to the present invention, "a non-woven fabric A including a short fiber a having a single fiber fineness of 0.3 to 0.9 dtex and a short fiber b having a single fiber fineness of 0.9 to 4.0 dtex, a base fabric, and a single fiber A filter cloth for a bag filter, characterized in that a non-woven fabric B containing short fibers c having a fiber fineness of 0.3 to 4.0 dtex is laminated in this order.”

その際、前記短繊維aおよび/または前記短繊維bおよび/または前記短繊維cが染色可能な繊維であることが好ましい。また、前記短繊維aおよび/または前記短繊維bおよび/または前記短繊維cが染色可能なアラミド繊維であることが好ましい。また、バグフィルター用ろ過布を構成する繊維が全てメタ型アラミド繊維であることが好ましい。また、空隙率が55〜90%の範囲内であることが好ましい。また、前記不織布Aがろ過物捕集面側に配されてなることが好ましい。 At that time, the short fibers a and/or the short fibers b and/or the short fibers c are preferably dyeable fibers. Further, it is preferable that the short fibers a and/or the short fibers b and/or the short fibers c are aramid fibers that can be dyed. Further, it is preferable that all the fibers forming the filter cloth for the bag filter are meta-aramid fibers. In addition, the porosity is preferably in the range of 55 to 90%. Further, it is preferable that the non-woven fabric A is arranged on the filtration material collecting surface side.

また、本発明によれば、前記のバグフィルター用ろ過布の製造方法であって、不織布Aと基布と不織布Bとをこの順で積層した後、ニードルパンチを施し、次いでカレンダー加工を施す、バグフィルター用ろ過布の製造方法が提供される。 Further, according to the present invention, in the method for producing a filter cloth for a bag filter described above, the non-woven fabric A, the base fabric and the non-woven fabric B are laminated in this order, needle punched, and then calendered. A method for manufacturing a filter cloth for a bag filter is provided.

本発明によれば、捕集性能に優れ低圧力損失であり、かつ毛羽脱落抑制可能であり、さらには磨耗やクラックによる集塵性低下が起こりにくく、好ましくは混繊斑感知可能なバグフィルター用ろ過布およびその製造方法が得られる。 According to the present invention, it is excellent in collection performance, has low pressure loss, and can suppress fluff shedding, and further, deterioration of dust collecting property due to wear and cracks is unlikely to occur, preferably for a bag filter capable of detecting mixed fiber spots. A filter cloth and a method for manufacturing the same are obtained.

以下、本発明の実施の形態について詳細に説明する。まず、短繊維aにおいて、単繊維繊度が0.3〜0.9dtex(より好ましくは0.3〜0.8dtex、特に好ましくは0.3〜0.6dtex)の範囲内であることが肝要である。該単繊維繊度が0.3dtexよりも小さいと、繊維自体の強度が小さくなりやすく、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがあり好ましくない。また、圧力損失も大きくなるため好ましくない。逆に、該単繊維繊度が0.9dtexよりも大きいと、ダストの捕集性が低下しダストがろ過布内部まで進入しやすくなり好ましくない。 Hereinafter, embodiments of the present invention will be described in detail. First, it is important that the single fiber fineness of the short fibers a is within a range of 0.3 to 0.9 dtex (more preferably 0.3 to 0.8 dtex, and particularly preferably 0.3 to 0.6 dtex). is there. When the single fiber fineness is less than 0.3 dtex, the strength of the fiber itself tends to be small, and the fiber is likely to be ruptured due to the entanglement treatment during the production of the filter cloth, which may reduce the strength of the nonwoven fabric, which is not preferable. Further, the pressure loss becomes large, which is not preferable. On the contrary, when the single fiber fineness is larger than 0.9 dtex, the dust collecting property is lowered and the dust easily enters the inside of the filter cloth, which is not preferable.

また、短繊維aにおいて、引張強度が2.2cN/dtex以上(より好ましくは2.2〜6.0cN/dtex)であることが好ましい。該引張強度が2.2cN/dtexよりも小さいと、繊維自体の強度が小さくなりやすく、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがある。 The short fiber a preferably has a tensile strength of 2.2 cN/dtex or more (more preferably 2.2 to 6.0 cN/dtex). When the tensile strength is less than 2.2 cN/dtex, the strength of the fiber itself tends to be small, and the fiber is likely to be ruptured due to entanglement treatment during the production of the filter cloth, which may reduce the strength of the nonwoven fabric.

前記短繊維aにおいて、伸度が25%以上(より好ましくは25〜50%)であることが好ましい。伸度が25%より小さいと、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがある。 The elongation of the short fiber a is preferably 25% or more (more preferably 25 to 50%). If the elongation is less than 25%, the fibers are likely to be broken by the entanglement treatment during the production of the filter cloth, and the strength of the nonwoven fabric may be reduced.

前記短繊維aにおいて、捲縮が付与されているとダストを捕集しやすく好ましい。その際、捲縮数が1〜30ケ/2.54cmの範囲内であることが好ましい。また、捲縮率が8〜40%の範囲内であることが好ましい。 It is preferable that the short fibers a are crimped, because dust is easily collected. At that time, the number of crimps is preferably within a range of 1 to 30/2.54 cm. Moreover, it is preferable that the crimping ratio is within a range of 8 to 40%.

前記短繊維aにおいて、繊維長が20〜80mmの範囲内であることが好ましい。
前記短繊維aの繊維種類としては特に限定されず、ポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維、PPS(ポリフェニレンサルファイド)繊維、アラミド繊維(全芳香族ポリアミド繊維)、ガラス繊維等が例示される。なかでも耐熱性の点でメタ型アラミド繊維(メタ型全芳香族ポリアミド繊維)が好ましい。メタ型アラミド繊維は、その繰返し単位の85モル%以上がm−フェニレンイソフタルアミドであるポリマーからなる繊維である。かかるメタ型全芳香族ポリアミドは、15モル%未満の範囲内で第3成分を含んだ共重合体であっても差しつかえない。
The short fiber a preferably has a fiber length within a range of 20 to 80 mm.
The fiber type of the short fiber a is not particularly limited, and examples thereof include polyester fiber, polyamide fiber, polyolefin fiber, PPS (polyphenylene sulfide) fiber, aramid fiber (wholly aromatic polyamide fiber), glass fiber and the like. Among them, meta-type aramid fiber (meta-type wholly aromatic polyamide fiber) is preferable in terms of heat resistance. Meta-type aramid fiber is a fiber made of a polymer in which 85 mol% or more of its repeating unit is m-phenylene isophthalamide. Such a meta-type wholly aromatic polyamide may be a copolymer containing the third component within the range of less than 15 mol%.

このようなメタ型全芳香族ポリアミドは、従来から公知の界面重合法により製造することができ、そのポリマーの重合度としては、0.5g/100mlの濃度のN−メチル−2−ピロリドン溶液で測定した固有粘度(I.V.)が1.3〜1.9dl/gの範囲のものが好ましく用いられる。メタ型アラミド繊維の市販品としては、コーネックス(商標名)、コーネックスネオ(商標名)、ノーメックス(商標名)などが例示される。 Such a meta-type wholly aromatic polyamide can be produced by a conventionally known interfacial polymerization method, and the polymer has a degree of polymerization of 0.5 g/100 ml of an N-methyl-2-pyrrolidone solution. Those having a measured intrinsic viscosity (IV) of 1.3 to 1.9 dl/g are preferably used. Examples of commercially available meta-aramid fibers include Conex (trademark), Conex Neo (trademark), Nomex (trademark) and the like.

一方、短繊維bにおいて、単繊維繊度が0.9〜4.0dtex(より好ましくは1.0〜3.2dtex、特に好ましくは1.2〜2.5dtex)の範囲内であることが肝要である。該単繊維繊度が0.9dtexよりも小さいと、繊維自体の強度が小さくなりやすく、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがあり好ましくない。逆に、該単繊維繊度が4.0dtexよりも大きいと、ダストの捕集性能が低下し好ましくない。なお、短繊維bの単繊維繊度が短繊維aの単繊維繊度より大きいことが好ましい。 On the other hand, it is important that the single fiber fineness of the short fibers b is within the range of 0.9 to 4.0 dtex (more preferably 1.0 to 3.2 dtex, and particularly preferably 1.2 to 2.5 dtex). is there. When the single fiber fineness is less than 0.9 dtex, the strength of the fiber itself tends to be small, and the fiber is likely to be ruptured due to the entanglement treatment during the production of the filter cloth, which may reduce the strength of the nonwoven fabric, which is not preferable. On the contrary, when the single fiber fineness is larger than 4.0 dtex, the dust collecting performance is deteriorated, which is not preferable. The single fiber fineness of the short fibers b is preferably larger than the single fiber fineness of the short fibers a.

また、短繊維bにおいて、引張強度が2.2cN/dtex以上(より好ましくは2.2〜6.0cN/dtex)であることが好ましい。該引張強度が2.2cN/dtexよりも小さいと、繊維自体の強度が小さくなりやすく、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがある。 In addition, the short fiber b preferably has a tensile strength of 2.2 cN/dtex or more (more preferably 2.2 to 6.0 cN/dtex). When the tensile strength is less than 2.2 cN/dtex, the strength of the fiber itself tends to be small, and the fiber is likely to be ruptured due to entanglement treatment during the production of the filter cloth, which may reduce the strength of the nonwoven fabric.

前記短繊維bにおいて、伸度が25%以上(より好ましくは25〜50%)であることが好ましい。伸度が25%より小さいと、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがある。 The short fiber b preferably has an elongation of 25% or more (more preferably 25 to 50%). If the elongation is less than 25%, the fibers are likely to be broken by the entanglement treatment during the production of the filter cloth, and the strength of the nonwoven fabric may be reduced.

前記短繊維bにおいて、捲縮が付与されているとダストを捕集しやすく好ましい。その際、捲縮数が1〜30ケ/2.54cmの範囲内であることが好ましい。また、捲縮率が8〜40%の範囲内であることが好ましい。 It is preferable that the short fibers b are crimped because dust is easily collected. At that time, the number of crimps is preferably within a range of 1 to 30/2.54 cm. Moreover, it is preferable that the crimping ratio is within a range of 8 to 40%.

前記短繊維bにおいて、繊維長が20〜80mmの範囲内であることが好ましい。
前記短繊維bの繊維種類としては特に限定されず、ポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維、PPS(ポリフェニレンサルファイド)繊維、アラミド繊維、ガラス繊維等が例示される。なかでも耐熱性の点でメタ型アラミド繊維(メタ型全芳香族ポリアミド繊維)が好ましい。メタ型アラミド繊維は、その繰返し単位の85モル%以上がm−フェニレンイソフタルアミドであるポリマーからなる繊維である。かかるメタ型全芳香族ポリアミドは、15モル%未満の範囲内で第3成分を含んだ共重合体であっても差しつかえない。
The short fiber b preferably has a fiber length within the range of 20 to 80 mm.
The fiber type of the short fiber b is not particularly limited, and examples thereof include polyester fiber, polyamide fiber, polyolefin fiber, PPS (polyphenylene sulfide) fiber, aramid fiber, and glass fiber. Among them, meta-type aramid fiber (meta-type wholly aromatic polyamide fiber) is preferable in terms of heat resistance. Meta-type aramid fiber is a fiber made of a polymer in which 85 mol% or more of its repeating unit is m-phenylene isophthalamide. Such a meta-type wholly aromatic polyamide may be a copolymer containing the third component within the range of less than 15 mol%.

このようなメタ型全芳香族ポリアミドは、従来から公知の界面重合法により製造することができ、そのポリマーの重合度としては、0.5g/100mlの濃度のN−メチル−2−ピロリドン溶液で測定した固有粘度(I.V.)が1.3〜1.9dl/gの範囲のものが好ましく用いられる。メタ型アラミド繊維の市販品としては、コーネックス(商標名)、コーネックスネオ(商標名)、ノーメックス(商標名)などが例示される。 Such a meta-type wholly aromatic polyamide can be produced by a conventionally known interfacial polymerization method, and the polymer has a degree of polymerization of 0.5 g/100 ml of an N-methyl-2-pyrrolidone solution. Those having a measured intrinsic viscosity (IV) of 1.3 to 1.9 dl/g are preferably used. Examples of commercially available meta-aramid fibers include Conex (trademark), Conex Neo (trademark), Nomex (trademark) and the like.

また、短繊維cにおいて、単繊維繊度が0.3〜4.0dtex(より好ましくは0.4〜3.2dtex、特に好ましくは0.8〜2.5dtex)の範囲内であることが肝要である。該単繊維繊度が0.3dtexよりも小さいと、繊維自体の強度が小さくなりやすく、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがあり好ましくない。逆に、該単繊維繊度が4.0dtexよりも大きいと、ダストの捕集性能が低下し好ましくない。なお、短繊維cの単繊維繊度が短繊維bの単繊維繊度より大きいことが好ましい。 Further, it is important that the single fiber fineness of the short fibers c is within a range of 0.3 to 4.0 dtex (more preferably 0.4 to 3.2 dtex, and particularly preferably 0.8 to 2.5 dtex). is there. When the single fiber fineness is less than 0.3 dtex, the strength of the fiber itself tends to be small, and the fiber is likely to be ruptured due to the entanglement treatment during the production of the filter cloth, which may reduce the strength of the nonwoven fabric, which is not preferable. On the contrary, when the single fiber fineness is larger than 4.0 dtex, the dust collecting performance is deteriorated, which is not preferable. The single fiber fineness of the short fibers c is preferably larger than the single fiber fineness of the short fibers b.

また、短繊維cにおいて、引張強度が2.2cN/dtex以上(より好ましくは2.2〜6.0cN/dtex)であることが好ましい。該引張強度が2.2cN/dtexよりも小さいと、繊維自体の強度が小さくなりやすく、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがある。 In addition, the short fiber c preferably has a tensile strength of 2.2 cN/dtex or more (more preferably 2.2 to 6.0 cN/dtex). When the tensile strength is less than 2.2 cN/dtex, the strength of the fiber itself tends to be small, and the fiber is likely to be ruptured due to entanglement treatment during the production of the filter cloth, which may reduce the strength of the nonwoven fabric.

前記短繊維cにおいて、伸度が25%以上(より好ましくは25〜50%)であることが好ましい。伸度が25%より小さいと、ろ過布を製造する際に交絡処理などにより繊維が断裂しやすく不織布強度が低下するおそれがある。 The short fiber c preferably has an elongation of 25% or more (more preferably 25 to 50%). If the elongation is less than 25%, the fibers are likely to be broken by the entanglement treatment during the production of the filter cloth, and the strength of the nonwoven fabric may be reduced.

前記短繊維cにおいて、捲縮が付与されているとダストを捕集しやすく好ましい。その際、捲縮数が1〜30ケ/2.54cmの範囲内であることが好ましい。また、捲縮率が8〜40%の範囲内であることが好ましい。 When the short fibers c are crimped, dust is easily collected, which is preferable. At that time, the number of crimps is preferably within a range of 1 to 30/2.54 cm. Moreover, it is preferable that the crimping ratio is within a range of 8 to 40%.

前記短繊維cにおいて、繊維長が20〜80mmの範囲内であることが好ましい。
前記短繊維cの繊維種類としては特に限定されず、ポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維、PPS(ポリフェニレンサルファイド)繊維、アラミド繊維、ガラス繊維等が例示される。なかでも耐熱性の点でメタ型アラミド繊維(メタ型全芳香族ポリアミド繊維)が好ましい。メタ型アラミド繊維は、その繰返し単位の85モル%以上がm−フェニレンイソフタルアミドであるポリマーからなる繊維である。かかるメタ型全芳香族ポリアミドは、15モル%未満の範囲内で第3成分を含んだ共重合体であっても差しつかえない。
The short fiber c preferably has a fiber length within the range of 20 to 80 mm.
The fiber type of the short fiber c is not particularly limited, and examples thereof include polyester fiber, polyamide fiber, polyolefin fiber, PPS (polyphenylene sulfide) fiber, aramid fiber, glass fiber and the like. Among them, meta-type aramid fiber (meta-type wholly aromatic polyamide fiber) is preferable in terms of heat resistance. Meta-type aramid fiber is a fiber made of a polymer in which 85 mol% or more of its repeating unit is m-phenylene isophthalamide. Such a meta-type wholly aromatic polyamide may be a copolymer containing the third component within the range of less than 15 mol%.

このようなメタ型全芳香族ポリアミドは、従来から公知の界面重合法により製造することができ、そのポリマーの重合度としては、0.5g/100mlの濃度のN−メチル−2−ピロリドン溶液で測定した固有粘度(I.V.)が1.3〜1.9dl/gの範囲のものが好ましく用いられる。メタ型アラミド繊維の市販品としては、コーネックス(商標名)、コーネックスネオ(商標名)、ノーメックス(商標名)などが例示される。 Such a meta-type wholly aromatic polyamide can be produced by a conventionally known interfacial polymerization method, and the polymer has a degree of polymerization of 0.5 g/100 ml of an N-methyl-2-pyrrolidone solution. Those having a measured intrinsic viscosity (IV) of 1.3 to 1.9 dl/g are preferably used. Examples of commercially available meta-aramid fibers include Conex (trademark), Conex Neo (trademark), Nomex (trademark) and the like.

ここで、前記短繊維aおよび/または前記短繊維bおよび/または前記短繊維cが染色可能な繊維であると、適宜、異なる色に染色することにより、混繊斑を感知可能となり好ましい。その際、前記短繊維aおよび/または前記短繊維bおよび/または前記短繊維cが染色可能なアラミド繊維(例えば、コーネックスネオ(商標名))であることが好ましい。 Here, when the short fibers a and/or the short fibers b and/or the short fibers c are dyeable fibers, it is preferable that dyeing can be perceived by appropriately dyeing different colors. At that time, the short fibers a and/or the short fibers b and/or the short fibers c are preferably dyeable aramid fibers (for example, Conex Neo (trademark)).

本発明において、前記短繊維aと短繊維bを含む不織布Aと、基布と、前記短繊維cを含む不織布Bとがこの順で積層されている。 In the present invention, a nonwoven fabric A containing the short fibers a and the short fibers b, a base fabric, and a nonwoven fabric B containing the short fibers c are laminated in this order.

ここで、前記不織布Aおよび不織布Bのうち少なくともどちらか一方(好ましくは不織布Aおよび不織布Bの両方)において、目付けが100〜300g/m(より好ましくは120〜250g/m)の範囲内であることが好ましい。該目付けが100g/mより小さいと、ダストの捕集性能が低下するおそれがある。逆に該目付けが300g/mよりも大きいと、圧力損失が大きくなってしまうおそれがある。 Here, in at least one of the non-woven fabric A and the non-woven fabric B (preferably both the non-woven fabric A and the non-woven fabric B), the basis weight is within a range of 100 to 300 g/m 2 (more preferably 120 to 250 g/m 2 ). Is preferred. If the basis weight is less than 100 g/m 2 , the dust collection performance may be reduced. On the contrary, if the basis weight is larger than 300 g/m 2 , the pressure loss may increase.

前記不織布Aおよび不織布Bにおいて、不織布種類は特に限定されず、ニードルパンチ不織布、スパンレース不織布、湿式不織布などいずれでもよいが、ニードルパンチ不織布が好ましい。 The types of the non-woven fabrics of the non-woven fabric A and the non-woven fabric B are not particularly limited, and may be any of needle-punched non-woven fabric, spunlace non-woven fabric, wet-laid non-woven fabric, and the needle-punched non-woven fabric is preferable.

前記基布はスクリムとも称され、バグフィルター用ろ過布において強度保持層となるものであり、排ガス等によるダスト捕集層への加圧力や、ダスト捕集層自体の自重による弛み等を防止するために設けられるものである。 The base cloth is also referred to as a scrim, which serves as a strength retaining layer in a filter cloth for bag filters, and prevents pressing force to the dust collection layer due to exhaust gas or the like, and loosening due to its own weight of the dust collection layer itself. It is provided for this purpose.

かかる基布を構成する繊維としては、特に限定されないが、耐熱性の点でメタ型アラミド繊維が好ましい。その際、単繊維繊度としては、1.0〜3.0dtexの範囲内であることが好ましい。また、繊維長20〜80mmの短繊維からなる紡績糸が好ましい。また、番手としては5〜20番手の双糸または単糸が好ましい。 The fibers constituting the base fabric are not particularly limited, but meta-aramid fibers are preferable from the viewpoint of heat resistance. At that time, the single fiber fineness is preferably in the range of 1.0 to 3.0 dtex. A spun yarn made of short fibers having a fiber length of 20 to 80 mm is preferable. As the count, twin yarn or single yarn of 5 to 20 count is preferable.

前記基布において、布帛組織は限定されず織物、不織布、編物いずれでもよいが、優れた強度を得る上で織物が好ましい。その際、織組織としては平組織が好ましい。また、織密度としては5〜20本/2.54cmの範囲内であることが好ましい。 The fabric structure of the base fabric is not limited, and may be a woven fabric, a non-woven fabric, or a knitted fabric, but a woven fabric is preferable for obtaining excellent strength. At that time, a flat weave is preferable as the weave. The weave density is preferably in the range of 5 to 20 threads/2.54 cm.

また、前記基布の目付けとしては、30〜150g/mの範囲内であることが好ましい。該目付けが30g/mよりも小さいと強度が低下するおそれがある。逆に該目付けが150g/mよりも大きいと圧力損失が大きくなるおそれがある。 The basis weight of the base fabric is preferably in the range of 30 to 150 g/m 2 . If the basis weight is less than 30 g/m 2 , the strength may decrease. Conversely, if the basis weight is greater than 150 g/m 2 , pressure loss may increase.

本発明のバグフィルター用ろ過布の製造方法としては、不織布Aと、基布と、不織布Bとをこの順で積層した後、ニードルパンチを施すことが好ましい。また、次いでカレンダー加工を施すことが好ましい。 As the method for producing the filter cloth for bag filters of the present invention, it is preferable to laminate the non-woven fabric A, the base fabric and the non-woven fabric B in this order and then perform needle punching. Further, it is preferable to carry out calendering next.

その際、カレンダー加工は、上下メタルローラーの仕様であるものを用いることが好ましい。温度としては上下ともに100〜330℃、線圧50〜200kg/cmの範囲内であることが好ましい。またろ過布のダスト捕集面側に、バーナーによる毛焼きや、アラミド繊維表面にケイ素、アルミニウム、などの金属の酸化物とフッ素系樹脂からなる処理剤が被覆されていると、繊維の劣化が抑制されて濾過布の耐久性が向上するとともに、ダストの捕集効率が向上するため好ましい。 At that time, it is preferable to use the one having specifications of upper and lower metal rollers for calendering. It is preferable that the temperature is 100 to 330° C. at the upper and lower sides and the linear pressure is in the range of 50 to 200 kg/cm. When the dust collecting surface side of the filter cloth is burnt by a burner or the surface of the aramid fiber is coated with a treatment agent composed of an oxide of a metal such as silicon or aluminum, and a fluororesin, the fiber is deteriorated. This is preferable because the filtration cloth is suppressed and the durability of the filter cloth is improved, and the dust collection efficiency is improved.

かくして得られたバグフィルター用ろ過布において、空隙率が55〜90%の範囲内であることが好ましい。該空隙率55%未満では圧損が高すぎるため、省エネにつながらないおそれがある。逆に該空隙率が90%を超えると、捕集性能が低下するおそれがある。なお、空隙率はカレンダー処理により調整することができる。 In the filter cloth for bag filter thus obtained, the porosity is preferably in the range of 55 to 90%. If the porosity is less than 55%, the pressure loss is too high, which may not lead to energy saving. On the other hand, if the porosity exceeds 90%, the collection performance may decrease. The porosity can be adjusted by calendering.

本発明のバグフィルターろ過布用不織布は前記の構成を有するので、捕集性能に優れ低圧力損失であり、毛羽脱落抑制可能であり、さらには混繊斑感知可能である。また、バグフィルター用ろ過布を構成する繊維が全てメタ型アラミド繊維であると、優れた耐熱性をも有する。本発明のバグフィルター用ろ過布を使用する際、前記不織布Aがろ過物捕集面側に配されることが好ましい。 Since the non-woven fabric for bag filter filtration cloth of the present invention has the above-mentioned constitution, it is excellent in collecting performance, has low pressure loss, can suppress fluff fall, and can detect mixed fiber spots. Further, when all the fibers constituting the filter cloth for the bag filter are meta type aramid fibers, it also has excellent heat resistance. When using the filter cloth for bag filters of the present invention, it is preferable that the non-woven fabric A is arranged on the filtered material collecting surface side.

次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。
(1)繊維長、単繊維繊度、引張強伸度、捲縮数、捲縮率
JIS L 1015によりして測定した。表2に原綿物性を記載した。
(2)不織布の目付け、厚さ
JIS L1096により評価した。厚さについては、荷重5g/mで評価した。
(3)大気塵捕集率
風速5.1cm/secとなるように調整し、試料前後の大気塵をパーティクルカウンターでカウントし、その比によって捕集効率を算出した。○:0.3μm45%超、△:0.3μm36−45%、×:36%未満に評価した。
大気塵捕集効率(%)=(1−(試料通過後大気塵数/試料通過前大気塵数))×100
(4)圧力損失(圧損)
大気塵捕集効率測定時に試験片通過前後の圧力を測定しその圧力差を圧力損失として求めた。○:300Pa未満、×:300Pa以上に評価した。
(5)空隙率
100−100×(密度÷比重1.38)により測定した。
密度は目付÷厚さ÷1000により計算した。
(6)染着性
カチオン染料(日本化薬社製、商品名:Kayacryl Blue GSL−ED(B−54))6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリア剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意する。引き続き、繊維と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施する。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色した。目視で染色部分と染色ない部分が混在していれば染着差有り、全面積の色付面積が80%以上染色部分のみもしくは染色無であれば染着差無とした。
(7)毛羽脱落抑制性
構成する繊度に依存するため、比較例4対比捕集面側の構成本数の大小で○×とし、繊維同士の熱圧着よる毛羽脱離抑制性としてSEMにて表面、断面の繊維変形有無を観察し、変形、密着部分があれば熱圧着有りと判定し、毛羽脱落抑制性○とした。圧着なければ無と記載した。
(スクリム)
メタ型アラミド繊維(帝人株式会社製、コーネックス(商品名)、単繊維繊度2.2dtex、繊維長51mm)からなり、経糸は10番手双糸を用い、織密度:20本/2.54cm、緯糸は20番単糸を用い、織密度14本/2.54cmの平織物である。
(カレンダー加工)
上下メタルローラーの仕様であるものを用い、上下ともに温度約200℃〜330℃で、線圧約100kg/cmで狙いの厚さ、空隙率となるように上下ローラーの間隔を適宜調整して実施した。
Next, Examples and Comparative Examples of the present invention will be described in detail, but the present invention is not limited thereto. Each measurement item in the examples was measured by the following method.
(1) Fiber length, single fiber fineness, tensile strength/elongation, number of crimps, and crimp rate Measured according to JIS L 1015. Table 2 shows the physical properties of raw cotton.
(2) Unit weight and thickness of the nonwoven fabric It was evaluated according to JIS L1096. The thickness was evaluated with a load of 5 g/m 2 .
(3) Air dust collection rate The air dust was adjusted to a wind velocity of 5.1 cm/sec, the air dust before and after the sample was counted by a particle counter, and the collection efficiency was calculated by the ratio. ◯: more than 0.3 μm 45%, Δ: 0.3 μm 36-45%, x: less than 36%.
Atmospheric dust collection efficiency (%) = (1-(number of atmospheric dust after passing sample / number of atmospheric dust before passing sample)) x 100
(4) Pressure loss (pressure loss)
The pressure before and after passing through the test piece was measured at the time of measuring the atmospheric dust collection efficiency, and the pressure difference was determined as the pressure loss. ◯: less than 300 Pa, x: evaluated to 300 Pa or more.
(5) Porosity It was measured by 100-100×(density÷specific gravity 1.38).
The density was calculated by unit weight/thickness/1000.
(6) Dyeing property Cationic dye (Nippon Kayaku Co., Ltd., trade name: Kayacryl Blue GSL-ED (B-54)) 6% owf, acetic acid 0.3 mL/L, sodium nitrate 20 g/L, benzyl as a carrier agent A dyeing solution containing 70 g/L of alcohol and 0.5 g/L of a dyeing auxiliary agent (manufactured by Meisei Chemical Industry Co., Ltd., trade name: Disper TL) as a dispersant is prepared. Subsequently, the bath ratio of the fiber to the dyeing solution is set to 1:40, and the dyeing treatment is carried out at 120° C. for 60 minutes. After the dyeing treatment, a treatment liquid containing hydrosulfite 2.0 g/L, amylazine D (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name: amylazine D) 2.0 g/L, and sodium hydroxide 1.0 g/L. Was subjected to reduction washing with a bath ratio of 1:20 at 80° C. for 20 minutes, washed with water and then dried to dye. If there is a mixture of a dyed portion and a non-dyed portion visually, there is a dyeing difference. If the colored area of 80% or more of the total area is only a dyed portion or no dyeing, there is no dyeing difference.
(7) Fluff shedding inhibition property Since it depends on the fineness of the composition, the size of the number of components on the collection surface side in Comparative Example 4 is set to ◯×, and the fluff detachment suppression property by thermocompression bonding of the fibers is observed by the SEM surface. The cross-section was checked for fiber deformation, and if there was deformation or adhesion, it was judged to be thermocompression bonded and the fluff fall-off prevention property was evaluated as good. If there is no crimping, it is described as nothing.
(Scrim)
Consisting of meta-aramid fibers (manufactured by Teijin Limited, Conex (trade name), single fiber fineness 2.2 dtex, fiber length 51 mm), the warp uses 10-count twin yarn, and weave density: 20/2.54 cm, The weft yarn is a plain woven fabric having a woven density of 14 yarns/2.54 cm, using a 20th single yarn.
(Calendar processing)
Using the upper and lower metal roller specifications, the upper and lower rollers were appropriately adjusted at a temperature of about 200° C. to 330° C. and a linear pressure of about 100 kg/cm to obtain the target thickness and porosity. .

[実施例1]
素材は、メタ型アラミド繊維からなる原綿0.5dtex(表1では「0.5T」と表示)でカット長38mmと、染色可能なメタ型アラミド繊維からなる原綿1.7dtex(表1では「1.7TCDT」と表示)でカット長51mmを混繊させてカーディング後、不織布Aとし、メタ型アラミド繊維からなる原綿2.2dtex(表1では「2.2T」と表示)でカット長51mmをカーディング後不織布Bとし、濾過物捕集面側の不織布Aの目付けを約200g/m、その反対側の不織布Bを目付け約200g/mで、目付け70g/mのスクリムを基布として中間に積層させてニードルパンチを行い、200℃でカレンダー加工した。1.7dtexの原綿はカチオン染色可能な綿、帝人製「コーネックスネオ(商標名)」を用いた。
[Example 1]
The raw material is 0.5 dtex of raw cotton made of meta-aramid fiber (shown as "0.5T" in Table 1) with a cut length of 38 mm, and 1.7 dtex of raw cotton made of dyeable meta-aramid fiber ("1" in Table 1). 0.7TCDT)) and carding the cut length of 51 mm to form a non-woven fabric A, and a raw cotton 2.2 dtex (shown as "2.2T" in Table 1) made of meta-type aramid fiber to cut the cut length of 51 mm. After carding, the non-woven fabric B is used, and the basis weight of the non-woven fabric A on the filtration material collecting surface side is about 200 g/m 2 , the non-woven fabric B on the opposite side is about 200 g/m 2 , and the basis weight is 70 g/m 2. Was laminated in the middle, needle punched, and calendered at 200°C. As the raw cotton of 1.7 dtex, cation dyeable cotton, "Conex Neo (trademark)" manufactured by Teijin Ltd. was used.

得られたサンプルの目付け、厚さ、空隙率、大気塵捕集率、圧損、染着性有無、SEMによる熱圧着有無の観察を評価した。評価結果を表1に示す。 The obtained sample was evaluated for the basis weight, thickness, porosity, air dust collection rate, pressure loss, presence or absence of dyeing property, and presence or absence of thermocompression bonding by SEM. The evaluation results are shown in Table 1.

[実施例2]
素材は、メタ型アラミド繊維からなる原綿0.5dtexでカット長38mmと、1.7dtexでカット長51mmを混繊させてカーディング後、不織布Aとし、メタ型アラミド繊維からなる原綿2.2dtexでカット長51mmをカーディング後不織布Bとし、濾過物捕集面側の不織布Aの目付けを約200g/m、その反対側の不織布Bを目付け約200g/mで、目付け70g/mのスクリムを基布として中間に積層させてニードルパンチを行い、330℃でカレンダー加工した。1.7dtexの原綿はカチオン染色可能な綿、帝人製「コーネックスネオ(商標名)」を用いた。
[Example 2]
The raw material is 0.5 dtex of raw cotton made of meta-aramid fiber and 38 mm in cut length and 51 mm in cut length at 1.7 dtex are mixed and carded to make a non-woven fabric A, and 2.2 dtex of raw cotton made of meta-aramid fiber is used. A cut length of 51 mm was used as the non-woven fabric B after carding, the non-woven fabric A on the filtration material collecting surface side had a basis weight of about 200 g/m 2 , and the non-woven fabric B on the opposite side had a basis weight of about 200 g/m 2 and a basis weight of 70 g/m 2 . The scrim was used as a base fabric, laminated in the middle, needle punched, and calendered at 330°C. As the raw cotton of 1.7 dtex, cation dyeable cotton, "Conex Neo (trademark)" manufactured by Teijin Ltd. was used.

得られたサンプルの目付け、厚さ、空隙率、大気塵捕集率、圧損、染着性有無、SEMによる熱圧着有無の観察を評価した。評価結果を表1に示す。 The obtained sample was evaluated for the basis weight, thickness, porosity, air dust collection rate, pressure loss, presence or absence of dyeing property, and presence or absence of thermocompression bonding by SEM. The evaluation results are shown in Table 1.

[実施例3]
素材は、メタ型アラミド繊維からなる原綿0.5dtexでカット長38mmと1.7dtexでカット長51mmを混繊させてカーディング後、不織布Aとし、メタ型アラミド繊維からなる原綿2.2dtexでカット長51mmをカーディング後不織布Bとし、
濾過物捕集面側の不織布Aの目付けを約200g/m、その反対側の不織布Bを目付け約200g/mで、目付け70g/mのスクリムを基布として中間に積層させてニードルパンチを行い、330℃でカレンダー加工した。1.7dtexの原綿はカチオン染色可能な綿、帝人製「コーネックスネオ(商標名)」を用いた。
[Example 3]
The material is carded by mixing 0.5 mm raw cotton made of meta-aramid fiber with a cut length of 38 mm and a cut length of 51 mm at 1.7 dtex, and then carding it into a non-woven fabric A, and cut it with 2.2 dtex of raw cotton made of meta-aramid fiber. Non-woven fabric B after carding a length of 51 mm,
The non-woven fabric A on the filtration material collecting surface side has a basis weight of about 200 g/m 2 , the non-woven fabric B on the opposite side thereof has a basis weight of about 200 g/m 2 , and a scrim having a basis weight of 70 g/m 2 is used as a base fabric and laminated in the middle to form a needle. It was punched and calendered at 330°C. As the raw cotton of 1.7 dtex, cation dyeable cotton, "Conex Neo (trademark)" manufactured by Teijin Ltd. was used.

得られたサンプルの目付け、厚さ、空隙率、大気塵捕集率、圧損、染着性有無、SEMによる熱圧着有無の観察を評価した。評価結果を表1に示す。 The obtained sample was evaluated for the basis weight, thickness, porosity, air dust collection rate, pressure loss, presence or absence of dyeing property, and presence or absence of thermocompression bonding by SEM. The evaluation results are shown in Table 1.

[比較例1]
素材は、メタ型アラミド繊維からなる原綿2.2dtexでカット長51mmと、メタ型アラミド繊維からなる原綿2.2dtexでカット長51mmをそれぞれ単独でカーディング後、濾過物捕集面側の不織布目付け約200g/m、その反対側の不織布目付け約200g/mで、目付け70g/mのスクリムを基布として中間に積層させてニードルパンチを行い、200℃でカレンダー加工を施した。
[Comparative Example 1]
The raw material is 2.2dtex of raw cotton made of meta-aramid fiber and the cut length is 51mm. The raw length of 2.2dtex made of meta-aramid fiber is cut individually and the cut length is 51mm. about 200 g / m 2, at the opposite side of the nonwoven basis weight of about 200 g / m 2, subjected to needle punching in the middle to be laminated scrim having a basis weight of 70 g / m 2 as a base fabric was subjected to calendering at 200 ° C..

得られたサンプルの目付け、厚さ、空隙率、大気塵捕集率、圧損、染着性有無、SEMによる熱圧着有無の観察を評価した。評価結果を表1に示す。 The obtained sample was evaluated for the basis weight, thickness, porosity, air dust collection rate, pressure loss, presence or absence of dyeing property, and presence or absence of thermocompression bonding by SEM. The evaluation results are shown in Table 1.

[比較例2]
素材は、メタ型アラミド繊維からなる原綿1.7dtexでカット長51mmと、メタ型アラミド繊維からなる原綿2.2dtexでカット長51mmをそれぞれ単独でカーディング後、濾過物捕集面側の不織布目付け約200g/m、その反対側の不織布目付け約200g/mで、目付け70g/mのスクリムを基布として中間に積層させてニードルパンチを行い、200℃でカレンダー加工を施した。1.7dtexの原綿はカチオン染色可能な綿、帝人製「コーネックスネオ(商標名)」を用いた。
[Comparative example 2]
The raw material is 1.7 dtex of raw cotton made of meta-aramid fiber and the cut length is 51 mm, and 2.2 dtex of raw cotton made of meta-aramid fiber is cut, and the cut length is 51 mm. about 200 g / m 2, at the opposite side of the nonwoven basis weight of about 200 g / m 2, subjected to needle punching in the middle to be laminated scrim having a basis weight of 70 g / m 2 as a base fabric was subjected to calendering at 200 ° C.. As the raw cotton of 1.7 dtex, cation dyeable cotton, "Conex Neo (trademark)" manufactured by Teijin Ltd. was used.

得られたサンプルの目付け、厚さ、空隙率、大気塵捕集率、圧損、染着性有無、SEMによる熱圧着有無の観察を評価した。評価結果を表1に示す。 The obtained sample was evaluated for the basis weight, thickness, porosity, air dust collection rate, pressure loss, presence or absence of dyeing property, and presence or absence of thermocompression bonding by SEM. The evaluation results are shown in Table 1.

[比較例3]
素材は、メタ型アラミド繊維からなる原綿1.7dtexでカット長51mmと、メタ型アラミド繊維からなる原綿2.2dtexでカット長51mmをそれぞれ単独でカーディング後、濾過物捕集面側の不織布目付け約200g/m、その反対側の不織布目付け約200g/mで、目付け70g/mのスクリムを基布として中間に積層させてニードルパンチを行い、330℃でカレンダー加工を施した。1.7dtexの原綿はカチオン染色可能な綿、帝人製「コーネックスネオ(商標名)」を用いた。
[Comparative Example 3]
The raw material is 1.7 dtex of raw cotton made of meta-aramid fiber and the cut length is 51 mm, and 2.2 dtex of raw cotton made of meta-aramid fiber is cut, and the cut length is 51 mm. about 200 g / m 2, at the opposite side of the nonwoven basis weight of about 200 g / m 2, subjected to needle punching in the middle to be laminated scrim having a basis weight of 70 g / m 2 as a base fabric was subjected to calendering at 330 ° C.. As the raw cotton of 1.7 dtex, cation dyeable cotton, "Conex Neo (trademark)" manufactured by Teijin Ltd. was used.

得られたサンプルの目付け、厚さ、空隙率、大気塵捕集率、圧損、染着性有無、SEMによる熱圧着有無の観察を評価した。評価結果を表1に示す。 The obtained sample was evaluated for the basis weight, thickness, porosity, air dust collection rate, pressure loss, presence or absence of dyeing property, and presence or absence of thermocompression bonding by SEM. The evaluation results are shown in Table 1.

[比較例4]
素材は、メタ型アラミド繊維からなる原綿0.5dtexでカット長38mmと、メタ型アラミド繊維からなる原綿2.2dtexでカット長51mmをそれぞれ単独でカーディング後、濾過物捕集面側の不織布目付け約200g/m、その反対側の不織布目付け約200g/mで、目付け70g/mのスクリムを基布として中間に積層させてニードルパンチを行い、カレンダー加工を施した。
[Comparative Example 4]
The raw material is 0.5 dtex of raw cotton made of meta-aramid fiber and the cut length is 38 mm. The length of raw cotton made of meta-aramid fiber is 2.2 dtex and the cut length is 51 mm. about 200 g / m 2, at the opposite side of the nonwoven basis weight of about 200 g / m 2, subjected to needle punching in the middle to be laminated scrim having a basis weight of 70 g / m 2 as a base fabric was subjected to calendering.

得られたサンプルの目付け、厚さ、空隙率、大気塵捕集率、圧損、染着性有無、SEMによる熱圧着有無の観察を評価した。評価結果を表1に示す。 The obtained sample was evaluated for the basis weight, thickness, porosity, air dust collection rate, pressure loss, presence or absence of dyeing property, and presence or absence of thermocompression bonding by SEM. The evaluation results are shown in Table 1.

Figure 2020081904
Figure 2020081904

Figure 2020081904
Figure 2020081904

本発明によれば、捕集性能に優れ低圧力損失であり、かつ毛羽脱落抑制可能であり、さらには磨耗やクラックによる集塵性低下が起こりにくく、好ましくは混繊斑感知可能なバグフィルター用ろ過布およびその製造方法が提供され、その工業的価値は極めて大である。 According to the present invention, it is excellent in collection performance, has low pressure loss, and can suppress fluff shedding, and further, deterioration of dust collecting property due to wear and cracks is unlikely to occur, preferably for a bag filter capable of detecting mixed fiber spots. A filter cloth and a manufacturing method thereof are provided, and their industrial value is extremely high.

Claims (7)

単繊維繊度が0.3〜0.9dtexの短繊維aと単繊維繊度が0.9〜4.0dtexの短繊維bを含む不織布Aと、基布と、単繊維繊度が0.3〜4.0dtexの短繊維cを含む不織布Bとがこの順で積層してなることを特徴とするバグフィルター用ろ過布。 A non-woven fabric A containing a short fiber a having a single fiber fineness of 0.3 to 0.9 dtex and a short fiber b having a single fiber fineness of 0.9 to 4.0 dtex, a base fabric, and a single fiber fineness of 0.3 to 4 A filter cloth for a bag filter, characterized in that a non-woven fabric B containing 0.0 dtex short fibers c is laminated in this order. 前記短繊維aおよび/または前記短繊維bおよび/または前記短繊維cが染色可能な繊維である、請求項1に記載のバグフィルター用ろ過布。 The bag cloth filter cloth according to claim 1, wherein the short fibers a and/or the short fibers b and/or the short fibers c are dyeable fibers. 前記短繊維aおよび/または前記短繊維bおよび/または前記短繊維cが染色可能なアラミド繊維である、請求項1または請求項2に記載のバグフィルター用ろ過布。 The filter cloth for bag filters according to claim 1 or 2, wherein the short fibers a and/or the short fibers b and/or the short fibers c are dyeable aramid fibers. バグフィルター用ろ過布を構成する繊維が全てメタ型アラミド繊維である、請求項1〜3のいずれかに記載のバグフィルター用ろ過布。 The filter cloth for bag filters according to any one of claims 1 to 3, wherein all fibers constituting the filter cloth for bag filters are meta-aramid fibers. 空隙率が55〜90%の範囲内である、請求項1〜4のいずれかに記載のバグフィルター用ろ過布。 The bag cloth filter cloth according to any one of claims 1 to 4, wherein the porosity is in the range of 55 to 90%. 前記不織布Aがろ過物捕集面側に配されてなる、請求項1〜5のいずれかに記載のバグフィルター用ろ過布。 The bag cloth filter cloth according to any one of claims 1 to 5, wherein the non-woven fabric A is arranged on the filtered material collecting surface side. 請求項1に記載のバグフィルター用ろ過布の製造方法であって、不織布Aと基布と不織布Bとをこの順で積層した後、ニードルパンチを施し、次いでカレンダー加工を施す、バグフィルター用ろ過布の製造方法。 The method for producing a filter cloth for a bag filter according to claim 1, wherein the non-woven fabric A, the base fabric and the non-woven fabric B are laminated in this order, needle punched, and then calendered. Fabric manufacturing method.
JP2018214719A 2018-11-15 2018-11-15 Filter fabric for bag filter and manufacturing method for the same Pending JP2020081904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018214719A JP2020081904A (en) 2018-11-15 2018-11-15 Filter fabric for bag filter and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018214719A JP2020081904A (en) 2018-11-15 2018-11-15 Filter fabric for bag filter and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2020081904A true JP2020081904A (en) 2020-06-04

Family

ID=70909503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018214719A Pending JP2020081904A (en) 2018-11-15 2018-11-15 Filter fabric for bag filter and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2020081904A (en)

Similar Documents

Publication Publication Date Title
JP4876579B2 (en) Filter material
EP2212006B1 (en) Thermally stabilized bag house filters and media
US20120216496A1 (en) Filter cloth for dust collector
WO2007140302A2 (en) Hot gas filtration fabrics with silica and flame resistant fibers
WO2018221122A1 (en) Spunbonded nonwoven fabric for filter and method for producing same
JP6692463B2 (en) Filter cloth for bag filter and manufacturing method thereof
WO2018233650A1 (en) Filtering material
JP2006305562A (en) Heat-resistant filter medium
JP2020081904A (en) Filter fabric for bag filter and manufacturing method for the same
JP2005052709A (en) Filter medium
EP1116809B1 (en) Dust collecting filter cloth and bag filter
CN101618289A (en) Industrial filter cloth used for filtering liquid and application
US10688753B2 (en) Laminated polyarylene sulfide heat-resistant filter
JP3530244B2 (en) Durable filter cloth
JP4165241B2 (en) Bug filter
JPH08192017A (en) Filter cloth improved in durability
JP2019199673A (en) Nonwoven fabric and manufacturing method thereof
JP2019093310A (en) Filter fabric for bag filter
JP2016165666A (en) Felt for heat-resistant filter and bag filter made of the same
JP2020176346A (en) Needle-punched nonwoven fabric structure
JP2019198815A (en) Cloth for filter, and filter
JP2017170347A (en) Heat-resistant filter medium