JP2020077478A - Nonaqueous electrolytic solution lithium ion secondary battery - Google Patents
Nonaqueous electrolytic solution lithium ion secondary battery Download PDFInfo
- Publication number
- JP2020077478A JP2020077478A JP2018208672A JP2018208672A JP2020077478A JP 2020077478 A JP2020077478 A JP 2020077478A JP 2018208672 A JP2018208672 A JP 2018208672A JP 2018208672 A JP2018208672 A JP 2018208672A JP 2020077478 A JP2020077478 A JP 2020077478A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- ion secondary
- secondary battery
- lithium ion
- wound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、非水電解液リチウムイオン二次電池に関する。 The present invention relates to a non-aqueous electrolyte lithium ion secondary battery.
近年、非水電解液リチウムイオン二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。 2. Description of the Related Art In recent years, non-aqueous electrolyte lithium ion secondary batteries have been used as portable power sources for personal computers, mobile terminals, etc., and as vehicle drive power sources for electric vehicles (EV), hybrid vehicles (HV), plug-in hybrid vehicles (PHV), etc. It is preferably used.
一般的な非水電解液リチウムイオン二次電池は、正極と負極とがセパレータを介して積層された電極体を備える。この電極体は、捲回電極体と積層型電極体とに大別される。
捲回電極体を備える非水電解液二次電池について、その例が特許文献1に開示されている。特許文献1には、正極の厚さ方向のばね定数を13kN/mm以上14.3kN/mm以下の範囲に規定することにより、負極から排出される非水電解液の量と正極から排出される非水電解液の量とのバランスを取って、電極体内部の非水電解液の分布の偏りを緩和あるいは解消できることが記載されている。
A general non-aqueous electrolyte lithium ion secondary battery includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween. This electrode body is roughly classified into a wound electrode body and a laminated electrode body.
Patent Document 1 discloses an example of a non-aqueous electrolyte secondary battery including a wound electrode body. In Patent Document 1, by defining the spring constant in the thickness direction of the positive electrode in the range of 13 kN / mm or more and 14.3 kN / mm or less, the amount of the non-aqueous electrolyte discharged from the negative electrode and the amount of the non-aqueous electrolyte discharged from the positive electrode It is described that it is possible to alleviate or eliminate the uneven distribution of the non-aqueous electrolyte inside the electrode body by balancing with the amount of the non-aqueous electrolyte.
本発明者が鋭意検討した結果、従来技術においては、捲回電極体のR部(湾曲部)において、繰り返し充放電した際に金属リチウムが析出し易いことを見出した。すなわち従来技術においては、金属リチウム析出耐性に改善の余地があることを見出した。さらに、低温出力特性に改善の余地があることを見出した。 As a result of intensive studies by the present inventors, in the prior art, it was found that metallic lithium is likely to precipitate in the R portion (curved portion) of the wound electrode body when repeatedly charged and discharged. That is, it was found that there is room for improvement in metal lithium deposition resistance in the prior art. Furthermore, they have found that there is room for improvement in low-temperature output characteristics.
そこで本発明の目的は、捲回電極体を備える非水電解液リチウムイオン二次電池であって、繰り返し充放電時の金属リチウム析出耐性、および低温出力特性に優れる非水電解液リチウムイオン二次電池を提供することにある。 Therefore, an object of the present invention is a non-aqueous electrolyte lithium ion secondary battery comprising a wound electrode body, which is excellent in metal lithium deposition resistance during repeated charging and discharging, and low temperature output characteristics. To provide batteries.
本発明者が鋭意検討した結果、セパレータの耐熱層を正極に対向させ、かつ正極の厚さ方向のばね定数を適切に管理することで、繰り返し充放電時の金属リチウム析出耐性と、低温出力特性とを共に高くすることができることを見出した。
すなわち、ここに開示される非水電解液リチウムイオン二次電池は、正極、負極、およびセパレータが重ね合わされて捲回されている捲回電極体と、非水電解液と、前記捲回電極体および前記非水電解液を収容する電池ケースと、を備える。前記セパレータは、耐熱層を有する。前記耐熱層は、前記正極に対向している。前記正極の厚さ方向のばね定数は、288.4kN/mm以上332.5kN/mm以下である。
このような構成によれば、捲回電極体を備える非水電解液リチウムイオン二次電池であって、繰り返し充放電時の金属リチウム析出耐性、および低温出力特性に優れる非水電解液リチウムイオン二次電池を提供することができる。
As a result of diligent studies by the present inventors, the heat-resistant layer of the separator is opposed to the positive electrode, and by appropriately managing the spring constant in the thickness direction of the positive electrode, metal lithium precipitation resistance during repeated charging and discharging, and low-temperature output characteristics We have found that both can be raised.
That is, the non-aqueous electrolyte lithium ion secondary battery disclosed herein includes a wound electrode body in which a positive electrode, a negative electrode, and a separator are stacked and wound, a non-aqueous electrolyte solution, and the wound electrode body. And a battery case containing the non-aqueous electrolyte. The separator has a heat resistant layer. The heat-resistant layer faces the positive electrode. The spring constant of the positive electrode in the thickness direction is 288.4 kN / mm or more and 332.5 kN / mm or less.
According to such a configuration, a non-aqueous electrolyte lithium ion secondary battery having a wound electrode body, which is excellent in metal lithium deposition resistance during repeated charging and discharging and excellent in low temperature output characteristics, is provided. A secondary battery can be provided.
以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水電解液リチウムイオン二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. Note that matters other than matters particularly referred to in the present specification and necessary for carrying out the present invention (for example, a general configuration of a non-aqueous electrolyte lithium ion secondary battery that does not characterize the present invention and (Manufacturing process) can be grasped as a design matter of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and the common general technical knowledge in the field. Further, in the following drawings, the same reference numerals are given to the members / sites that have the same effect. Also, the dimensional relationships (length, width, thickness, etc.) in each figure do not reflect the actual dimensional relationships.
なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
また、本明細書において「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
In the present specification, the term “secondary battery” refers to a general electric storage device that can be repeatedly charged and discharged, and is a term that includes so-called storage batteries such as lithium-ion secondary batteries and electric storage elements such as electric double layer capacitors.
Further, in the present specification, the “lithium ion secondary battery” refers to a secondary battery in which lithium ions are used as charge carriers and charge / discharge is realized by movement of charges due to lithium ions between the positive and negative electrodes.
以下、扁平角型の非水電解液リチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。 Hereinafter, the present invention will be described in detail by taking a flat rectangular non-aqueous electrolyte lithium ion secondary battery as an example, but the present invention is not intended to be limited to those described in the embodiments. ..
図1に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解液(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型電池である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。また、電池ケース30には、非水電解液を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。
In the lithium ion
捲回電極体20は、図1および図2に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極シート60とが2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。なお、捲回電極体20の捲回軸方向(上記長手方向に直交するシート幅方向をいう。)の両端から外方にはみ出すように形成された正極活物質層非形成部分52a(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。
In the
正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。
正極活物質層54は、正極活物質を含有する。正極活物質層54に含まれる正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3O2、LiNiO2、LiCoO2、LiFeO2、LiMn2O4、LiNi0.5Mn1.5O4等)、リチウム遷移金属リン酸化合物(例、LiFePO4等)等が挙げられる。正極活物質の含有量は、正極活物質層54中(すなわち、正極活物質層54の全質量に対し)70質量%以上が好ましく、75質量%以上がより好ましく、80質量%以上がさらに好ましい。
Examples of the positive electrode
The positive electrode
正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。
導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。正極活物質層54中の導電材の含有量は、1質量%以上15質量%以下が好ましく、3質量%以上12質量%以下がより好ましい。
バインダとしては、例えばポリフッ化ビニリデン(PVdF)等を使用し得る。正極活物質層54中のバインダの含有量は、1質量%以上15質量%以下が好ましく、2質量%以上12質量%以下がより好ましい。
The positive electrode
As the conductive material, for example, carbon black such as acetylene black (AB) and other carbon materials such as graphite can be preferably used. The content of the conductive material in the positive electrode
As the binder, for example, polyvinylidene fluoride (PVdF) or the like can be used. The content of the binder in the positive electrode
本実施形態において、正極シート50の厚さ方向のばね定数が288.4kN/mm以上332.5kN/mm以下である。この厚さ方向は、正極シート50の主面に垂直な方向である。
正極シート50の厚さ方向のばね定数が288.4kN/mm未満だと、捲回電極体20の非水電解液の保液量が低下してリチウムイオンの拡散抵抗が増加し、その結果、低温出力が低くなる。一方、正極シート50の厚さ方向のばね定数が332.5kN/mmを超えると、捲回電極体20のR部(湾曲部)において形状を維持し難くなって極間が開き、捲回電極体の電極間の距離(極間距離)に不均一性が生じる。その結果、極間距離の差に基づく抵抗ムラが生じ、捲回電極体のR部の極間距離の小さい境界部に電流が集中して金属リチウムが析出しやすくなる。すなわち、金属リチウム析出耐性が悪化する。
正極シート50の厚さ方向のばね定数は、好ましくは300kN/mm以上320kN/mm以下である。
正極シート50の厚さ方向のばね定数は、正極活物質の粒度分布を変化させる方法、正極活物質の多孔度を変化させる方法、あるいはそれを組み合わせた方法等によって制御することができる。
なお、正極シート50の厚さ方向のばね定数は、例えばオートグラフを用いて測定することができる。
In the present embodiment, the spring constant of the
When the spring constant in the thickness direction of the
The spring constant of the
The spring constant in the thickness direction of the
The spring constant of the
負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64に含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。黒鉛は、天然黒鉛であっても人造黒鉛であってもよく、黒鉛が非晶質な炭素材料で被覆された形態の非晶質炭素被覆黒鉛であってもよい。
負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。
負極活物質層中の負極活物質の含有量は、90質量%以上が好ましく、95質量%以上99質量%以下がより好ましい。負極活物質層中のバインダの含有量は、0.1質量%以上8質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましい。負極活物質層中の増粘剤の含有量は、0.3質量%以上3質量%以下が好ましく、0.5質量%以上2質量%以下がより好ましい。
Examples of the negative electrode
The negative electrode
90 mass% or more is preferable and, as for content of the negative electrode active material in a negative electrode active material layer, 95 mass% or more and 99 mass% or less is more preferable. The content of the binder in the negative electrode active material layer is preferably 0.1% by mass or more and 8% by mass or less, and more preferably 0.5% by mass or more and 3% by mass or less. The content of the thickener in the negative electrode active material layer is preferably 0.3% by mass or more and 3% by mass or less, and more preferably 0.5% by mass or more and 2% by mass or less.
本実施形態では、図3に示すように、セパレータ70として、耐熱層(HRL)72を有するものを使用する。図3では、セパレータ70は、耐熱層72と基材層(ここでは多孔質樹脂シート層)74とを有している。
In this embodiment, as shown in FIG. 3, a
耐熱層72は、通常、リチウムイオン二次電池のセパレータの耐熱層に用いられている材料を含み得る。具体的には、無機フィラーを含み、必要に応じ、バインダ、増粘剤等を含み得る。
無機フィラーとしては、例えば、アルミナ(Al2O3)、マグネシア(MgO)、シリカ(SiO2)、チタニア(TiO2)等の無機酸化物、窒化アルミニウム、窒化ケイ素等の窒化物、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、マイカ、タルク、ベーマイト、ゼオライト、アパタイト、カオリン等の粘土鉱物、ガラス繊維等が挙げられる。なかでも、アルミナ、ベーマイト、およびマグネシアが好ましく用いられる。
耐熱層72のバインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、アクリル系バインダ、スチレンブタジエンゴム(SBR)、ポリオレフィン系バインダ等が挙げられる
耐熱層72の増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)等が挙げられる。
The heat-
Examples of the inorganic filler include inorganic oxides such as alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ), titania (TiO 2 ), nitrides such as aluminum nitride and silicon nitride, calcium hydroxide. , Metal hydroxides such as magnesium hydroxide and aluminum hydroxide, clay minerals such as mica, talc, boehmite, zeolite, apatite and kaolin, and glass fibers. Of these, alumina, boehmite, and magnesia are preferably used.
Examples of the binder for the heat-
多孔質樹脂シート層74を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等が挙げられる。多孔質樹脂シート層74は、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。
Examples of the resin forming the porous
本実施形態においては、図3に示すようにセパレータ70の耐熱層72は、正極シート50に対向している。低温では非水電解液の粘度が高くなるが、セパレータ70の耐熱層72が正極シート50に対向していることにより、正極シート50とセパレータ70との界面において非水電解液の保持性が向上してリチウムイオンの拡散抵抗が低下する。その結果、低温出力特性が向上する。
In this embodiment, as shown in FIG. 3, the heat-
非水電解液は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F−DMC)、トリフルオロジメチルカーボネート(TFDMC)等が挙げられる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF6、LiBF4、LiClO4等のリチウム塩(好ましくはLiPF6)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。 As the non-aqueous electrolyte, the same one as the conventional lithium ion secondary battery can be used, and typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used. As the non-aqueous solvent, organic solvents such as various carbonates, ethers, esters, nitriles, sulfones, and lactones used in the electrolyte of a general lithium ion secondary battery can be used without particular limitation. You can As specific examples, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), Examples include monofluoromethyldifluoromethyl carbonate (F-DMC) and trifluorodimethyl carbonate (TFDMC). Such non-aqueous solvents may be used alone or in appropriate combination of two or more. As the supporting salt, for example, lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 (preferably LiPF 6 ) can be preferably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less.
なお、上記非水電解液は、本発明の効果を著しく損なわない限りにおいて、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)等の被膜形成剤;分散剤;増粘剤等の各種添加剤を含み得る。 The non-aqueous electrolyte solution is, for example, a gas generating agent such as biphenyl (BP) or cyclohexylbenzene (CHB); an oxalato complex compound containing a boron atom and / or a phosphorus atom, unless the effect of the present invention is significantly impaired. , Film forming agents such as vinylene carbonate (VC); dispersants; thickeners and other various additives.
以上のようにして構成されるリチウムイオン二次電池100は、繰り返し充放電時の金属リチウム析出耐性、および低温出力特性に優れる。
リチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。
The lithium-ion
The lithium-ion
なお、一例として扁平形状の捲回電極体20を備える角形のリチウムイオン二次電池100について説明した。しかしながら、リチウムイオン二次電池は、円筒形リチウムイオン二次電池、ラミネート型リチウムイオン二次電池等として構成することもできる。
In addition, as an example, the prismatic lithium ion
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 Examples of the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.
<評価用リチウムイオン二次電池の作製>
正極活物質としてのLiNi1/3Co1/3Mn1/3O2(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、LNCM:AB:PVdF=87:10:3の質量比でN−メチルピロリドン(NMP)と混合し、正極活物質層形成用ペーストを調製した。このペーストを、アルミニウム箔の両面に、アルミ箔の一端が露出するように塗布して乾燥した後、プレスすることにより、正極シートを作製した。
このとき、粒度分布の異なる正極活物質を用いることにより、正極の厚さ方向のばね定数を表1に示すように変化させた。なお、正極の厚さ方向のばね定数は後述の方法で測定した。
また、負極活物質としての天然黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用ペーストを調製した。このペーストを、銅箔の両面に、銅箔の一端が露出するように塗布して乾燥した後、プレスすることにより、負極シートを作製した。
また、PP/PE/PPの三層構造を有するポリオレフィン多孔質基材の片面上に、無機フィラーによる耐熱層(HRL)が形成されたセパレータを2枚用意した。
作製した正極と、作製した負極と、2枚のセパレータとを重ね合わせ、捲回して捲回電極体を作製した。このとき、比較例1および比較例2ならびに実施例1〜3のリチウムイオン二次電池では、セパレータのHRLを正極に対向させた。比較例3〜7のリチウムイオン二次電池では、セパレータのHRLを負極に対向させた。
作製した捲回電極体を、アルミニウムを主体とする電池ケースに収容した。続いて、電池ケースの開口部から非水電解液を注入し、当該開口部を気密に封止して各実施例および各比較例のリチウムイオン二次電池を作製した。なお、非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=1:1:1の体積比で含む混合溶媒に、支持塩としてのLiPF6を1.0mol/Lの濃度で溶解させたものを用いた。
<Production of lithium-ion secondary battery for evaluation>
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were added to LNCM: AB : PVdF = 87: 10: 3 was mixed with N-methylpyrrolidone (NMP) in a mass ratio to prepare a paste for forming a positive electrode active material layer. This paste was applied on both sides of an aluminum foil so that one end of the aluminum foil was exposed, dried, and then pressed to produce a positive electrode sheet.
At this time, the spring constant in the thickness direction of the positive electrode was changed as shown in Table 1 by using positive electrode active materials having different particle size distributions. The spring constant in the thickness direction of the positive electrode was measured by the method described later.
Further, natural graphite (C) as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener were mixed with C: SBR: CMC = 98: 1: 1. By mixing with ion-exchanged water in a mass ratio, a paste for forming a negative electrode active material layer was prepared. This paste was applied to both surfaces of a copper foil so that one end of the copper foil was exposed, dried, and then pressed to produce a negative electrode sheet.
In addition, two separators were prepared in which a heat resistant layer (HRL) made of an inorganic filler was formed on one surface of a polyolefin porous substrate having a three-layer structure of PP / PE / PP.
The produced positive electrode, the produced negative electrode, and two separators were stacked and wound to produce a wound electrode body. At this time, in the lithium ion secondary batteries of Comparative Example 1 and Comparative Example 2 and Examples 1 to 3, the HRL of the separator was opposed to the positive electrode. In the lithium ion secondary batteries of Comparative Examples 3 to 7, the HRL of the separator was opposed to the negative electrode.
The produced wound electrode body was housed in a battery case mainly made of aluminum. Subsequently, a non-aqueous electrolyte was injected from the opening of the battery case, and the opening was hermetically sealed to produce the lithium ion secondary batteries of Examples and Comparative Examples. The non-aqueous electrolyte is supported by a mixed solvent containing ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of EC: EMC: DMC = 1: 1: 1. LiPF 6 as a salt was used at a concentration of 1.0 mol / L.
<正極の厚さ方向のばね定数測定>
各リチウムイオン二次電池の作製に用いた正極シートを45mm×45mmの寸法に40枚切り出し、これを積層したサンプルを作製した。このサンプルを、オートグラフを用いて積層方向に荷重を付加した。なお、この積層方向は、正極シートの厚さ方向でもある。このときの荷重に対する変位の傾きより、正極の厚さ方向のばね定数を求めた。結果を表1に示す。
<Measurement of spring constant in positive electrode thickness direction>
Forty positive electrodes having a size of 45 mm × 45 mm were cut out from each of the positive electrode sheets used for the production of each lithium ion secondary battery and laminated to produce a sample. A load was applied to this sample in the stacking direction using an autograph. Note that this stacking direction is also the thickness direction of the positive electrode sheet. The spring constant in the thickness direction of the positive electrode was obtained from the inclination of the displacement with respect to the load at this time. The results are shown in Table 1.
<金属リチウム析出耐性評価(容量維持率測定)>
金属リチウム析出耐性の指標として繰り返し充放電時の容量維持率について評価した。具体的には、各実施例および各比較例のリチウムイオン二次電池を25℃の環境下において、電圧が4.1Vとなるまで1/3CのレートでCC充電した後、電流値が0.02CとなるまでCV充電した。その後、電圧が3Vとなるまで1/3Cのレートで定電流放電し、このときの放電容量を初期容量とした。
次に、リチウムイオン二次電池をSOC(State of charge)80%に調整し、−10℃の環境下に置いた。次いで、200Aのレートで10秒間の矩形波充放電を1000サイクル実施した。その後、上記と同様にして容量測定を行い、(1000サイクル充放電後の電池容量/初期容量)×100より、容量維持率(%)を求めた。結果を表1に示す。
<Evaluation of metal lithium deposition resistance (capacity maintenance rate measurement)>
The capacity retention rate during repeated charge and discharge was evaluated as an index of metal lithium deposition resistance. Specifically, the lithium-ion secondary batteries of Examples and Comparative Examples were CC-charged at a rate of ⅓ C under a 25 ° C. environment until the voltage became 4.1 V, and then the current value was 0. It was charged by CV until it reached 02C. After that, constant current discharge was performed at a rate of 1/3 C until the voltage reached 3 V, and the discharge capacity at this time was taken as the initial capacity.
Next, the lithium ion secondary battery was adjusted to SOC (State of charge) 80% and placed in an environment of −10 ° C. Then, a rectangular wave charge / discharge for 10 seconds was performed 1000 cycles at a rate of 200A. Then, the capacity was measured in the same manner as above, and the capacity retention rate (%) was determined from (battery capacity after 1000 cycles of charge / discharge / initial capacity) × 100. The results are shown in Table 1.
<低温出力特性評価>
上記作製した各評価用リチウム二次電池をSOC27%に調整し、−35℃の環境下に6時間静置した。その後、複数の条件での定電力出力を行い、所定時間で所定電圧に至る出力値を算出した。実施例3の出力値を100とした場合の、その他の実施例および各比較例の出力値の比を求めた。結果を表1に示す。
<Low-temperature output characteristic evaluation>
Each of the prepared lithium secondary batteries for evaluation was adjusted to SOC 27% and left standing in an environment of -35 ° C for 6 hours. After that, constant power output was performed under a plurality of conditions, and an output value that reached a predetermined voltage in a predetermined time was calculated. When the output value of Example 3 was set to 100, the ratios of the output values of the other Examples and each Comparative Example were obtained. The results are shown in Table 1.
表1の結果からわかるように、HRLが正極に対向し、正極の厚さ方向のばね定数が、288.4kN/mm以上332.5kN/mm以下である場合に、繰り返し充放電時の容量維持率と、低温出力特性とが共に高いことがわかる。この容量維持率が高いことは、繰り返し充放電時の金属リチウム析出耐性が高いことに起因する。
したがって、ここに開示される非水電解液リチウムイオン二次電池は、繰り返し充放電時の金属リチウム析出耐性および低温出力特性が高いことがわかる。
As can be seen from the results in Table 1, when the HRL faces the positive electrode and the spring constant in the thickness direction of the positive electrode is 288.4 kN / mm or more and 332.5 kN / mm or less, the capacity is maintained during repeated charge / discharge. It can be seen that both the rate and the low temperature output characteristics are high. The high capacity retention rate is due to the high metal lithium deposition resistance during repeated charge and discharge.
Therefore, it can be seen that the non-aqueous electrolyte lithium ion secondary battery disclosed herein has high resistance to metal lithium deposition during repeated charging / discharging and low-temperature output characteristics.
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
72 耐熱層
74 多孔質樹脂シート層
100 リチウムイオン二次電池
20 winding
52 Positive
62 Negative electrode
72 Heat-
Claims (1)
非水電解液と、
前記捲回電極体および前記非水電解液を収容する電池ケースと、
を備える非水電解液リチウムイオン二次電池であって、
前記セパレータは、耐熱層を有し、
前記耐熱層は、前記正極に対向しており、
前記正極の厚さ方向のばね定数が、288.4kN/mm以上332.5kN/mm以下である、
非水電解液リチウムイオン二次電池。 A wound electrode body in which a positive electrode, a negative electrode, and a separator are stacked and wound,
Non-aqueous electrolyte,
A battery case containing the wound electrode body and the non-aqueous electrolyte,
A non-aqueous electrolyte lithium ion secondary battery comprising:
The separator has a heat resistant layer,
The heat-resistant layer faces the positive electrode,
The spring constant in the thickness direction of the positive electrode is 288.4 kN / mm or more and 332.5 kN / mm or less,
Non-aqueous electrolyte lithium-ion secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018208672A JP7085136B2 (en) | 2018-11-06 | 2018-11-06 | Non-aqueous electrolyte lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018208672A JP7085136B2 (en) | 2018-11-06 | 2018-11-06 | Non-aqueous electrolyte lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020077478A true JP2020077478A (en) | 2020-05-21 |
JP7085136B2 JP7085136B2 (en) | 2022-06-16 |
Family
ID=70725058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018208672A Active JP7085136B2 (en) | 2018-11-06 | 2018-11-06 | Non-aqueous electrolyte lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7085136B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000285966A (en) * | 1999-03-29 | 2000-10-13 | Toshiba Corp | Lithium secondary battery and its manufacture |
JP2014137985A (en) * | 2013-01-18 | 2014-07-28 | Toyota Motor Corp | Secondary battery |
WO2015146024A1 (en) * | 2014-03-27 | 2015-10-01 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
JP2018055806A (en) * | 2016-09-26 | 2018-04-05 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP2018147565A (en) * | 2017-03-01 | 2018-09-20 | 株式会社Gsユアサ | Method for manufacturing power storage element and power storage element |
-
2018
- 2018-11-06 JP JP2018208672A patent/JP7085136B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000285966A (en) * | 1999-03-29 | 2000-10-13 | Toshiba Corp | Lithium secondary battery and its manufacture |
JP2014137985A (en) * | 2013-01-18 | 2014-07-28 | Toyota Motor Corp | Secondary battery |
WO2015146024A1 (en) * | 2014-03-27 | 2015-10-01 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
JP2018055806A (en) * | 2016-09-26 | 2018-04-05 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP2018147565A (en) * | 2017-03-01 | 2018-09-20 | 株式会社Gsユアサ | Method for manufacturing power storage element and power storage element |
Also Published As
Publication number | Publication date |
---|---|
JP7085136B2 (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109494354B (en) | Non-aqueous electrolyte secondary battery | |
KR102466828B1 (en) | Non-aqueous electrolyte secondary battery | |
JP2018106903A (en) | Lithium ion secondary battery | |
JP2020202038A (en) | Nonaqueous electrolyte secondary battery | |
US20190081319A1 (en) | Nonaqueous electrolyte secondary battery | |
CN108242558B (en) | Lithium ion secondary battery | |
JP7205717B2 (en) | positive electrode | |
JP6836727B2 (en) | Non-aqueous electrolyte Lithium ion secondary battery | |
JP6770688B2 (en) | Lithium ion secondary battery | |
JP7174335B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7228113B2 (en) | Non-aqueous electrolyte secondary battery | |
CN110931860B (en) | Nonaqueous electrolyte for lithium ion secondary battery | |
JP7032221B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7085136B2 (en) | Non-aqueous electrolyte lithium ion secondary battery | |
JP6778396B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2020202039A (en) | Nonaqueous electrolyte secondary battery | |
JP2020113378A (en) | Nonaqueous electrolyte for lithium secondary battery | |
JP6928873B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7236030B2 (en) | lithium ion secondary battery | |
CN114583244B (en) | Lithium ion secondary battery | |
JP6994163B2 (en) | Non-aqueous electrolyte lithium ion secondary battery | |
JP7165305B2 (en) | Non-aqueous electrolyte secondary battery | |
KR20210084238A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP2020080221A (en) | Positive electrode of lithium ion secondary battery | |
JP2018097980A (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220506 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220519 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7085136 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |