JP2020080241A - X-ray tube control device, x-ray generator, and x-ray tube control method - Google Patents

X-ray tube control device, x-ray generator, and x-ray tube control method Download PDF

Info

Publication number
JP2020080241A
JP2020080241A JP2018212913A JP2018212913A JP2020080241A JP 2020080241 A JP2020080241 A JP 2020080241A JP 2018212913 A JP2018212913 A JP 2018212913A JP 2018212913 A JP2018212913 A JP 2018212913A JP 2020080241 A JP2020080241 A JP 2020080241A
Authority
JP
Japan
Prior art keywords
ray tube
grid
light
light source
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018212913A
Other languages
Japanese (ja)
Other versions
JP6564120B1 (en
Inventor
浩幸 射越
Hiroyuki Ikoshi
浩幸 射越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Co Ltd
Original Assignee
Origin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Co Ltd filed Critical Origin Co Ltd
Priority to JP2018212913A priority Critical patent/JP6564120B1/en
Application granted granted Critical
Publication of JP6564120B1 publication Critical patent/JP6564120B1/en
Priority to KR1020190125299A priority patent/KR102050784B1/en
Priority to CN201911029897.XA priority patent/CN111182704B/en
Publication of JP2020080241A publication Critical patent/JP2020080241A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/025X-ray tubes with structurally associated circuit elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)

Abstract

To enable miniaturization of an x-ray tube control device controlling an x-ray tube having a grid.SOLUTION: An x-ray tube control device comprises: a light source (17T) that emits a signal light that controls a grid voltage of an x-ray tube (13); an optical receiver (17R) that receives the signal light from the light source (17T); a grid control circuit (16C) that controls a voltage applied to a grid (13g) for the x-ray tube in accordance with the signal light received by the optical receiver (17R); a housing (11) that houses the light source (17T), the optical receiver (17R), and the grid control circuit (16C); and an insulation medium (12) filling a gap of the light source (17T), the optical receiver (17R), and the grid control circuit (16C).SELECTED DRAWING: Figure 1

Description

本開示は、グリッド付きX線管からのX線の放射を制御するための技術に関する。   The present disclosure relates to a technique for controlling X-ray emission from an X-ray tube with a grid.

X線管から放射されるX線のON/OFFを、X線管内のカソードとアノード間に配置されたグリッドを用いて制御するグリッド付きX線管が用いられている。グリッド付きX線管を制御するX線管制御装置において、カソード及びグリッドは高電位にフローティングされている。このため、グリッドへの制御信号の伝送には、絶縁された信号を伝送していた。特許文献1では、絶縁された信号を伝送するため、パルストランスを用いていた。   An X-ray tube with a grid is used that controls ON/OFF of X-rays emitted from the X-ray tube using a grid arranged between a cathode and an anode in the X-ray tube. In an X-ray tube control device that controls an X-ray tube with a grid, the cathode and the grid are floating at a high potential. Therefore, an insulated signal is transmitted for transmitting the control signal to the grid. In Patent Document 1, a pulse transformer is used to transmit an insulated signal.

パルストランスはそれ自体に重量と容積がある。このため、パルストランスを用いたグリッド付きX線管では、X線管制御装置の小型化が困難であった。   A pulse transformer has its own weight and volume. Therefore, it has been difficult to reduce the size of the X-ray tube control device in the X-ray tube with a grid using the pulse transformer.

特許第3922524号公報Japanese Patent No. 3922524

本開示は、グリッド付きX線管を制御するX線管制御装置の小型化を可能にすることを目的とする。   The present disclosure aims to enable downsizing of an X-ray tube control device that controls an X-ray tube with a grid.

本開示のX線管制御装置は、
X線管のグリッド電圧を制御する信号光を発する光源と、
前記光源からの信号光を受光する受光器と、
前記受光器の受光した信号光に従って、前記X線管のグリッドに印加する電圧を制御するグリッド制御回路と、
前記光源、前記受光器及び前記グリッド制御回路を収容する筐体と、
前記光源、前記受光器及び前記グリッド制御回路の間隙を埋める絶縁媒体と、
を備える。
The X-ray tube control device of the present disclosure is
A light source that emits signal light for controlling the grid voltage of the X-ray tube,
A light receiver for receiving the signal light from the light source,
A grid control circuit for controlling the voltage applied to the grid of the X-ray tube according to the signal light received by the light receiver;
A housing containing the light source, the light receiver, and the grid control circuit;
An insulating medium filling the gap between the light source, the light receiver and the grid control circuit;
Equipped with.

本開示のX線発生装置は、
本開示に係る前記筐体内に、前記X線管がさらに配置され、前記X線管の放射したX線を前記筐体外に出力する。
The X-ray generator of the present disclosure is
The X-ray tube is further arranged in the housing according to the present disclosure, and outputs X-rays emitted by the X-ray tube to the outside of the housing.

本開示のX線管制御方法は、
光源、受光器及びグリッド制御回路が筐体に収容され、前記光源、前記受光器及び前記グリッド制御回路の間隙が絶縁媒体で埋められているX線管制御装置が実行するX線管制御方法であって、
前記光源がX線管のグリッド電圧を制御する信号光を発し、前記受光器が前記絶縁媒体を介して前記光源からの信号光を受光する手順と、
前記受光器が前記絶縁媒体を介して前記光源からの信号光を受光したことを契機に、前記グリッド制御回路が、X線管のグリッドに印加する電圧を制御する手順と、
を実行する。
The X-ray tube control method of the present disclosure is
An X-ray tube control method executed by an X-ray tube control device, wherein a light source, a light receiver, and a grid control circuit are housed in a housing, and a gap between the light source, the light receiver, and the grid control circuit is filled with an insulating medium. There
A procedure in which the light source emits signal light for controlling the grid voltage of the X-ray tube, and the light receiver receives the signal light from the light source via the insulating medium;
When the light receiver receives the signal light from the light source through the insulating medium, the grid control circuit controls the voltage applied to the grid of the X-ray tube,
To execute.

本開示によれば、グリッド付きX線管を制御するX線管制御装置の小型化を可能にすることができる。   According to the present disclosure, it is possible to reduce the size of an X-ray tube control device that controls an X-ray tube with a grid.

本開示に係るX線発生装置の第1の形態例を示す概略構成図である。It is a schematic block diagram which shows the 1st example of a form of the X-ray generator which concerns on this indication. 本開示に係るX線発生装置の第2の形態例を示す概略構成図である。It is a schematic block diagram which shows the 2nd example of a form of the X-ray generator which concerns on this indication. 本開示に係るX線発生装置の第3の形態例を示す概略構成図である。It is a schematic block diagram which shows the 3rd example of an X-ray generator which concerns on this indication. 本開示に係るX線発生装置の第4の形態例を示す概略構成図である。It is a schematic block diagram which shows the 4th example of an X-ray generator which concerns on this indication.

以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments described below. These embodiments are merely examples, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In this specification and the drawings, constituent elements having the same reference numerals indicate the same elements.

図1に、本実施形態に係るX線発生装置の第1の形態例を示す。本実施形態に係るX線発生装置は、グリッド13gが高電位にフローティングされているグリッド付きのX線管13と、これを制御するX線管制御装置と、を備える。X線管13には、カソード13c、アノード13a、グリッド13gが備わる。   FIG. 1 shows a first example of the X-ray generator according to this embodiment. The X-ray generator according to the present embodiment includes an X-ray tube 13 with a grid in which a grid 13g is floated at a high potential, and an X-ray tube controller that controls the X-ray tube 13. The X-ray tube 13 includes a cathode 13c, an anode 13a, and a grid 13g.

本実施形態に係るX線管制御装置は、インバータ回路18、昇圧回路14S、グリッド制御回路16C、を備える。本実施形態では、グリッド制御回路16Cとグリッド用絶縁トランス16Tの間に整流回路16Rが備わっている例を示す。図3に示すように、本開示は、整流回路16Rを含まない形態を含む。   The X-ray tube control device according to this embodiment includes an inverter circuit 18, a booster circuit 14S, and a grid control circuit 16C. In the present embodiment, an example in which the rectifier circuit 16R is provided between the grid control circuit 16C and the grid insulation transformer 16T is shown. As shown in FIG. 3, the present disclosure includes a configuration that does not include the rectifier circuit 16R.

昇圧回路14Sは高圧トランス14Tを介してインバータ回路18と接続され、整流回路16Rはグリッド用絶縁トランス16Tを介してインバータ回路18と接続され、カソード13cに備わるフィラメントはフィラメントトランス15Tを介してインバータ回路18と接続されている。   The booster circuit 14S is connected to the inverter circuit 18 via the high voltage transformer 14T, the rectifier circuit 16R is connected to the inverter circuit 18 via the grid insulation transformer 16T, and the filament provided in the cathode 13c is connected to the inverter circuit via the filament transformer 15T. It is connected to 18.

X線管13、高圧トランス14T、昇圧回路14S、フィラメントトランス15T、グリッド用絶縁トランス16T、整流回路16R、及びグリッド制御回路16Cは、絶縁油12の充填された1つの筐体11に格納されている。絶縁油12は、本開示に係る絶縁媒体として機能する。   The X-ray tube 13, the high-voltage transformer 14T, the booster circuit 14S, the filament transformer 15T, the grid insulation transformer 16T, the rectifier circuit 16R, and the grid control circuit 16C are stored in one housing 11 filled with insulating oil 12. There is. The insulating oil 12 functions as an insulating medium according to the present disclosure.

筐体11は、出射窓11Wを備える。X線管13の放射したX線は、出射窓11Wから筐体外に出力される。このように、本開示に係るX線発生装置は、X線管13、高圧トランス14T、昇圧回路14S、フィラメントトランス15T、グリッド用絶縁トランス16T、整流回路16R、及びグリッド制御回路16Cが1つにパッケージ化されている。   The housing 11 includes an emission window 11W. The X-rays emitted from the X-ray tube 13 are output to the outside of the housing through the emission window 11W. As described above, the X-ray generator according to the present disclosure includes the X-ray tube 13, the high-voltage transformer 14T, the booster circuit 14S, the filament transformer 15T, the grid insulation transformer 16T, the rectifier circuit 16R, and the grid control circuit 16C as one unit. It is packaged.

昇圧回路14Sの出力端子T1は、アノード13aに接続されている。昇圧回路14Sの出力端子T2は、フィラメントトランス15Tとカソード13cとの間の接続点P1に接続されている。これにより、昇圧回路14Sで昇圧された電圧がアノード13aに印加される。   The output terminal T1 of the booster circuit 14S is connected to the anode 13a. The output terminal T2 of the booster circuit 14S is connected to a connection point P1 between the filament transformer 15T and the cathode 13c. As a result, the voltage boosted by the booster circuit 14S is applied to the anode 13a.

グリッド制御回路16Cの出力端子T3は、グリッド13gに接続されている。グリッド制御回路16Cの出力端子T4は、フィラメントトランス15Tと接続点P1の間の接続点P2に接続されている。これにより、カソード13cに対してマイナスの電圧が、グリッド制御回路16Cからグリッド13gへ印加される。   The output terminal T3 of the grid control circuit 16C is connected to the grid 13g. The output terminal T4 of the grid control circuit 16C is connected to the connection point P2 between the filament transformer 15T and the connection point P1. As a result, a negative voltage with respect to the cathode 13c is applied from the grid control circuit 16C to the grid 13g.

グリッド制御回路16Cは、グリッド13gへの印加電圧を制御可能な任意の回路である。制御は、例えば、グリッド13gへ印加する電圧のON/OFFであり、開閉器のほか半導体スイッチを用いることができる。この場合、グリッド制御回路16Cは、ONのときにX線管13からのX線の放射を停止可能なカソード13cに対してマイナスの電圧をグリッド13gに印加し、OFFのときにグリッド13gへの電圧の印加を停止する。制御は、グリッド13gへ印加する電圧のON/OFFに限らず、グリッド13gへ印加する電圧を変化させる任意の制御が含まれる。   The grid control circuit 16C is an arbitrary circuit that can control the voltage applied to the grid 13g. The control is, for example, ON/OFF of the voltage applied to the grid 13g, and a semiconductor switch can be used in addition to the switch. In this case, the grid control circuit 16C applies a negative voltage to the grid 13g with respect to the cathode 13c capable of stopping the emission of X-rays from the X-ray tube 13 when the grid control circuit 16C is turned on, and applies a negative voltage to the grid 13g when it is turned off. Stop applying voltage. The control is not limited to ON/OFF of the voltage applied to the grid 13g, but includes arbitrary control for changing the voltage applied to the grid 13g.

グリッド制御回路16Cは、接地電位に比べて高電位にフローティングされている。このため、グリッド制御回路16Cを制御するためのグリッド信号は、絶縁してグリッド制御回路16Cに伝送する必要がある。   The grid control circuit 16C is floated at a higher potential than the ground potential. Therefore, the grid signal for controlling the grid control circuit 16C needs to be insulated and transmitted to the grid control circuit 16C.

そこで、本実施形態に係るX線発生装置は、筐体11の絶縁油12中に、さらに、光源17T、受光器17R、を備える。光源17Tは、接地側に接続され、グリッド信号用の信号光を受光器17Rに向けて出射する。受光器17Rは、高電位側に接続され、絶縁油12を介して信号光を受光する。これにより、本開示は、高圧トランス14T、フィラメントトランス15T、グリッド用絶縁トランス16T、及び光源17Tと受光器17Rとの間を境に、X線管13側をインバータ回路18から完全に絶縁した状態で、グリッド制御回路16Cにグリッド信号を伝送することができる。   Therefore, the X-ray generator according to the present embodiment further includes the light source 17T and the light receiver 17R in the insulating oil 12 of the housing 11. The light source 17T is connected to the ground side and emits signal light for a grid signal toward the light receiver 17R. The light receiver 17R is connected to the high potential side and receives the signal light via the insulating oil 12. As a result, the present disclosure provides a state in which the X-ray tube 13 side is completely insulated from the inverter circuit 18 with the high voltage transformer 14T, the filament transformer 15T, the grid insulation transformer 16T, and the light source 17T and the light receiver 17R as boundaries. Thus, the grid signal can be transmitted to the grid control circuit 16C.

具体的には、X線管13からX線が放射されていない状態で、受光器17Rが光源17Tから信号光を受光すると、グリッド制御回路16Cがグリッド13gへの電圧の印加をOFFにする。これにより、X線管13からX線が放射される。   Specifically, when the light receiver 17R receives the signal light from the light source 17T while the X-ray tube 13 is not emitting X-rays, the grid control circuit 16C turns off the voltage application to the grid 13g. As a result, X-rays are emitted from the X-ray tube 13.

X線管13からX線が放射されている状態で、受光器17Rが光源17Tから信号光を受光すると、グリッド制御回路16Cがグリッド13gへ電圧の印加をONにする。これにより、X線管13からのX線の放射が停止する。   When the light receiver 17R receives the signal light from the light source 17T while the X-ray tube 13 is emitting X-rays, the grid control circuit 16C turns ON the voltage application to the grid 13g. As a result, the emission of X-rays from the X-ray tube 13 is stopped.

光源17Tの発光波長は、任意であるが、例えば赤外光が例示できる。この場合、光源17Tとして、赤外線LEDを用いることができる。受光器17Rは、信号光を受光可能な任意のデバイスを用いることが可能であり、例えばフォトトランジスタを用いることができる。赤外線LED及びフォトトランジスタは、安価でありかつ絶縁油12中でも安定した動作が可能である。このため、本開示は、安価且つ簡単にグリッド制御回路16Cにグリッド信号を伝送することが出来る。   The emission wavelength of the light source 17T is arbitrary, but infrared light can be exemplified. In this case, an infrared LED can be used as the light source 17T. As the light receiver 17R, any device capable of receiving signal light can be used, and for example, a phototransistor can be used. The infrared LED and the phototransistor are inexpensive and can operate stably even in the insulating oil 12. Therefore, the present disclosure can inexpensively and easily transmit the grid signal to the grid control circuit 16C.

ここで、絶縁油12中の信号伝達用に、光ファイバを用いることが考えられる。しかし、光ファイバは膨潤する可能性があり、これを防ぐためには耐油のための加工を行う必要がある。また光ファイバは絶縁のためにある程度の長さが必要になるため、小型化に適していない問題がある。   Here, it is conceivable to use an optical fiber for signal transmission in the insulating oil 12. However, the optical fiber may swell, and in order to prevent this, it is necessary to perform processing for oil resistance. Further, since the optical fiber needs a certain length for insulation, it is not suitable for miniaturization.

また、絶縁油12中の信号伝達用に、パルストランスを用いることが考えられる。パルストランスは絶縁空間距離を短くできるが、パルストランス自体が大きく且つ重いため、小型化に適していない問題がある。   Further, it is conceivable to use a pulse transformer for signal transmission in the insulating oil 12. The pulse transformer can reduce the insulation space distance, but since the pulse transformer itself is large and heavy, there is a problem that it is not suitable for downsizing.

また、X線の出射の有無の制御方法としては、カソード13cへの給電のON/OFF、アノードのON/OFFも考えられる。しかし、これらの場合、軟X線がON/OFFの際に放射される問題がある。   Further, as a method of controlling the presence/absence of X-ray emission, ON/OFF of power supply to the cathode 13c and ON/OFF of the anode can be considered. However, in these cases, there is a problem that the soft X-ray is emitted when it is turned ON/OFF.

一方、本開示は、絶縁油12を介した空間伝送が可能であるため、絶縁空間距離を短くすることができる。さらに光源17T及び受光器17Rは小さくかつ軽い。このため、光ファイバ及びパルストランスに比べて、格段に小型化及び軽量化が可能である。その上、グリッド13gを用いたX線放射のON/OFFは軟X線が放射されないため、人体への影響が小さく取り扱いも容易である。   On the other hand, according to the present disclosure, since the space transmission through the insulating oil 12 is possible, the insulating space distance can be shortened. Further, the light source 17T and the light receiver 17R are small and light. Therefore, the size and weight of the optical fiber and the pulse transformer can be significantly reduced as compared with the optical fiber and the pulse transformer. Moreover, since ON/OFF of the X-ray emission using the grid 13g does not emit soft X-rays, it has little influence on the human body and is easy to handle.

したがって、本開示は、グリッド付きX線管を制御するX線管制御装置の小型化及び軽量化を容易に可能にすることができる。ここで、本実施形態では、グリッド用絶縁トランス16Tが独立に備わるため、グリッド13gに電圧を予め印加しておき、その後アノード13aに電圧を印加することができる。このため、本実施形態は、アノード13aへの電圧の印加時のX線の放射を防ぐことができる。   Therefore, the present disclosure can easily enable downsizing and weight saving of an X-ray tube control device that controls an X-ray tube with a grid. Here, in this embodiment, since the grid insulating transformer 16T is independently provided, it is possible to apply a voltage to the grid 13g in advance and then apply a voltage to the anode 13a. Therefore, in the present embodiment, it is possible to prevent the emission of X-rays when the voltage is applied to the anode 13a.

なお、図1に示すX線発生装置の第1の形態例では、フィラメントトランス15T、高圧トランス14T、グリッド用絶縁トランス16Tを備え、カソード13c、アノード13aに接続されている昇圧回路14S、及びグリッド制御回路16Cがそれぞれ異なるトランスを介して筐体11の外部と接続されている例を示したが、本開示はこれに限定されない。   In the first example of the X-ray generator shown in FIG. 1, a filament transformer 15T, a high-voltage transformer 14T, a grid insulation transformer 16T are provided, and a cathode 13c, a booster circuit 14S connected to the anode 13a, and a grid. An example in which the control circuit 16C is connected to the outside of the housing 11 via different transformers has been shown, but the present disclosure is not limited to this.

図2に、本実施形態に係るX線発生装置の第2の形態例を示す。X線発生装置の第2の形態例では、グリッド用絶縁トランス16Tが高圧トランス14Tに接続されている。このように、本開示では、筐体11に格納されている回路が共通のトランスを介して接続されていてもよい。このように、部品を共通化して部品点数を減らし、X線管制御装置及びX線発生装置の小型化及び軽量化を更に行ってもよい。なお、図4に示すように、本開示は、整流回路16Rを含まない形態を含む。   FIG. 2 shows a second form example of the X-ray generator according to the present embodiment. In the second embodiment of the X-ray generator, the grid insulating transformer 16T is connected to the high voltage transformer 14T. As described above, in the present disclosure, the circuits stored in the housing 11 may be connected via the common transformer. In this way, the parts may be made common to reduce the number of parts, and the X-ray tube controller and the X-ray generator may be further downsized and lightened. Note that, as illustrated in FIG. 4, the present disclosure includes a mode that does not include the rectifier circuit 16R.

さらに本開示では、X線管13から放射された光が筐体11内で散乱された迷光が受光器17Rに入射する可能性がある。そこで、本開示では、受光器17Rに入射する迷光によるグリッド制御回路16Cの誤動作を防ぐため、受光器17Rは、信号光と迷光を識別可能であることが好ましい。例えば、信号光が予め定められた波長若しくはパルス波形又はこれらの組合せを有し、受光器17Rがこれを識別する。   Further, in the present disclosure, stray light, which is light emitted from the X-ray tube 13 and scattered in the housing 11, may enter the light receiver 17R. Therefore, in the present disclosure, in order to prevent malfunction of the grid control circuit 16C due to stray light entering the light receiver 17R, it is preferable that the light receiver 17R be able to distinguish between signal light and stray light. For example, the signal light has a predetermined wavelength or pulse waveform, or a combination thereof, and the light receiver 17R identifies this.

また、本開示では、光源17T及び受光器17Rの周囲が、受光器17Rへの光の入射を防ぐ部材で覆われていることが好ましい。これにより、X線管13から放射された光が筐体11内で散乱された迷光が受光器17Rに入射されることによるグリッド制御回路16Cの誤動作を未然に防止することができる。   Further, in the present disclosure, it is preferable that the light source 17T and the light receiver 17R are covered with a member that prevents light from entering the light receiver 17R. As a result, it is possible to prevent malfunction of the grid control circuit 16C due to the stray light, which is the light emitted from the X-ray tube 13 scattered in the housing 11, being incident on the light receiver 17R.

また、絶縁油12は、絶縁性を有しかつ光源17Tからの信号光を透過可能な任意の物質を用いることができる。そのような物質としては、光源17Tからの信号光を透過可能な樹脂が例示できる。樹脂を採用することで、X線管制御装置やX線発生装置の軽量化が可能になるとともに、筐体11内での各構成を安定に保持することが可能になる。このため、本開示は、X線管制御装置やX線発生装置の取り扱いや流通が非常に容易になる。   The insulating oil 12 can be made of any substance that has an insulating property and can transmit the signal light from the light source 17T. An example of such a substance is a resin that can transmit signal light from the light source 17T. By adopting the resin, the weight of the X-ray tube control device and the X-ray generation device can be reduced, and each component in the housing 11 can be stably held. Therefore, in the present disclosure, handling and distribution of the X-ray tube control device and the X-ray generation device become very easy.

また、絶縁媒体として用いられる絶縁油12や樹脂は、光源17T及び受光器17Rの間の第1の領域とそれ以外の領域とで、同じであってもよいが、異なっていてもよい。例えば、第1の領域では光源17Tからの信号光を透過する媒体を用い、第1の領域の周囲では光源17Tからの信号光を吸収する部材を用いる。これにより、筐体11内での迷光の受光器17Rへの入射を防ぐことができる。   The insulating oil 12 and the resin used as the insulating medium may be the same or different in the first region between the light source 17T and the light receiver 17R and the other regions. For example, a medium that transmits the signal light from the light source 17T is used in the first region, and a member that absorbs the signal light from the light source 17T is used around the first region. This can prevent stray light from entering the light receiver 17R in the housing 11.

本開示はX線放射装置に用いることができるため、医療機器産業に適用することができる。   Since the present disclosure can be used for an X-ray emitting device, it can be applied to the medical device industry.

11:筐体
11W:出射窓
12:絶縁油
13:X線管
13c:カソード
13a:アノード
13g:グリッド
14T:高圧トランス
14S:昇圧回路
15T:フィラメントトランス
16T:グリッド用絶縁トランス
16R:整流回路
16C:グリッド制御回路
17R:受光器
17T:光源
18:インバータ回路
11: case 11W: exit window 12: insulating oil 13: X-ray tube 13c: cathode 13a: anode 13g: grid 14T: high-voltage transformer 14S: booster circuit 15T: filament transformer 16T: grid insulating transformer 16R: rectifier circuit 16C: Grid control circuit 17R: light receiver 17T: light source 18: inverter circuit

Claims (4)

X線管のグリッド電圧を制御する信号光を発する光源と、
前記光源からの信号光を受光する受光器と、
前記受光器の受光した信号光に従って、前記X線管のグリッドに印加する電圧を制御するグリッド制御回路と、
前記光源、前記受光器及び前記グリッド制御回路を収容する筐体と、
前記光源、前記受光器及び前記グリッド制御回路の間隙を埋める絶縁媒体と、
を備えるX線管制御装置。
A light source that emits signal light for controlling the grid voltage of the X-ray tube,
A light receiver for receiving the signal light from the light source,
A grid control circuit that controls the voltage applied to the grid of the X-ray tube according to the signal light received by the light receiver;
A housing containing the light source, the light receiver, and the grid control circuit;
An insulating medium filling the gap between the light source, the light receiver and the grid control circuit;
X-ray tube controller.
前記X線管のカソード、前記X線管のアノードに接続されている昇圧回路、及び前記グリッド制御回路は、トランスを介して前記筐体の外部と接続され、
前記光源、前記受光器、前記グリッド制御回路、前記昇圧回路、及び前記トランスの間隙が、前記絶縁媒体で埋められている、
請求項1に記載のX線管制御装置。
The cathode of the X-ray tube, the booster circuit connected to the anode of the X-ray tube, and the grid control circuit are connected to the outside of the housing via a transformer,
A gap between the light source, the light receiver, the grid control circuit, the booster circuit, and the transformer is filled with the insulating medium.
The X-ray tube control device according to claim 1.
請求項1又は2に記載の前記筐体内に、前記X線管がさらに配置され、前記X線管の放射したX線を前記筐体外に出力する、
X線発生装置。
The X-ray tube is further arranged in the housing according to claim 1 or 2, and outputs X-rays emitted by the X-ray tube to the outside of the housing.
X-ray generator.
光源、受光器及びグリッド制御回路が筐体に収容され、前記光源、前記受光器及び前記グリッド制御回路の間隙が絶縁媒体で埋められているX線管制御装置が実行するX線管制御方法であって、
前記光源がX線管のグリッド電圧を制御する信号光を発し、前記受光器が前記絶縁媒体を介して前記光源からの信号光を受光する手順と、
前記受光器が前記絶縁媒体を介して前記光源からの信号光を受光したことを契機に、前記グリッド制御回路が、X線管のグリッドに印加する電圧を制御する手順と、
を実行するX線管制御方法。
An X-ray tube control method executed by an X-ray tube control device, wherein a light source, a light receiver, and a grid control circuit are housed in a housing, and a gap between the light source, the light receiver, and the grid control circuit is filled with an insulating medium. There
A procedure in which the light source emits signal light for controlling the grid voltage of the X-ray tube, and the light receiver receives the signal light from the light source via the insulating medium;
When the light receiver receives the signal light from the light source through the insulating medium, the grid control circuit controls the voltage applied to the grid of the X-ray tube,
X-ray tube control method for executing.
JP2018212913A 2018-11-13 2018-11-13 X-ray tube control device, X-ray generator and X-ray tube control method Active JP6564120B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018212913A JP6564120B1 (en) 2018-11-13 2018-11-13 X-ray tube control device, X-ray generator and X-ray tube control method
KR1020190125299A KR102050784B1 (en) 2018-11-13 2019-10-10 X-ray tube control apparatus, x-ray generating apparatus and x-ray tube control method
CN201911029897.XA CN111182704B (en) 2018-11-13 2019-10-28 X-ray tube control device, X-ray generation device, and X-ray tube control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212913A JP6564120B1 (en) 2018-11-13 2018-11-13 X-ray tube control device, X-ray generator and X-ray tube control method

Publications (2)

Publication Number Publication Date
JP6564120B1 JP6564120B1 (en) 2019-08-21
JP2020080241A true JP2020080241A (en) 2020-05-28

Family

ID=67692181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212913A Active JP6564120B1 (en) 2018-11-13 2018-11-13 X-ray tube control device, X-ray generator and X-ray tube control method

Country Status (3)

Country Link
JP (1) JP6564120B1 (en)
KR (1) KR102050784B1 (en)
CN (1) CN111182704B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242792A1 (en) * 2022-06-17 2023-12-21 I.M.D. Generators S.R.L. Radiological device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1013167B (en) * 1985-04-01 1991-07-10 株式会社岛津制作所 Capacitance-type x-ray apparaus
JP3922524B2 (en) 2001-09-21 2007-05-30 オリジン電気株式会社 Electron tube equipment
JP4338352B2 (en) * 2002-04-25 2009-10-07 株式会社日立メディコ X-ray tube and X-ray apparatus using the same
JP2006516206A (en) * 2003-01-06 2006-06-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ High speed modulation method and apparatus for X-ray tube with focus switching
US7742571B1 (en) * 2006-04-17 2010-06-22 Roman Krzystyniak Grid control system for eliminating soft radiation emissions from an X-ray tube
KR100967346B1 (en) * 2008-07-11 2010-07-05 (주) 브이에스아이 Tube current cotrolling circuit of field emission X-ray tube
DE102009051633B4 (en) * 2009-11-02 2015-10-22 Siemens Aktiengesellschaft Voltage stabilization for grid-controlled X-ray tubes
JP2014107158A (en) * 2012-11-28 2014-06-09 Canon Inc Radiation generator
CN104144551B (en) * 2014-03-05 2017-03-29 南京康众光电科技有限公司 A kind of controllable pulse launches cold cathode X-ray machine high voltage power supply
JP2017107055A (en) * 2015-12-09 2017-06-15 パナソニックIpマネジメント株式会社 Optical module and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242792A1 (en) * 2022-06-17 2023-12-21 I.M.D. Generators S.R.L. Radiological device

Also Published As

Publication number Publication date
CN111182704A (en) 2020-05-19
JP6564120B1 (en) 2019-08-21
KR102050784B1 (en) 2019-12-02
CN111182704B (en) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2013140691A1 (en) Solid illumination device
JP2019201000A (en) High volumetric efficiency X-ray system
JP2020080241A (en) X-ray tube control device, x-ray generator, and x-ray tube control method
KR100931764B1 (en) Ultraviolet irradiation device
JP5508849B2 (en) Process and system for supplying electrical energy to a set of shielded medical imaging devices
CN108353486A (en) Encode optic modulating device
RU2609207C2 (en) Communication protocol for lighting system with embedded processors and system operating with said protocol
EP3688873B1 (en) Galvanic isolated device and corresponding system
TWI644751B (en) Laser source and laser processing device using laser source
JP2020194677A (en) Photodetector, illumination lighting device, and illumination system
TW200937492A (en) Ultraviolet radiation apparatus
KR101769361B1 (en) Pulse power system and generating method of pulse power
JP6572718B2 (en) lighting equipment
JP2009268686A (en) Transceiving circuit of optical signal
KR102267859B1 (en) Xenon lamp device for protection of discharge switch using trigger unit and simmer unit
CN205123561U (en) A switching power supply that is used for switching power supply's feedback circuit and includes this feedback circuit
KR200347721Y1 (en) A power supply using light source
US9362802B2 (en) System for instrumenting and manipulating apparatuses in high voltage
JP2008042966A (en) Power supply circuit
JPH03172092A (en) Remote controller
US11343885B2 (en) Light source device, lighting circuit, and driving method
JP2014022160A (en) Solid-state lighting device
JPH10106793A (en) Pulse x-ray device
JP3186656U (en) Laser equipment
CN211652673U (en) Positive and negative high voltage ion gate detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190725

R150 Certificate of patent or registration of utility model

Ref document number: 6564120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250