JP2020080836A - Cell culture method using porous membrane-like cell culture substrate - Google Patents

Cell culture method using porous membrane-like cell culture substrate Download PDF

Info

Publication number
JP2020080836A
JP2020080836A JP2018228548A JP2018228548A JP2020080836A JP 2020080836 A JP2020080836 A JP 2020080836A JP 2018228548 A JP2018228548 A JP 2018228548A JP 2018228548 A JP2018228548 A JP 2018228548A JP 2020080836 A JP2020080836 A JP 2020080836A
Authority
JP
Japan
Prior art keywords
cells
substrate
cell culture
culture
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018228548A
Other languages
Japanese (ja)
Other versions
JP7238240B2 (en
Inventor
茂樹 千葉
Shigeki Chiba
茂樹 千葉
拓 井上
Hiroshi Inoue
拓 井上
浩志 石幡
Hiroshi Ishihata
浩志 石幡
幸彦 向阪
Yukihiko Kosaka
幸彦 向阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagamine Manufacturing Co Ltd
Original Assignee
Nagamine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamine Manufacturing Co Ltd filed Critical Nagamine Manufacturing Co Ltd
Priority to JP2018228548A priority Critical patent/JP7238240B2/en
Publication of JP2020080836A publication Critical patent/JP2020080836A/en
Application granted granted Critical
Publication of JP7238240B2 publication Critical patent/JP7238240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide cell culture methods capable of eliminating the risk of biological harmful effects and contamination, and producing cells with efficiency and large amount.SOLUTION: Provided is a cell culture method, in which cells are seeding on a porous membrane-like cell culture substrate in which a circular fine through hole with a diameter of 10 to 80 μm or a polygonal fine through hole with a side of 10 to 80 μm is formed on a biocompatible thin film material, subsequently, in a cell culture, by bringing the cell culture substrate into contact with a plate culture substrate, proliferated cells are transferred to the plate culture substrate through the through hole of the cell culture substrate.SELECTED DRAWING: None

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、細胞培養を中断することなく連続して細胞数増加を永続的に実施する細胞培養法に関する。 The present invention relates to a cell culture method for continuously and continuously increasing the number of cells without interrupting the cell culture.

近年、細胞培養の多くは、特開2010−200745号公報(特許文献1)や特開2004−254674号公報(特許文献2)に見られるように平板培養法が一般的に採用されている。即ち、動物細胞は、培養基板に播種されると、まず基板に付着して位置を安定した後、水平方向に遊走しながら分裂し、その数を増やしていく。その移動距離は、癌細胞のような基板を離れ跳躍的に移動する特殊なケースを除き、分裂後に増加した細胞の基板への付着スペースを確保するための最小限度の距離で、基板面に沿って移動する程度である。細胞はひとたび基板から離れて浮遊状態となれば死ぬ運命にあるので、増殖した細胞群は培養基板上を平面移動するのが細胞遊走の典型である。 In recent years, in many cell cultures, a plate culture method is generally adopted as seen in JP 2010-200745 A (Patent Document 1) and JP 2004-254674 A (Patent Document 2). That is, when an animal cell is seeded on a culture substrate, it first adheres to the substrate and stabilizes its position, then divides while migrating in the horizontal direction, and the number increases. Its migration distance is the minimum distance to secure the increased attachment space of cells to the substrate after division, except for the special case of jumping away from the substrate such as cancer cells. It is about to move. Since cells are destined to die once they leave the substrate and become in a floating state, it is typical of cell migration that the propagated cell group moves in plane on the culture substrate.

平面培養ではその基板平面上の面積いっぱいになるまで細胞群は増殖し数を増加できるが、更に培養を続けると、細胞の集積が過密になり、時として増えた細胞は元の細胞に覆い被さることがある。これを重層化と呼ぶが、これらの状態が進行すると、覆われた細胞が培養液からの栄養分を取り入れるのが困難となり、増殖は衰え、やがて基板との付着力を失い、基板を覆うかたちで膜状に増殖した細胞群全体が基板から剥離してしまうなど、取り扱いが困難となることから平板培養で増殖できる細胞数には限度がある。 In planar culture, the cell population can grow and increase in number until it fills the area on the substrate surface, but if the culture is continued, the accumulation of cells becomes overcrowded, and sometimes the increased cells cover the original cells. Sometimes. This is called stratification, but when these conditions progress, it becomes difficult for the covered cells to take in nutrients from the culture solution, growth slows down, and eventually the adherence to the substrate is lost and the substrate is covered. There is a limit to the number of cells that can be grown by plate culture because handling is difficult because the entire cell group that has grown in the form of a membrane is separated from the substrate.

平面培養で上述の様に平板基板面がほぼ細胞で覆われ尽くした状況をコンフルエントと呼ぶ。細胞数を継続的に増加させるには、その細胞群を成長が行える最適な密度に保つことが肝要である。そのため基板平面上の細胞が過密になる前に、培養系を分割し、新しい培地を供給することが必要となる。そこで、コンフルエント状態のやや手前の対数増殖期の段階で継代を行う。 The state in which the flat plate substrate surface is almost completely covered with cells as described above in flat plate culture is called confluent. In order to continuously increase the number of cells, it is essential to keep the population of cells at an optimal density for growth. Therefore, it is necessary to divide the culture system and supply a new medium before the cells on the plane of the substrate become overcrowded. Therefore, the cells are passaged at the logarithmic growth stage slightly before the confluent state.

この継代は植え継ぎとも呼ばれ、培養中の基板上を満たしている培養液をいったん除去し、細胞を基板から人為的に剥離して、元の基板より大きな面積を持つ培養基板(以後、「培養ディッシュ」と称す)あるいは複数の培養ディッシュに移す操作が必要である。この時、細胞をディッシュから剥離すると共に、剥離した細胞群が転送先のディッシュの基板面に偏り無く均等に散布して播種できるよう、細胞を単一に分離した状態にしなければならない。 This passage is also called transplantation, and once the culture solution filling the substrate being cultured is removed, the cells are artificially detached from the substrate, and the culture substrate having a larger area than the original substrate (hereinafter, It is necessary to transfer it to a "culture dish") or a plurality of culture dishes. At this time, the cells must be separated from the dish, and the separated cells must be separated into single cells so that they can be evenly distributed and seeded on the substrate surface of the transfer destination dish.

これを行うのに広く用いられているのは、タンパク分解酵素の一種であるトリプシンと呼ばれる酵素である。この酵素は効果を十分に発揮させるため、pH7.6〜7.8に調整し、さらにEDTAを添加するのが通例である。しかし細胞によってはこのトリプシン処理によって望まれない影響を受けることがある。たとえば、細胞が基板に強く固着している場合、あるいは基板から分離した細胞群を単一に分散させるのに時間を要した際に、トリプシンの作用によって細胞が死滅するなどの悪影響が生ずる。 Widely used to do this is an enzyme called trypsin, a type of proteolytic enzyme. It is customary to adjust the pH to 7.6 to 7.8 and further add EDTA in order to sufficiently exert the effect of this enzyme. However, some cells may be undesirably affected by this trypsin treatment. For example, when the cells are strongly adhered to the substrate, or when it takes time to disperse the cells separated from the substrate into a single cell, trypsin acts to cause adverse effects such as cell death.

これを解決するために、培養ディッシュの平面部の面積を広める方法が考えられるが、この方法ではディッシュのサイズを拡大しなければならず、その分、必要な培養液の量が増加する。培養液は定期的に交換する必要があるが、培養初期時は広大な培養ディッシュ上に少量の細胞数しかないのが通常であり、細胞数が相当数になるまで、加えた培養液の大半が無駄になる。その上、ディッシュのサイズが大きくなれば、これを格納して増殖を補助するインキュベーターにも大型化が必要である。細胞数が増えるまでの間は、その分余分なスペースを割かねばならない。 In order to solve this, a method of enlarging the area of the flat portion of the culture dish can be considered, but this method requires the size of the dish to be increased, and the amount of the culture solution required increases accordingly. The culture medium needs to be changed regularly, but at the beginning of the culture, there is usually only a small number of cells on the vast culture dish, and most of the culture medium added until the number of cells reaches a considerable number. Is wasted. Moreover, as the size of the dish increases, so does the size of the incubator that stores it and assists in its growth. Until the number of cells increases, extra space has to be allocated.

また、このような条件では一つの培養ディッシュ上で長期間培養を行うこととなるが、大きな面積中では、培養に伴い細胞群の分布密度に不均一が生じるようになる。培養初期から細胞増殖を開始した部位は細胞密度が過密になって増殖が抑えられることから、ディッシュ全体での細胞増殖の効率が低下することとなる。 Further, under such conditions, long-term culture is carried out on one culture dish, but in a large area, the distribution density of cell groups becomes non-uniform with the culture. Since the cell density becomes excessively high at the site where the cell growth is started from the early stage of culture and the growth is suppressed, the cell growth efficiency in the entire dish is reduced.

そもそも細胞培養とは、基本的には生体内における細胞の増殖様式を模倣している以上、その過程で生体内ではあり得ないトリプシン処理による継代操作を行うことは、生物の基本的生業を逸脱したプロセスである。そのため、トリプシン処理を経ずとも、継続して細胞数を増加させる方法こそ、生物学的プロセスに準拠した細胞培養法であると言える。 In the first place, cell culture basically mimics the growth mode of cells in the living body, so in the process, performing subculture operation by trypsin treatment, which cannot be performed in the living body, is essential for the basic living of the organism. It is a deviant process. Therefore, it can be said that the method of continuously increasing the number of cells without the trypsin treatment is the cell culture method based on the biological process.

特開2010−200745号公報JP, 2010-200745, A 特開2004−254674号公報JP, 2004-254674, A

以上の様な理由から、従来の培養ディッシュによる平板培養法では、コンフルエントになった状態以上の細胞数量を求める場合は、酵素処理によって細胞をいったん培養ディッシュから分離して単一化し、他の複数の培養ディッシュに分散して播種する方法が合理的であると言われている。しかしその際に用いるトリプシン酵素の適用は、生体中ではあり得ない作用であり、生物学的な為害作用が否定できない。 For the above reasons, when using the conventional plate culture method using a culture dish to determine the number of cells above the confluent state, the cells are once separated from the culture dish by enzyme treatment and then singulated, It is said that it is rational to disperse the seeds in the above culture dish and seed them. However, the application of the trypsin enzyme used at that time is an action that cannot be performed in the living body, and its harmful action cannot be denied because it is biological.

また、現状の細胞培養法で必須とされる培養細胞を基板から分離および単一化してから再播種を繰り返していく工程は極めて煩雑で、しかもこの工程は外部から培養の大敵である細菌の混入(以後、「コンタミネーション」と称す)リスクが高くなるという問題を抱え、ひとたび細菌に汚染されるとその時点で培養を中断せざるを得なかった。 Also, the process of separating and unifying the cultured cells, which is essential in the current cell culture method, from the substrate and then repeating the reseeding is extremely complicated, and this process is externally contaminated with bacteria, which is a major enemy of culture. There was a problem of increased risk (hereinafter referred to as "contamination"), and once contaminated with bacteria, the culture had to be interrupted at that point.

このように、トリプシンなどの細胞分離酵素を用いた従来の継代法は、本来あるべき細胞増殖の様相を変容しているばかりか、コンタミネーションによる培養工程への支障、並びにそれにかかる手間など、数多くの不都合な問題を抱えた細胞培養プロセスといえる。 As described above, the conventional substituting method using a cell-separating enzyme such as trypsin not only modifies the aspect of the cell proliferation that should be originally present, but also interferes with the culturing process due to contamination, and the labor required for it. It can be said that the cell culture process has many inconvenient problems.

本発明は、上記諸事情に鑑み、細胞培養によって細胞を増殖させるに際し、生体親和性を有する膜状素材にナノオーダーの精度で穿孔した貫通孔を規則的に配置した多孔膜上で培養することで、各貫通孔間の平面部分で増殖した細胞を、貫通孔を通過して上下に隣接する培養基板に遊走させ、細胞を複数の培養基板に転送させて、培養基板の数に応じて細胞数を増幅させる方法を提供することを目的とする。 In view of the above circumstances, the present invention, when growing cells by cell culture, culturing on a porous membrane in which through-holes perforated with nano-order accuracy in a membrane material having biocompatibility are regularly arranged. Then, the cells grown in the flat portion between the through holes migrate through the through holes to the vertically adjacent culture substrates, transfer the cells to a plurality of culture substrates, and the cells are transferred according to the number of culture substrates. It is an object to provide a method for amplifying numbers.

本発明者等は、上記課題を解決するために、細胞が遊走する機能を利用し、細胞培養基板上に増殖した細胞の一部を、新たな培養基板に転送させて増殖させることで、連続的に効率よく細胞数を増幅させることに成功し、本発明を完成させるに至ったものである。これは、細胞が自ら増殖し、細胞数が増加した分、遊走して位置を移す自走性を利用したもので、具体的には、元の培養基板上で細胞が分裂し、水平方向にボリュームを広げた先に新たな培養基板を上下に隣接させて設置し、移動してくる一部細胞を遊走させて、その細胞を新たな基板上へと増殖させるものである。 The present inventors, in order to solve the above problems, by utilizing the function of cells to migrate, by transferring a part of the cells grown on the cell culture substrate to a new culture substrate to grow, continuous, It succeeded in efficiently and efficiently amplifying the number of cells, and completed the present invention. This is due to the fact that the cells proliferate themselves and the number of cells increases, so that they migrate and move to another position. Specifically, the cells divide on the original culture substrate and move horizontally. New culture substrates are installed vertically adjacent to each other at the tip of the expanded volume, and some migrating cells are allowed to migrate to proliferate the cells on the new substrate.

即ち、本発明は、生体親和性を有する薄膜素材に、直径10〜80μmの円形の微細な貫通孔、もしくは一辺10〜80μmの多角形の微細な貫通孔を形成した多孔膜状の細胞培養基板に細胞を播種した後、細胞培養液中において、該細胞培養基板を平板培養基板に接触させた状態とすることで、細胞培養基板の貫通孔を通じて増殖した細胞を平板培養基板に転送させることを特徴とする第1発明の細胞培養方法、及び生体親和性を有する薄膜素材に、直径10〜80μmの円形の微細な貫通孔、もしくは一辺10〜80μmの多角形の微細な貫通孔を形成した多孔膜状の細胞培養基板に細胞を播種した後、細胞培養液中において、該細胞培養基板を複数枚接触積層した形で培養を継続することで、細胞培養基板の貫通孔を通じて増殖した細胞を、上下に接触する各細胞培養基板群に順次転送させることを特徴とする第2発明の細胞培養方法、更に上記第1又は第2発明の多孔膜状の細胞培養基板が、細胞が移動する際の通路となる微細貫通孔の孔縁に、細胞が他の培養基板に遊走する挙動を補助する、バリ状の誘導路を設けた第3発明の細胞培養方法である。 That is, the present invention provides a cell culture substrate in the form of a porous film in which a thin film material having biocompatibility is formed with circular fine through holes having a diameter of 10 to 80 μm or polygonal fine through holes having a side of 10 to 80 μm. After seeding the cells in the cell culture medium, by bringing the cell culture substrate into contact with the plate culture substrate in the cell culture medium, it is possible to transfer cells grown through the through holes of the cell culture substrate to the plate culture substrate. A method for culturing cells according to the first aspect of the present invention, and a thin film material having biocompatibility, in which circular fine through holes having a diameter of 10 to 80 μm or polygonal fine through holes having a side of 10 to 80 μm are formed. After seeding the cells on the membranous cell culture substrate, in the cell culture medium, by continuing the culture in the form of contact lamination of a plurality of the cell culture substrate, the cells grown through the through holes of the cell culture substrate, The cell culture method according to the second aspect of the present invention is characterized in that the cells are sequentially transferred to the cell culture substrate groups that are in contact with each other in the vertical direction, and further, when the cells move in the porous membrane cell culture substrate according to the first or second aspect of the invention. A cell culture method of the third invention, wherein a burr-like guide path is provided at the edge of the fine through-hole serving as a passage to assist the cell to migrate to another culture substrate.

上記本発明の細胞培養方法によれば、生体親和性を有する膜状素材にナノオーダーの精度で穿孔した貫通孔を規則的に配置した多孔膜上で培養することで、各貫通孔間の平面部分で増殖した細胞を、貫通孔を通過して隣接する培養基板に遊走させ、細胞を複数の培養基板に転送させて、培養基板の数に応じて細胞数を増幅させることができるため、細胞の効率的且つ大量製造が可能となり、生体再生への実用化に多大な貢献が期待される。 According to the above-described cell culture method of the present invention, by culturing on a porous membrane in which through holes perforated with nano-order accuracy are regularly arranged in a film material having biocompatibility, a plane between each through hole is obtained. The cells that have proliferated in a portion migrate through the through holes to the adjacent culture substrates, transfer the cells to multiple culture substrates, and the number of cells can be amplified according to the number of culture substrates. It is possible to efficiently and mass-produce, and it is expected to make a great contribution to the practical application to regeneration of a living body.

本発明の細胞培養に係る概念図である。It is a conceptual diagram regarding the cell culture of the present invention. 本発明の多孔膜状細胞培養基板に設けられた貫通孔の一例を示す拡大図である。It is an enlarged view showing an example of a through-hole provided in a porous membrane-like cell culture substrate of the present invention. 本発明の多孔膜状細胞培養基板の貫通孔の裏面側孔縁に設けられたバリ状誘導路の一例を示す拡大図である。FIG. 3 is an enlarged view showing an example of a burr-shaped guide path provided at the hole edge on the back surface side of the through hole of the porous membrane cell culture substrate of the present invention. 本発明の近接する2枚の細胞培養基板において、スペースを確保した状態の一例を示す拡大図である。FIG. 3 is an enlarged view showing an example of a state in which a space is secured in two adjacent cell culture substrates of the present invention. 上記貫通孔の形成用工具の一例を示す剣山状プレス穿孔具の拡大図である。FIG. 3 is an enlarged view of a blade-shaped press punching tool showing an example of a tool for forming a through hole. 上記貫通孔形成用工具による穿孔例を示す概念図である。It is a conceptual diagram which shows the drilling example by the said through-hole formation tool. 上記貫通孔の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the said through-hole. 本発明の細胞培養プロセスの一例を示す概念図である。It is a conceptual diagram which shows an example of the cell culture process of this invention. 本発明の多孔膜状細胞培養基板の貫通孔周辺で増殖した細胞の様子を示す拡大図である。FIG. 3 is an enlarged view showing a state of cells grown around a through hole of the porous membrane cell culture substrate of the present invention. 本発明の培養方法に基づく細胞の大量製造に係る応用例を示す概念図である。It is a conceptual diagram which shows the application example which concerns on the mass production of cells based on the culture method of this invention.

本発明では、まず生体親和性を有し、平板培養基板と同等に細胞に対し付着、分裂、遊走能を与えられる薄膜を用意する。そしてその薄膜に、ある一定間隔で、細胞が通過できる程度の微細な貫通孔を形成する。 In the present invention, first, a thin film having biocompatibility and capable of adhering, dividing and migrating cells is prepared in the same manner as a plate culture substrate. Then, fine through holes are formed in the thin film at a certain interval so that cells can pass through.

この多孔膜状細胞培養基板で培養された細胞は、増殖による移動の結果、一部の細胞が貫通孔に向けて押し出されることで、細胞が貫通孔内に進入する。この貫通孔を抜け穴として、その出口に新しい培養基板が接するよう配置することで、貫通孔に進入した細胞が、やがて新たな培養基板に付着し、その基板上で増殖を開始する。これが本発明の構成要件の一つである第1様式である。 As a result of movement due to proliferation, some cells that have been cultivated on this porous membrane-shaped cell culture substrate are extruded toward the through holes, so that the cells enter the through holes. By arranging the through hole as a through hole so that a new culture substrate comes into contact with the outlet, cells that have entered the through hole will eventually adhere to the new culture substrate and start to grow on the substrate. This is the first mode which is one of the constituent features of the present invention.

この第1様式で、細胞を異なる基板間で移動させるには、細胞の供給元となる元基板と、細胞を受け取る新基板の間に細胞サイズに近い10μm程度の間隙を設ける必要がある。その場合、基板同士が完全な平面で無い場合を考慮し、その状況下で相対する互いの凸部が接近したところで細胞が移れるよう、貫通孔をできる限り多く配置するのが望ましい。貫通孔を通じて新基板に移動する確率を上げるため、貫通孔の配置密度と貫通孔の形状、サイズを考慮する必要がある。 In order to move cells between different substrates in this first mode, it is necessary to provide a gap of about 10 μm, which is close to the cell size, between the original substrate that is the source of cells and the new substrate that receives cells. In that case, considering the case where the substrates are not perfectly flat, it is desirable to arrange as many through holes as possible so that cells can be transferred when the mutually opposing convex portions approach each other in that situation. In order to increase the probability of moving to the new substrate through the through holes, it is necessary to consider the arrangement density of the through holes and the shape and size of the through holes.

ヒト体細胞の形状は、浮遊状態では球状で直径はおおよそ10μmである。これが2回分裂して4個となった際の幅径は、(半径×2)+[(半径×2)×√2]≒24μm、4回分裂した際は、(半径×2)+{[(半径×2)×√2]}×3≒52μmと見込まれる。よって4回分裂により細胞数が16倍になったときに、そこから約50μmの範囲に貫通孔があれば、細胞群の外縁に位置する細胞が貫通孔のある位置にかかる事になると見られる。よって、計算上では貫通孔を50μm程度の間隔で設けることで、細胞分裂の進展から多くの細胞が貫通孔のある位置に進んでいく。 The shape of human somatic cells is spherical in the suspended state, and the diameter is approximately 10 μm. The width diameter when this is split twice into four pieces is (radius×2)+[(radius×2)×√2]≈24 μm, and when it is split four times, (radius×2)+{ [(Radius×2)×√2]}×3≈52 μm. Therefore, when the number of cells is increased by 16 times by dividing four times, if there is a through hole within a range of about 50 μm from that, it is considered that the cells located at the outer edge of the cell group will reach the position where the through hole exists. .. Therefore, in the calculation, by providing the through holes at intervals of about 50 μm, many cells proceed to the position where the through holes are formed due to the progress of cell division.

次に、貫通孔の形状、サイズについては、直径10μmの球状の細胞体が通過出来ればいいと思われるが、細胞は柔軟性に富んでいて、自在に形状を変化することが可能である。たとえば扁平な形状になれば直径20〜30μmの形状になることもある。よって、直径10μm未満の貫通孔では進入せずに、孔を跨いでしまうこととなる。そこで、貫通孔への進入を促進するには、好ましくは直径20μm以上の円形あるいは一辺20μm以上の角穴が良く、角穴であれば、細胞が跨がないよう正方形に近いことが望ましい。 Next, regarding the shape and size of the through hole, it is considered that a spherical cell body having a diameter of 10 μm can pass through, but the cell is rich in flexibility, and the shape can be freely changed. For example, a flat shape may have a diameter of 20 to 30 μm. Therefore, a through hole having a diameter of less than 10 μm will not enter and will straddle the hole. Therefore, in order to promote the entry into the through-hole, it is preferable to use a circle having a diameter of 20 μm or more or a square hole having a side of 20 μm or more.

貫通孔のサイズが大きければそれだけ細胞が貫通孔に進入しやすくなるとみられるが、個々の貫通孔のサイズを大きくすれば、相対的に貫通孔間の平板部分の面積が減少し、細胞が付着、分裂するスペースが少なくなる。よって貫通孔の形状とサイズ、そしてその単位面積あたりの配置数(配置密度)を最適になるよう調整する必要がある。これを本発明の構成要件のうちの第2様式とする。 The larger the size of the through hole, the easier it is for cells to enter the through hole. However, if the size of each through hole is increased, the area of the flat plate between the through holes decreases relatively and the cells attach. , There is less space to split. Therefore, it is necessary to adjust the shape and size of the through holes and the number of arrangements (arrangement density) per unit area to be optimum. This is the second form of the constituent features of the present invention.

第1、第2様式によって、はじめに増殖した細胞群から一部の細胞が遊走し、元の培養基板から他の新たな培養基板に移動する機会は得られるが、第2様式の貫通孔を通じて新たな培養基板に細胞が付着するのであれば、貫通孔の出口と、新基板との間の距離が近くなれば、移動はより効率的となる。その距離すなわちギャップは、細胞が遊走して渡れる距離、すなわち細胞サイズ程度でなくてはならない。 Although the first and second modes allow some cells to migrate from the initially expanded cell group and move from the original culture substrate to another new culture substrate, new cells can be transferred through the through holes of the second mode. If cells adhere to a different culture substrate, the movement becomes more efficient if the distance between the exit of the through hole and the new substrate becomes short. The distance, or gap, must be about the distance cells can migrate and cross, ie, the size of the cell.

ヒトの細胞サイズから見て、遊走によって培養基板上で乗り越えられるギャップは、10μm程度と推測される。従って、本発明では、培養細胞が付着した元の培養基板の貫通孔から、細胞が新たな基板に移動するために、元基板の各貫通孔の孔縁に、細胞の遊走補助とギャップ形成を目的としたバリ状の誘導路を付与しておくのが好ましく、新基板とのギャップが各基板面の凹凸に左右されずに10μm程度となるような形態が実現する。これを本発明の細胞培養方法における構成要件のうちの第3様式とする。 Judging from the human cell size, the gap that can be overcome on the culture substrate by migration is estimated to be about 10 μm. Therefore, in the present invention, in order to move the cells from the through holes of the original culture substrate to which the cultured cells are attached to the new substrate, cell migration assistance and gap formation are provided at the hole edges of each through hole of the original substrate. It is preferable to provide a desired burr-like guide path so that a gap with the new substrate is about 10 μm without being influenced by the unevenness of each substrate surface. This is the third mode of the constituent requirements of the cell culture method of the present invention.

本発明の細胞培養方法は、上記第3様式の培養基板を複数枚重ね合わせることで、細胞が増殖した元基板の貫通孔の縁と、移動先の新たな培養基板間のギャップを10μm程度の近接状態に保ち、移動した細胞が新たな基板上で増殖するための抜け道と、その周囲、すなわち元、新培養基板間を培養液がふんだんに灌流するスペースを確立している。これによって、細胞の大量製造が可能となるもので、これを本発明の細胞培養方法における構成要件のうちの第4様式とする。 In the cell culture method of the present invention, a plurality of the above-mentioned third-type culture substrates are superposed on each other, so that the gap between the edge of the through-hole of the original substrate on which the cells proliferate and the new culture substrate of the movement destination is about 10 μm. It maintains a close state and establishes a passageway for the migrated cells to grow on a new substrate, and a space around it, that is, between the original and new culture substrates, in which the culture solution perfuses abundantly. This makes it possible to mass-produce cells, which is the fourth mode of the constituent requirements of the cell culture method of the present invention.

図面による本発明の簡単な説明Brief description of the invention with reference to the drawings

本発明における上記主要な構成要件を満たすための概念図を示す。[図1]は、第1様式の概念図であり、生体親和性を有する薄膜の細胞培養基板1に貫通孔3を設けている。本発明において、生体親和性を有する薄膜素材とは、純チタニウムあるいはチタニウム合金等が好適であるが、その他の生体親和性の金属、セラミックス、プラスチックス等でも適用可能であることは言うまでもない。また、貫通孔3は円形や多角形であるが、遊走する細胞が孔の入口をまたがぬよう、進入しやすい形状にする必要がある。一例として、生体親和性を有する素材である薄膜培養基板1の厚み▲1▼は1〜50μmであり、そこに設ける貫通孔3は一辺の長さ▲2▼が10〜80μmの正方形とする。 The conceptual diagram for satisfying the said main structural requirements in this invention is shown. [FIG. 1] is a conceptual view of the first mode, in which a through-hole 3 is provided in a thin-film cell culture substrate 1 having biocompatibility. In the present invention, the thin film material having biocompatibility is preferably pure titanium or titanium alloy, but it goes without saying that other biocompatible metals, ceramics, plastics, etc. are also applicable. Although the through hole 3 is circular or polygonal, it needs to have a shape that allows migrating cells to easily enter so that it does not cross the entrance of the hole. As an example, the thin film culture substrate 1 which is a material having biocompatibility has a thickness (1) of 1 to 50 μm, and the through hole 3 provided therein is a square having a side length (2) of 10 to 80 μm.

薄膜培養基板1の平面上で培養増殖した細胞の一部は、遊走によって太矢印のように貫通孔3内に進入し、やがて貫通孔を通過して培養基板1に近接して位置する新たな培養基板2に達する。新たな基板2に達した細胞には増殖して細胞数を増やすスペースが与えられる。尚、[図1]は第1様式を示す具体的形状の一例であり、ここで示される形態およびサイズはこの限りではない。 Some of the cells that have been cultured and propagated on the plane of the thin film culture substrate 1 enter the through holes 3 by migration as shown by the thick arrows, and eventually pass through the through holes to be located in close proximity to the culture substrate 1. Reach the culture substrate 2. The cells that have reached the new substrate 2 are provided with a space for proliferating and increasing the number of cells. [FIG. 1] is an example of a specific shape showing the first mode, and the form and size shown here are not limited thereto.

[図2]は、第2様式の概念図であり、生体親和性を有する培養基板1に貫通孔3を設ける際の寸法例を示す。[図1]の例を援用すれば、その▲2▼のサイズで形成した角穴を、▲4▼の一定間隔にて配置した貫通孔3である。ここで、▲2▼のサイズと▲4▼の距離は、培養細胞のサイズと、貫通孔の周囲平板部分で培養できる細胞の数、加えてそれら細胞が貫通孔毎に一度に進入出来る数によって決定される。 [FIG. 2] is a conceptual diagram of the second mode, and shows an example of dimensions when the through hole 3 is provided in the culture substrate 1 having biocompatibility. With reference to the example of FIG. 1, it is a through hole 3 in which square holes formed in the size of <2> are arranged at regular intervals in <4>. Here, the size of (2) and the distance of (4) are determined by the size of the cultured cells, the number of cells that can be cultured in the plate around the through hole, and the number of cells that can enter at once for each through hole. It is determined.

この例では、貫通孔3の間の平板部分で培養、増殖した細胞群の一定割合が貫通孔内に進入するので、形成する貫通孔3の間隔を変更することで、貫通孔内に進入する細胞の割合を調整することができる。その間隔▲4▼は、貫通孔サイズを考慮し、細胞が通過できる貫通孔3のサイズや細胞遊走能等を考慮すれば、30〜500μmの間で調整することが妥当である。 In this example, since a certain proportion of the cell group that has been cultured and propagated in the flat plate portion between the through holes 3 enters the through holes, it changes into the through holes 3 by changing the interval of the through holes 3 to be formed. The proportion of cells can be adjusted. Considering the size of the through hole, and considering the size of the through hole 3 through which cells can pass, the cell migration ability, and the like, it is appropriate to adjust the interval (4) between 30 and 500 μm.

また、個々の貫通孔3の形状、サイズについては、同時に進入する細胞数に応じて、直径10〜80μmの円形、もしくは一辺10〜80μmの多角形にすることが適正である。貫通孔3のサイズが10μm未満では、培養細胞が通過しにくくなる一方、80μmより大きくなると相対的に細胞が付着、分裂するスペースが少なくなったり、細胞培養が不均一になるという問題が生じる。この貫通孔3のサイズと形成間隔については、細胞の種類、ならびにその増殖法の目的に適応するよう設定し、状況に応じ、一枚の素材面上においてそれらのサイズや間隔を変化させることも可能である。 Further, regarding the shape and size of each through hole 3, it is appropriate to make it a circle having a diameter of 10 to 80 μm or a polygon having a side of 10 to 80 μm depending on the number of cells that simultaneously enter. If the size of the through-hole 3 is less than 10 μm, it becomes difficult for the cultured cells to pass through, while if it is larger than 80 μm, there is a problem that the space for cells to attach and divide becomes relatively small, or the cell culture becomes uneven. The size and interval of the through holes 3 are set so as to be adapted to the type of cell and the purpose of the proliferation method thereof, and the size and interval thereof may be changed on one material surface depending on the situation. It is possible.

例えば、一枚の素材の中心部には、平板状の細胞増殖能を優先すべく、貫通孔の形成間隔を長くする一方、細胞群が数を増やしその周辺まで進展した際には、新たな基板への転送を積極的に図るため、素材面の周辺部における貫通孔の間隔を短くすることが有効である。 For example, in the center of one sheet of material, the interval between the formation of through-holes is lengthened in order to give priority to the plate-like cell growth ability, while when the number of cell groups increases and reaches the periphery, new In order to positively transfer to the substrate, it is effective to shorten the interval between the through holes in the peripheral portion of the material surface.

以上の様に、第2様式における膜状細胞培養基板への貫通孔形成の仕様は、細胞培養の目的および条件に応じて設定するため、その形態およびサイズは上述の範囲とするのが好ましい。 As described above, the specifications for forming the through-holes in the membranous cell culture substrate in the second mode are set according to the purpose and conditions of cell culture, and therefore the form and size thereof are preferably within the above range.

[図3]は、第3様式の概念図であり、生体親和性を有する薄膜培養基板に設ける貫通孔3の形状例を示す。[図1]の例を援用すれば、その形状は、▲2▼のサイズで形成した角穴の孔縁から、基板に対し略垂直に立ち上がる羽状のバリ状誘導路4に代表される。このプロセスでは、まず貫通孔3に侵入した細胞が貫通孔の孔縁からバリ状誘導路4に進み遊走していく。バリ状誘導路4の先端部は、[図1]における新たな培養基板2に10μm程度の距離で近接しているので、誘導路4を遊走した細胞はやがて新たな培養基板2に付着する。 [FIG. 3] is a conceptual diagram of the third mode and shows an example of the shape of the through hole 3 provided in the thin film culture substrate having biocompatibility. With reference to the example of FIG. 1, its shape is represented by a wing-shaped burr-shaped guide path 4 that rises from a hole edge of a square hole formed in size (2) substantially perpendicularly to the substrate. In this process, cells that have entered the through-hole 3 first migrate from the edge of the through-hole to the burr-like guide path 4 and migrate. Since the tip portion of the burr-shaped guide path 4 is close to the new culture substrate 2 in FIG. 1 at a distance of about 10 μm, the cells that have migrated through the guide path 4 will eventually adhere to the new culture substrate 2.

この様に、第3様式における貫通孔3に付与したバリ状の誘導路4は、相対する各基板面の凹凸等にかかわりなく、その一部でも細胞の移動先となる素材に対し10μm程度の距離に近接する条件が満たされれば、その形態およびサイズは特に限定されない。 In this way, the burr-shaped guide path 4 provided in the through hole 3 in the third mode has a part of about 10 μm with respect to the material to which the cells move, regardless of the unevenness of the opposing substrate surfaces. The form and size thereof are not particularly limited as long as the condition of being close to the distance is satisfied.

[図4]は、第4様式の概念図であり、細胞が増殖し、細胞の供給元となる細胞培養基板1と、そこから貫通孔3を通じて細胞が移動していく新たな培養基板2間を近接させる際に、移動した先で細胞が生育するためのスペース▲5▼を確保した状態例を示す。[図1]および[図3]の例を援用すれば、細胞が増殖し、その貫通孔3を通じて新たな培養基板2に細胞を移動供給することが可能な元培養基板1に対し、貫通孔3を通じて細胞が供給される新たな培養基板2は、元基板1の貫通孔3の孔縁から立ち上がるバリ状誘導路4の側に位置し、該誘導路4の先端にほぼ接する状態になる。 [FIG. 4] is a conceptual diagram of the fourth mode, in which cells are proliferated and a cell culture substrate 1 from which cells are supplied and a new culture substrate 2 from which cells move through through holes 3. An example of a state where a space (5) for growing cells at the moved destination is secured when the cells are brought close to each other is shown. With reference to the examples of [FIG. 1] and [FIG. 3], a cell is proliferated and a through-hole is provided to the original culture substrate 1 capable of migrating and supplying the cell to a new culture substrate 2. The new culture substrate 2 to which cells are supplied through 3 is located on the side of the burr-like guide passage 4 rising from the edge of the through hole 3 of the original substrate 1 and is in a state of being almost in contact with the tip of the guide passage 4.

この状態では、誘導路4がスペーサーとして作用し、基板1、2間に空隙▲5▼が確保される。細胞は、元基板1から空隙▲5▼を経由して新たな基板2に移動し、誘導路4によって形成された基板1、2間の空隙▲5▼を通り、新たな基板2の表面に広く遊走して進展する。また、この誘導路4によって形成される空隙▲5▼は、細胞が生育するのに十分な培養液を灌流するという効果も奏するものである。 In this state, the guide path 4 acts as a spacer, and a space (5) is secured between the substrates 1 and 2. The cells move from the original substrate 1 to the new substrate 2 via the void (5), pass through the void (5) between the substrates 1 and 2 formed by the guide path 4, and reach the surface of the new substrate 2. It travels widely and progresses. In addition, the void (5) formed by the guide path 4 also has an effect of perfusing a sufficient culture medium for the cells to grow.

本発明は、上記第1〜第4様式から構成される方法によって、各基板間を細胞が移動できる頻度を極めて効率よく高めることに成功したもので、多孔膜状培養基板による連続且つ大量培養の基本仕様となるものである。 The present invention has succeeded in extremely efficiently increasing the frequency with which cells can move between each substrate by the method constituted by the above first to fourth modes. It is a basic specification.

以下図面に基づいて本発明を更に詳しく説明するが、本発明はこれらに限定されるものでない。 Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto.

本発明における実施例として、生体親和性に優れた純チタンからなる厚さ20μmの金属箔を素材とした例を説明する。まず、微細な貫通孔を形成する方法として、特開2014−8585号公報に例示の本願[図5]の如き「剣山状プレス穿孔具5」を用いる。これは、タングステンカーバイド鋼などの硬い金属製の2mm角柱の断面上に、集積回路加工用の極薄の回転砥石等で格子状に目立て研削を行い、間隔75μm毎に角形の突起6を形成した剣山状のプレス穿孔具である。 As an example of the present invention, an example in which a metal foil having a thickness of 20 μm and made of pure titanium having excellent biocompatibility is used as a material will be described. First, as a method of forming fine through holes, "Kenzan-shaped press punching tool 5" as disclosed in Japanese Patent Application Laid-Open No. 2014-8585 as shown in FIG. 5 of the present application is used. In this, a 2 mm square column made of a hard metal such as tungsten carbide steel was subjected to grid grinding with an ultrathin rotating grindstone for processing integrated circuits to form square protrusions 6 at intervals of 75 μm. It is a sword-shaped press punch.

この穿孔具を用い、[図6]に例示する方法で、純チタン箔からなる培養基板1に、貫通孔3を形成すると、穿孔具の出口方向にバリ状誘導路4が形成される。 When this through-hole is used to form the through hole 3 in the culture substrate 1 made of pure titanium foil by the method illustrated in FIG. 6, a burr-like guide path 4 is formed in the exit direction of the through-hole.

[図7]は実際に貫通孔を形成した純チタン箔の電子顕微鏡写真である。図中の(a)に示すように、25μm角の貫通孔が、各孔の中心間距離75μmの間隔で格子状に形成されている。また、穿孔具5を押し込んだ側、即ち入口側の貫通孔部分を拡大したものを(b)に示す。貫通孔3は、穿孔具5の突起6の形状が反映された角孔で、その辺縁に付加物は見られない。尚、貫通孔の形状は、円形や、四角、六角、八角等の多角形状のいずれでも良いが、好ましくは四角形状、中でも正方形に近いものが好ましい。 [FIG. 7] is an electron micrograph of a pure titanium foil in which through holes are actually formed. As shown in (a) of the drawing, 25 μm square through-holes are formed in a grid pattern with a distance of 75 μm between the centers of the holes. Further, an enlarged view of the through hole portion on the side where the punching tool 5 is pushed in, that is, on the inlet side is shown in (b). The through hole 3 is a square hole in which the shape of the protrusion 6 of the punch 5 is reflected, and an additive is not seen at the edge thereof. The shape of the through hole may be circular or polygonal such as square, hexagonal, octagonal, etc., but is preferably quadrangular, and more preferably square.

一方、穿孔具5の突起6が抜けた側、即ち出口側の穿孔部分の拡大写真を(c)に示す。角孔の孔縁に、チタン箔に由来したとみられるバリによる誘導路4が認められる。この加工法によって形成される貫通孔には、穿孔具を作用させた入口側と、穿孔具が抜けた出口側で、形成された貫通孔の孔縁にバリの有無がはっきり分かれる事となる。 On the other hand, (c) shows an enlarged photograph of the side of the punch 5 on which the projection 6 is removed, that is, the punched portion on the exit side. At the edge of the square hole, a guide path 4 due to burrs that is considered to be derived from titanium foil is recognized. In the through hole formed by this processing method, the presence or absence of burrs on the edge of the formed through hole is clearly separated on the inlet side on which the punch tool is actuated and on the outlet side from which the punch tool is removed.

通常、このような穿孔加工後に必然的に形成される“バリ”は、加工品質を下げる厄介者として除去されるのが一般的であるが、本発明ではまさしくこの厄介者の“バリ”を発明の一つの核心として利用する。すなわち、本発明を実現する構成要件としての第3様式にある貫通孔の孔縁に付与される“バリ”を細胞遊走の誘導路として有効利用するのである。 Usually, the "burr" which is necessarily formed after such a punching process is generally removed as a troublesome member which deteriorates the processing quality. However, according to the present invention, it is exactly this troublesome "burr". It is used as one of the core points of. That is, the "burr" imparted to the edge of the through-hole in the third mode, which is a constituent feature for realizing the present invention, is effectively used as a guide path for cell migration.

本発明では、この様な穿孔具による“バリ”のみならず、レーザーによる穿孔加工で生ずる貫通孔周辺の突起物で、“ドロス”とよばれる副生成物についても本発明における第3要件に該当すれば利用することができる。 In the present invention, not only "burrs" due to such a punching tool, but also by-products called "dross", which are protrusions around the through-holes generated by laser drilling, fall under the third requirement of the present invention. You can use it.

本実施例で示した厚さ20μmの金属箔に形成された25μm角の貫通孔は、貫通孔の寸法が直径10μmのヒト体細胞の2〜3倍程度であり、培養液が浸潤可能であるから、細胞が通過するのに支障は無く、上述した第1様式にてらして、本発明に有効である。またこれら貫通孔が75μm間隔で略均等に配置されている仕様については、各貫通孔間の平板部分において、細胞が4回以上の分裂増殖を可能とする構造であり、上述した第2様式にてらして、本発明に有効である。 The 25 μm square through-holes formed in the metal foil with a thickness of 20 μm shown in this example have a size of the through-holes of about 2 to 3 times that of human somatic cells with a diameter of 10 μm and can be infiltrated with a culture solution. Therefore, there is no hindrance to the passage of cells, and the present invention is effective in the first mode described above. Regarding the specification that these through-holes are arranged substantially evenly at intervals of 75 μm, it is a structure that allows cells to divide and proliferate four or more times in the flat plate portion between each through-hole. It is effective for the present invention.

また、本実施例では、貫通孔の孔縁に形成されたバリが、貫通孔に進入した細胞が隣接する新たな培養基板に移動するための誘導路4として利用できることから、上述した第3様式にてらして本発明に有効であり、しかもこのバリは機械的に相当な強度を有するばかりか、75μm間隔で形成された貫通孔の一面すべてに存在するので、細胞供給元の培養基板と、供給された細胞を受容する新たな培養基板との間隔を維持するスペーサーとしても作用することから、第4様式にてらして本発明に有効である。 In addition, in this example, the burr formed on the edge of the through hole can be used as the guide path 4 for moving the cells that have entered the through hole to the new adjacent culture substrate. It is effective for the present invention, and since the burr has not only a mechanically considerable strength but also exists on the entire one surface of the through holes formed at intervals of 75 μm, the burr and the culture substrate from which the cells are supplied, The present invention is effective in the present invention in the fourth mode, since it also acts as a spacer for maintaining a distance from a new culture substrate that receives the treated cells.

上述の実施例に準拠して、前述の第1〜第4様式の各条件を満たして作製された細胞培養基板を用いた細胞培養に関する実施例を[図8]に示す。図中の(d)は、その基板上において既に細胞が充分に培養され、その表面に増殖した細胞が多数付着した(ア)と、(ア)と同一仕様で、細胞が付着していない培養基板(イ)を(ア)の下に、(イ)と同じ基板(エ)を(ア)の上に配置し、いずれも前述したプレス穿孔具による貫通孔の穿孔加工の出口、すなわち貫通孔の孔縁にバリがある面を下側にして重ねた状態で、培養ディッシュ(ウ)内で培養液中に浸漬した状況を示す。 An example relating to cell culture using a cell culture substrate produced by satisfying the respective conditions of the above-described first to fourth modes based on the above-mentioned example is shown in FIG. (D) in the figure is a culture in which cells have already been sufficiently cultured on the substrate and a large number of proliferated cells adhere to the surface (a), and the same specifications as (a), but no cells adhere. Substrate (a) is placed under (a), and the same substrate (d) as (a) is placed over (a), both of which are outlets for through-hole drilling by the press punching tool, that is, through-holes. The state in which the surface with burrs at the hole edges is placed on the lower side and the layers are immersed in the culture solution in the culture dish (c) is shown.

このようにして培養を行うと、[図8]の(e)に示す通り、(ア)に付着した細胞は(ア)の貫通孔を通過し、下面にある貫通孔の孔縁のバリ状誘導路を移動して、近接した培養基板(イ)の表面に達する。(ア)から(イ)に移動した細胞は、(イ)の表面で増殖し、細胞数を増加させることが出来る。やがて(イ)で増殖した細胞は、(イ)の貫通孔を通過し、下面にある貫通孔の孔縁のバリ状誘導路を移動して、下面が近接する培養ディッシュ(ウ)の底面に付着し、細胞は(ウ)の表面で培養が継続され、細胞数を更に増やすことが出来る。 When culturing is carried out in this way, as shown in (e) of FIG. 8, the cells attached to (a) pass through the through-holes of (a), and the burrs at the edges of the through-holes on the lower surface are formed. It moves through the guide path and reaches the surface of the adjacent culture substrate (a). The cells that have migrated from (a) to (a) can proliferate on the surface of (a) and increase the number of cells. The cells that grew in (a) eventually passed through the through-holes in (a), moved through the burr-shaped guideways at the edges of the through-holes on the lower surface, and reached the bottom surface of the culture dish (c) where the lower surface was close. The adhered cells continue to be cultured on the surface of (c), and the number of cells can be further increased.

また、細胞が付着する培養基板(ア)の上に近接した(ア)と同一仕様の基板(エ)に対し、(エ)の下面にあるバリ状誘導路が、細胞の付着した(ア)の上面に十分近接するとき、(ア)の細胞は(エ)の下面のバリ状誘導路に付着して上方に遊走することで、基板(エ)の下面、もしくは(エ)の貫通孔を通過して(エ)の上面に達し、(エ)の表面に増殖していく事ができる。 In addition, on the substrate (d) having the same specifications as that of (a), which was adjacent to the culture substrate (a) to which the cells adhered, the burr-like guideway on the lower surface of (d) adhered to the cells (a) When the cells are sufficiently close to the upper surface of (a), the cells of (a) adhere to the burr-like guideway on the lower surface of (d) and migrate upward, so that the lower surface of the substrate (d) or the through hole of (d) It can pass through, reach the upper surface of (d), and grow on the surface of (d).

以上の様に、上述の実施例は本発明の典型的な事例であるが、本発明は、生体親和性を有する薄膜素材に対し、上述の第1〜第4様式の一部あるいはすべてを満たした構造を達成して多孔膜状培養基板とし、これを複数積層することで、複数の多孔膜状培養基板の間、および多孔膜状培養基板と培養ディッシュ間で細胞が移動出来る方法であれば、本発明の範囲とすることができる。 As described above, the above-described embodiments are typical examples of the present invention, but the present invention satisfies some or all of the above-mentioned first to fourth modes for the thin film material having biocompatibility. As long as the method allows cells to move between a plurality of porous membrane-like culture substrates and between a plurality of porous membrane-like culture substrates and a culture dish by stacking a plurality of porous membrane-like culture substrates to achieve the above structure, It can be within the scope of the invention.

以上の実施例に基づき、前述した仕様による多孔膜状培養基板を作製し、細胞培養を実施した結果は以下の通りであった。なお、使用した多孔膜状培養基板は、厚さ20μmの純チタン箔に特開2014−8585号公報に準ずる方法で剣山状プレス穿孔具を用いて穿孔した、微細貫通孔を形成したものである。 Based on the above examples, the porous membrane-like culture substrate having the above-mentioned specifications was produced, and the cell culture was carried out. The results are as follows. The porous membrane-shaped culture substrate used was one in which a pure titanium foil having a thickness of 20 μm was perforated by a method according to Japanese Unexamined Patent Publication No. 2014-8585 using a sword-shaped press piercing tool to form fine through holes. ..

培養液として10%FBSα−MEMで満たした培養ディッシュ内に多孔膜状培養基板を浸漬し、マウス頭蓋冠より分離樹立された骨芽細胞様細胞株MC3T3−E1を播種し、多孔膜状培養基板への細胞の定着を確認した。 Porous film-like culture substrate was immersed in a culture dish filled with 10% FBS α-MEM as a culture solution, and the osteoblast-like cell line MC3T3-E1 isolated and established from the mouse calvaria was seeded, and the porous film-like culture substrate The colonization of the cells was confirmed.

付着した細胞の様子を[図9]に示す。この図中における(k)、(l)は、微細貫通孔の孔縁に形成したバリ状誘導路を下面に位置させた上で、細胞培養が実施された多孔膜状培養基板である。また(m)は、その状態の基板を免疫染色像で示したものであり、そのカラー画像(図9では、白黒画像で示す)では、細胞核(青色)ならびに細胞体骨格を示すアクチン(緑色)が確認されている。 The state of the attached cells is shown in [Fig. 9]. In this figure, (k) and (l) are porous membrane-shaped culture substrates on which cell culturing was carried out after the burr-like guideways formed at the edges of the fine through holes were located on the lower surface. Further, (m) is an immunostaining image of the substrate in that state, and in the color image (black and white image in FIG. 9), actin (green) showing cell nucleus (blue) and cell body skeleton is shown. Has been confirmed.

(k)では、膜上の所々に細胞が付着しているのが認められる。(l)は(k)を部分拡大した像であり、付着した細胞の一部は貫通孔内に進入している事が認められる。また、(m)では細胞核の多くが貫通孔内に存在している。これは、細胞が貫通孔内に生きた状態であったことを証明している。 In (k), it can be seen that cells are attached to various places on the membrane. (L) is a partially enlarged image of (k), and it can be seen that some of the attached cells have entered the through-hole. Further, in (m), most of the cell nuclei are present in the through holes. This demonstrates that the cells were alive within the through-holes.

以上の所見から、本発明の方法により、多孔膜状培養基板上での細胞培養が可能であり、かつ本発明により設計された微細貫通孔を、細胞が通過して移動する作用が実現可能であることを証明した。 From the above findings, by the method of the present invention, it is possible to cultivate cells on the porous film-like culture substrate, and it is possible to realize the action of cells passing through the fine through holes designed by the present invention. Proved that there is.

また、[図9]中(n)、(o)は、微細貫通孔の孔縁に形成したバリ状誘導路を上面に位置させた上で、細胞培養が実施された多孔膜状培養基板である。また、(p)はその状態の基板を免疫染色像で示したものであり、そのカラー画像(図9では、白黒画像で示す)では、細胞核(青色)ならびに細胞体骨格を示すアクチン(緑色)が確認されている。 Further, (n) and (o) in FIG. 9 are porous membranous culture substrates in which cell culture was performed after the burr-like guideways formed at the edges of the fine through holes were positioned on the upper surface. is there. Further, (p) shows an immunostained image of the substrate in that state, and in the color image (shown as a black and white image in FIG. 9), actin (green) showing cell nucleus (blue) and cell body skeleton is shown. Has been confirmed.

(n)では、膜上のいたる所に細胞が付着しているのが認められる。(o)は(n)を部分拡大した像であり、貫通孔内に細胞が存在することを示す。さらに、バリ状誘導路の周囲に細胞が積極的に付着し、細胞体の枝を、バリ状誘導路の先端に付着させているのを認める。また、(p)では、膜表面および貫通孔内まで、至る所に細胞核が所在し、培養増殖が極めて旺盛であることを示している。 In (n), it can be seen that cells are attached everywhere on the membrane. (O) is an image obtained by partially enlarging (n) and shows that cells are present in the through holes. Furthermore, it is confirmed that cells are actively attached to the periphery of the burr-like guideway and the branch of the cell body is attached to the tip of the burr-like guideway. Further, in (p), cell nuclei are located everywhere on the surface of the membrane and in the through-holes, indicating that the culture and proliferation are extremely vigorous.

以上の所見から、本発明による方法による多孔膜状培養基板上に設けた貫通孔孔縁の微細なバリは、細胞培養の障害にならない事が証明されると共に、細胞がこれを足場として利用し、誘導路を支持点として移動できる可能性が示された。 From the above findings, it is proved that the fine burr at the edge of the through-hole provided on the porous film-shaped culture substrate according to the method of the present invention does not hinder the cell culture, and the cells use this as a scaffold. , It was shown that the taxiway could be used as a support point.

このように、本発明の方法によって細胞が培養された基板に、新たな培養基板を近接する様に重ねること、あるいは複数の新たな培養基板でサンドイッチ状に積層することによって、[図8]に示した、基板間を細胞が移動し、移動先の基板上で継続的且つ旺盛に細胞が増殖していくことを確認した。 Thus, by overlaying a new culture substrate in close proximity to the substrate on which cells have been cultured by the method of the present invention, or by stacking a plurality of new culture substrates in a sandwich form, [Fig. 8] is obtained. It was confirmed that the cells migrated between the substrates as shown, and the cells continuously and vigorously proliferated on the substrate of the migration destination.

本発明は、上記多孔膜状培養基板を重ねて細胞培養を継続的に行う上述の実施例に限るものでは無く、第1〜第4様式の原理のすべて、あるいはその一部を利用して、従来のトリプシン処理による継代を行うことなく細胞培養の継続が行う方法であれば、本発明に依るものと考えることができる。 The present invention is not limited to the above-mentioned embodiment in which cell culture is continuously carried out by stacking the above-mentioned porous membrane-like culture substrates, but using all or part of the principles of the first to fourth modes, Any method in which cell culture can be continued without substituting by conventional trypsin treatment can be considered to be according to the present invention.

上述の実施例を要約すれば、生体親和性に優れ、平板培養基板としても有用なチタン箔を素材に、基板上の細胞が対数的増殖期を得られるよう、十分な平板面積を確保した上で、増殖して移動する細胞を他の基板に送り込むための貫通孔を至適なサイズと間隔で配置したことで、自らの基板上の細胞増殖と、他基板への細胞の送り込みを可能とする構造であり、本発明に必要な主要条件である。 In summary of the above examples, titanium foil, which has excellent biocompatibility and is also useful as a plate culture substrate, is used as a material, and a sufficient plate area is secured so that cells on the substrate can obtain a logarithmic growth phase. By arranging through holes for sending cells that proliferate and move to other substrates at an optimal size and spacing, it is possible to grow cells on their own substrate and send cells to other substrates. The structure is a main condition necessary for the present invention.

尚、貫通孔内に進入した細胞は、通常は貫通孔を抜けたあと、基板の裏面に付着、遊走していくので、他の基板には移らない。これに対し本発明では、貫通孔の孔縁に設けたバリが細胞を他の基板に移すための誘導路として作用し、更に移動先の基板との距離を10μm程度にまで近接すれば、この構造に沿って遊走した細胞が、他の基板に遊走でアクセスでき、細胞が転送される。 It should be noted that cells that have entered the through holes usually adhere to the back surface of the substrate and migrate after passing through the through holes, and therefore do not move to other substrates. On the other hand, in the present invention, the burr provided on the edge of the through hole acts as a guide path for transferring cells to another substrate, and if the distance to the substrate to which the cell is moved is further reduced to about 10 μm, this Cells that have migrated along the structure are accessible for migration to other substrates and the cells are transferred.

この場合細胞が移動する面は、できる限り平滑でなくてはならない。その理由は、一般に培養細胞は細胞をホールドする窪みや凹凸、アンダーカット等があると、その部位に入り込み移動しなくなる、いわゆるスキャフォールド効果が現れ、細胞転送が妨げられる。従って、上述の実施例のごとく、平滑な純チタン箔を利用する事は、スキャフォールド効果を抑止する上では有効である。よって、本発明において、スポンジ状の多孔質素材を用いるのは適切ではない。 In this case, the surface on which the cells move should be as smooth as possible. The reason for this is that, generally, when cultured cells have dents, irregularities, undercuts, etc. that hold cells, a so-called scaffolding effect appears in which cells enter and do not move, and cell transfer is hindered. Therefore, it is effective to suppress the scaffold effect by using a smooth pure titanium foil as in the above-mentioned embodiment. Therefore, in the present invention, it is not appropriate to use the sponge-like porous material.

産業上の利用分野Industrial applications

以上の如き本発明のプロセスによって培養細胞が基板間を移動できれば、細胞が増殖した培養基板に、新たな基板を順次重ねる操作を繰り返すことで、効率的で容易に細胞を増やすことができる。またその場合、従来の平板培養法に見られたような、容器を移す度に不可欠とされてきた継代操作は全く不要であり、しかも細胞を個々に単一化するトリプシン等による酵素薬品を作用させる必要もない。従って、本発明は生体中に近い自然な細胞増殖プロセスを継続的に利用でき、酵素薬品による悪影響を完全に排除出来る。 If the cultured cells can move between the substrates by the process of the present invention as described above, it is possible to increase the number of cells efficiently and easily by repeating the operation of successively overlaying a new substrate on the culture substrate on which the cells have grown. Moreover, in that case, the subculture operation that has been indispensable every time the container is moved, which is seen in the conventional plate culture method, is completely unnecessary, and moreover, an enzyme drug such as trypsin that individually unifies the cells is used. There is no need to make it work. Therefore, the present invention can continuously utilize the natural cell growth process close to that in the living body, and can completely eliminate the adverse effects of enzyme drugs.

本発明を細胞の大量製造に利用する形態として、[図10]の例を示す。本発明の仕様で形成された多孔膜状培養基板を積層し、無菌的に格納した培養装置(オ)に対し、培養液を適宜供給、あるいは灌流することで、格納された培養基板すべてに細胞が行き渡るよう増殖させる。 An example of [FIG. 10] is shown as a form in which the present invention is used for mass production of cells. By stacking porous membrane-shaped culture substrates formed according to the specifications of the present invention and aseptically storing the culture device (e), by appropriately supplying or perfusing the culture solution, cells are stored in all the stored culture substrates. Propagate so that it spreads.

培養により充分な細胞数が得られたならば、格納している(オ)から培養基板を取り出し、一枚毎に付着、増殖した細胞を利用することが可能である。この場合、チタン箔から形成した多孔膜状培養基板であれば、無菌的操作によって生体内(カ)に導入して細胞治療を行うことができる。また、増殖した細胞の遺伝子検査や分化度の評価など、分子生物学的検査を行なう場合は、(キ)のように、培養基板1枚を取り出し、通常の平板培養ディッシュに細胞を移動させたのち、通法の操作で検査を行うことも出来る。 When a sufficient number of cells have been obtained by culturing, it is possible to take out the culture substrate from the stored (e) and use the attached and proliferated cells one by one. In this case, a porous membrane-shaped culture substrate made of titanium foil can be introduced into the living body (f) by aseptic operation to perform cell therapy. Further, when carrying out a molecular biological test such as a genetic test or evaluation of the degree of differentiation of the proliferated cells, one culture substrate was taken out and the cells were transferred to an ordinary plate culture dish as shown in (K). After that, it is possible to carry out the inspection by a conventional operation.

1・・・多孔膜状細胞培養基板
2・・・新たな培養基板
3・・・貫通孔
4・・・バリ状誘導路
5・・・剣山状プレス穿孔具
6・・・突起
1... Porous Membrane Cell Culture Substrate 2... New Culture Substrate 3... Through Hole 4... Burr-Like Guidance Path 5... Kenyama-shaped Press Punch Tool 6... Protrusion

Claims (3)

生体親和性を有する薄膜素材に、直径10〜80μmの円形の微細な貫通孔、もしくは一辺10〜80μmの多角形の微細な貫通孔を形成した多孔膜状の細胞培養基板に細胞を播種した後、細胞培養液中において、該細胞培養基板を平板培養基板に接触させた状態とすることで、細胞培養基板の貫通孔を通じて増殖した細胞を平板培養基板に転送させることを特徴とする細胞培養方法。 After seeding cells on a porous membrane-like cell culture substrate in which a circular fine through hole with a diameter of 10 to 80 μm or a polygonal fine through hole with a side of 10 to 80 μm is formed in a thin film material having biocompatibility A method for culturing cells, wherein the cells grown in the cell culture medium are brought into contact with the plate culture substrate to transfer the cells grown through the through holes of the cell culture substrate to the plate culture substrate. .. 生体親和性を有する薄膜素材に、直径10〜80μmの円形の微細な貫通孔、もしくは一辺10〜80μmの多角形の微細な貫通孔を形成した多孔膜状の細胞培養基板に細胞を播種した後、細胞培養液中において、該細胞培養基板を複数枚接触積層した形で培養を継続することで、細胞培養基板の貫通孔を通じて増殖した細胞を、上下に接触する各細胞培養基板群に順次転送させることを特徴とする細胞培養方法。 After seeding cells on a porous membrane-like cell culture substrate in which a circular fine through hole with a diameter of 10 to 80 μm or a polygonal fine through hole with a side of 10 to 80 μm is formed in a thin film material having biocompatibility , In the cell culture medium, by continuing the culture in the form of contacting and stacking a plurality of the cell culture substrates, the cells grown through the through holes of the cell culture substrate are sequentially transferred to each cell culture substrate group that contacts vertically. A method for culturing cells, which comprises: 上記多孔膜状の細胞培養基板が、細胞が移動する際の通路となる微細貫通孔の孔縁に、細胞が他の培養基板に遊走する挙動を補助する、バリ状の誘導路を設けたものである請求項1又は2記載の細胞培養方法。 The above-mentioned porous membrane-shaped cell culture substrate is provided with a burr-shaped guide path at the edge of the fine through-hole that serves as a passage when cells move, which assists the behavior of cells migrating to other culture substrates. The method of culturing cells according to claim 1 or 2.
JP2018228548A 2018-11-16 2018-11-16 CELL CULTURE METHOD USING POROUS MEMBRANE CELL CULTURE SUBSTRATE Active JP7238240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228548A JP7238240B2 (en) 2018-11-16 2018-11-16 CELL CULTURE METHOD USING POROUS MEMBRANE CELL CULTURE SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228548A JP7238240B2 (en) 2018-11-16 2018-11-16 CELL CULTURE METHOD USING POROUS MEMBRANE CELL CULTURE SUBSTRATE

Publications (2)

Publication Number Publication Date
JP2020080836A true JP2020080836A (en) 2020-06-04
JP7238240B2 JP7238240B2 (en) 2023-03-14

Family

ID=70904523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228548A Active JP7238240B2 (en) 2018-11-16 2018-11-16 CELL CULTURE METHOD USING POROUS MEMBRANE CELL CULTURE SUBSTRATE

Country Status (1)

Country Link
JP (1) JP7238240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680348A (en) * 2020-12-31 2021-04-20 北京大橡科技有限公司 Organ model construction method based on organ chip and organ model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108373A1 (en) * 2006-03-17 2007-09-27 Kinki University Biocompatible transparent sheet, method of producing the same and cell sheet
JP2014008585A (en) * 2012-07-02 2014-01-20 Nagamine Seisakusho:Kk Porous plate manufacturing tool, method of manufacturing porous plate, and porous plate
WO2016121775A1 (en) * 2015-01-26 2016-08-04 宇部興産株式会社 Cell culturing method and kit
JP2016214149A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same
WO2017051650A1 (en) * 2015-09-24 2017-03-30 株式会社村田製作所 Cell culture method and cell culture device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108373A1 (en) * 2006-03-17 2007-09-27 Kinki University Biocompatible transparent sheet, method of producing the same and cell sheet
JP2014008585A (en) * 2012-07-02 2014-01-20 Nagamine Seisakusho:Kk Porous plate manufacturing tool, method of manufacturing porous plate, and porous plate
WO2016121775A1 (en) * 2015-01-26 2016-08-04 宇部興産株式会社 Cell culturing method and kit
JP2016214149A (en) * 2015-05-20 2016-12-22 住友電気工業株式会社 Cell culture carrier, and cell sheet including the same
WO2017051650A1 (en) * 2015-09-24 2017-03-30 株式会社村田製作所 Cell culture method and cell culture device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680348A (en) * 2020-12-31 2021-04-20 北京大橡科技有限公司 Organ model construction method based on organ chip and organ model

Also Published As

Publication number Publication date
JP7238240B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
EP2447354B1 (en) Culture substrate, culture sheet, and cell culture method
Torisawa et al. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids
JP2020195412A (en) Cell culture container
US10988724B2 (en) Three-dimensional bioreactor for cell expansion and related applications
CN203048951U (en) Embedded multicell co-culture device
EP3124591A1 (en) Culture vessel
WO2017025584A1 (en) A cell cultivation method, a cell cultivation vessel, and uses thereof
ATE496627T1 (en) MIXED CELL POPULATIONS FOR TISSUE REPAIR AND SEPARATION TECHNOLOGY FOR CELL PREPARATION
JP2018108032A (en) Culture vessel
TWI732842B (en) Cell culture container, support frame of cell culture container and cell culture method
US20120149051A1 (en) Devices for the production of cell clusters of defined cell numbers and cluster sizes
SG11201900715QA (en) Method for culturing cell, and method for removing and killing cell from cell suspension
Yin et al. How cells explore shape space: a quantitative statistical perspective of cellular morphogenesis
Albritton et al. Ultrahigh-throughput generation and characterization of cellular aggregates in laser-ablated microwells of poly (dimethylsiloxane)
JP2015211688A (en) Method for inducing differentiation of embryonic stem cell or artificial pluripotent stem cell
JP2020080836A (en) Cell culture method using porous membrane-like cell culture substrate
MX2022006590A (en) Methods of meat production by in vitro cell cultivation.
US11802263B2 (en) Culture vessel for three-dimensional cell cultivation and three-dimensional cell co-cultivation method using same
Hassanzadeh-Barforoushi et al. A rapid co-culture stamping device for studying intercellular communication
ATE217905T1 (en) CELL LINES EXPRESSING A BIOLOGICALLY ACTIVE FACTOR-IX
KR102417445B1 (en) Cell culture device
JP2014204671A (en) Cell culture carrier
US20210171888A1 (en) Insertable culture container and kit for three-dimensional cell culture, and three-dimensional cell co-culture method using same
KR102019602B1 (en) Microfluidic Chip for 3-Dimensional Cell Culture and Method of 3-Dimensional Cell Culture Using the Same
KR102134166B1 (en) Vacuum Cell Cultivation Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7238240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150