JP2020075849A - Method for producing ceramic beads - Google Patents

Method for producing ceramic beads Download PDF

Info

Publication number
JP2020075849A
JP2020075849A JP2019165184A JP2019165184A JP2020075849A JP 2020075849 A JP2020075849 A JP 2020075849A JP 2019165184 A JP2019165184 A JP 2019165184A JP 2019165184 A JP2019165184 A JP 2019165184A JP 2020075849 A JP2020075849 A JP 2020075849A
Authority
JP
Japan
Prior art keywords
classification
particles
ceramic
mass
ceramic beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165184A
Other languages
Japanese (ja)
Inventor
村山 秀樹
Hideki Murayama
秀樹 村山
吉野 正樹
Masaki Yoshino
正樹 吉野
皓紀 光野
Akinori Mitsuno
皓紀 光野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2020075849A publication Critical patent/JP2020075849A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crushing And Grinding (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

To produce ceramic beads having a uniform shape, which is used as a grinding medium such as a bead mill, while preventing strain beads from being mixed into a pulverized product.SOLUTION: The method for producing ceramic beads has one or a plurality of classification processes of classifying the ceramic particles after molding. In at least one of the classification processes, a mass-classification utilizing a difference in mass of the ceramic particles is performed.SELECTED DRAWING: Figure 1

Description

本発明は、粉砕用メディア等に使用されるのに適したセラミックビーズの製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing ceramic beads suitable for use as a grinding medium or the like.

無機粉末等を混合・粉砕する方法としてビーズミル法が知られている(例えば、特許文献1参照)。ビーズミルに用いるセラミックビーズ(以下、単にビーズという場合がある)は、原料となるセラミック粉末を球状に成形することで得られる。   A bead mill method is known as a method of mixing and pulverizing inorganic powder and the like (see, for example, Patent Document 1). Ceramic beads used in a bead mill (hereinafter sometimes simply referred to as beads) can be obtained by forming a starting ceramic powder into a spherical shape.

セラミックビーズの成形法としては、噴霧乾燥法、液中造粒法、あるいは転動造粒法などが用いられる。このような成形法で得られるビーズは、一般に粒径に分布が生じるため、そのままでは被粉砕物を安定して混合・粉砕を行うことができない。そのため、成形後のビーズの粒子径を均一に揃えることが必要である。   As a method for molding the ceramic beads, a spray drying method, a submerged granulation method, a tumbling granulation method, or the like is used. Since the beads obtained by such a molding method generally have a distribution in particle size, the object to be crushed cannot be stably mixed and crushed as it is. Therefore, it is necessary to make the particle diameters of the beads after molding uniform.

セラミックビーズの粒子径を揃える手段としては、メッシュ状の篩にかけて粒子径により分級する篩式分級が主に用いられてきた(特許文献2)。   As a means for making the particle diameters of the ceramic beads uniform, sieve-type classification in which a mesh-shaped sieve is used to perform classification according to the particle diameter has been mainly used (Patent Document 2).

特開2009−155142号公報JP, 2009-155142, A 特開2002−29824号公報JP 2002-29824A

セラミックビーズを粉砕用メディアとして用いる場合、複数のビーズが結合した凝集体や、球形のビーズが割れて生じた破片等の歪なビーズが混在していると、ビーズの表面に部分的に力が集中して加わる。その結果、ビーズが欠けて微細な破片が発生しやすくなり、被粉砕物に混入する場合がある。また、ビーズの摩耗が早くなるため、目的とする被粉砕物を工業的に安定して生産することが困難な場合がある。しかし、従来の篩式分級だけでは、このような凝集体であっても形状によっては篩を通過することによって、また破片であっても形状によっては篩を通過しないことによって、いずれも最終的に製品とするために次の工程に供するビーズの画分に混入する場合があり、最終製品への歪なビーズの混入を防止することが困難であった。   When ceramic beads are used as a grinding medium, if agglomerates in which multiple beads are bound together or distorted beads such as shards generated by breaking spherical beads are mixed, the force on the beads will be partially increased. Concentrate and join. As a result, the beads are liable to be broken and fine fragments tend to be generated, which may be mixed in the crushed object. Further, since the beads are quickly worn, it may be difficult to industrially stably produce the target object to be ground. However, with conventional sieve classification alone, even such agglomerates may pass through the sieve depending on the shape, and even fragments may not pass through the sieve depending on the shape, so that both eventually In order to obtain a product, it may be mixed in the bead fraction used in the next step, and it was difficult to prevent the distorted beads from being mixed in the final product.

本発明者らは、質量による分級、すなわち粒子の質量差を利用した分級をセラミックビーズの製造工程に組み込むことで、歪なビーズが効果的に除去され、形状の揃ったビーズを製造できることを見出した。   The present inventors have found that by incorporating classification by mass, that is, classification using the mass difference of particles into the manufacturing process of ceramic beads, distorted beads can be effectively removed and beads having a uniform shape can be manufactured. It was

すなわち、上記課題を解決するための本発明は、セラミック粒子を分級する分級工程を1回または複数回有するセラミックビーズの製造方法であって、分級工程のうち少なくとも1回において、セラミック粒子の質量差を利用した質量分級を行うことを特徴とするセラミックビーズの製造方法である。   That is, the present invention for solving the above-mentioned problems is a method for producing ceramic beads having one or more classification steps for classifying ceramic particles, wherein the mass difference of the ceramic particles is at least once in the classification step. A method for producing ceramic beads, characterized in that mass classification is performed using

なお、本明細書においては、原料粉末を成形して得られた成形体、当該成形体を焼成して得られる製造段階における焼結体、最終製品としてのセラミック焼結体等を含め、成形後のセラミック成形体を総称して「セラミック粒子」または単に「粒子」と呼称し、その中で特に最終製品としてのセラミック焼結体を「セラミックビーズ」と呼称するものとする。   In addition, in the present specification, a molded body obtained by molding a raw material powder, a sintered body in a manufacturing stage obtained by firing the molded body, a ceramic sintered body as a final product, etc. The ceramic molded body of 1 is generically referred to as "ceramic particles" or simply "particles", and among them, the ceramic sintered body as a final product is referred to as "ceramic beads".

本発明により、歪なビーズが除去され、形状の揃ったセラミックビーズを製造することができ、ビーズミル等の粉砕用メディアとして用いた場合にも被粉砕物への歪なビーズの混入を防止することができる。   INDUSTRIAL APPLICABILITY According to the present invention, distorted beads can be removed and uniform-shaped ceramic beads can be produced, and even when used as a grinding medium such as a bead mill, it is possible to prevent the distorted beads from being mixed into an object to be ground. You can

実施例1のセラミックビーズの製造方法を説明するためのフロー図Flowchart for explaining the manufacturing method of the ceramic beads of Example 1 実施例2のセラミックビーズの製造方法を説明するためのフロー図Flowchart for explaining the manufacturing method of the ceramic beads of Example 2 実施例3のセラミックビーズの製造方法を説明するためのフロー図Flowchart for explaining the manufacturing method of the ceramic beads of Example 3 実施例4のセラミックビーズの製造方法を説明するためのフロー図Flowchart for explaining the manufacturing method of the ceramic beads of Example 4 比較例1のセラミックビーズの製造方法を説明するためのフロー図Flowchart for explaining the manufacturing method of the ceramic beads of Comparative Example 1

本発明で製造されるセラミック粒子は、セラミック粉末を造粒した粉末であることが望ましい。造粒法に制限は無いが、噴霧乾燥法、液中造粒法、あるいは転動造粒法などが好ましい。噴霧乾燥法は特に限定されるものではないが、噴霧乾燥機を用いることが好ましく、ディスク方式やノズル方式等である通常の噴霧乾燥機で乾燥することで粒子を成形することができる。造粒条件は特に限定されるものではないが、生成する粒子の形状や成形体強度を考慮し、スラリーを調整して噴霧することが望ましい。転動造粒法においては傾斜した円柱状を有するドラムを回転させておき、このドラム内にセラミック粉末と結合剤および水分を含む液体バインダーを交互に添加することにより粉末と粉末の間に液体バインダーの架橋を形成し、球状の粒子を形成する。その後、ドラムを回転させながら粒子にセラミック粉末を与えることでセラミック粒子を成長させ、球状の成形体を得ることができる。   The ceramic particles produced by the present invention are preferably powders obtained by granulating ceramic powder. Although the granulation method is not limited, a spray drying method, a submerged granulation method, a tumbling granulation method, or the like is preferable. The spray drying method is not particularly limited, but it is preferable to use a spray dryer, and the particles can be formed by drying with a normal spray dryer such as a disc system or a nozzle system. The granulation conditions are not particularly limited, but it is desirable to adjust the slurry and spray it in consideration of the shape of the particles to be formed and the strength of the molded body. In the tumbling granulation method, a drum having an inclined columnar shape is rotated, and a ceramic powder, a liquid binder containing a binder and water are alternately added into the drum to form a liquid binder between the powder and the powder. To form spherical particles. After that, the ceramic particles are grown by rotating the drum and supplying the ceramic powder to the particles, whereby a spherical molded body can be obtained.

本発明は、1回または複数回の分級工程のうち少なくとも1回において、成形後のセラミック粒子の質量差を利用した分級、すなわち質量分級を行う。質量分級の方法は特に限定されないが、気流式分級機により分級を行うことが好ましい。   According to the present invention, at least one of one or a plurality of classification steps is performed, that is, classification using the mass difference of the ceramic particles after molding, that is, mass classification. The method of mass classification is not particularly limited, but classification is preferably performed by an airflow classifier.

気流式分級機は、質量差によりセラミック粒子を分離できるものであれば特に限定はない。気流式分級機としては、重力分級機、慣性力分級機、遠心力分級機があるが、分級精度の高い遠心力分級機が好適に用いられる。遠心力分級機としては、装置内部のローターが回転する力によって被分級物に遠心力を働かせる一方、装置内部を通過する内向きの空気の流れによって被分級物に抗力を働かせる強制渦遠心式分級機や、装置内部にローターを持たずに案内羽根等を設けて空気の旋回流を作り、その旋回する動きで被分級物に遠心力を働かせる一方、旋回の流れそのもので被分級物に抗力を働かせる半自由渦遠心式分級機を用いることができる。   The airflow classifier is not particularly limited as long as it can separate the ceramic particles by the difference in mass. The airflow classifier includes a gravity classifier, an inertial force classifier, and a centrifugal force classifier, and a centrifugal classifier having high classification accuracy is preferably used. A centrifugal classifier is a forced vortex centrifugal classifier that applies centrifugal force to the object to be classified by the rotating force of the rotor inside the device, while exerting a drag force on the object to be classified due to the inward air flow passing through the inside of the device. A guide vane is provided without a rotor inside the machine or the device to create a swirling flow of air, and the swirling motion exerts a centrifugal force on the object to be classified, while the swirling flow itself exerts a drag force on the object to be classified. A working semi-free vortex centrifugal classifier can be used.

中でも、本発明における質量分級には、強制渦遠心式分級機を用いることが好ましい。強制渦遠心式分級機においては、粒子をローターに投入し、ローターの回転から生じる遠心力によって質量の大きい粒子を分離させ、一方渦流に内向きに打ち込む空気で質量の小さい粒子を分離させることで、粒子の質量に応じた分級が可能となる。特に、平均粒子径10〜154μmのセラミックビーズの製造には、強制渦遠心式分級機による質量分級を好適に用いることができる。また、質量分級に供する粒子の平均粒子径は10〜154μmが好ましい。平均粒子径を10μm以上とすることにより、強制渦遠心式分級機のローターに粒子を投入する粒子供給装置における粒子の詰まりを抑制し、安定して投入することができる。粒子をより安定して投入する観点から、平均粒子径は20μm以上がより好ましい。なお、平均粒子径が10μm以上20μm未満の場合において、粒子供給装置のホッパー内において粒子がブリッジを形成したり、ラットホール状に固まる場合には、ノッカー、バイブレーター、エアーパルスなどの詰まり抑制手段により、詰まりを抑制することが好ましい。一方、平均粒子径を154μm以下とすることにより、粒子の質量を適度に軽くし、渦流に打ち込む空気の流速を調整することにより、所望の質量の粒子を容易に分級することができる。粒子径は、後述する測定例1に従って測定することができる。   Above all, it is preferable to use a forced vortex centrifugal classifier for mass classification in the present invention. In a forced vortex centrifugal classifier, particles are put into a rotor, and the particles with a large mass are separated by the centrifugal force generated from the rotation of the rotor, while the particles with a small mass are separated by air blown inward into the vortex flow. , Classification according to the mass of particles is possible. Particularly, for the production of ceramic beads having an average particle diameter of 10 to 154 μm, mass classification by a forced vortex centrifugal classifier can be preferably used. The average particle size of the particles used for mass classification is preferably 10 to 154 μm. By setting the average particle size to 10 μm or more, it is possible to suppress clogging of particles in the particle supply device that charges particles into the rotor of the forced vortex centrifugal classifier, and to stably supply particles. From the viewpoint of more stable introduction of particles, the average particle diameter is more preferably 20 μm or more. In addition, when the average particle size is 10 μm or more and less than 20 μm, when particles form a bridge in the hopper of the particle supply device or solidify into a rathole shape, a clogging suppression means such as a knocker, a vibrator, or an air pulse is used. It is preferable to suppress clogging. On the other hand, by setting the average particle size to 154 μm or less, the mass of the particles can be appropriately reduced, and the flow velocity of the air blown into the vortex can be adjusted to easily classify the particles having the desired mass. The particle size can be measured according to the measurement example 1 described later.

気流式分級機への粒子の供給方法に制限は無いが、振動フィーダー、ベルトフィーダー、サークルフィーダー、あるいはスクリューフィーダーで投入するのが好ましい。   There is no limitation on the method of supplying particles to the airflow classifier, but it is preferable to use a vibration feeder, a belt feeder, a circle feeder, or a screw feeder.

本発明において、質量分級は1回のみ行ってもよいし、2回以上行うこともできる。例えば、1回目の質量分級によって相対的に質量の大きい粒子(以下、本明細書において、分級後の相対的に質量またはサイズが大きい画分の粒子を「粗粉」と呼ぶ)を取り除き、得られた相対的に質量の小さい粒子(以下、同様に、相対的に質量またはサイズが小さい画分の粒子を「微粉」と呼ぶ)を対象に再度質量分級を行って、一次分級で選別された微粉の中でさらに相対的に質量の小さい微粉を取り除き、粗粉を選別することで、粒子径および形態の揃ったセラミック粒子を得ることができる。粗粉、微粉を取り除く順序は上記に限定されず、適宜設計され得る。   In the present invention, the mass classification may be performed only once, or may be performed twice or more. For example, particles having a relatively large mass (hereinafter, the particles of a fraction having a relatively large mass or size after classification are referred to as “coarse particles”) are removed by the first mass classification to obtain The particles having a relatively small mass (hereinafter, the particles of a fraction having a relatively small mass or size are also referred to as “fine powder”) are subjected to mass classification again, and are sorted by the primary classification. It is possible to obtain ceramic particles having a uniform particle size and morphology by removing fine powder having a relatively small mass from the fine powder and selecting a coarse powder. The order of removing the coarse powder and the fine powder is not limited to the above and may be appropriately designed.

本発明の製造方法において、質量分級の対象とするセラミック粒子は、金属酸化物を成形し、さらに焼結した後の粒子であっても、金属酸化物を成形した後、焼結する前の粒子であってもよいが、焼結した後の粒子であることがより好ましい。   In the production method of the present invention, the ceramic particles to be subjected to mass classification are particles after molding the metal oxide and further sintering, even after molding the metal oxide, particles before sintering. However, it is more preferable that the particles are particles after sintering.

本発明のセラミックビーズの製造方法において、セラミック粒子を焼成するための工程を有することが好ましい。セラミック粒子を焼成することにより、緻密なセラミック粒子を得ることができる。セラミック粒子を焼結するための焼成温度は、原料粉末の種類によって様々であるが、十分に緻密化ができる温度であればよい。例えばアルミナであれば1550℃〜1650℃、部分安定化ジルコニアであれば1350℃〜1500℃で焼成することができる。   The method for producing ceramic beads of the present invention preferably has a step for firing the ceramic particles. By firing the ceramic particles, dense ceramic particles can be obtained. The firing temperature for sintering the ceramic particles varies depending on the type of raw material powder, but may be any temperature at which sufficient densification can be achieved. For example, alumina can be fired at 1550 ° C to 1650 ° C, and partially stabilized zirconia can be fired at 1350 ° C to 1500 ° C.

また、本発明の製造方法においては、質量分級に加え、さらに粒子径の差を利用して分級する従来同様の粒子径分級を併せて行うことがより好ましい。粒子径分級を行うことで、質量分級で除去しやすい歪な形状と粒子径分級で除去しやすい歪な形状の両方を取り除くことができ、形状が揃ったセラミックビーズを得ることができる。粒子径分級は、焼成工程にて形状が歪なセラミック粒子が生成されやすいことから、焼成工程後のセラミック粉末について行うことが好ましい。   Further, in the production method of the present invention, in addition to mass classification, it is more preferable to perform particle size classification similar to the conventional one in which classification is performed by utilizing the difference in particle size. By performing the particle size classification, both the distorted shape that is easily removed by the mass classification and the distorted shape that is easily removed by the particle size classification can be removed, and ceramic beads having a uniform shape can be obtained. The particle size classification is preferably performed on the ceramic powder after the firing step because ceramic particles having a distorted shape are likely to be generated in the firing step.

粒子径分級の方法は特に限定されないが、篩分級機を用いることが好ましい。篩分級機は、篩を2段重ねて、相対的に粒子径の大きい粗粉と相対的に粒子径の小さい微粉を1回の操作で取り除くよう構成しても良い。   The method of particle size classification is not particularly limited, but it is preferable to use a sieve classifier. The sieve classifier may be configured such that two sieves are stacked and the coarse powder having a relatively large particle diameter and the fine powder having a relatively small particle diameter are removed by one operation.

本発明は、いかなる金属酸化物を原料とするセラミックビーズにも適用できる。金属酸化物としては、アルミナ、ジルコニア、シリカ、イットリア、酸化アルミニウム、酸化ジルコニウム、酸化イットリウム、窒化珪素、炭化珪素、窒化チタン、ゼオライト、ジルコン等が挙げられ、単独でもよいし適宜混合して用いてもよい。中でも、ジルコニアを原料とするセラミックビーズに適用することが特に好ましい。   The present invention can be applied to ceramic beads made of any metal oxide. Examples of the metal oxide include alumina, zirconia, silica, yttria, aluminum oxide, zirconium oxide, yttrium oxide, silicon nitride, silicon carbide, titanium nitride, zeolite, zircon, and the like, which may be used alone or may be appropriately mixed and used. Good. Above all, it is particularly preferable to apply it to ceramic beads made of zirconia.

本発明のセラミックビーズの製造方法により製造されたセラミックビーズは、被粉砕物への歪なビーズの混入を防止することができることから、粉砕用メディアとして好適に使用される。   The ceramic beads produced by the method for producing ceramic beads of the present invention can prevent the distorted beads from being mixed into the object to be pulverized, and thus are suitably used as a pulverizing medium.

[測定例1:平均粒子径・針状比]
デジタルマイクロスコープVHX−2000(キーエンス社製)を用いて、約100個のセラミック粒子を撮影した。測定のバラツキを無くし、精度良く評価するために、一視野ごとに撮影した複数の画像を結合し、測定用画像を得た。画像解析・計測ソフトウェアWinROOF(登録商標:三谷商事社製)を用いて測定用画像の明度を基準として2値化することでセラミック粒子部と基材部を分離し、二値化画像を得た。二値化画像を円形図形分離し、分離したそれぞれの円の直径を測定し、セラミック粒子の平均粒子径を求めた。
[Measurement Example 1: Average particle size and acicular ratio]
About 100 ceramic particles were photographed using a digital microscope VHX-2000 (manufactured by Keyence Corporation). In order to eliminate the variation in measurement and evaluate with high accuracy, a plurality of images taken for each visual field were combined to obtain a measurement image. Binarized image was obtained by separating the ceramic particle portion and the base material portion by binarizing the brightness of the measurement image using the image analysis / measurement software WinROOF (registered trademark: manufactured by Mitani Corporation) as a reference. . The binarized image was separated into circular figures, the diameter of each separated circle was measured, and the average particle diameter of the ceramic particles was determined.

また、
・絶対最大長:セラミック粒子の直径において、最も大きい径となる値。
・対角幅:絶対最大長に対して垂直となる直径で最も大きい径となる値。
を求め、
針状比=絶対最大長/対角幅
から針状比を求めた。針状比が小さいほど、セラミック粒子の形状が揃っていることを示す。
Also,
-Absolute maximum length: A value that is the largest in the diameter of ceramic particles.
-Diagonal width: A value that is the largest diameter perpendicular to the absolute maximum length.
Seeking
The acicular ratio was calculated from acicular ratio = absolute maximum length / diagonal width. The smaller the acicular ratio, the more uniform the shape of the ceramic particles.

[実施例1]
図1に示す手順でセラミックビーズを作製した。
[Example 1]
Ceramic beads were produced by the procedure shown in FIG.

まず、ジルコニア粉末を噴霧乾燥法で成形することによりセラミック粒子(1)を作製した。このセラミック粒子(1)を、目開き90μmの篩網を有する円型振動篩機(ダルトン社製振動篩401)に通し、篩網を通過しなかった粗粉を取り除き、篩網を通過した微粉を選別した(粒子径分級)。その後、当該微粉を1400℃で焼結し、平均粒子径60μm、針状比1.30のセラミック粒子(2)を得た。   First, ceramic particles (1) were prepared by molding zirconia powder by a spray drying method. The ceramic particles (1) were passed through a circular vibrating sieve machine (vibrating sieve 401 manufactured by Dalton Co.) having a sieve mesh of 90 μm to remove coarse powder that did not pass through the sieve mesh, and fine powder that passed through the sieve mesh. Were selected (particle size classification). Then, the fine powder was sintered at 1400 ° C. to obtain ceramic particles (2) having an average particle diameter of 60 μm and an acicular ratio of 1.30.

続いて、気流式分級機として強制渦遠心式分級機(日清エンジニアリング社製TC−15)を用い、回転数500rpm、風量8.5m/minとして気流式分級(1)を行い、相対的に質量が大きい粗粉を取り除いた。更に、残った微粉を選別して、回転数650rpm、風量を8.5m/minの条件で気流式分級(2)を行って相対的に質量の小さい微粉を取り除くことで、平均粒子径50μm、針状比は1.14のセラミック粒子(3)を得た。 Subsequently, using a forced vortex centrifugal classifier (TC-15 manufactured by Nisshin Engineering Co., Ltd.) as an airflow classifier, airflow classification (1) was performed at a rotation speed of 500 rpm and an air volume of 8.5 m 3 / min. The coarse powder with a large mass was removed. Further, the remaining fine powder is selected, and the air-flow classification (2) is performed under the conditions of a rotation speed of 650 rpm and an air volume of 8.5 m 3 / min to remove the fine powder having a relatively small mass to obtain an average particle diameter of 50 μm. A ceramic particle (3) having an acicular ratio of 1.14 was obtained.

次に、円型振動篩機(ダルトン社製振動篩401)に目開き66μmと目開き35μmの篩網を2段に取り付け、篩分級機による分級(粒子径分級)を行うことで、目開き66μmの篩を通過しなかった粗粉と、両方の篩を通過した微粉を取り除き、目開き35μmの篩上からセラミック粒子(4)を得た。得られたセラミック粒子の平均粒子径は50μm、針状比は1.04であった。   Next, a circular vibrating screener (vibrating screen 401 manufactured by Dalton Co., Ltd.) was fitted with two sieve meshes with openings of 66 μm and openings of 35 μm, and classification (particle size classification) was carried out by a sieve classifier to open the openings. The coarse powder that did not pass through the 66 μm sieve and the fine powder that passed through both sieves were removed, and ceramic particles (4) were obtained from above the sieve with an opening of 35 μm. The average particle size of the obtained ceramic particles was 50 μm, and the acicular ratio was 1.04.

[実施例2]
図2に示す手順でセラミックビーズを作製した。
[Example 2]
Ceramic beads were produced by the procedure shown in FIG.

ジルコニア粉末を転動造粒法で造粒することによりセラミック粒子(1)を作製した。このセラミック粒子(1)を、目開き154μmの篩を有する円型振動篩機(ダルトン社製振動篩401)に通し、篩を通過しなかった粗粉を取り除き、篩を通過した微粉を選別した(粒子径分級)。当該微粉を1400℃で焼結し、平均粒子径110μm、針状比1.28のセラミック粒子(2)を得た。   Ceramic particles (1) were produced by granulating zirconia powder by a tumbling granulation method. The ceramic particles (1) were passed through a circular vibrating screen machine (vibrating screen 401 manufactured by Dalton Co.) having a screen with an opening of 154 μm to remove coarse powder that did not pass through the screen and select fine powder that passed through the screen. (Particle size classification). The fine powder was sintered at 1400 ° C. to obtain ceramic particles (2) having an average particle diameter of 110 μm and an acicular ratio of 1.28.

続いて、気流式分級機として強制渦遠心式分級機(日清エンジニアリング社製TC−15)を用い、回転数400rpm、風量を9.0m/minとして気流式分級(1)を行い、相対的に質量が大きい粗粉を取り除いた。更に残った微粉に対して回転数500rpm、風量を8.7m/minの条件で気流式分級(2)を行って相対的に質量の小さい微粉を取り除くことで、平均粒子径100μm、針状比が1.13のセラミック粒子(3)を得た。 Subsequently, using a forced vortex centrifugal classifier (TC-15 manufactured by Nisshin Engineering Co., Ltd.) as an airflow classifier, airflow classification (1) was performed at a rotation speed of 400 rpm and an air volume of 9.0 m 3 / min. The coarse powder having a large mass was removed. Further, the remaining fine powder is subjected to airflow classification (2) under the conditions of a rotation speed of 500 rpm and an air flow rate of 8.7 m 3 / min to remove the fine powder having a relatively small mass to obtain an average particle diameter of 100 μm and a needle shape. Ceramic particles (3) with a ratio of 1.13 were obtained.

次に振動式篩分級機による粒子径の分級として円型振動篩機(ダルトン社製振動篩401)に目開き132μmと目開き77μmの篩網を2段に取り付け、篩分級機による分級(粒子径分級)を行うことで、目開き77μmの篩上からセラミック粒子(4)を得た。得られたセラミック粒子の平均粒子径は100μm、針状比は1.03であった。   Next, as a particle size classification by a vibrating screen classifier, a circular vibrating screen machine (vibrating screen 401 manufactured by Dalton Co., Ltd.) was equipped with a sieve net of 132 μm openings and 77 μm openings in two stages, and classification by the screen classifier (particles By carrying out size classification), ceramic particles (4) were obtained from above the sieve having an opening of 77 μm. The obtained ceramic particles had an average particle size of 100 μm and an acicular ratio of 1.03.

[実施例3]
図3に示す手順でセラミックビーズを作製した。
[Example 3]
Ceramic beads were produced by the procedure shown in FIG.

まず、ジルコニア粉末を噴霧乾燥法で造粒することによりセラミック粒子(1)を作製した。このセラミック粒子(1)を、目開き90μmの篩網を有する円型振動篩機(ダルトン社製振動篩401)に通し、篩を通過しなかった粒子を取り除き、篩を通過した微粉を選別した(粒子径分級)。その後、当該微粉を1400℃で焼結し、平均粒子径60μm、針状比1.30のセラミック粒子(2)を得た。   First, ceramic particles (1) were produced by granulating a zirconia powder by a spray drying method. The ceramic particles (1) were passed through a circular vibrating sieve machine (vibrating sieve 401 manufactured by Dalton Co.) having a sieve mesh of 90 μm to remove particles that did not pass through the sieve and select fine powder that passed through the sieve. (Particle size classification). Then, the fine powder was sintered at 1400 ° C. to obtain ceramic particles (2) having an average particle diameter of 60 μm and an acicular ratio of 1.30.

続いて振動式篩分級機による粒子径による分級の手段として円型振動篩機(ダルトン製振動篩401)に目開き66μmと目開き34μmの篩網を2段に取り付け、篩分級機による分級(粒子径分級)を行うことで、目開き34μmの篩網上からセラミック粒子(3)を得た。得られたセラミック粒子(3)は平均粒子径50μm、針状比が1.18であった。   Subsequently, as a means for classifying by the particle diameter by the vibrating screen classifier, a circular vibrating screen machine (Dalton vibrating screen 401) was equipped with a sieve net of 66 μm openings and 34 μm openings in two stages, and classification by the screen classifier ( By performing particle size classification), ceramic particles (3) were obtained on a sieve mesh having an opening of 34 μm. The obtained ceramic particles (3) had an average particle diameter of 50 μm and an acicular ratio of 1.18.

次に気流式分級機として強制渦遠心式分級機(日清エンジニアリング社製TC−15)を用い、回転数500rpm、風量8.5m/minとして気流式分級(1)を行い、相対的に質量が大きい粗粉を取り除いた。更に、残った微粉に対して回転数650rpm、風量を8.5m/minの条件で気流式分級(2)を行って相対的に質量の小さい微粉を取り除くことで、平均粒子径50μm、針状比は1.05のセラミック粒子(4)を得た。 Next, a forced vortex centrifugal classifier (TC-15 manufactured by Nisshin Engineering Co., Ltd.) was used as an airflow classifier, and airflow classification (1) was performed at a rotation speed of 500 rpm and an air volume of 8.5 m 3 / min, and relatively. The coarse powder having a large mass was removed. Further, the remaining fine powder is subjected to airflow classification (2) under the conditions of a rotation speed of 650 rpm and an air volume of 8.5 m 3 / min to remove the fine powder having a relatively small mass to obtain an average particle diameter of 50 μm and a needle. Ceramic particles (4) having a state ratio of 1.05 were obtained.

[実施例4]
図4に示す手順でセラミックビーズを作製した。
[Example 4]
Ceramic beads were produced by the procedure shown in FIG.

ジルコニア粉末を転動造粒法で造粒することによりセラミック粒子(1)を作製した。このセラミック粒子(1)を、目開き90μmの篩網を有する円型振動篩機(ダルトン社製振動篩401)に通し、篩網を通過しなかった粒子を取り除き、篩を通過した微粉を選別した(粒子径分級)。その後、当該微粉を1400℃で焼結し、平均粒子径60μm、針状比1.30のセラミック粒子(2)を得た。   Ceramic particles (1) were produced by granulating zirconia powder by a tumbling granulation method. The ceramic particles (1) are passed through a circular vibrating screener (vibrating screen 401 manufactured by Dalton Co.) having a screen of 90 μm openings to remove particles that have not passed through the screen and select fine powder that has passed through the screen. (Particle size classification). Then, the fine powder was sintered at 1400 ° C. to obtain ceramic particles (2) having an average particle diameter of 60 μm and an acicular ratio of 1.30.

次に気流式分級機として強制渦遠心式分級機(日清エンジニアリング社製TC−15)を用い、回転数500rpm、風量8.5m/minとして気流式分級(1)を行い、相対的に質量が大きい粗粉を取り除いた。更に、残った微粉に対して回転数650rpm、風量を8.5m/minの条件で気流式分級(2)を行って相対的に質量の小さい微粉を取り除くことで、平均粒子径50μm、針状比は1.15のセラミック粒子(4)を得た。 Next, a forced vortex centrifugal classifier (TC-15 manufactured by Nisshin Engineering Co., Ltd.) was used as an airflow classifier, and airflow classification (1) was performed at a rotation speed of 500 rpm and an air volume of 8.5 m 3 / min, and relatively. The coarse powder having a large mass was removed. Further, the remaining fine powder is subjected to airflow classification (2) under the conditions of a rotation speed of 650 rpm and an air volume of 8.5 m 3 / min to remove the fine powder having a relatively small mass to obtain an average particle diameter of 50 μm and a needle. Ceramic particles (4) having a state ratio of 1.15 were obtained.

更に同強制渦遠心式分級機を用い、回転数500rpm、風量8.5m/minとして気流式分級(3)を行い、相対的に質量が大きい粗粉を取り除いた。更に、残った微粉に対して回転数650rpm、風量を8.5m/minの条件で気流式分級(4)を行って相対的に質量の小さい微粉を取り除くことで、平均粒子径50μm、針状比は1.10のセラミック粒子(4)を得た。 Further, using the forced vortex centrifugal classifier, airflow type classification (3) was performed at a rotation speed of 500 rpm and an air flow rate of 8.5 m 3 / min to remove coarse powder having a relatively large mass. Further, the remaining fine powder is subjected to airflow classification (4) under the conditions of a rotation speed of 650 rpm and an air volume of 8.5 m 3 / min to remove the fine powder having a relatively small mass to obtain an average particle diameter of 50 μm and a needle. Ceramic particles (4) having a state ratio of 1.10 were obtained.

[比較例1]
図5に示す手順でセラミックビーズを作製した。
[Comparative Example 1]
Ceramic beads were produced by the procedure shown in FIG.

ジルコニア粉末を転動造粒法で造粒することによりセラミック粒子(1)を作製した。このセラミック粒子(1)を、目開き90μmの篩網を有する円型振動篩機(ダルトン社製振動篩401)に通し、篩網を通過しなかった粒子を取り除き、篩を通過した微粉を選別した(粒子径分級)。その後、当該微粉を1400℃で焼結し、平均粒子径60μm、針状比1.30のセラミック粒子(2)を得た。   Ceramic particles (1) were produced by granulating zirconia powder by a tumbling granulation method. The ceramic particles (1) are passed through a circular vibrating screener (vibrating screen 401 manufactured by Dalton Co.) having a screen of 90 μm openings to remove particles that have not passed through the screen and select fine powder that has passed through the screen. (Particle size classification). Then, the fine powder was sintered at 1400 ° C. to obtain ceramic particles (2) having an average particle diameter of 60 μm and an acicular ratio of 1.30.

次に振動式篩分級機による粒子径の分級として円型振動篩機(ダルトン製振動篩401)に目開き66μmと目開き34μmの篩網を2段に取り付け、篩分級機による分級(粒子径分級)を行うことで、目開き34μmの篩網上からセラミック粒子(3)を得た。得られた粒子の平均粒子径は50μm、針状比は1.20であった。   Next, as a particle size classification by a vibrating screen classifier, a circular vibrating screener (Dalton vibrating screen 401) was equipped with a sieve mesh with openings of 66 μm and openings of 34 μm in two stages, and classification with a screen classifier (particle size By performing classification), ceramic particles (3) were obtained on a sieve mesh having an opening of 34 μm. The obtained particles had an average particle size of 50 μm and an acicular ratio of 1.20.

更に円型振動篩機(ダルトン社製振動篩401)で同じ条件による分級をもう一度繰り返し行い、34μmの篩網上からセラミック粒子(4)を得た。得られた粒子の平均粒子径は50μm、針状比は1.19であった。   Further, classification was repeated once again under the same conditions using a circular vibrating screener (vibrating screen 401 manufactured by Dalton) to obtain ceramic particles (4) from a screen of 34 μm. The obtained particles had an average particle size of 50 μm and an acicular ratio of 1.19.

Claims (10)

セラミック粒子を分級する分級工程を1回または複数回有するセラミックビーズの製造方法であって、前記分級工程のうち少なくとも1回において、前記セラミック粒子の質量差を利用した質量分級を行うことを特徴とするセラミックビーズの製造方法。 A method for producing ceramic beads having one or more classification steps for classifying ceramic particles, wherein mass classification using a mass difference of the ceramic particles is performed in at least one of the classification steps. Method for producing ceramic beads. 前記質量分級を気流式分級機により行う、請求項1に記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to claim 1, wherein the mass classification is performed by an airflow classifier. 前記気流式分級機として強制渦遠心式分級機を用いる、請求項2に記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to claim 2, wherein a forced vortex centrifugal classifier is used as the airflow classifier. 前記質量分級に供されるセラミック粒子の平均粒子径が10〜154μmである、請求項1〜3のいずれかに記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to claim 1, wherein the ceramic particles used for the mass classification have an average particle diameter of 10 to 154 μm. 前記質量分級に供されるセラミック粒子は、金属酸化物を成形し、さらに焼結を行った後のセラミック粒子である、請求項1〜4のいずれかに記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to claim 1, wherein the ceramic particles to be subjected to the mass classification are ceramic particles obtained by molding a metal oxide and further sintering the metal oxide. 前記質量分級に供されるセラミック粒子は、金属酸化物を成形した後、焼結を行う前のセラミック粒子である、請求項1〜4のいずれかに記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to any one of claims 1 to 4, wherein the ceramic particles used for the mass classification are ceramic particles after molding a metal oxide and before sintering. 前記分級工程を複数回有し、前記質量分級に加え、さらに粒子径の差を利用した粒子径分級を行う、請求項1〜6のいずれかに記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to claim 1, wherein the classification step is performed a plurality of times, and in addition to the mass classification, particle size classification utilizing a difference in particle diameter is performed. 前記粒子径分級を篩分級機により行う、請求項7に記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to claim 7, wherein the particle size classification is performed by a sieve classifier. 粉砕用メディアとして使用されるセラミックビーズを製造する、請求項1〜8のいずれかに記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to any one of claims 1 to 8, wherein ceramic beads used as a grinding medium are produced. ジルコニアを原料とするセラミックビーズを製造するための、請求項1〜9のいずれかに記載のセラミックビーズの製造方法。 The method for producing ceramic beads according to any one of claims 1 to 9, for producing ceramic beads made of zirconia.
JP2019165184A 2018-09-14 2019-09-11 Method for producing ceramic beads Pending JP2020075849A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172250 2018-09-14
JP2018172250 2018-09-14

Publications (1)

Publication Number Publication Date
JP2020075849A true JP2020075849A (en) 2020-05-21

Family

ID=70723497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165184A Pending JP2020075849A (en) 2018-09-14 2019-09-11 Method for producing ceramic beads

Country Status (1)

Country Link
JP (1) JP2020075849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215388A1 (en) 2020-04-22 2021-10-28 ヤマハ発動機株式会社 Straddled vehicle
WO2023025588A1 (en) * 2021-08-25 2023-03-02 Ivoclar Vivadent Ag Method for producing granular zirconium oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215388A1 (en) 2020-04-22 2021-10-28 ヤマハ発動機株式会社 Straddled vehicle
WO2023025588A1 (en) * 2021-08-25 2023-03-02 Ivoclar Vivadent Ag Method for producing granular zirconium oxide

Similar Documents

Publication Publication Date Title
US6616734B2 (en) Dynamic filtration method and apparatus for separating nano powders
KR100263596B1 (en) Firing sol-gel alumina particles
JP2020075849A (en) Method for producing ceramic beads
JP5634198B2 (en) Crushed sand and crushed stone production system
JP2010064049A (en) Vane for classifier, classifier, and method of manufacturing powder
EP1070543A1 (en) Disintegrating and grain-regulating device for granules
JP4288651B2 (en) Aggregate grinding system
WO2016126961A1 (en) Closed-loop centrifugal air classifying system and method for utilizing the same
JP2017517472A (en) Ball milling method of aluminum metaphosphate
CN112262113A (en) Dry preparation of kaolin in the manufacture of high purity alumina
US4793917A (en) Centrifugal classifier for superfine powders
US9527112B2 (en) Dynamic separator for pulverulent materials
JP4092568B2 (en) Method for producing fine powder silicon or silicon compound
JP2008080282A (en) Sizing and classification apparatus
JPWO2022138037A5 (en)
US6202854B1 (en) Air classifier for particulate material
JP6079729B2 (en) Manufacturing method and manufacturing equipment of sintered raw material granulated product
JP3200294U (en) Screen type classifier
CN111484016A (en) Production process of silicon carbide fine powder (70F)
Muscolino Mechanical centrifugal air classifiers
JP5910588B2 (en) Granulation equipment and granulation method
JPH0574681U (en) Multi-stage classifier
JP2720123B2 (en) Method for producing piezoelectric ceramic microspheres for piezoelectric elastomer
JP2004155630A (en) Alumina particle and method of manufacturing the same
JPH1147693A (en) Screening method of granular material