JP2020079736A - Method for evaluating glass body - Google Patents
Method for evaluating glass body Download PDFInfo
- Publication number
- JP2020079736A JP2020079736A JP2018212581A JP2018212581A JP2020079736A JP 2020079736 A JP2020079736 A JP 2020079736A JP 2018212581 A JP2018212581 A JP 2018212581A JP 2018212581 A JP2018212581 A JP 2018212581A JP 2020079736 A JP2020079736 A JP 2020079736A
- Authority
- JP
- Japan
- Prior art keywords
- glass body
- temperature
- heat
- indoor
- calculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
本発明は、ガラス体の評価方法、熱流束の算出方法、日射取得率の算出方法、及び測定装置に関する。 The present invention relates to a glass body evaluation method, a heat flux calculation method, a solar radiation acquisition rate calculation method, and a measurement device.
建物などに設置される窓ガラスには、室外から日射が入射するため、窓ガラスを介して室内で取得される熱量を、窓ガラスの性能の1つと評価することがある。より詳細に説明すると、窓ガラスを透過した日射熱と、窓ガラスに吸収された後に室内側へ放出される日射熱との合計が取得日射熱量と称され、窓ガラスに入射する日射熱量に対する室内の取得日射熱量の割合が日射熱取得率と称されており、これらは、窓ガラスを評価する指標として用いられている。 Since solar radiation enters the window glass installed in a building or the like from the outside, the amount of heat acquired indoors through the window glass may be evaluated as one of the performances of the window glass. Explaining in more detail, the total of the solar heat that has passed through the window glass and the solar heat that is absorbed by the window glass and then released to the indoor side is called the acquired solar heat amount, and the indoor heat amount with respect to the solar heat amount that enters the window glass is The ratio of the amount of solar radiation heat obtained in is referred to as the amount of solar heat gain, which is used as an index for evaluating window glass.
そして、非特許文献1においては、この日射熱取得率を次のように規定している。すなわち、日射熱取得率とは、窓ガラス面に垂直に入射する日射について、ガラス部分を透過する日射の放射束と、ガラスに吸収されて室内側に伝達される熱流束との和の、入射する日射の放射束に対する比であると規定されている。 Then, in Non-Patent Document 1, this solar heat gain rate is defined as follows. That is, the solar heat gain coefficient is the sum of the radiant flux of the solar radiation that passes through the glass part and the heat flux that is absorbed by the glass and is transmitted to the indoor side, for the solar radiation that is vertically incident on the window glass surface. It is defined as the ratio of the solar radiation to the radiant flux.
ところが、非特許文献1で規定する日射熱取得率は、窓ガラスを建物に設置する施工前に算出されるものであり、このガラス板に垂直に入射する日射を基準としている。また、上述した熱流束の算出には複雑な計算が必要である。したがって、非特許文献1で規定する日射熱取得率は、一旦、窓ガラスを施工した後には測定することができない。そのため、施工後でも、熱流束、日射熱取得率、またはそれに準ずる指標を算出できることが要望されていた。本発明は、この問題を解決するためになされたものであり、ガラス体の施工後であっても、算出可能な、ガラス体の評価方法、日射量に対する熱流束の割合の算出方法、日射熱取得率の算出方法、及び測定装置を提供することを目的とする。 However, the solar radiation heat gain rate defined in Non-Patent Document 1 is calculated before the installation of the window glass in the building, and is based on the solar radiation that is vertically incident on the glass plate. Moreover, a complicated calculation is required to calculate the heat flux. Therefore, the solar heat gain rate defined in Non-Patent Document 1 cannot be measured once the window glass has been installed. Therefore, it has been demanded to be able to calculate the heat flux, the solar heat gain rate, or an index corresponding thereto even after the construction. The present invention has been made in order to solve this problem, even after the construction of the glass body, it can be calculated, the evaluation method of the glass body, the calculation method of the ratio of the heat flux to the amount of solar radiation, solar heat It is an object to provide a method of calculating an acquisition rate and a measuring device.
項1.施工後のガラス体に対する日射に係る評価する方法であって、
施工後のガラス体を挟んだ室外の温度Te、室内の温度Ti、前記室内側の前記ガラス体の表面の温度Tgを算出するステップと、
前記室内と前記室外との温度差(Te−Ti)、及び前記ガラス体の表面の温度と前記室内の温度との差(Tg-Ti)に基づいて、前記ガラス体の評価を行うステップと、
を備えている、ガラス体の評価方法。
Item 1. A method for evaluating solar radiation on a glass body after construction,
A step of calculating an outdoor temperature Te sandwiching the glass body after the construction, an indoor temperature Ti, and a temperature Tg of a surface of the glass body on the indoor side,
Evaluating the glass body based on a temperature difference (Te-Ti) between the room and the room and a temperature difference between the surface temperature of the glass body and the room temperature (Tg-Ti);
A method for evaluating a glass body, comprising:
項2.前記施工後とは、前記ガラス体を建物に設置した後を意味し、
前記温度Teは、前記建物の外側の気温であり、
前記温度Tiは、前記建物の内側の気温である、項1に記載のガラス体の評価方法。
Item 2. After the construction, means after installing the glass body in a building,
The temperature Te is the temperature outside the building,
Item 2. The glass body evaluation method according to Item 1, wherein the temperature Ti is an air temperature inside the building.
項3.施工後のガラス体を挟んだ室外の温度Te、室内の温度Ti、前記ガラス体の表面の温度Tg、室内側熱伝達率hi、熱貫流率U、及び日射量Isを取得するステップと、
前記ガラス体に吸収されて室内側に伝達される熱流束Itとして、hi(Tg−Ti)−U(Te−Ti)を算出するステップと、
前記入射日射量Isに対する、前記熱流束Itの割合として、It/Isを算出するステップと、
を備えている、熱流束の算出方法。
Item 3. A step of acquiring an outdoor temperature Te sandwiching the glass body after the construction, an indoor temperature Ti, a surface temperature Tg of the glass body, an indoor heat transfer coefficient hi, a heat transmission coefficient U, and an insolation amount Is,
Calculating hi(Tg-Ti)-U(Te-Ti) as the heat flux It absorbed by the glass body and transferred to the indoor side;
Calculating It/Is as a ratio of the heat flux It to the incident solar radiation Is,
A method of calculating heat flux, comprising:
項4.前記室内側熱伝達率hiが9.17である、項3に記載の熱流束の算出方法。 Item 4. Item 4. The heat flux calculation method according to Item 3, wherein the indoor heat transfer coefficient hi is 9.17.
項5.前記室内側熱伝達率hiは、前記温度Tgと前記温度Tiの差が1℃以上であるか否かによって、変化する、請求項3に記載の熱流束の算出方法。 Item 5. The heat flux calculation method according to claim 3, wherein the indoor heat transfer coefficient hi changes depending on whether or not a difference between the temperature Tg and the temperature Ti is 1° C. or more.
項6.前記室内側熱伝達率hiは、前記室内の風速により変化する、項3に記載の熱流束の算出方法。 Item 6. Item 4. The heat flux calculation method according to Item 3, wherein the indoor heat transfer coefficient hi changes depending on the wind speed in the room.
項7.前記熱貫流率Uは、前記ガラス体の種類によって、0.2〜6.0の範囲で変化し得る、項3から5のいずれかに記載の熱流束の算出方法。 Item 7. The heat flux calculation method according to any one of Items 3 to 5, wherein the heat transmission coefficient U can change in a range of 0.2 to 6.0 depending on the type of the glass body.
項8.前記熱貫流率Uは、前記温度Te、前記温度Ti、前記温度Teg、前記室内側熱伝達率hiの少なくとも一つに基づいて、変化する、項3から5のいずれかに記載の熱流束の算出方法。 Item 8. The heat flux U according to any one of Items 3 to 5, which changes based on at least one of the temperature Te, the temperature Ti, the temperature Teg, and the indoor heat transfer coefficient hi. Calculation method.
項9.項3から8のいずれかに記載の熱流束の算出方法によって、前記入射日射量Isに対する、前記熱流速Itの割合(It/Is)を算出するステップと、
前記入射日射量Isに対する、前記ガラス体を透過した透過日射量Iiの割合(Ii/Is)を算出するステップと、
前記熱流束の割合(It/Is)と、前記透過日射量の割合(Ii/Is)との和を、日射熱取得率として算出するステップと、
を備えている、日射熱取得率の算出方法。
Item 9. A step of calculating a ratio (It/Is) of the heat flow rate It to the incident solar radiation amount Is by the heat flux calculation method according to any one of Items 3 to 8,
Calculating a ratio (Ii/Is) of a transmitted solar radiation amount Ii transmitted through the glass body to the incident solar radiation amount Is;
Calculating the sum of the ratio of the heat flux (It/Is) and the ratio of the amount of transmitted solar radiation (Ii/Is) as the solar heat gain rate;
The method for calculating the solar heat gain rate, which comprises:
項10.前記ガラス体は、複層ガラスである、項9に記載のガラス体の日射熱取得率の算出方法。 Item 10. Item 10. The method for calculating the solar heat gain coefficient of the glass body according to Item 9, wherein the glass body is double glazing.
項11.前記ガラス体は、合わせガラスである、項9に記載のガラス体の日射熱取得率の算出方法。 Item 11. Item 10. The method for calculating the solar heat gain coefficient of the glass body according to Item 9, wherein the glass body is a laminated glass.
項12.施工後のガラス体に入射する日射に係る日射熱取得率を算出するための測定装置であって、
前記ガラス体を挟んだ室外に配置される室外温度計と、
前記室外に配置される室外日射計と、
前記ガラス体を挟んだ室内に配置される室内温度計と、
前記室内に配置される室内日射計と、
前記ガラス体の表面の温度を測定する表面温度計と、
を備えている、測定装置。
Item 12. A measuring device for calculating the solar heat gain coefficient related to the solar radiation incident on the glass body after construction,
An outdoor thermometer arranged outside the glass body sandwiching the glass body,
An outdoor pyranometer arranged outside the room,
An indoor thermometer arranged in the room sandwiching the glass body,
An indoor pyranometer arranged in the room,
A surface thermometer for measuring the temperature of the surface of the glass body,
A measuring device equipped with.
項13.前記ガラス体と、前記室内日射計との間の距離が30cm以下である、項12に記載の測定装置。 Item 13. Item 13. The measuring device according to Item 12, wherein the distance between the glass body and the indoor pyranometer is 30 cm or less.
本発明によれば、ガラス体を施工した後でも、ガラス体の評価、日射量に対する熱流束の割合、日射熱取得率を算出することができる。 According to the present invention, even after the glass body is constructed, the evaluation of the glass body, the ratio of the heat flux to the amount of solar radiation, and the solar heat gain rate can be calculated.
以下、本発明に係る日射熱取得率の算出方法の一実施形態について、図面を参照しつつ説明する。図1は、日射熱取得率の算出方法を説明する概略図である。 Hereinafter, an embodiment of a method for calculating the solar heat gain rate according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating a method for calculating the solar heat gain rate.
建物などに設置されるガラス体は、室外から日射が入射するため、ガラス体を介して室内で取得される熱量をガラス体の性能の1つと評価することがある。具体的には、ガラス体を透過した日射熱と、ガラス体に吸収された後に室内側へ放出される日射熱との合計が取得日射熱量と称され、ガラス体に入射する日射熱量に対する室内の取得日射熱量の割合が日射熱取得率と称されており、これらは、ガラス体を評価する指標として用いられている。 Since the solar radiation enters the glass body installed in a building or the like from the outside, the amount of heat acquired indoors via the glass body may be evaluated as one of the performances of the glass body. Specifically, the total of the solar heat transmitted through the glass body and the solar heat released to the indoor side after being absorbed by the glass body is referred to as the acquired solar heat amount, and the amount of solar heat incident on the glass body in the room The ratio of the amount of acquired solar heat is called the solar heat acquisition rate, and these are used as an index for evaluating the glass body.
日射熱取得率ηは、JIS R3106で規定されており、窓ガラス面に垂直に入射する日射について、ガラス部分を透過する日射の放射束と、ガラスに吸収されて室内側に伝達される熱流束との和の、入射する日射の放射束に対する比であると規定されている。しかしながら、この日射熱取得率は、施工前に算出されるものであり、また、熱流束の算出が複雑であるため、施工後のガラス体の評価には用いることができなかった。 The solar heat gain rate η is specified by JIS R3106. Regarding the solar radiation that is incident perpendicularly to the window glass surface, the solar radiation flux that passes through the glass portion and the heat flux that is absorbed by the glass and is transferred to the indoor side. Is defined as the ratio of the sum of and the radiant flux of the incident solar radiation. However, this solar heat gain rate was calculated before the construction, and because the calculation of the heat flux was complicated, it could not be used for the evaluation of the glass body after the construction.
そこで、本発明者は、鋭意努力の結果、施工後であっても、JIS R3106と同等の日射熱取得率を算出することができる方法を見出した。以下、詳細に説明する。 Therefore, as a result of earnest efforts, the present inventor has found a method capable of calculating a solar heat gain rate equivalent to JIS R3106 even after construction. The details will be described below.
<1.日射熱取得率の算出方法>
本発明者によって、以下の式(1)により、JIS R3106と同等の日射熱取得率ηを算出できることが見出された。
Is:ガラス体が受ける日射量[W/m2]
hi:室内側熱伝達率[W/(m2/K)]
U:熱貫流率[W/(m2/K)]
Tg:室内側ガラス表面温度[K]
Te:室外空気温度[K]
Ti:室内空気温度[K]
なお、以下では、It=hi(Tg−Ti)−U(Te−Ti)と示すことがある。
<1. Calculation method of solar heat gain rate>
It has been found by the present inventor that the solar heat gain coefficient η equivalent to JIS R3106 can be calculated by the following equation (1).
I s : The amount of solar radiation received by the glass body [W/m 2 ]
h i: an indoor heat transfer coefficient [W / (m 2 / K )]
U: Heat transmission coefficient [W/(m 2 /K)]
Tg: Indoor glass surface temperature [K]
Te: Outdoor air temperature [K]
Ti: Indoor air temperature [K]
In the following, it may be shown as It=hi(Tg-Ti)-U(Te-Ti).
日射熱取得率ηはガラス体に入射する日射エネルギー(入射日射量)に対する室内側へ伝達される熱エネルギーの比で表される。室内側へ伝達される熱エネルギーは、ガラス体を通して室内へ伝達される熱流束と、ガラス体が日射エネルギーを吸収して室内側へ再放射する熱流束との和になる。測定されるガラス温度Tg、室内温度Tiは、室外温度と室内温度の差による貫流熱流束の影響を受けているため、式(1)の第2項の分子は、貫流熱流束を差し引いて、日射による熱取得だけを扱っている。したがって、貫流成分は、ガラスの熱貫流率を使えば、室内外の温度を測定することで求めることができる。 The solar heat gain rate η is represented by the ratio of the thermal energy transmitted to the indoor side to the solar energy incident on the glass body (incident solar radiation amount). The heat energy transferred to the indoor side is the sum of the heat flux transferred to the room through the glass body and the heat flux absorbed by the glass body to the indoor side and re-radiated to the room side. Since the measured glass temperature Tg and the indoor temperature Ti are affected by the through-flow heat flux due to the difference between the outdoor temperature and the indoor temperature, the molecule of the second term of the formula (1) subtracts the through-flow heat flux, It deals only with heat gain from solar radiation. Therefore, the flow-through component can be obtained by measuring the temperature inside and outside the room, by using the heat transmission coefficient of glass.
ここで、対象となるガラス体は、公知の単板、合わせガラス、複層ガラス等である。また、ガラス体の施工後とは、建物に設置された後のみならず、単板であるガラス板を用いて複層パネルを作製した後、またはガラス体をサッシなどへ取付けた後であって、建物への設置前の状態であってもよい。 Here, the target glass body is a known single plate, laminated glass, double glazing, or the like. Further, the term "after the glass body is constructed" means not only after being installed in a building but also after manufacturing a multi-layer panel using a single glass plate or attaching the glass body to a sash or the like. It may be in a state before being installed in the building.
<1−1.温度の算出方法>
図2は、上記日射熱取得率ηを算出するための測定装置を示す概略図である。図2に示すように、この測定装置は、ガラス体が設置された建物に設けられるものであり、ガラス体は、建物の一階に設けられている。但し、二階以上であっても同様に測定することができる。測定装置は、ガラス体を挟んで室外に配置された室外日射計及び室外温度計と、ガラス体を挟んで建物の室内に配置された室内日射計、室内温度計、及びガラス体に設けられた表面温度計と、を備えている。
<1-1. Calculation method of temperature>
FIG. 2 is a schematic diagram showing a measuring device for calculating the solar heat gain rate η. As shown in FIG. 2, this measuring device is provided in a building in which a glass body is installed, and the glass body is provided on the first floor of the building. However, the same measurement can be performed on the second floor and above. The measuring device was provided on the outdoor pyranometer and the outdoor thermometer, which were placed outdoors with the glass body sandwiched between them, and the indoor pyranometer, the indoor thermometer, and the glass body, which were placed inside the building with the glass body sandwiched between them. And a surface thermometer.
室外日射計及び室外温度計は、地面に設置された第1棒材の先端に取付けられている。この第1棒材は、影のない所に設置することができ、また、ガラス体からの距離は特に規定がない。室内日射計及び室内温度計も、室内の床に設置された第2棒材の先端に取付けられており、この第2棒材は、例えば、ガラス体から30cm以内の距離に配置することができる。さらに、表面温度計は、ガラス体の室内側の面に取付けられており、ガラス体の表面の温度を測定する。但し、表面温度計は、必ずしもガラス体に接触させなくてもよく、ガラス体の表面または表面付近の温度を計測できるのであれば、ガラス体から離れた位置に配置することもできる。これらの計測器は、ほぼ同じ高さに設置することができ、例えば、地面から80cmの距離に配置することができる。また、必要に応じて室内に風速計を配置することもできる。なお、両日射計は、公知のものであり、日射量を測定する。 The outdoor pyranometer and the outdoor thermometer are attached to the tip of the first rod member installed on the ground. This first bar can be installed in a place without shadow, and the distance from the glass body is not specified. The indoor pyranometer and the indoor thermometer are also attached to the tip of the second rod installed on the floor of the room, and this second rod can be arranged within a distance of 30 cm from the glass body, for example. .. Further, the surface thermometer is attached to the surface of the glass body on the indoor side and measures the temperature of the surface of the glass body. However, the surface thermometer does not necessarily have to be brought into contact with the glass body, and may be arranged at a position apart from the glass body as long as it can measure the temperature at or near the surface of the glass body. These instruments can be installed at approximately the same height, for example, at a distance of 80 cm from the ground. Moreover, an anemometer can be arranged in the room as needed. Both pyranometers are known and measure the amount of solar radiation.
<1−2.室内側熱伝達率>
室内側熱伝達率hi[W/(m2/K)]は、室内の環境によって種々の値を設定することができる。例えば、ガラス体において室内側のガラス板が、フロートガラス板である場合には、9.17を採用することができる。
<1-2. Indoor heat transfer coefficient>
The indoor heat transfer coefficient hi [W/(m 2 /K)] can be set to various values depending on the indoor environment. For example, when the glass plate on the indoor side of the glass body is a float glass plate, 9.17 can be adopted.
また、室内側熱伝達率hiは、室内の風速によっても変化するものである。例えば、風速が0よりも高くなると、hiは大きくなる傾向にある。なお、hiは放射伝熱成分hriと対流伝熱成分hciを合わせたものであり、放射伝熱成分hriはガラス表面温度Tgと室内温度Tiの関数で表される。そして、対流伝熱成分hciは強制対流がある場合、風速の一次式で表される(hci=a+b*V^c, Vは風速、a,bは定数、例えばa=b=4,c=1)。 The indoor heat transfer coefficient hi also changes depending on the wind speed in the room. For example, when the wind speed is higher than 0, hi tends to increase. Note that hi is a combination of the radiant heat transfer component hri and the convection heat transfer component hci, and the radiant heat transfer component hri is represented by a function of the glass surface temperature Tg and the room temperature Ti. Then, the convective heat transfer component hci is expressed by a primary equation of the wind speed when there is forced convection (hci=a+b*V^c, V is the wind speed, and a and b are constants, for example, a=b=4 and c= 1).
また、室内外の温度差によっても、室内側熱伝達率hiは変化し、温度差が大きい方がhiは大きくなる。例えば、温度差が1.5℃以下と、1.5℃よりも大きい場合とで、異なるhiを用いることができる。なお、hiは、上記のように、放射伝熱成分hriと対流伝熱成分hciを合わせたものである。対流伝熱成分hciは自然対流(風速=0m/s)の場合、次式で表される(hci=a*(Tg−Ti)^b, 但し、垂直平滑面の場合、例えばa=1.92、b=0.25)。 In addition, the indoor heat transfer coefficient hi changes depending on the indoor/outdoor temperature difference, and hi increases as the temperature difference increases. For example, different hi can be used when the temperature difference is 1.5° C. or less and when the temperature difference is greater than 1.5° C. Note that hi is a combination of the radiation heat transfer component hri and the convection heat transfer component hci, as described above. The convective heat transfer component hci is represented by the following equation in the case of natural convection (wind velocity=0 m/s) (hci=a*(Tg-Ti)^b, but in the case of a vertical smooth surface, for example, a=1. 92, b=0.25).
さらに、JIS R3106においては、以下の式(2)により、hiが規定されている。
hi=hri・εi+hci (2)
hri:放射伝熱成分
εi:修正放射率
hci:対流伝熱成分
具体的には、以下のように規定されている。
hi=ri・εi+hci (2)
hri: Radiant heat transfer component εi: Modified emissivity hci: Convection heat transfer component Specifically, the following are defined.
なお、修正放射率εiは、JIS R 3106の7で定める垂直放射率を、JIS R 3107の付表1で修正放射率に変換した値である。 The modified emissivity εi is a value obtained by converting the vertical emissivity defined in 7 of JIS R 3106 into the modified emissivity in Appendix 1 of JIS R 3107.
<1−3.熱貫流率>
熱貫流率U[W/(m2/K)]は、ガラス体の種類によって決定されるものであり、例えば、以下のように規定される。但し、これらは一例であり、ガラス体の種類によって適宜、決定される。
The heat transmission coefficient U [W/(m 2 /K)] is determined by the type of glass body, and is defined as follows, for example. However, these are examples, and are appropriately determined depending on the type of glass body.
なお、熱貫流率Uは、熱貫流抵抗Rの逆数であり、熱貫流抵抗Rは、以下の式(3)のように表される。
hg:ガラス体の熱伝達率
hi:室内側熱伝達率
The heat transmission coefficient U is the reciprocal of the heat transmission resistance R, and the heat transmission resistance R is expressed by the following equation (3).
上記のように、hiは室内外の温度差によって変化することがあるため、熱貫流率Uは、hi,he,hg,Tg,Te,Tiの少なくとも1つに基づいて変化するように設定することができる。 As described above, since hi may change due to the temperature difference between indoor and outdoor, the heat transmission coefficient U is set to change based on at least one of hi, he, hg, Tg, Te, and Ti. be able to.
<2.検討>
次に、上記式(1)によって算出される日射熱取得率と、JIS R3106によって算出される日射熱取得率とを比較する。式(1)による日射熱取得率の算出試験を行ったときの条件は、以下の通りである。
<2. Examination>
Next, the solar heat gain rate calculated by the above formula (1) is compared with the solar heat gain rate calculated by JIS R3106. The conditions when the calculation test of the solar heat gain rate by the formula (1) was performed are as follows.
(1)計測器
・概ね図2に示すように装置を配置した。
・各日射計:英弘精機株式会社、型番MS−601
・各温度計:八光電気株式会社、型番Kタイプの熱電対
・各計測器の高さ:地面から80cm
・室外日射計及び室外温度計:影のない場所
・室外日射計及び室外温度計のガラス体からの距離:30cm
・表面温度計のガラス体からの距離:1cm
・室内に風速機(日本カノマックス株式会社、型番6542)を設置した。
(1) Measuring instrument ・The device was arranged as shown in Fig.2.
・Pyranometer: Eiko Seiki Co., Ltd., model number MS-601
・Each thermometer: Yako Electric Co., Ltd., model K type thermocouple ・Each measuring instrument height: 80 cm from the ground
・Outdoor pyranometer and outdoor thermometer: A place without shadow ・Distance from outdoor pyranometer and outdoor thermometer to glass body: 30 cm
・Distance from glass body of surface thermometer: 1 cm
-An annealer (Japan Kanomax Co., Ltd., model number 6542) was installed in the room.
(2) ガラス体1(PVIGU)
・外側透明ガラス板(Low−E膜付き、4mm厚)
・PVB膜(30mil厚)
・透明ガラス板(6mm厚)
・空気層(6mm厚)
・内側透明ガラス板(6mm厚)
(3) ガラス体2(熱線吸収ガラスIGU)
・外側熱線吸収透明ガラス板(6mm厚)
・空気層(6mm厚)
・内側透明ガラス板(4mm厚)
・ガラス体1,2は、建物の西面の1階に設置した。
(2) Glass body 1 (PVIGU)
・Outer transparent glass plate (with Low-E film, 4 mm thickness)
・PVB film (30 mil thickness)
・Transparent glass plate (6 mm thick)
・Air layer (6mm thickness)
・Inside transparent glass plate (6 mm thick)
(3) Glass body 2 (heat absorption glass IGU)
・Outer heat ray absorbing transparent glass plate (6 mm thick)
・Air layer (6mm thickness)
・Inside transparent glass plate (4 mm thick)
・Glasses 1 and 2 were installed on the first floor on the west side of the building.
(4) 計測日
・2018年8月1日 16時15分から16時45分まで1分間隔で30回測定(測定時間1)
・2018年8月4日 16時15分から16時45分まで1分間隔で30回測定(測定時間2)
・2018年8月1日 10時15分から10時45分まで1分間隔で30回測定(測定時間3)
・2018年8月4日 10時15分から10時45分まで1分間隔で30回測定(測定時間4)
(4) Measurement date: August 1, 2018 From 16:15 to 16:45, 30 measurements at 1-minute intervals (measurement time 1)
・August 4, 2018 From 16:15 to 16:45 30 times at 1 minute intervals (measurement time 2)
・August 1, 2018 From 10:15 to 10:45 30 times at 1 minute intervals (Measurement time 3)
・August 4, 2018 From 10:15 to 10:45, measure 30 times at 1 minute intervals (measurement time 4)
(5) 結果
(5-1) 実施例1
ガラス体1を用い、測定時間1,2で取得した60個のデータの平均を算出した。風速は0m/sであったため、室内側熱伝達率hiは9.17[W/(m2/K)]とした。熱貫流率Uは、3.20[W/(m2/K)]とした。結果は、以下の通りである。
(5-1) Example 1
Using the glass body 1, an average of 60 pieces of data acquired at measurement times 1 and 2 was calculated. Since the wind speed was 0 m/s, the indoor heat transfer coefficient hi was set to 9.17 [W/(m 2 /K)]. The heat transmission coefficient U was set to 3.20 [W/(m 2 /K)]. The results are as follows.
(5-2) 実施例2
ガラス体2を用い、測定時間1,2で取得した60個のデータの平均を算出した。風速は0m/sであったため、室内側熱伝達率hiは9.17[W/(m2/K)]とした。熱貫流率Uは、3.31[W/(m2/K)]とした。結果は、以下の通りである。
Using the glass body 2, an average of 60 pieces of data acquired at measurement times 1 and 2 was calculated. Since the wind speed was 0 m/s, the indoor heat transfer coefficient hi was set to 9.17 [W/(m 2 /K)]. The heat transmission coefficient U was 3.31 [W/(m 2 /K)]. The results are as follows.
(5-3) 実施例3
ガラス体1を用い、測定時間3,4で取得した60個のデータの平均を算出した。風速は0.2m/sであり、且つ室内外の気温差が小さかったため(Te−Ti=1.5℃)、室内側熱伝達率hiは9.5[W/(m2/K)]とした。熱貫流率Uは、3.20[W/(m2/K)]とした。結果は、以下の通りである。
Using the glass body 1, an average of 60 pieces of data acquired at the measurement times 3 and 4 was calculated. The wind speed was 0.2 m/s, and the indoor/outdoor temperature difference was small (Te-Ti=1.5° C.), so the indoor heat transfer coefficient hi was 9.5 [W/(m 2 /K)]. And The heat transmission coefficient U was set to 3.20 [W/(m 2 /K)]. The results are as follows.
(5-4) 実施例4
ガラス体2を用い、測定時間3,4で取得した60個のデータの平均を算出した。風速は0m/sであり、室内外の気温差が小さかったため(Te−Ti=1.5℃)、室内側熱伝達率hiは8[W/(m2/K)]とした。熱貫流率Uは、3.31[W/(m2/K)]とした。結果は、以下の通りである。
The glass body 2 was used to calculate the average of 60 data obtained at the measurement times 3 and 4. The wind speed was 0 m/s, and the indoor-outdoor temperature difference was small (Te-Ti=1.5° C.), so the indoor heat transfer coefficient hi was set to 8 [W/(m 2 /K)]. The heat transmission coefficient U was 3.31 [W/(m 2 /K)]. The results are as follows.
(6) 考察
上記のように、式(1)を用いた日射熱取得率は、JIS R3106により算出した日射熱取得率とほぼ同等の値を得ることができた。上記実施例1,2を比べると、ガラス体の種類が異なっていても、JIS R3106と同等の日射熱取得率を算出できている。実施例4のように、午前中の直達日射がない時間帯で、室内外の温度差が小さい場合でも、JIS R3106と同等の日射熱取得率を算出できている。また、実施例3のように、室内に風が生じ、さらに室内外の温度差が小さい場合でも、JIS R3106と同等の日射熱取得率を算出できている。したがって、本発明によれば、ガラス体を施工した後であっても、JIS R3106と同様の値である日射熱取得率を算出することができる。
(6) Consideration As described above, the solar heat gain rate using the formula (1) was almost the same as the solar heat gain rate calculated according to JIS R3106. Comparing Examples 1 and 2 above, it is possible to calculate the solar heat gain rate equivalent to JIS R3106 even if the types of glass bodies are different. As in the case of Example 4, even when the temperature difference between the indoor and outdoor is small during the time when there is no direct solar radiation in the morning, the solar heat gain rate equivalent to JIS R3106 can be calculated. Further, as in the case of Example 3, even when the wind is generated in the room and the temperature difference between the indoor and the outdoor is small, the solar heat gain rate equivalent to JIS R3106 can be calculated. Therefore, according to the present invention, it is possible to calculate the solar heat gain rate, which is the same value as JIS R3106, even after the glass body is constructed.
<3.変形例>
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。
<3. Modification>
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
<3−1>
上記実施形態では、日射熱取得率の算出方法について説明したが、式(1)で算出される日射熱取得率ηのうち、Ii/Isは、日射計で簡易に測定できるため、It/Isで表される日射量に対する熱流束のみを算出し、これを指標として用いることもできる。すなわち、ガラス体に吸収されて室内に伝達される熱流の、入射する日射に対する比を指標として用いることができる。
<3-1>
In the above-described embodiment, the method for calculating the solar heat gain rate has been described, but among the solar heat gain rates η calculated by equation (1), Ii/Is can be easily measured with a pyranometer, and thus It/Is. It is also possible to calculate only the heat flux with respect to the solar radiation amount represented by and use this as an index. That is, the ratio of the heat flow absorbed by the glass body and transmitted to the room to the incident solar radiation can be used as an index.
<3−2>
ガラス体の日射に係る指標を算出したり、評価を行うには、室内と室外との温度差(Te−Ti)、及びガラス体の表面の温度と前記室内の温度との差(Tg-Ti)に基づいて行うことができる。例えば、式(1)を用いて日射熱取得率ηを算出したとき、JIS R3106との差異が大きい場合には、hiやUが適切出ない可能性がある。そのような場合に、式(1)と、(Te−Ti)及び(Tg-Ti)を用いて、JIS R3106による日射熱取得率との差異が、例えば、0または±0.05以下となるように、hiやUを設定し直すことができる。
<3-2>
In order to calculate or evaluate the index of solar radiation of the glass body, the temperature difference between inside and outside (Te-Ti), and the difference between the temperature of the surface of the glass body and the temperature inside the room (Tg-Ti). ). For example, when the solar heat gain rate η is calculated using the equation (1), if the difference from JIS R3106 is large, hi or U may not be appropriate. In such a case, using Formula (1) and (Te-Ti) and (Tg-Ti), the difference between the solar heat gain rate according to JIS R3106 is, for example, 0 or ±0.05 or less. Thus, hi and U can be reset.
<3−3>
測定装置の各計測器の配置は特には限定されない。すなわち、室内温度計、室内日射計、室外温度計、室外日射計の位置は、ガラス体から30mm以内であることが好ましいが、これに限定されない。また、これらの機器の高さもすべて同じでなくてもよい。例えば、2階の室内に室内温度計及び室内日射計を配置し、1階の屋外の地面に室外温度計及び室外日射計を配置することもできる。
<3-3>
The arrangement of each measuring instrument of the measuring device is not particularly limited. That is, the positions of the indoor thermometer, the indoor pyranometer, the outdoor thermometer, and the outdoor pyranometer are preferably within 30 mm from the glass body, but are not limited thereto. Further, the heights of these devices do not have to be the same. For example, the indoor thermometer and the indoor pyranometer may be arranged in the room on the second floor, and the outdoor thermometer and the outdoor pyranometer may be arranged on the outdoor ground on the first floor.
<3−4>
上記<2.検討>で用いた日射熱取得率を算出するための条件は、一例であり、データを取得する日時、場所などは、適宜変更することができる。
<3-4>
Above <2. The conditions for calculating the solar radiation heat gain rate used in “Study> are examples, and the date, time, place, etc. at which data is obtained can be changed as appropriate.
Claims (13)
施工後のガラス体を挟んだ室外の温度Te、室内の温度Ti、前記室内側の前記ガラス体の表面の温度Tgを算出するステップと、
前記室内と前記室外との温度差(Te−Ti)、及び前記ガラス体の表面の温度と前記室内の温度との差(Tg-Ti)に基づいて、前記ガラス体の評価を行うステップと、
を備えている、ガラス体の評価方法。 A method for evaluating solar radiation on a glass body after construction,
A step of calculating an outdoor temperature Te sandwiching the glass body after the construction, an indoor temperature Ti, and a temperature Tg of the surface of the glass body on the indoor side,
Evaluating the glass body based on a temperature difference (Te-Ti) between the room and the room and a temperature difference between the surface temperature of the glass body and the room temperature (Tg-Ti);
A method for evaluating a glass body, comprising:
前記温度Teは、前記建物の外側の気温であり、
前記温度Tiは、前記建物の内側の気温である、請求項1に記載のガラス体の評価方法。 After the construction, means after installing the glass body in a building,
The temperature Te is the temperature outside the building,
The glass body evaluation method according to claim 1, wherein the temperature Ti is an air temperature inside the building.
前記ガラス体に吸収されて室内側に伝達される熱流束Itとして、hi(Tg−Ti)−U(Te−Ti)を算出するステップと、
前記入射日射量Isに対する、前記熱流束Itの割合として、It/Isを算出するステップと、
を備えている、熱流束の算出方法。 A step of acquiring an outdoor temperature Te sandwiching the glass body after the construction, an indoor temperature Ti, a surface temperature Tg of the glass body, an indoor heat transfer coefficient hi, a heat transmission coefficient U, and an incident solar radiation amount Is,
Calculating hi(Tg-Ti)-U(Te-Ti) as the heat flux It absorbed by the glass body and transferred to the indoor side;
Calculating It/Is as a ratio of the heat flux It to the incident solar radiation Is,
A method of calculating heat flux, comprising:
前記入射日射量Isに対する、前記ガラス体を透過した透過日射量Iiの割合(Ii/Is)を算出するステップと、
前記熱流束の割合(It/Is)と、前記透過日射量の割合(Ii/Is)との和を、日射熱取得率として算出するステップと、
を備えている、日射熱取得率の算出方法。 A step of calculating a ratio (It/Is) of the heat flow rate It to the incident solar radiation amount Is by the heat flux calculation method according to claim 3.
Calculating a ratio (Ii/Is) of a transmitted solar radiation amount Ii transmitted through the glass body to the incident solar radiation amount Is;
Calculating a sum of the ratio of the heat flux (It/Is) and the ratio of the transmitted solar radiation (Ii/Is) as a solar heat gain rate;
The method for calculating the solar heat gain rate, which comprises:
前記ガラス体を挟んだ室外に配置される室外温度計と、
前記室外に配置される室外日射計と、
前記ガラス体を挟んだ室内に配置される室内温度計と、
前記室内に配置される室内日射計と、
前記ガラス体の表面の温度を測定する表面温度計と、
を備えている、測定装置。 A measuring device for calculating the solar heat gain rate related to the solar radiation incident on the glass body after construction,
An outdoor thermometer arranged outside the glass body sandwiching the glass body,
An outdoor pyranometer arranged outside the room,
An indoor thermometer arranged in the room sandwiching the glass body,
An indoor pyranometer arranged in the room,
A surface thermometer for measuring the temperature of the surface of the glass body,
A measuring device equipped with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018212581A JP7221658B2 (en) | 2018-11-12 | 2018-11-12 | Evaluation method of glass body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018212581A JP7221658B2 (en) | 2018-11-12 | 2018-11-12 | Evaluation method of glass body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020079736A true JP2020079736A (en) | 2020-05-28 |
JP7221658B2 JP7221658B2 (en) | 2023-02-14 |
Family
ID=70801650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018212581A Active JP7221658B2 (en) | 2018-11-12 | 2018-11-12 | Evaluation method of glass body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7221658B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210158056A (en) * | 2020-06-23 | 2021-12-30 | 한국에너지기술연구원 | Apparatus and method for simplified measuring shgc |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401104A (en) * | 1981-02-19 | 1983-08-30 | Kuzdrall James A | Thermal gain sensor |
JPH05187931A (en) * | 1992-01-10 | 1993-07-27 | Shinji Watabe | Instrument and method for measuring heat flow at opening |
JP2002315737A (en) * | 2001-04-19 | 2002-10-29 | Asahi Glass Co Ltd | Method and program for evaluating temperature and heat comfort performance of transparent plate |
JP2005256420A (en) * | 2004-03-11 | 2005-09-22 | Shin Nikkei Co Ltd | Current carrying control method and device for heat generating glass of sash |
JP2008107910A (en) * | 2006-10-23 | 2008-05-08 | Asahi Glass Co Ltd | Method for evaluating thermal comfort of glass pane, and glass pane selection method using the evaluation method |
JP2014109809A (en) * | 2012-11-30 | 2014-06-12 | Lixil Corp | Information processor, and room temperature estimation method |
WO2014103301A1 (en) * | 2012-12-28 | 2014-07-03 | 日本板硝子株式会社 | Reduced pressure double glazed glass panel |
JP3194072U (en) * | 2013-12-27 | 2014-11-06 | ジェイ建築システム株式会社 | Inspection diagnostic equipment using infrared camera and calculation software |
-
2018
- 2018-11-12 JP JP2018212581A patent/JP7221658B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401104A (en) * | 1981-02-19 | 1983-08-30 | Kuzdrall James A | Thermal gain sensor |
JPH05187931A (en) * | 1992-01-10 | 1993-07-27 | Shinji Watabe | Instrument and method for measuring heat flow at opening |
JP2002315737A (en) * | 2001-04-19 | 2002-10-29 | Asahi Glass Co Ltd | Method and program for evaluating temperature and heat comfort performance of transparent plate |
JP2005256420A (en) * | 2004-03-11 | 2005-09-22 | Shin Nikkei Co Ltd | Current carrying control method and device for heat generating glass of sash |
JP2008107910A (en) * | 2006-10-23 | 2008-05-08 | Asahi Glass Co Ltd | Method for evaluating thermal comfort of glass pane, and glass pane selection method using the evaluation method |
JP2014109809A (en) * | 2012-11-30 | 2014-06-12 | Lixil Corp | Information processor, and room temperature estimation method |
WO2014103301A1 (en) * | 2012-12-28 | 2014-07-03 | 日本板硝子株式会社 | Reduced pressure double glazed glass panel |
JP3194072U (en) * | 2013-12-27 | 2014-11-06 | ジェイ建築システム株式会社 | Inspection diagnostic equipment using infrared camera and calculation software |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210158056A (en) * | 2020-06-23 | 2021-12-30 | 한국에너지기술연구원 | Apparatus and method for simplified measuring shgc |
KR102365742B1 (en) * | 2020-06-23 | 2022-02-22 | 한국에너지기술연구원 | Apparatus and method for simplified measuring shgc |
Also Published As
Publication number | Publication date |
---|---|
JP7221658B2 (en) | 2023-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bessoudo et al. | Indoor thermal environmental conditions near glazed facades with shading devices–Part I: Experiments and building thermal model | |
Kuhn et al. | Solar control: A general method for modelling of solar gains through complex facades in building simulation programs | |
Kuhn | Calorimetric determination of the solar heat gain coefficient g with steady-state laboratory measurements | |
Wei et al. | Parametric studies and evaluations of indoor thermal environment in wet season using a field survey and PMV–PPD method | |
Chow et al. | Thermal performance of natural airflow window in subtropical and temperate climate zones–A comparative study | |
Khamporn et al. | An investigation on the human thermal comfort from a glass window | |
Murano et al. | The new Italian climatic data and their effect in the calculation of the energy performance of buildings | |
Carlos et al. | Heat recovery versus solar collection in a ventilated double window | |
Chaiyapinunt et al. | Shortwave thermal performance for a glass window with a curved venetian blind | |
Maurer et al. | Solar heating and cooling with transparent façade collectors in a demonstration building | |
Tummu et al. | Thermal performance of insulated walls enclosing residential spaces in Thailand | |
Villalba et al. | Hot-cool box calorimetric determination of the solar heat gain coefficient and the U-value of internal shading devices | |
Chaiyapinunt et al. | Heat transmission through a glass window with a curved venetian blind installed | |
JP2020079736A (en) | Method for evaluating glass body | |
Nouidui | Validation of the window model of the Modelica Buildings library | |
Pinto et al. | Assessment of thermal comfort in workstations located near highly glazed façades: solar-adjustment models | |
Sharda et al. | Heat transfer through glazing systems with inter-pane shading devices: a review | |
Chan et al. | Thermal comfort levels in a room with solar radiation | |
JP2008107910A (en) | Method for evaluating thermal comfort of glass pane, and glass pane selection method using the evaluation method | |
Collins et al. | Calorimetric Analysis of the Solar and Thermal Performance of Windows with Interior Louvered Blinds. | |
KR102255698B1 (en) | System for measuring thermal property of greenhouse material | |
Ismail et al. | Trends of solar radiation effects on the temperature of vertical surfaces of a modern terrace house | |
Bizoňová et al. | Methods of Preliminary Estimation of Total Solar Energy Transmittance (TSET) on a Sun Protected Window with Climatic Chamber and Hot Box Apparatus | |
Kimoto et al. | Thermal performance of indoor solar shading devices using a thermal nodal model and a lighting simulation model | |
Moghaddam et al. | Impacts of outdoor boundary conditions on the u-value and condensation risk of glazing systems with indoor-facing low emissivity window films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221003 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7221658 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |