JP2020078185A - vehicle - Google Patents

vehicle Download PDF

Info

Publication number
JP2020078185A
JP2020078185A JP2018210267A JP2018210267A JP2020078185A JP 2020078185 A JP2020078185 A JP 2020078185A JP 2018210267 A JP2018210267 A JP 2018210267A JP 2018210267 A JP2018210267 A JP 2018210267A JP 2020078185 A JP2020078185 A JP 2020078185A
Authority
JP
Japan
Prior art keywords
power
charging
battery
chargers
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018210267A
Other languages
Japanese (ja)
Inventor
耕一 古島
Koichi Furushima
耕一 古島
貴彦 間瀬
Takahiko Mase
貴彦 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018210267A priority Critical patent/JP2020078185A/en
Publication of JP2020078185A publication Critical patent/JP2020078185A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To charge a power storage device with target charging power while protecting two chargers.SOLUTION: A vehicle 20 includes a power storage device 22, two chargers 26a and 26b parallel connected to the power storage device and an external power supply side 92, and a control device 40 that controls the two chargers. In a case in which the power storage device is charged using power from an external power supply, when the target charging power of the power storage device is a first threshold or more, or the target charging power is less than the first threshold and the output current of the external power supply is a second threshold value or more, the control device drives two chargers in parallel such that the power storage device is charged with the target charging power, and when the target charging power is less than the first threshold and the input current is less than the second threshold, the control device drives only one of the two chargers so that the power storage device is charged with the target charging power.SELECTED DRAWING: Figure 1

Description

本発明は、車両に関する。   The present invention relates to a vehicle.

従来、この種の車両としては、バッテリと充電プラグとに対して2つの充電器が互いに並列に接続されたものが提案されている(例えば、特許文献1参照)。この車両では、充電プラグが交流電源に接続されて交流電源からの電力を用いてバッテリを充電する際に、2つの充電器のうち、バッテリに供給されるべき目標充電電力よりも高い最大出力電力を有する充電器が存在する場合には、目標充電電力よりも高い最大出力電力を有する充電器を1つだけ単独運転してバッテリを充電し、目標充電電力よりも高い最大出力電力を有する充電器が存在しない場合には、2つの充電器を並列運転させてバッテリを充電する。   Conventionally, as this type of vehicle, a vehicle in which two chargers are connected in parallel to a battery and a charging plug has been proposed (for example, see Patent Document 1). In this vehicle, when the charging plug is connected to the AC power supply and the power from the AC power supply is used to charge the battery, the maximum output power of the two chargers that is higher than the target charging power to be supplied to the battery. And a charger having a maximum output power higher than the target charging power is independently operated to charge the battery by operating only one charger having a maximum output power higher than the target charging power. Is not present, the two chargers are operated in parallel to charge the battery.

特開2014−23426号公報JP, 2014-23426, A

こうした車両では、交流電源の出力電圧(系統電圧)が電圧変動などにより低くなると、目標充電電力でバッテリを充電するためには、2つの充電器を有する充電装置の入力電流(交流電源の出力電流)を大きくする(交流電源側に出力電流を大きくするように要求する)必要がある。1つの充電器だけを単独運転させてバッテリを充電しているときに充電装置の入力電流が大きくなると、単独運転中の充電器の発熱が過度に大きくなり、その充電器の寿命に影響を与える懸念がある。   In such a vehicle, when the output voltage (system voltage) of the AC power supply becomes low due to voltage fluctuation or the like, in order to charge the battery with the target charging power, the input current of the charging device having two chargers (the output current of the AC power supply) ) Must be increased (requesting the AC power supply side to increase the output current). If the input current of the charging device becomes large while only one charger is operated independently to charge the battery, the heat generation of the charger during the independent operation becomes excessively large, which affects the life of the charger. I have a concern.

本発明の車両は、充電装置の2つの充電器の保護を図りつつ目標充電電力で蓄電装置を充電することを主目的とする。   The vehicle of the present invention mainly aims to charge the power storage device with the target charging power while protecting the two chargers of the charging device.

本発明の車両は、上述の主目的を達成するために以下の手段を採った。   The vehicle of the present invention adopts the following means in order to achieve the above-mentioned main object.

本発明の車両は、
蓄電装置と、
前記蓄電装置と外部電源側とに対して互いに並列に接続された2つの充電器を有する充電装置と、
前記2つの充電器を制御する制御装置と、
を備える車両であって、
前記制御装置は、
前記外部電源からの電力を用いて前記蓄電装置を充電する際に、
前記蓄電装置の目標充電電力が第1閾値以上のとき、および、前記目標充電電力が前記第1閾値未満で且つ前記充電装置の入力電流が第2閾値以上のときには、前記目標充電電力で前記蓄電装置が充電されるように前記2つの充電器を並列駆動し、
前記目標充電電力が前記第1閾値未満で且つ前記充電装置の入力電流が前記第2閾値未満のときには、前記目標充電電力で前記蓄電装置が充電されるように前記2つの充電器のうちの何れかだけを駆動する、
ことを要旨とする。
The vehicle of the present invention is
A power storage device,
A charging device having two chargers connected in parallel to the power storage device and the external power source side;
A controller for controlling the two chargers,
A vehicle comprising:
The control device is
When charging the power storage device using electric power from the external power source,
When the target charging power of the power storage device is a first threshold value or more, and when the target charging power is less than the first threshold value and the input current of the charging device is a second threshold value or more, the power storage is performed with the target charging power. Driving the two chargers in parallel so that the device is charged,
When the target charging power is less than the first threshold and the input current of the charging device is less than the second threshold, one of the two chargers is set so that the power storage device is charged with the target charging power. Drive only
That is the summary.

この本発明の車両では、外部電源からの電力を用いて蓄電装置を充電する際に、蓄電装置の目標充電電力が第1閾値以上のとき、および、目標充電電力が第1閾値未満で且つ充電装置の入力電流が第2閾値以上のときには、目標充電電力で蓄電装置が充電されるように2つの充電器を並列駆動し、目標充電電力が第1閾値未満で且つ充電装置の入力電流が第2閾値未満のときには、目標充電電力で蓄電装置が充電されるように2つの充電器のうちの何れかだけを駆動する。これにより、前者の場合には、充電装置の2つの充電器の保護を図りつつ、目標充電電力で蓄電装置を充電することができる。また、後者の場合には、充電装置のトータル損失を低減しつつ、目標充電電力で蓄電装置を充電することができる。ここで、「充電装置の入力電流」は、車両側に設けられた電流センサにより検出された値を用いるものとしてもよいし、外部電源の出力電流と充電装置の入力電流とが略等しくなる場合には、外部電源側に設けられた電流センサにより検出された値を通信により取得して用いるものとしてもよい。   In the vehicle of the present invention, when the power storage device is charged using the power from the external power source, the target charge power of the power storage device is equal to or higher than the first threshold value, and the target charge power is less than the first threshold value and the charge is performed. When the input current of the device is greater than or equal to the second threshold, the two chargers are driven in parallel so that the power storage device is charged with the target charging power, the target charging power is less than the first threshold, and the input current of the charging device is less than the first threshold. When it is less than two thresholds, only one of the two chargers is driven so that the power storage device is charged with the target charging power. Thus, in the former case, the power storage device can be charged with the target charging power while protecting the two chargers of the charging device. In the latter case, the power storage device can be charged with the target charging power while reducing the total loss of the charging device. Here, as the “input current of the charging device”, a value detected by a current sensor provided on the vehicle side may be used, or when the output current of the external power supply and the input current of the charging device are substantially equal to each other. Alternatively, the value detected by the current sensor provided on the external power supply side may be acquired by communication and used.

本発明の一実施例としての車両20と充電設備90との構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the vehicle 20 and the charging equipment 90 as one Example of this invention. 車両ECU40により実行される駆動モード選択ルーチンの一例を示すフローチャートである。6 is a flowchart showing an example of a drive mode selection routine executed by vehicle ECU 40. バッテリ22の目標充電電力Pch*と充電装置26の入力電流Iinと充電器26a,26bの駆動モードとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the target charging electric power Pch * of the battery 22, the input current Iin of the charging device 26, and the drive mode of the chargers 26a and 26b. バッテリ22の目標充電電力Pch*と充電装置26の入力電圧Vinと充電器26a,26bの駆動モードとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the target charge electric power Pch * of the battery 22, the input voltage Vin of the charging device 26, and the drive mode of the chargers 26a and 26b.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, modes for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としての車両20と充電設備90との構成の概略を示す構成図である。実施例の車両20は、図示するように、走行用のモータを備える電気自動車やハイブリッド自動車として構成されており、蓄電装置としてのバッテリ22と、車両側コネクタ24と、充電装置26と、車両用電子制御ユニット(以下、「車両ECU」という)40とを備える。充電設備90は、外部電源としての交流電源92と、設備側コネクタ94と、充電設備用電子制御ユニット(以下、「設備ECU」という)98とを備える。以下、順に説明する。   FIG. 1 is a configuration diagram showing an outline of a configuration of a vehicle 20 and a charging facility 90 as an embodiment of the present invention. As shown in the figure, the vehicle 20 of the embodiment is configured as an electric vehicle or a hybrid vehicle having a motor for traveling, and has a battery 22 as a power storage device, a vehicle-side connector 24, a charging device 26, and a vehicle. An electronic control unit (hereinafter referred to as “vehicle ECU”) 40. The charging facility 90 includes an AC power source 92 as an external power source, a facility-side connector 94, and a charging facility electronic control unit (hereinafter, referred to as “facility ECU”) 98. Hereinafter, they will be described in order.

車両20の各構成について説明する。バッテリ22は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、走行用のモータに電力ラインを介して接続されている。車両側コネクタ24は、充電設備90の設備側コネクタ94に接続可能に構成されている。   Each component of the vehicle 20 will be described. The battery 22 is configured as, for example, a lithium ion secondary battery or a nickel hydrogen secondary battery, and is connected to a traveling motor via a power line. The vehicle side connector 24 is configured to be connectable to the facility side connector 94 of the charging facility 90.

充電装置26は、バッテリ22が接続された第1電力ライン23と車両側コネクタ24が接続された第2電力ライン25とに対して互いに並列に接続された2つの充電器26a,26bを有する。2つの充電器26a,26bは、同一仕様で構成されており、それぞれ、第2電力ライン25の電力(充電設備90からの交流電力)を直流電力に変換して更に電圧を変換して第1電力ライン23(バッテリ22)に供給可能に構成されている。第2電力ライン25の正極側ラインには、充電装置26の入力電流Iinを検出するための電流センサ27が取り付けられている。また、第2電力ライン25には、充電装置26の入力電圧Vinを検出するための電圧センサ28が取り付けられている。   The charging device 26 has two chargers 26a and 26b connected in parallel to each other with respect to the first power line 23 to which the battery 22 is connected and the second power line 25 to which the vehicle-side connector 24 is connected. The two chargers 26a and 26b are configured to have the same specifications, and convert the power of the second power line 25 (AC power from the charging facility 90) into DC power and further convert the voltage to the first power supply. The power line 23 (battery 22) can be supplied. A current sensor 27 for detecting an input current Iin of the charging device 26 is attached to the positive electrode side line of the second power line 25. Further, a voltage sensor 28 for detecting the input voltage Vin of the charging device 26 is attached to the second power line 25.

車両ECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。車両ECU40には、各種センサからの信号が入力ポートを介して入力される。車両ECU40に入力される信号としては、例えば、電流センサ27からの充電装置26の入力電流Iinや、電流センサ30からの充電装置26の入力電圧Vinを挙げることができる。また、バッテリ22の出力端子に取り付けられた図示しない電流センサからのバッテリ22の充電電流Ibや、バッテリ22の端子間に取り付けられた図示しない電圧センサからのバッテリ22の電圧Vb、バッテリ22に取り付けられた温度センサからのバッテリ22の温度Tbも挙げることができる。車両ECU40からは、充電装置26の充電器26a,26bへの制御信号などが出力ポートを介して出力される。車両ECU40は、図示しない電流センサからのバッテリ22の充電電流Ibに基づいてバッテリ22の蓄電割合SOCを演算したり、演算したバッテリ22の蓄電割合SOCと図示しない温度センサからのバッテリ22の温度Tbとに基づいてバッテリ22の入出力制限Win,Woutを演算したりしている。蓄電割合SOCは、バッテリ22の全容量に対するバッテリ22から放電可能な電力の容量の割合であり、入出力制限Win,Woutは、バッテリ22を充放電してもよい許容入出力電力である。車両ECU40は、充電設備90の設備ECU98と有線または無線により通信可能となっている。   Although not shown, the vehicle ECU 40 is configured as a microprocessor including a CPU, and in addition to the CPU, includes a ROM that stores a processing program, a RAM that temporarily stores data, an input / output port, and a communication port. Prepare Signals from various sensors are input to the vehicle ECU 40 via an input port. Examples of the signal input to the vehicle ECU 40 include the input current Iin of the charging device 26 from the current sensor 27 and the input voltage Vin of the charging device 26 from the current sensor 30. Further, the charging current Ib of the battery 22 from a current sensor (not shown) attached to the output terminal of the battery 22, the voltage Vb of the battery 22 from a voltage sensor (not shown) attached between the terminals of the battery 22, and the battery 22 are attached to the battery 22. The temperature Tb of the battery 22 from the provided temperature sensor can also be mentioned. From the vehicle ECU 40, control signals to the chargers 26a and 26b of the charging device 26 are output via the output port. The vehicle ECU 40 calculates the storage ratio SOC of the battery 22 based on the charging current Ib of the battery 22 from a current sensor (not shown), and the calculated storage ratio SOC of the battery 22 and the temperature Tb of the battery 22 from a temperature sensor (not shown). I / O limits Win and Wout of the battery 22 are calculated based on The charge ratio SOC is the ratio of the capacity of the power that can be discharged from the battery 22 to the total capacity of the battery 22, and the input / output limits Win and Wout are the allowable input / output power that may charge and discharge the battery 22. The vehicle ECU 40 can communicate with the equipment ECU 98 of the charging equipment 90 by wire or wirelessly.

次に、充電設備90の各構成について説明する。交流電源92は、自宅や充電ステーションなどに設置され、車両20に交流電力を供給可能に構成されている。設備側コネクタ94は、交流電源92に接続されており、車両20の車両側コネクタ24と接続可能に構成されている。交流電源92と設備側コネクタ94とを接続する電力ラインの正極側ラインには、電流センサ93が取り付けられている。   Next, each component of the charging facility 90 will be described. The AC power supply 92 is installed in a house, a charging station, or the like, and is configured to be able to supply AC power to the vehicle 20. The equipment-side connector 94 is connected to the AC power supply 92 and is configured to be connectable to the vehicle-side connector 24 of the vehicle 20. A current sensor 93 is attached to the positive electrode side line of the power line that connects the AC power source 92 and the equipment side connector 94.

設備ECU98は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。設備ECU98には、各種センサからの信号、例えば、電流センサ93からの交流電源92の出力電流Isなどが入力ポートを介して入力される。設備ECU98からは、交流電源92への制御信号などが出力ポートを介して出力される。設備ECU98は、上述したように、車両ECU40と有線または無線により通信可能となっている。   Although not shown, the facility ECU 98 is configured as a microprocessor centered on a CPU, and in addition to the CPU, includes a ROM that stores a processing program, a RAM that temporarily stores data, an input / output port, and a communication port. Prepare Signals from various sensors, for example, the output current Is of the AC power supply 92 from the current sensor 93 and the like are input to the facility ECU 98 via the input port. The equipment ECU 98 outputs a control signal to the AC power source 92 via the output port. As described above, the facility ECU 98 can communicate with the vehicle ECU 40 in a wired or wireless manner.

こうして構成された実施例の車両20および充電設備90では、自宅や充電ステーションなどで車両20の車両側コネクタ24と充電設備90の設備側コネクタ94とが接続されてバッテリ22の充電が指示されると、充電設備90(交流電源92)からの電力を用いてバッテリ22を充電する外部充電を実行する。外部充電では、車両20の車両ECU40が、バッテリ22の電圧Vbや蓄電割合SOC、入力制限Winに基づいてバッテリ22の目標充電電力Pch*を設定して充電設備90の設備ECU98に送信する。そして、設備ECU98が、目標充電電力Pch*に応じた電力が車両20に供給されるように交流電源92を制御すると共に、車両ECU40が、交流電源92からの電力を用いてバッテリ22が目標充電電力Pch*で充電されるように、充電器26a,26bの一方だけを駆動する片側駆動モードまたは充電器26a,26bの両方を駆動する並列駆動モードを選択して実行する。このようにしてバッテリ22が充電される。なお、片側駆動モードでは、充電器26a,26bのうち予め定めた充電器を駆動するものとしてもよいし、駆動する充電器を所定時間毎に切り替えるものとしてもよい。また、並列駆動モードでは、充電器26a,26bの電力配分比が例えば1:1となるように充電器26a,26bを駆動すればよい。そして、車両ECU40は、バッテリ22の蓄電割合SOCが所定割合Sref(例えば、80%〜90%程度)以上に至ると、片側駆動モードや並列駆動モードの実行を終了する。これにより、バッテリ22の充電が終了する。   In the vehicle 20 and the charging facility 90 of the embodiment thus configured, the vehicle-side connector 24 of the vehicle 20 and the facility-side connector 94 of the charging facility 90 are connected at home or at a charging station or the like to instruct charging of the battery 22. Then, external charging for charging the battery 22 using the electric power from the charging facility 90 (AC power supply 92) is executed. In the external charging, the vehicle ECU 40 of the vehicle 20 sets the target charging power Pch * of the battery 22 based on the voltage Vb of the battery 22, the storage ratio SOC, and the input limit Win and transmits it to the equipment ECU 98 of the charging equipment 90. Then, the facility ECU 98 controls the AC power supply 92 so that the power corresponding to the target charging power Pch * is supplied to the vehicle 20, and the vehicle ECU 40 uses the power from the AC power supply 92 to charge the battery 22 by the target charge. A one-sided drive mode in which only one of the chargers 26a and 26b is driven or a parallel drive mode in which both of the chargers 26a and 26b are driven are selected and executed so that they are charged with the power Pch *. In this way, the battery 22 is charged. In the one-sided drive mode, a predetermined charger of the chargers 26a and 26b may be driven, or the charger to be driven may be switched at predetermined time intervals. In the parallel drive mode, the chargers 26a and 26b may be driven so that the power distribution ratio of the chargers 26a and 26b is, for example, 1: 1. Then, the vehicle ECU 40 ends the one-side drive mode or the parallel drive mode when the power storage ratio SOC of the battery 22 reaches a predetermined ratio Sref (for example, about 80% to 90%) or more. This completes the charging of the battery 22.

次に、こうして構成された実施例の車両20の動作、特に、充電装置26の充電器26a,26bの駆動モードを片側駆動モードと並列駆動モードとから選択する動作について説明する。図2は、車両ECU40により実行される駆動モード選択ルーチンの一例を示すフローチャートである。このルーチンは、外部充電の際に繰り返し実行される。   Next, the operation of the vehicle 20 of the embodiment thus configured, particularly the operation of selecting the drive mode of the chargers 26a and 26b of the charging device 26 from the one-side drive mode and the parallel drive mode will be described. FIG. 2 is a flowchart showing an example of a drive mode selection routine executed by the vehicle ECU 40. This routine is repeatedly executed during external charging.

図2の駆動モード設定ルーチンが実行されると、車両ECU40は、上述の処理で設定したバッテリ22の目標充電電力Pch*や、電流センサ27からの充電装置26の入力電流Iinを入力する(ステップS100)。そして、バッテリ22の目標充電電力Pchを閾値Pchrefと比較すると共に(ステップS110)、充電装置26の入力電流Iinを閾値Iinrefと比較する(ステップS120)。ここで、閾値Pchrefは、片側駆動によりバッテリ22を目標充電電力Pch*で充電きるか否かを判定するために用いられる閾値であり、充電器26a,26bの許容電力に基づいて定められる。閾値Iinrefは、片側駆動を実行すると、充電器26a,26bのうち駆動中の充電器に過大な電流が流れる懸念があるか否かを判定するのに用いられる閾値であり、充電器26a,26bの許容電流に基づいて定められる。   When the drive mode setting routine of FIG. 2 is executed, the vehicle ECU 40 inputs the target charging power Pch * of the battery 22 set in the above process and the input current Iin of the charging device 26 from the current sensor 27 (step S100). Then, the target charging power Pch of the battery 22 is compared with the threshold value Pchref (step S110), and the input current Iin of the charging device 26 is compared with the threshold value Iinref (step S120). Here, the threshold value Pchref is a threshold value used to determine whether or not the battery 22 can be fully charged with the target charging power Pch * by one-sided driving, and is determined based on the allowable power of the chargers 26a and 26b. The threshold value Iinref is a threshold value used to determine whether or not there is a concern that an excessive current will flow to the charger 26a, 26b that is being driven when the one-sided drive is executed, and the chargers 26a, 26b. It is determined based on the allowable current of.

ステップS110でバッテリ22の目標充電電力Pch*が閾値Pchref以上のときや、ステップS110でバッテリ22の目標充電電力Pch*が閾値Pchref未満で且つステップS120で充電装置26の入力電流Iinが閾値Ichref以上のときには、充電器26a,26bの駆動モードとして並列駆動モードを選択して(ステップS130)、本ルーチンを終了する。   When the target charging power Pch * of the battery 22 is greater than or equal to the threshold Pchref in step S110, or the target charging power Pch * of the battery 22 is less than the threshold Pchref in step S110, and the input current Iin of the charging device 26 is greater than or equal to the threshold Ichref in step S120. In the case of, the parallel drive mode is selected as the drive mode of the chargers 26a and 26b (step S130), and this routine is finished.

交流電源92の出力電圧(系統電圧)、即ち、充電装置26の入力電圧Vinが電圧変動などにより低くなると、目標充電電力Pch*でバッテリ22を充電するためには、充電装置26の入力電流Iinを大きくする(そのために交流電源92からの出力を大きくするように充電設備90に要求する)必要がある。片側駆動モードの実行中に充電装置26の入力電流Iinが大きくなると、充電器26a,26bのうち駆動中の充電器の発熱が過度に大きくなり、その充電器の寿命に影響を与える懸念がある。これに対して、実施例では、バッテリ22の目標充電電力Pch*が閾値Pchref以上のときに加えて、バッテリ22の目標充電電力Pch*が閾値Pchref未満で且つ充電装置26の入力電流Iinが閾値Iinref以上のときにも、並列駆動モードを実行する。これにより、充電器26a,26bの保護を図りつつ目標充電電力Pch*でバッテリ22を充電することができる。   When the output voltage (system voltage) of the AC power supply 92, that is, the input voltage Vin of the charging device 26 becomes low due to voltage fluctuation or the like, in order to charge the battery 22 with the target charging power Pch *, the input current Iin of the charging device 26 is required. (For that reason, the charging facility 90 is required to increase the output from the AC power supply 92). If the input current Iin of the charging device 26 becomes large during execution of the one-sided drive mode, heat generation of the charger 26a, 26b during driving becomes excessively large, which may affect the life of the charger. .. On the other hand, in the embodiment, in addition to when the target charging power Pch * of the battery 22 is the threshold Pchref or more, the target charging power Pch * of the battery 22 is less than the threshold Pchref and the input current Iin of the charging device 26 is the threshold. The parallel drive mode is also executed when Iinref or more. As a result, the battery 22 can be charged with the target charging power Pch * while protecting the chargers 26a and 26b.

ステップS110でバッテリ22の目標充電電力Pch*が閾値Pchref未満で且つステップS120で充電装置26の入力電流Iinが閾値Iinref未満のときには、充電器26a,26bの駆動モードとして片側駆動モードを選択して(ステップS140)、本ルーチンを終了する。この場合、並列駆動モードに比して充電装置26のトータル損失を低減しつつ、目標充電電力Pch*でバッテリ22を充電することができる。   When the target charging power Pch * of the battery 22 is less than the threshold value Pchref in step S110 and the input current Iin of the charging device 26 is less than the threshold value Iinref in step S120, the one-sided driving mode is selected as the driving mode of the chargers 26a and 26b. (Step S140), this routine is ended. In this case, the battery 22 can be charged with the target charging power Pch * while reducing the total loss of the charging device 26 as compared with the parallel drive mode.

図3は、バッテリ22の目標充電電力Pch*と充電装置26の入力電流Iinと充電器26a,26bの駆動モードとの関係を示す説明図である。図示するように、バッテリ22の目標充電電力Pch*が閾値Pchref以上の領域や充電装置26の入力電流Iinが閾値Iinref以上の領域では、並列駆動モードを実行する。これにより、充電器26a,26bの保護を図りつつ目標充電電力Pch*でバッテリ22を充電することができる。また、バッテリ22の目標充電電力Pch*が閾値Pchref未満で且つ充電装置26の入力電流Iinが閾値Iinref未満の領域では、片側駆動モードを実行する。これにより、並列駆動モードに比して充電装置26のトータル損失を低減しつつ、目標充電電力Pch*でバッテリ22を充電することができる。   FIG. 3 is an explanatory diagram showing the relationship between the target charging power Pch * of the battery 22, the input current Iin of the charging device 26, and the drive modes of the chargers 26a and 26b. As shown in the figure, the parallel drive mode is executed in a region where the target charging power Pch * of the battery 22 is equal to or higher than the threshold Pchref or in a region where the input current Iin of the charging device 26 is equal to or higher than the threshold Iinref. As a result, the battery 22 can be charged with the target charging power Pch * while protecting the chargers 26a and 26b. In the region where the target charging power Pch * of the battery 22 is less than the threshold value Pchref and the input current Iin of the charging device 26 is less than the threshold value Iinref, the one-side drive mode is executed. This makes it possible to charge the battery 22 with the target charging power Pch * while reducing the total loss of the charging device 26 as compared to the parallel drive mode.

以上説明した実施例の車両20では、外部充電の際において、バッテリ22の目標充電電力Pch*が閾値Pchref以上のときや、バッテリ22の目標充電電力Pch*が閾値Pchref未満でも充電装置26の入力電流Iinが閾値Iinref以上のときには、充電器26a,26bの一方だけを駆動する片側駆動モードおよび充電器26a,26bの両方を駆動する並列駆動モードのうち並列駆動モードを選択して実行する。これにより、充電器26a,26bの保護を図りつつ目標充電電力Pch*でバッテリ22を充電することができる。また、外部充電の際において、バッテリ22の目標充電電力Pch*が閾値Pchref未満で且つ充電装置26の入力電流Iinが閾値Iinref未満のときには、片側駆動モードおよび並列駆動モードのうち片側駆動モードを選択して実行する。これにより、充電装置26のトータル損失を低減しつつ目標充電電力Pch*でバッテリ22を充電することができる。   In the vehicle 20 of the embodiment described above, during external charging, when the target charging power Pch * of the battery 22 is equal to or higher than the threshold Pchref, or when the target charging power Pch * of the battery 22 is less than the threshold Pchref, the input of the charging device 26 is performed. When the current Iin is equal to or higher than the threshold value Iinref, the parallel drive mode is selected and executed from the one-side drive mode in which only one of the chargers 26a and 26b is driven and the parallel drive mode in which both of the chargers 26a and 26b are driven. As a result, the battery 22 can be charged with the target charging power Pch * while protecting the chargers 26a and 26b. During external charging, when the target charging power Pch * of the battery 22 is less than the threshold value Pchref and the input current Iin of the charging device 26 is less than the threshold value Iinref, the one side driving mode is selected from the one side driving mode and the parallel driving mode. Then run. As a result, the battery 22 can be charged with the target charging power Pch * while reducing the total loss of the charging device 26.

実施例の車両20では、充電器26a,26bの駆動モードを片側駆動モードと並列駆動モードとから選択する際に、車両ECU40は、電流センサ27により検出される充電装置26の入力電流Iinを用いるものとしたが、充電装置26の入力電流と外部電源92の出力電流とが略等しくなるハード構成の場合(図1参照)、電流センサ93により検出される交流電源92の出力電流Isを設備ECU98から通信により取得して用いるものとしてもよい。   In the vehicle 20 of the embodiment, the vehicle ECU 40 uses the input current Iin of the charging device 26 detected by the current sensor 27 when the drive mode of the chargers 26a and 26b is selected from the one-side drive mode and the parallel drive mode. However, in the case of a hardware configuration in which the input current of the charging device 26 and the output current of the external power supply 92 are substantially equal (see FIG. 1), the output current Is of the AC power supply 92 detected by the current sensor 93 is set to the equipment ECU 98. May be obtained by communication from the company and used.

実施例の車両20では、外部充電の際において、バッテリ22の目標充電電力Pch*と充電装置26の入力電流Iinとに基づいて充電器26a,26bの駆動モードを片側駆動モードおよび並列駆動モードから選択するものとした。しかし、バッテリ22の目標充電電力Pch*と充電装置26の入力電圧Vinとに基づいて充電器26a,26bの駆動モードを片側駆動モードおよび並列駆動モードから選択するものとしてもよい。この場合のバッテリ22の目標充電電力Pch*と充電装置26の入力電圧Vinと充電器26a,26bの駆動モードとの関係を図4に示す。図4中、閾値Vinrefは、上述の閾値Iinrefに基づいて定められる。充電装置26の入力電流Iinと入力電圧Vinとは、一般に、バッテリ22の実充電電力Pchと充電器26a,26bのうち駆動中の充電器のトータル効率ηとを用いて「Iin=Pch/Vin/η」のような関係性を有する。このため、充電装置26の入力電圧Vinが分かれば充電装置26の入力電流Iinがどの程度になるかを推定することができる。したがって、充電装置26の入力電流Iinに代えて、充電装置26の入力電圧Vinを用いるものとしてもよいのである。なお、充電装置26の入力電圧と外部電源92の出力電圧とが略等しくなる場合(図1参照)、充電装置26の入力電圧Vinに代えて、外部電源92の出力電圧を用いるものとしてもよい。   In the vehicle 20 of the embodiment, during external charging, the drive modes of the chargers 26a and 26b are changed from the one-side drive mode and the parallel drive mode based on the target charge power Pch * of the battery 22 and the input current Iin of the charging device 26. Decided to choose. However, the drive mode of the chargers 26a and 26b may be selected from the one-side drive mode and the parallel drive mode based on the target charging power Pch * of the battery 22 and the input voltage Vin of the charging device 26. FIG. 4 shows the relationship between the target charging power Pch * of the battery 22, the input voltage Vin of the charging device 26, and the drive modes of the chargers 26a and 26b in this case. In FIG. 4, the threshold Vinref is determined based on the above-mentioned threshold Iinref. The input current Iin and the input voltage Vin of the charging device 26 are generally “Iin = Pch / Vin” using the actual charging power Pch of the battery 22 and the total efficiency η of the charger 26a, 26b that is being driven. / Η ”. Therefore, if the input voltage Vin of the charging device 26 is known, it is possible to estimate what the input current Iin of the charging device 26 will be. Therefore, instead of the input current Iin of the charging device 26, the input voltage Vin of the charging device 26 may be used. When the input voltage of the charging device 26 and the output voltage of the external power supply 92 are substantially equal (see FIG. 1), the output voltage of the external power supply 92 may be used instead of the input voltage Vin of the charging device 26. ..

実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、バッテリ22が「蓄電装置」に相当し、充電器26a,26bが「2つの充電器」に相当し、車両ECU40が「制御装置」に相当する。   Correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem will be described. In the embodiment, the battery 22 corresponds to a "power storage device", the chargers 26a and 26b correspond to "two chargers", and the vehicle ECU 40 corresponds to a "control device".

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the section of means for solving the problem. This is an example for specifically explaining the mode for carrying out the invention, and does not limit the elements of the invention described in the column of means for solving the problem. That is, the interpretation of the invention described in the column of means for solving the problem should be made based on the description in that column, and the embodiment is the invention of the invention described in the column of means for solving the problem. This is just a specific example.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   Although the embodiments for carrying out the present invention have been described above with reference to the embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within the scope not departing from the gist of the present invention. Of course, it can be implemented.

本発明は、車両の製造産業などに利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used in the vehicle manufacturing industry and the like.

20 車両、22 バッテリ、23 第1電力ライン、24 車両側コネクタ、25 第2電力ライン、26 充電装置、26a,26b 充電器、27 電流センサ、28 電圧センサ、40 車両ECU、90 充電設備、92 交流電源、94 設備側コネクタ、98 設備ECU、93 電流センサ。   20 vehicle, 22 battery, 23 first power line, 24 vehicle side connector, 25 second power line, 26 charging device, 26a, 26b charger, 27 current sensor, 28 voltage sensor, 40 vehicle ECU, 90 charging facility, 92 AC power supply, 94 facility side connector, 98 facility ECU, 93 current sensor.

Claims (1)

蓄電装置と、
前記蓄電装置と外部電源側とに対して互いに並列に接続された2つの充電器を有する充電装置と、
前記2つの充電器を制御する制御装置と、
を備える車両であって、
前記制御装置は、
前記外部電源からの電力を用いて前記蓄電装置を充電する際に、
前記蓄電装置の目標充電電力が第1閾値以上のとき、および、前記目標充電電力が前記第1閾値未満で且つ前記充電装置の入力電流が第2閾値以上のときには、前記目標充電電力で前記蓄電装置が充電されるように前記2つの充電器を並列駆動し、
前記目標充電電力が前記第1閾値未満で且つ前記充電装置の入力電流が前記第2閾値未満のときには、前記目標充電電力で前記蓄電装置が充電されるように前記2つの充電器のうちの何れかだけを駆動する、
車両。
A power storage device,
A charging device having two chargers connected in parallel to the power storage device and the external power source side;
A controller for controlling the two chargers,
A vehicle comprising:
The control device is
When charging the power storage device using electric power from the external power source,
When the target charging power of the power storage device is a first threshold value or more, and when the target charging power is less than the first threshold value and the input current of the charging device is a second threshold value or more, the power storage is performed with the target charging power. Driving the two chargers in parallel so that the device is charged,
When the target charging power is less than the first threshold and the input current of the charging device is less than the second threshold, one of the two chargers is set so that the power storage device is charged with the target charging power. Drive only
vehicle.
JP2018210267A 2018-11-08 2018-11-08 vehicle Pending JP2020078185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210267A JP2020078185A (en) 2018-11-08 2018-11-08 vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210267A JP2020078185A (en) 2018-11-08 2018-11-08 vehicle

Publications (1)

Publication Number Publication Date
JP2020078185A true JP2020078185A (en) 2020-05-21

Family

ID=70725160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210267A Pending JP2020078185A (en) 2018-11-08 2018-11-08 vehicle

Country Status (1)

Country Link
JP (1) JP2020078185A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016859A (en) * 1999-06-29 2001-01-19 Nissin Electric Co Ltd Power converter
JP2012217299A (en) * 2011-04-01 2012-11-08 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion system
WO2015181847A1 (en) * 2014-05-27 2015-12-03 富士電機株式会社 Battery charger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001016859A (en) * 1999-06-29 2001-01-19 Nissin Electric Co Ltd Power converter
JP2012217299A (en) * 2011-04-01 2012-11-08 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion system
WO2015181847A1 (en) * 2014-05-27 2015-12-03 富士電機株式会社 Battery charger

Similar Documents

Publication Publication Date Title
US9118197B2 (en) Charging control system
JP5195965B2 (en) Battery control system and vehicle
US10439417B2 (en) Battery temperature management and charging system
US9987932B2 (en) Battery system
WO2019155751A1 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
CN103192729B (en) Elec. vehicle
JP5835136B2 (en) In-vehicle charging controller
JP5608881B2 (en) AC current control for in-vehicle battery charger
US20240208410A1 (en) Vehicle and method of notifying charging information of vehicle
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
CN104170207A (en) Charging device for secondary battery, and charging method for secondary battery
JP2014003737A (en) Charge controller
KR102316599B1 (en) Communication interface system for charging battery of electric vehicle and Charging method using thereof, Electric vehicle having communication interface system for charging battery
US8704496B2 (en) Charge control system
WO2012132430A1 (en) Vehicle charging device
JP2020078185A (en) vehicle
JP2020078186A (en) vehicle
KR101466438B1 (en) A method for charging electric vehicle
JP6433314B2 (en) Charger
KR20200128636A (en) Communication interface system for charging battery of electric vehicle and Charging method using thereof, Electric vehicle having communication interface system for charging battery
KR20200128638A (en) Communication interface system for charging battery of electric vehicle and Charging method using thereof, Electric vehicle having communication interface system for charging battery
KR20200128637A (en) Communication interface system for charging battery of electric vehicle and Charging method using thereof, Electric vehicle having communication interface system for charging battery
JP2015186364A (en) Vehicular power apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220531