JP2020072119A - Proximity sensor package, proximity sensor device, and electronic module - Google Patents

Proximity sensor package, proximity sensor device, and electronic module Download PDF

Info

Publication number
JP2020072119A
JP2020072119A JP2018202958A JP2018202958A JP2020072119A JP 2020072119 A JP2020072119 A JP 2020072119A JP 2018202958 A JP2018202958 A JP 2018202958A JP 2018202958 A JP2018202958 A JP 2018202958A JP 2020072119 A JP2020072119 A JP 2020072119A
Authority
JP
Japan
Prior art keywords
recess
proximity sensor
light emitting
light receiving
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018202958A
Other languages
Japanese (ja)
Other versions
JP7072486B2 (en
Inventor
鬼塚 善友
Yoshitomo Onizuka
善友 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018202958A priority Critical patent/JP7072486B2/en
Publication of JP2020072119A publication Critical patent/JP2020072119A/en
Application granted granted Critical
Publication of JP7072486B2 publication Critical patent/JP7072486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a proximity sensor package or the like that can further reduce the size of a proximity sensor device used in a mobile terminal such as a mobile phone or a smartphone.SOLUTION: A proximity sensor package according to the present invention includes a main surface 102, includes a wiring board 100 in which a first recess 104 that is located on the main surface 102, and in which a light emitting element 106 is mounted on a first mounting portion 104a, and a second recessed portion 105 in which a light receiving element 107 is mounted on a second mounting portion 105a are located, the second mounting portion 105a is rectangular in plan view, and the first recess 104 is located on the corner side of the second mounting portion 105a, and in plan view, a wall portion 110 between the first recess 104 and the second recess 105 includes a curved portion 111.SELECTED DRAWING: Figure 1

Description

本発明は、発光素子および受光素子が搭載される一対の凹部を有する近接センサ装置等に用いられる近接センサ用パッケージ、近接センサ装置および電子モジュールに関するものである。   The present invention relates to a proximity sensor package, a proximity sensor device, and an electronic module used in a proximity sensor device or the like having a pair of recesses in which a light emitting element and a light receiving element are mounted.

従来、携帯電話、スマートフォン等の携帯端末において、ユーザーの顔と携帯端末の距離を検知するために、近接センサ装置等の光センサ装置が用いられている。光センサ装置として、例えば、赤外線発光素子等の発光素子および赤外線受光素子等の受光素子が矩形状の基板に搭載されたものが用いられる。このような光センサ装置は、発光素子等が搭載される発光素子用の凹部と、受光素子等が搭載される受光素子用の凹部の2つの凹部が互いに隣接して位置した基板上に、これらの素子が搭載されて構成されている。   Conventionally, in a mobile terminal such as a mobile phone or a smartphone, an optical sensor device such as a proximity sensor device is used to detect the distance between the face of the user and the mobile terminal. As the optical sensor device, for example, a device in which a light emitting element such as an infrared light emitting element and a light receiving element such as an infrared light receiving element are mounted on a rectangular substrate is used. In such an optical sensor device, a recess for a light emitting element on which a light emitting element or the like is mounted and a recess for a light receiving element on which a light receiving element or the like is mounted are provided on a substrate on which two recesses are located adjacent to each other. The device is mounted and configured.

そして、発光素子用の凹部に搭載された発光素子から、配線基板の上方に赤外線等の光が照射され、さらにその照射された光の一部が、ユーザーの顔等の物体(被検知物)で反射され、受光素子用の凹部に搭載された受光素子で検知されることにより、物体と携帯端末の距離を検知することが可能となる。この受光の有無および強弱によって、物体が光センサ装置の近くに位置するか否かが検知される。   Then, light such as infrared rays is emitted above the wiring board from the light emitting element mounted in the recess for the light emitting element, and a part of the emitted light is an object (detected object) such as the face of the user. The distance between the object and the mobile terminal can be detected by being reflected by and detected by the light receiving element mounted in the recess for the light receiving element. Whether or not the object is located near the optical sensor device is detected based on the presence / absence and strength of this light reception.

特表2013−519995号公報Special Table 2013-519995

しかしながら、近年、携帯電話、スマートフォン等の携帯端末の小型化が進んでおり、このような近接センサ装置のさらなる小型化が求められてきている。例えば、現在使用されているスマートフォンに搭載される近接センサ装置は、発光素子用の凹部と受光素子用の凹部とが並んで配置されるように、配線基板の主面に2つの凹部が位置している。   However, in recent years, mobile terminals such as mobile phones and smartphones have been downsized, and further miniaturization of such proximity sensor devices has been demanded. For example, in a proximity sensor device currently mounted on a smartphone, two concave portions are located on the main surface of the wiring board so that the concave portion for the light emitting element and the concave portion for the light receiving element are arranged side by side. ing.

これは、赤外線発光素子等が搭載される発光素子用の凹部と、赤外線受光素子等が搭載される受光素子用の凹部の2つの凹部が互いに隣接して位置した配線基板上に、これらの素子が搭載されて光センサ装置が構成されているためである。つまり、発光素子から照射された赤外線等の光が直接受光素子で検知されてしまい、誤作動するのを防止するためであり、発光素子用の凹部と受光素子用の凹部の2つの凹部との間に所定の壁幅を持つ壁部を位置させる必要があった。壁部の壁幅が薄くなるとセラミック部材でも壁部を光が透過して、発光素子から照射される光が直接受光素子で検知される可能性がある。   This is because, on a wiring board, two recesses, a recess for a light emitting element on which an infrared light emitting element or the like is mounted and a recess for a light receiving element on which an infrared light receiving element or the like are mounted, are located adjacent to each other. This is because the optical sensor device is configured by mounting the. In other words, this is to prevent light such as infrared rays emitted from the light-emitting element from being directly detected by the light-receiving element and malfunctioning. Therefore, there are two recesses, one for the light-emitting element and one for the light-receiving element. It was necessary to position a wall portion having a predetermined wall width between them. If the wall width of the wall portion becomes thin, the light may pass through the wall portion even in the ceramic member, and the light emitted from the light emitting element may be directly detected by the light receiving element.

本発明の1つの態様の近接センサ用パッケージは、主面を有しており、該主面に位置し、発光素子が第1搭載部に搭載される第1凹部、および受光素子が第2搭載部に搭載される第2凹部が位置した配線基板を含み、平面視で前記第2搭載部が方形状であり、前記第1凹部が前記第2搭載部の角部側に位置しており、平面視において、前記第1凹部と前記第2凹部との間の壁部が曲部を有している。   A proximity sensor package according to one aspect of the present invention has a main surface, a first recess located on the main surface, in which a light emitting element is mounted on a first mounting portion, and a light receiving element is mounted on a second mounting surface. A wiring board in which a second recessed portion to be mounted on the second mounting portion is located, the second mounting portion has a rectangular shape in plan view, and the first recessed portion is located on the corner side of the second mounting portion, In a plan view, the wall portion between the first concave portion and the second concave portion has a curved portion.

また、本発明の1つの態様の近接センサ用パッケージは、平面視において、前記第2搭載部と前記曲部との間隔が漸次大きくなっている。   Further, in the proximity sensor package of one aspect of the present invention, the distance between the second mounting portion and the curved portion is gradually increased in plan view.

また、本発明の1つの態様の近接センサ用パッケージは、平面視において、前記第2凹部が、外側に突出する補助凹部を有しており、該補助凹部の突出する方向の仮想延長領域と前記第1凹部が重ならず、前記補助凹部の突出する方向に垂直に交わる方向における側面透視において、前記補助凹部と前記第1凹部が重なっている。   Further, in a proximity sensor package according to one aspect of the present invention, the second recess has an auxiliary recess protruding outward in a plan view, and a virtual extension region in a protruding direction of the auxiliary recess and the auxiliary recess. The first recesses do not overlap each other, and the auxiliary recesses and the first recesses overlap each other in a side view in a direction perpendicular to the protruding direction of the auxiliary recesses.

本発明の1つの態様の近接センサ装置は、上記記載のいずれかに記載の近接センサ用パッケージと、前記第1凹部に搭載された発光素子と、前記第2凹部に搭載された受光素子とを有している。   A proximity sensor device according to one aspect of the present invention includes the proximity sensor package according to any one of the above, a light emitting element mounted in the first recess, and a light receiving element mounted in the second recess. Have

本発明の1つの態様の電子モジュールは、接続導体を有するモジュール用基板と、複数の外部接続導体が前記接続導体に接続された請求項6に記載の近接センサ装置とを有している。   An electronic module according to one aspect of the present invention includes a module substrate having a connection conductor, and the proximity sensor device according to claim 6 in which a plurality of external connection conductors are connected to the connection conductor.

本発明の1つの態様の近接センサ用パッケージによれば、主面を有しており、主面に位置し、発光素子が第1搭載部に搭載される第1凹部、および受光素子が第2搭載部に搭載される第2凹部が位置した配線基板を含み、平面視で第2搭載部が方形状であり、第1凹部が第2搭載部の角部側に位置していることから、配線基板を小型化しながらも発光素子と受光素子との間隔を大きくできる。つまり、配線基板の一方の角部の近傍に発光素子を搭載する第1凹部を位置させておき、さらに第1凹部が第2搭載部の角部側に位置するように、一方の角部の対角上の他方の角部の近傍に受光素子を搭載する第2凹部を位置させることにより、小型化されて限られた大きさの配線基板に有効に発光素子と受光素子を配置することができる。よって、近接センサ装置200を小型化でき、信頼性に優れた配線基
板を提供できる。
According to the proximity sensor package of one aspect of the present invention, the proximity sensor package has the main surface, the first recess is located on the main surface, and the light emitting element is mounted on the first mounting portion, and the light receiving element is the second. Since the second mounting portion has a rectangular shape in plan view and the first recess is located on the corner side of the second mounting portion, the wiring substrate includes the wiring board in which the second recessed portion mounted on the mounting portion is located. The distance between the light emitting element and the light receiving element can be increased while reducing the size of the wiring board. That is, the first concave portion for mounting the light emitting element is positioned near one corner portion of the wiring board, and the one concave portion is positioned so that the first concave portion is positioned on the corner portion side of the second mounting portion. By positioning the second recess for mounting the light receiving element in the vicinity of the other diagonally opposite corner, it is possible to effectively arrange the light emitting element and the light receiving element on the wiring board which is downsized and has a limited size. it can. Therefore, the proximity sensor device 200 can be downsized, and a highly reliable wiring board can be provided.

本発明の1つの態様の近接センサ装置によれば、配線基板を小型化しながらも発光素子と受光素子との間隔を大きくでき、物体を検知する際の誤作動が抑制された装置を実現できる。   According to the proximity sensor device of one aspect of the present invention, it is possible to realize a device in which the distance between the light emitting element and the light receiving element can be increased while the wiring board is downsized, and malfunctions when detecting an object are suppressed.

本発明の1つの態様の電子モジュールによれば、スマートフォン等の携帯端末の小型化が可能であり、物体を検知する際の誤作動が抑制されたモジュールを実現できる。   According to the electronic module of one aspect of the present invention, it is possible to reduce the size of a mobile terminal such as a smartphone and realize a module in which malfunctions when detecting an object are suppressed.

(a)は、本発明の実施形態の近接センサ用パッケージ、近接センサ装置を示す平面図、(b)はモジュール用基板を含むX−X線における断面図である。(A) is a top view which shows the proximity sensor package and proximity sensor apparatus of embodiment of this invention, (b) is sectional drawing in the XX line containing a module substrate. (a)は、本発明の実施形態の近接センサ用パッケージ、近接センサ装置を示す平面図、(b)はモジュール用基板を含むY−Y線における断面図である。(A) is a top view which shows the proximity sensor package and proximity sensor apparatus of embodiment of this invention, (b) is sectional drawing in the YY line containing a module substrate. 本発明の実施形態の近接センサ用パッケージ、近接センサ装置の他の実施例を示す、図1(b)に対応する断面図である。It is sectional drawing corresponding to FIG.1 (b) which shows the package for proximity sensor of embodiment of this invention, and the other Example of a proximity sensor apparatus. 本発明の実施形態の近接センサ用パッケージ、近接センサ装置の他の実施例を示す、図2(b)に対応する断面図である。It is sectional drawing corresponding to FIG.2 (b) which shows the package for proximity sensors of embodiment of this invention, and the other Example of a proximity sensor apparatus. 本発明の実施形態の近接センサ用パッケージが搭載されたスマートフォンを示す、平面透視図である。It is a plane perspective view which shows the smart phone by which the package for proximity sensors of embodiment of this invention was mounted.

本発明の近接センサ用パッケージ、近接センサ装置および電子モジュールについて、添付の図面を参照しつつ説明する。   The proximity sensor package, proximity sensor device, and electronic module of the present invention will be described with reference to the accompanying drawings.

近接センサ用パッケージは、図1(a)で示したように、平面視で矩形状の配線基板10
0を含んでいる。配線基板100の主面102には、発光素子106が搭載される第1凹部104、お
よび受光素子107が搭載される第2凹部105が位置している。また、第2搭載部105aは方
形状であり、第1凹部104が第2搭載部105aの角部側に位置しており、第1凹部104と第
2凹部105との間に曲部111を含む壁部110を有している。さらに、第2凹部105が、外側に突出する補助凹部112を有している。
As shown in FIG. 1A, the proximity sensor package has a rectangular wiring board 10 in a plan view.
Contains 0. On the main surface 102 of the wiring board 100, a first recess 104 in which the light emitting element 106 is mounted and a second recess 105 in which the light receiving element 107 is mounted are located. In addition, the second mounting portion 105 a has a rectangular shape, the first recess 104 is located on the corner side of the second mounting portion 105 a, and the curved portion 111 is provided between the first recess 104 and the second recess 105. It has a wall portion 110 including. Further, the second recess 105 has an auxiliary recess 112 protruding outward.

また、主面102に位置した第1凹部104の底部には発光素子107が接続される配線導体(図示せず)が位置しており、さらに第2凹部105の底部には受光素子107が接続される配線導
体(図示せず)が位置している。これらの配線導体が、配線基板100の主面102と反対側の面103に位置した複数の外部接続導体114に接続されている。
A wiring conductor (not shown) to which the light emitting element 107 is connected is located at the bottom of the first recess 104 located on the main surface 102, and a light receiving element 107 is connected to the bottom of the second recess 105. A wiring conductor (not shown) is located. These wiring conductors are connected to a plurality of external connection conductors 114 located on the surface 103 of the wiring board 100 opposite to the main surface 102.

このように、絶縁基板101、図示しない配線導体を含む配線基板100の主面102側に、発
光素子106が搭載された第1凹部104、および受光素子107が搭載された第2凹部105の2つの凹部が位置することにより、本発明の近接センサ用パッケージ、および近接センサ装置200が構成されている。
As described above, the insulating substrate 101, the first recess 104 in which the light emitting element 106 is mounted, and the second recess 105 in which the light receiving element 107 is mounted are provided on the main surface 102 side of the wiring substrate 100 including the wiring conductor (not shown). The proximity sensor package and the proximity sensor device 200 of the present invention are configured by positioning the two recesses.

ここで、発光素子106から照射される光は、例えば赤外線、電磁波または超音波等の物
理的エネルギーであり、受光素子107は、これらの物理的エネルギーを検知する検知用の
素子を含んでおり、発光素子106と受光素子107とが対になって用いられる。図1(b)で示したように、配線基板100の第1凹部104に発光素子106が搭載され、また第2凹部105に受光素子107が搭載される。近接センサ装置200において、第1凹部104に搭載された発光
素子106の発光部(図示せず)から、例えば赤外線が外部に向けて照射される。近接セン
サ装置200の外部、つまり赤外線が照射され、対向する方向の近くに物体(ユーザーの顔
等)が存在している場合、赤外線が物体で反射され、第2凹部105に位置する受光素子107の受光部(図示せず)で検知される。これとは反対に物体が存在していない場合、照射された赤外線は反射されず検知されないため、物体が存在していないと判定される。
Here, the light emitted from the light emitting element 106 is physical energy such as infrared rays, electromagnetic waves or ultrasonic waves, and the light receiving element 107 includes a detection element for detecting these physical energies. The light emitting element 106 and the light receiving element 107 are used as a pair. As shown in FIG. 1B, the light emitting element 106 is mounted in the first recess 104 of the wiring board 100, and the light receiving element 107 is mounted in the second recess 105. In the proximity sensor device 200, for example, infrared rays are emitted to the outside from a light emitting portion (not shown) of the light emitting element 106 mounted in the first recess 104. In the case where an object (user's face or the like) is present outside the proximity sensor device 200, that is, in the direction in which it is irradiated with infrared rays, the infrared rays are reflected by the object and the light receiving element 107 located in the second recess 105 is located. Is detected by a light receiving portion (not shown) of the. On the contrary, when the object does not exist, the irradiated infrared ray is not reflected and is not detected, so that it is determined that the object does not exist.

なお、発光素子106に用いられるセンサ用素子としては、ガリウム−ヒ素(Ga−As
)発光ダイオード(赤外線)、超音波発振子(超音波)およびマイクロ波発振子(電磁波)等があげられる。また、受光素子107に用いられるセンサ用素子としては、フォトダイ
オード(赤外線)、超音波発振子(超音波)およびマイクロ波検波素子(電磁波)等があげられる。なお、以下の説明においては、発光素子106および受光素子107が赤外線発光素子、またはその検知が可能な赤外線受光素子である場合を例に挙げて説明する。一対のセンサ用素子である発光素子106および受光素子107は、ガリウム−ヒ素等の半導体材料からなる四角形板状等の素子本体と、素子本体の上面に位置しており、光電変換による発光または受光が行われる機能部分とを有している。配線導体を介して発光素子106に供給され
る電流が発光素子で光電変換されて赤外線が照射される。物体で反射された赤外線が受光素子107で受光され、電気信号に変換される。電気信号は配線導体を介して、例えば検知
回路、ディスプレイ表示用回路等の外部電気回路(図示せず)に送信される。
Note that as a sensor element used for the light-emitting element 106, gallium-arsenic (Ga-As)
) Light emitting diodes (infrared rays), ultrasonic oscillators (ultrasonic waves), microwave oscillators (electromagnetic waves), and the like. Further, examples of the sensor element used in the light receiving element 107 include a photodiode (infrared ray), an ultrasonic oscillator (ultrasonic wave), a microwave detection element (electromagnetic wave), and the like. In the following description, the case where the light emitting element 106 and the light receiving element 107 are infrared light emitting elements or infrared light receiving elements capable of detecting the infrared light emitting elements will be described as an example. The light emitting element 106 and the light receiving element 107, which are a pair of sensor elements, are located on the upper surface of the element body such as a rectangular plate made of a semiconductor material such as gallium-arsenide and the element body, and emit or receive light by photoelectric conversion. And a functional part that is performed. The current supplied to the light emitting element 106 via the wiring conductor is photoelectrically converted by the light emitting element, and infrared rays are emitted. The infrared light reflected by the object is received by the light receiving element 107 and converted into an electric signal. The electric signal is transmitted via a wiring conductor to an external electric circuit (not shown) such as a detection circuit or a display display circuit.

配線基板100は、発光素子106、および受光素子107をそれぞれ2つの凹部に搭載するた
めの容器となる部分であり、また受光素子107を外部電気回路に電気的に接続する配線導
体を位置させるための基体となる部分でもある。よって、配線基板100には発光用および
受光用の一対のセンサ用素子を搭載するための一対の凹部となる第1凹部104、および第
2凹部105が位置している。また、発光素子106は、例えば低融点ろう材またはボンディングワイヤ等により第1凹部104の内部に露出した配線導体に接続される。さらに、受光部
が位置した受光素子107は、例えばガラス、低融点ろう材または導電性接合材等の接合材
を介して、第2凹部105の底部に位置した配線導体に接続される。
The wiring board 100 is a portion that serves as a container for mounting the light-emitting element 106 and the light-receiving element 107 in the two recesses, respectively, and for positioning a wiring conductor that electrically connects the light-receiving element 107 to an external electric circuit. It is also the part that becomes the base of. Therefore, the wiring board 100 is provided with the first recess 104 and the second recess 105, which serve as a pair of recesses for mounting a pair of sensor elements for light emission and light reception. The light emitting element 106 is connected to the wiring conductor exposed inside the first recess 104 by, for example, a low melting point brazing material or a bonding wire. Further, the light receiving element 107 in which the light receiving portion is located is connected to the wiring conductor located in the bottom portion of the second recess 105 through a bonding material such as glass, a low melting point brazing material, or a conductive bonding material.

配線基板100は、基体となる部分が例えば酸化アルミニウム質焼結体からなる場合であ
れば、酸化アルミニウムおよび酸化ケイ素等の原料粉末に適当な有機バインダ、および有機溶剤とともに混練して作製されたセラミックスラリーをシート状に成形して複数のセラミックグリーンシートを作製し、これらのセラミックグリーンシートを積層した後に還元雰囲気中にて約1600℃の温度で焼成することによって製作することができる。
The wiring board 100 is a ceramic produced by kneading a raw material powder such as aluminum oxide and silicon oxide with an appropriate organic binder and an organic solvent when the base portion is made of, for example, an aluminum oxide sintered body. It can be manufactured by forming a plurality of ceramic green sheets by forming a rally into a sheet shape, stacking these ceramic green sheets, and then firing at a temperature of about 1600 ° C. in a reducing atmosphere.

配線基板100は、複数の配線基板領域が配列された母基板として形成されてもよい。そ
して、配線導体がタングステン、モリブデン等からなる場合であれば、露出する配線導体にニッケル、金等のめっき層が被着されたのち、母基板を分割することにより、図1〜図5で示すような近接センサ用パッケージを構成する配線基板100が製作される。
Wiring board 100 may be formed as a mother board in which a plurality of wiring board regions are arranged. When the wiring conductor is made of tungsten, molybdenum, or the like, the exposed wiring conductor is coated with a plating layer of nickel, gold, or the like, and then the mother substrate is divided to show in FIGS. A wiring board 100 that constitutes such a proximity sensor package is manufactured.

配線基板100の主面102に位置した第1凹部104、第2凹部105は、例えばつぎのようにして形成することができる。配線基板100の主面102となるセラミックグリーンシートの一部に、打ち抜き加工等の方法で、例えば第1凹部104となる矩形状の孔、および第2凹部105となる異形状(図1(a)に示したもの)の孔を形成して、2つの孔が形成されたセラミックグリーンシートを作製する。なお、孔はこれらの形状に限定されず、円状、楕円状、または角部が面取りされた長方形状であってもよい。主面102を含むセラミックグリーン
シートの上に、主面102を含む2つの孔が位置したセラミックグリーンシートを積層して
密着させることにより、このような2つの凹部が位置した近接センサ用パッケージを構成する配線基板100を製作することができる。なお、主面102を含む2つの凹部が位置したセラミックグリーンシートを複数層で構成してもよく、この場合、凹部の大きさを変化させることにより、例えば図1(b)に示すように、第1凹部104の壁部110に段差部113を位
置させることができる。段差部113上には、例えば発光素子106がボンディングワイヤ115
で接続される配線導体108が位置している。
The first recess 104 and the second recess 105 located on the main surface 102 of the wiring board 100 can be formed, for example, as follows. For example, a rectangular hole to be the first recess 104 and a different shape to be the second recess 105 (see FIG. 1 (a 2) is formed into a ceramic green sheet in which two holes are formed. The holes are not limited to these shapes and may be circular, elliptical, or rectangular with chamfered corners. By laminating and closely adhering a ceramic green sheet having two holes including the main surface 102 on the ceramic green sheet including the main surface 102, a proximity sensor package having such two recesses is configured. The wiring board 100 can be manufactured. The ceramic green sheet in which the two recesses including the main surface 102 are located may be formed of a plurality of layers. In this case, by changing the size of the recesses, for example, as shown in FIG. The step 113 can be located on the wall 110 of the first recess 104. On the step portion 113, for example, the light emitting element 106 has the bonding wire 115.
The wiring conductor 108 connected by is located.

本発明の1つの態様の近接センサ用パッケージは、主面102を有しており、主面102に位置し、発光素子106が第1搭載部104aに搭載される第1凹部104、および受光素子107が第2搭載部105aに搭載される第2凹部105が位置した配線基板100を含み、平面視で第2搭
載部105aが方形状であり、第1凹部104が第2搭載部105aの角部側に位置しており、平
面視において、第1凹部104と第2凹部105との間の壁部110が曲部111を有している。
A proximity sensor package according to one aspect of the present invention has a main surface 102, is located on the main surface 102, and has a first recess 104 in which a light emitting element 106 is mounted on a first mounting portion 104a, and a light receiving element. 107 includes the wiring board 100 in which the second recess 105 mounted in the second mount 105a is located, the second mount 105a is rectangular in plan view, and the first recess 104 is a corner of the second mount 105a. The wall portion 110 located on the section side and between the first concave portion 104 and the second concave portion 105 has a curved portion 111 in a plan view.

このような構造により、配線基板100を小型化しながらも発光素子106と受光素子107と
の間隔を大きくできる。つまり、配線基板100の一方の角部の近傍に発光素子106を搭載する第1凹部104を位置させておき、さらに第1凹部104が第2搭載部105aの角部側に位置
するように、一方の角部の対角上の他方の角部の近傍に受光素子107を搭載する第2凹部105を位置させることにより、小型化されて限られた大きさの配線基板100に有効に発光素
子106と受光素子107を配置することができる。よって、近接センサ装置200を小型化でき
、信頼性に優れた配線基板100を提供できる。
With such a structure, the distance between the light emitting element 106 and the light receiving element 107 can be increased while the wiring board 100 is downsized. That is, the first recess 104 for mounting the light emitting element 106 is located near one corner of the wiring board 100, and the first recess 104 is located on the corner side of the second mounting portion 105a. By arranging the second recess 105 in which the light receiving element 107 is mounted in the vicinity of the other corner on the diagonal of one corner, it is possible to effectively reduce the size of the light emitting element on the wiring board 100 of a limited size. The 106 and the light receiving element 107 can be arranged. Therefore, the proximity sensor device 200 can be downsized, and the wiring board 100 having excellent reliability can be provided.

なお、第1凹部104に搭載される発光素子106をスマートフォン400の中央側(赤外線が
照射される物体に近い側)に位置させておき、さらに第2凹部105に搭載される受光素子107をスマートフォン400の外周側に位置するように近接センサ装置200を配置しておけば、より多くの赤外線を物体に照射でき、物体から反射された赤外線を効率よく受光素子107
で検知できる。
It should be noted that the light emitting element 106 mounted in the first concave portion 104 is located on the center side of the smartphone 400 (the side close to the object irradiated with infrared rays), and the light receiving element 107 mounted in the second concave portion 105 is arranged in the smartphone. If the proximity sensor device 200 is arranged so as to be located on the outer peripheral side of 400, more infrared rays can be emitted to the object, and the infrared rays reflected from the object can be received efficiently by the light receiving element 107.
Can be detected with.

配線基板100を構成するセラミック部材であっても、壁部110の幅が薄くなると壁部110
を赤外線が透過して発光素子106から照射される赤外線が直接受光素子で検知される可能
性があった。しかし、平面視における第1凹部104と第2凹部105を隔てる壁部110の一部
に曲部111が位置しており、これにより発光素子106からの赤外線が壁部110を透過し難い
構造となる。つまり、発光素子106に位置した発光部から赤外線が第1凹部104の壁部110
に照射されても、その赤外線は曲部111によって壁部110の幅が変化し難い構造であるため
、発光素子106から受光素子107に向かうどの方向においても、赤外線を壁部110で遮蔽す
ることができる。これは、発光素子から受光素子に向かって照射される赤外線に対する壁部110の遮蔽効果がどの方向においても変化し難いということであり、受光素子107に位置した受光部の位置が制限され難い。
Even if the ceramic member constituting the wiring board 100 is thin, the width of the wall portion 110 becomes smaller than that of the wall portion 110.
There is a possibility that the infrared ray transmitted through the infrared ray and emitted from the light emitting element 106 may be directly detected by the light receiving element. However, the curved portion 111 is located in a part of the wall portion 110 that separates the first concave portion 104 and the second concave portion 105 in a plan view, which makes it difficult for infrared rays from the light emitting element 106 to pass through the wall portion 110. Become. That is, infrared rays are emitted from the light emitting portion located in the light emitting element 106 to the wall portion 110 of the first recess 104.
Even if the infrared rays are irradiated onto the infrared rays, since the width of the wall section 110 is unlikely to change due to the curved section 111, the infrared rays should be shielded by the wall sections 110 in any direction from the light emitting element 106 to the light receiving element 107. You can This means that the shielding effect of the wall portion 110 against infrared rays emitted from the light emitting element toward the light receiving element is unlikely to change in any direction, and the position of the light receiving portion located in the light receiving element 107 is less likely to be limited.

配線基板100に含まれる絶縁基板101は、例えば酸化アルミニウム質焼結体,窒化アルミニウム焼結体,ムライト質焼結体またはガラス−セラミック焼結体等のセラミック材料から成る。そして、赤外線等の波が透過し難い壁部110とするには、セラミック焼結体とし
ての粒径が小さく、着色剤として高融点金属を含み、焼結助剤が少ないものが適している。絶縁基板101として酸化アルミニウム質焼結体を用いる場合、焼結助剤としてSiO
、MgO、CaOなどを含み、着色剤としてW、Mo、Crなどを含むものが望ましい。絶縁基板101を構成するアルミナ粒径が小さく、焼結助剤が少なく、赤外線等が壁部110を透過し難い絶縁基板101となる。
The insulating substrate 101 included in the wiring board 100 is made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, or a glass-ceramic sintered body. Then, in order to form the wall portion 110 in which waves such as infrared rays are difficult to pass, it is suitable to use a ceramic sintered body having a small particle size, a refractory metal as a coloring agent, and a small sintering aid. When an aluminum oxide sintered body is used as the insulating substrate 101, SiO 2 is used as a sintering aid.
, MgO, CaO, etc., and those containing W, Mo, Cr, etc. as colorants are desirable. The insulating substrate 101 has a small particle diameter of alumina, a small amount of sintering aid, and infrared rays or the like that hardly penetrate the wall portion 110.

絶縁基板101は、例えば全体の外形が平面視で一辺の長さが1.6〜4mm程度の長方形状
であり、厚みが0.5〜2mm程度の板状であり、その上面に凹型の第1凹部104、第2凹部105が位置している。
The insulating substrate 101 has, for example, a rectangular outer shape with a side length of about 1.6 to 4 mm in plan view, a plate shape with a thickness of about 0.5 to 2 mm, and a concave first concave portion 104 on its upper surface. The second recess 105 is located.

絶縁基板101は、基部および枠部(第1凹部104、および第2凹部105となる孔が位置し
たもの)が酸化アルミニウム質焼結体からなる場合であれば、酸化アルミニウム,酸化珪素,酸化マグネシウムおよび酸化カルシウム等の原料粉末に適当な有機バインダ,溶剤,可塑剤等を添加混合して泥漿状にするとともに、これを例えばドクターブレード法、ロールカレンダー法等のシート成形法によりシート状となすことにより複数枚のセラミックグリーンシートを得て、次に一部のセラミックグリーンシートに適当な打ち抜き加工を施して枠状に成形するとともに、凹部となる孔を成形していない平板状のセラミックグリーンシートの上面に、それぞれ凹部となる孔が成形されたセラミックグリーンシートが位置するように上下に積層し、その積層体を高温で焼成することにより製作できる。
Insulating substrate 101 has aluminum oxide, silicon oxide, and magnesium oxide when the base and frame (where the holes to be first recess 104 and second recess 105 are located) are made of an aluminum oxide sintered body. In addition to adding and mixing an appropriate organic binder, solvent, plasticizer, etc., with raw material powder such as calcium oxide, etc., and making it into a sludge form, this is made into a sheet form by a sheet forming method such as doctor blade method, roll calender method, etc. To obtain a plurality of ceramic green sheets, and then form a frame-like shape by punching a part of the ceramic green sheets into an appropriate shape. Stacked vertically so that the ceramic green sheets each having a hole to be a recess are formed on the upper surface, It can be manufactured by firing at high temperatures.

曲部111は、例えば図1(a)で示したように、第1凹部104の角部を形成する外縁の基準となる中心点を基準として、第2凹部105側の一部に突出して位置している。これによ
り、第1凹部104の内壁から第2凹部105の内壁までの壁部110の幅を一定とすることがで
き、発光素子から受光素子に向かうどの方向においても、壁部110による赤外線の遮蔽効
果が変化することが抑制される。なお、あらかじめ絶縁基板101の厚みが異なる試料によ
り、使用される赤外線等の光の強度に対する絶縁基板101の透過特性について測定してお
けば、そのデータを基にして発光素子から照射される赤外線が直接受光素子で検知されることによる近接センサの誤作動を抑制した壁部110の幅を設定できる。そして、スマート
フォン400等の携帯端末のケースに位置する近接センサ装置用の孔401の大きさが、配線基板100(近接センサ用パッケージ)の大きさにあわせて適切に設定される。
For example, as shown in FIG. 1A, the curved portion 111 is positioned so as to project to a part on the second concave portion 105 side with respect to a center point serving as a reference of an outer edge forming a corner portion of the first concave portion 104. is doing. Thereby, the width of the wall portion 110 from the inner wall of the first recess 104 to the inner wall of the second recess 105 can be made constant, and the infrared ray is shielded by the wall portion 110 in any direction from the light emitting element to the light receiving element. The change in the effect is suppressed. It should be noted that if the transmission characteristics of the insulating substrate 101 with respect to the intensity of light such as infrared rays used are measured in advance with samples having different thicknesses of the insulating substrate 101, the infrared rays emitted from the light emitting element will be based on the data. It is possible to set the width of the wall portion 110 that suppresses malfunction of the proximity sensor due to direct detection by the light receiving element. Then, the size of the hole 401 for the proximity sensor device located in the case of the mobile terminal such as the smartphone 400 is appropriately set according to the size of the wiring board 100 (the proximity sensor package).

なお、赤外線の第1凹部104の内壁における遮蔽性および照射時の安定性を高めるため
に、第1凹部104の内壁をメタライズ層(図示せず)で覆った構造としてもよい。これに
より、発光素子106から照射された赤外線は第1凹部104の内壁に位置したメタライズ層で反射されるため、赤外線に対する壁部110の遮蔽性、および物体への赤外線の照射が安定
性する。そして、第1凹部104の内壁に位置したメタライズ層にニッケル、金等のめっき
層を被着させれば、赤外線に対する壁部110の遮蔽性がさらに向上し、物体への赤外線の
照射がさらに安定性する。
The inner wall of the first recess 104 may be covered with a metallization layer (not shown) in order to enhance the shielding property of the inner wall of the first recess 104 of infrared rays and the stability during irradiation. As a result, the infrared rays emitted from the light emitting element 106 are reflected by the metallization layer located on the inner wall of the first recess 104, so that the wall 110 is shielded from the infrared rays and the infrared rays are radiated to the object in a stable manner. If a plating layer of nickel, gold, or the like is applied to the metallized layer located on the inner wall of the first recess 104, the shielding property of the wall portion 110 against infrared rays is further improved, and the irradiation of infrared rays on the object is further stabilized. To have sex.

また、スマートフォン400等の携帯端末のケースに位置する近接センサ装置用の孔401は、外部からのごみの侵入を防止するために、液晶画面を覆うガラス、樹脂等の透過膜で一体的に塞がれていてもよい。   In addition, the hole 401 for the proximity sensor device located in the case of the mobile terminal such as the smartphone 400 is integrally covered with a transparent film such as glass or resin covering the liquid crystal screen in order to prevent dust from entering from the outside. It may be peeled off.

本発明の1つの態様の近接センサ用パッケージは、平面視において、第2搭載部105a
と曲部111との間隔が漸次大きくなっている。このような構造により、配線基板100を小型化しながらも発光素子106と受光素子107との間隔を大きくでき、発光素子106から照射さ
れた赤外線が物体から反射し、受光素子107に戻ってきた際に、第2搭載部105aと曲部111との間隔が漸次大きくなっている領域により、第2凹部105の内壁の影響を受け難くなり、近接センサとしての感度を高められる。つまり、発光素子106から照射された赤外線が
物体から反射し、その赤外線の一部が第1凹部104と第2凹部105を隔てる壁部110に含ま
れる曲部111に遮蔽されてしまうが、図1(a)、(b)で示したように、第2搭載部105aと曲部111との間隔が漸次大きくなっている領域により、第2搭載部105aと曲部111と
の間に隙間が位置するため、発光素子106から照射され、物体から反射して戻ってくる赤
外線が壁部110に含まれる曲部111の影響を受け難い構造となり、物体から反射した赤外線を受光素子107に導き易くなる。よって、物体から反射され戻ってきた赤外線を効率よく
受光素子107で検知することができ、近接センサとしての感度を高められる近接センサ用
パッケージを提供できる。
The proximity sensor package of one aspect of the present invention has a second mounting portion 105a in plan view.
The distance between the curved portion 111 and the curved portion 111 gradually increases. With such a structure, it is possible to increase the distance between the light emitting element 106 and the light receiving element 107 while reducing the size of the wiring board 100, and when the infrared light emitted from the light emitting element 106 is reflected from an object and returns to the light receiving element 107. In addition, the region where the distance between the second mounting portion 105a and the curved portion 111 is gradually increased is less likely to be affected by the inner wall of the second recess 105, and the sensitivity of the proximity sensor can be increased. That is, the infrared light emitted from the light emitting element 106 is reflected from the object, and a part of the infrared light is shielded by the curved portion 111 included in the wall portion 110 separating the first concave portion 104 and the second concave portion 105. As shown in 1 (a) and 1 (b), due to the region where the distance between the second mounting portion 105a and the curved portion 111 is gradually increased, a gap is formed between the second mounting portion 105a and the curved portion 111. Since it is located, the infrared light emitted from the light emitting element 106 and reflected back from the object is hardly affected by the curved portion 111 included in the wall 110, and the infrared light reflected from the object is easily guided to the light receiving element 107. Become. Therefore, it is possible to provide the proximity sensor package in which the infrared rays reflected from the object and returned can be efficiently detected by the light receiving element 107, and the sensitivity as the proximity sensor can be enhanced.

本発明の1つの態様の近接センサ用パッケージは、平面視において、第2凹部105が、
外側に突出する補助凹部112を有しており、補助凹部112の突出する方向の仮想延長領域112aと第1凹部104が重ならず、補助凹部112の突出する方向に垂直に交わる方向における
側面透視において、補助凹部112と第1凹部104が重なっている。このような構造により、発光素子106から照射された赤外線が物体から反射し、受光素子107に戻ってきた際に、補助凹部112により第2凹部105の内壁の影響をさらに効果的に受け難くなり、近接センサとしての感度を高められる。つまり、発光素子106から照射された赤外線が物体から反射し
、その赤外線の一部が第1凹部104と第2凹部105を隔てる壁部110に遮蔽されてしまうが
、補助凹部112により壁部110と受光素子107との間に隙間が位置していることから、図2
(a)、(b)に示したように、壁部110の影響を受け難い構造となり、発光素子106から照射され、物体から反射した赤外線を受光素子107に導き易くなる。
In the proximity sensor package according to one aspect of the present invention, the second recess 105 has a
The auxiliary recess 112 protruding to the outside is provided, and the virtual extension region 112a in the protruding direction of the auxiliary recess 112 and the first recess 104 do not overlap with each other, and a side surface perspective is seen in a direction perpendicular to the protruding direction of the auxiliary recess 112. In, the auxiliary recess 112 and the first recess 104 overlap. With such a structure, when the infrared light emitted from the light emitting element 106 is reflected from the object and returns to the light receiving element 107, the auxiliary recess 112 makes it more difficult to be effectively influenced by the inner wall of the second recess 105. , The sensitivity as a proximity sensor can be increased. That is, the infrared light emitted from the light emitting element 106 is reflected from the object, and a part of the infrared light is shielded by the wall portion 110 separating the first concave portion 104 and the second concave portion 105, but the auxiliary concave portion 112 causes the wall portion 110. Since there is a gap between the light receiving element 107 and the light receiving element 107, as shown in FIG.
As shown in (a) and (b), the structure is less likely to be affected by the wall portion 110, and the infrared light emitted from the light emitting element 106 and reflected from the object is easily guided to the light receiving element 107.

また、発光素子106の上方に赤外線を集光するレンズを位置させてもよい。発光素子106から照射された赤外線の角度が狭くなり、赤外線が物体側に向かって強度が強い状態で照射されることから、スマートフォン400を構成するパネルの窓部等において赤外線が反射
されること(クロストーク)が低減される。
A lens that collects infrared rays may be located above the light emitting element 106. Since the angle of the infrared rays emitted from the light emitting element 106 becomes narrower and the infrared rays are emitted toward the object side with a high intensity, the infrared rays are reflected by the window portion of the panel constituting the smartphone 400 ( Crosstalk) is reduced.

また、赤外線は物体から反射されて受光素子107に届くまでに拡散するため、受光素子107の上方にも反射した赤外線を集光するレンズを位置させてもよい。このとき、受光素子107の上方に配置されるレンズ、および補助凹部112により受光素子107の受光部に効率よ
く赤外線が集光されるように、例えば第1凹部104および補助凹部112を跨いで広範囲にレンズを配置すればよい。このように受光素子107の上方に配置されたレンズは、レンズに
入射する赤外線を受光素子107の受光部に向けて集光させる効果があり、このようなレン
ズ付きの近接センサ装置200では、配線基板100のさらなる小型化が進み、より小型の出力が弱い発光素子106から照射される赤外線を受光素子107で検知する場合に有効である。
Further, since infrared rays are reflected from an object and diffuse before reaching the light receiving element 107, a lens for condensing the reflected infrared rays may be positioned above the light receiving element 107. At this time, for example, the lens disposed above the light receiving element 107 and the auxiliary recess 112 allow a wide area to be straddled over the first recess 104 and the auxiliary recess 112 so that infrared rays can be efficiently focused on the light receiving portion of the light receiving element 107. The lens may be placed in the. The lens thus arranged above the light receiving element 107 has an effect of condensing infrared rays incident on the lens toward the light receiving portion of the light receiving element 107. In such a proximity sensor device 200 with a lens, This is effective when the light receiving element 107 detects infrared rays emitted from the light emitting element 106, which is smaller and has a weak output, as the substrate 100 is further miniaturized.

なお、補助凹部112の位置する場所が重要である。図1(a)、図2(a)に示したよ
うに、平面視において、補助凹部112の突出する方向の仮想延長領域112aと第1凹部104
が重なっておらず、かつ側面透視において、補助凹部112と第1凹部104が重なっている構造となっている。つまり、補助凹部112は発光素子106が搭載される第1凹部104と第2凹
部105とを隔てる壁部110の幅が部分的に小さくなることが無いように、かつ絶縁基板101
の外周に沿って第2凹部105から延長されて位置している。このような構造により、物体
から反射した赤外線が補助凹部112から入り易くなる。
The place where the auxiliary recess 112 is located is important. As shown in FIGS. 1A and 2A, in plan view, the virtual extension region 112a and the first recess 104 in the protruding direction of the auxiliary recess 112 are formed.
Are not overlapped with each other, and the auxiliary recess 112 and the first recess 104 are overlapped with each other when viewed from the side. That is, the auxiliary recess 112 prevents the width of the wall portion 110 separating the first recess 104 and the second recess 105 in which the light emitting element 106 is mounted from being partially reduced, and the insulating substrate 101.
It is located extending from the second recess 105 along the outer periphery of the. With such a structure, infrared rays reflected from an object can easily enter from the auxiliary recess 112.

さらに、補助凹部112は第2凹部105の一部が第1凹部104側に延長するように位置する
ものの、第1凹部104と第2凹部105との間には曲部111を含む壁部110が位置し、そして補助凹部112は第1凹部104を避けた位置に延在するように位置している。よって、発光素子106に位置した発光部から赤外線が第1凹部104の壁部110に照射されても、その赤外線は
曲部111を含む壁部110によって遮蔽されるため、第2凹部105側、および補助凹部112側に赤外線が透過することが抑制される。
Further, although the auxiliary recess 112 is positioned so that a part of the second recess 105 extends toward the first recess 104, the wall 110 including the curved portion 111 between the first recess 104 and the second recess 105. , And the auxiliary recess 112 is located so as to extend to a position avoiding the first recess 104. Therefore, even if infrared rays are emitted from the light emitting portion located in the light emitting element 106 to the wall portion 110 of the first concave portion 104, the infrared ray is blocked by the wall portion 110 including the curved portion 111, so that the second concave portion 105 side, In addition, infrared rays are suppressed from being transmitted to the auxiliary recess 112 side.

また、補助凹部112は第2凹部105に受光素子107を搭載する際に、受光素子107の搭載が容易である。つまり、受光素子107を吸着したマウンターの吸着ヘッドが補助凹部112側から第2凹部105の中央側に移動するようにすれば、吸着ヘッドで移動される受光素子107が配線基板100に接触して搭載不良となることを抑制できる。さらに、第2凹部105の底部に位置した配線導体(図示せず)の認識性を向上するための照明を補助凹部112側から照射
することにより、第2凹部105の内壁の近傍に照明の影ができることが抑制される。よっ
て、第2凹部105の底部に位置した配線導体を照明により明確に確認できるため、第2凹
部105の所定位置に位置精度よく受光素子107を搭載することができる。受光素子107は、
発光素子106と比較して実装用の電極が多く位置しており、このように配線基板100の小型化が進み、第2凹部105の面積が小さくなるような場合には、受光素子107等の電子部品を位置精度よく第2凹部105内に搭載するために、補助凹部112側から照明を照射することにより、第2凹部105の底部に位置した配線導体を明確に確認することは有効である。
Further, the auxiliary recess 112 is easy to mount the light receiving element 107 when mounting the light receiving element 107 in the second recess 105. That is, if the suction head of the mounter that has suctioned the light receiving element 107 is moved from the side of the auxiliary recess 112 toward the center of the second recess 105, the light receiving element 107 moved by the suction head comes into contact with the wiring board 100. It is possible to suppress poor mounting. Furthermore, by irradiating the auxiliary recess 112 side with illumination for improving the recognizability of the wiring conductor (not shown) located at the bottom of the second recess 105, the shadow of the illumination is generated near the inner wall of the second recess 105. Can be suppressed. Therefore, since the wiring conductor located at the bottom of the second recess 105 can be clearly confirmed by illumination, the light receiving element 107 can be mounted at a predetermined position of the second recess 105 with high positional accuracy. The light receiving element 107 is
In comparison with the light emitting element 106, a larger number of electrodes for mounting are located, and when the wiring board 100 is further miniaturized and the area of the second recess 105 is reduced, the light receiving element 107 and the like are In order to mount the electronic component in the second recess 105 with high positional accuracy, it is effective to clearly confirm the wiring conductor located at the bottom of the second recess 105 by illuminating the auxiliary recess 112. ..

本発明の1つの態様の近接センサ用パッケージは、平面視において、第2搭載部105a
と補助凹部112の壁部110とが同じ間隔Wとなる部分を有している。このような構造により、発光素子106から照射された赤外線が物体から反射し、受光素子107に戻ってきた際に、第2搭載部105aと補助凹部112の壁部110とが同じ間隔Wとなる部分により、発光素子106から照射され、物体から反射して戻ってきた赤外線を受光素子107により効果的に導き易
い。
The proximity sensor package of one aspect of the present invention has a second mounting portion 105a in plan view.
And the wall portion 110 of the auxiliary recess 112 has a portion having the same distance W. With such a structure, when the infrared light emitted from the light emitting element 106 is reflected from the object and returns to the light receiving element 107, the second mounting portion 105a and the wall portion 110 of the auxiliary recess 112 have the same distance W. Due to the part, the infrared rays emitted from the light emitting element 106, reflected from the object and returned, are easily guided effectively by the light receiving element 107.

つまり、物体から反射して戻ってきた赤外線を補助凹部112の突出する方向、いわゆる
第2搭載部105aと補助凹部112の壁部110とが同じ間隔Wとなる部分から、より効果的に
導き易くなることから、スマートフォン400等の携帯端末が物体に近づいたかどうかを検
知する感度を高められる。
That is, it is easier to more effectively guide the infrared rays reflected and returned from the object from the protruding direction of the auxiliary recess 112, that is, from the portion where the so-called second mounting portion 105a and the wall portion 110 of the auxiliary recess 112 have the same distance W. Therefore, the sensitivity for detecting whether or not the mobile terminal such as the smartphone 400 approaches an object can be increased.

なお、第2搭載部105aと補助凹部112の壁部110とが同じ間隔Wとなる部分により、F
図1(a)、図2(a)で示したように部分的に壁幅110の幅が狭くならない。よって、
赤外線を壁部110で遮蔽することができ、発光素子106から照射される赤外線が直接受光素子107で検知されることによる近接センサの誤作動を抑制できる。さらに、物体から反射
して戻ってきた赤外線を、第2搭載部105aと補助凹部112の壁部110とが同じ間隔Wとな
る部分が確保されることで、第2搭載部105aと補助凹部112の壁部110とが同じ間隔Wと
なる部分が受光を補助する導光路として作用するため、受光素子107に効果的に赤外線を
導くことができる。
In addition, since the second mounting portion 105a and the wall portion 110 of the auxiliary recess 112 have the same space W,
As shown in FIGS. 1A and 2A, the width of the wall width 110 is not partially narrowed. Therefore,
Infrared rays can be shielded by the wall portion 110, and malfunction of the proximity sensor due to direct detection of infrared rays emitted from the light emitting element 106 by the light receiving element 107 can be suppressed. Further, the second mounting portion 105a and the auxiliary recess 112 are secured by securing a portion where the second mounting portion 105a and the wall portion 110 of the auxiliary recess 112 have the same distance W for the infrared rays reflected and returned from the object. Since the portion having the same interval W as the wall portion 110 of FIG. 1 functions as a light guide path for assisting light reception, infrared rays can be effectively guided to the light receiving element 107.

また、配線基板100を小型化しながらも収納空間の無駄を少なくして、発光素子106と受光素子107をそれぞれ第1凹部104、および第2凹部105に搭載できる。つまり、過剰な壁
幅を位置させていない壁部110により、赤外線が透過して発光素子106から照射される赤外線が直接受光素子107で検知される可能性を低減しながら、第2凹部105の内側に張り出す壁部110の幅を最小限とすることができ、大きさが限られた配線基板100において、第2凹部105に収納空間の無駄を少なくして受光素子107を搭載できる。よって、小型化に適した近接センサ用パッケージを提供できる。
Further, it is possible to mount the light emitting element 106 and the light receiving element 107 in the first recess 104 and the second recess 105, respectively, while reducing the waste of the storage space while reducing the size of the wiring board 100. In other words, the wall portion 110 not having an excessive wall width reduces the possibility that the infrared light transmitted through the light emitting element 106 is directly detected by the light receiving element 107, while the second recess 105 of the second concave portion 105 is provided. The width of the wall portion 110 protruding inward can be minimized, and in the wiring substrate 100 having a limited size, the light receiving element 107 can be mounted in the second recess 105 with less waste of the storage space. Therefore, a proximity sensor package suitable for miniaturization can be provided.

本発明の1つの態様の近接センサ用パッケージは、第1凹部104の壁部110に段差部113
が位置し、段差部113に位置し、発光素子106が接続される配線導体108を有しており、平
面視において、段差部113は第2凹部105と相対する側に位置している。このような構造により、発光素子106から照射された赤外線が第1凹部104の内壁で効果的に遮られ、第2凹部105に搭載された受光素子107に漏れ難い。
In the proximity sensor package according to one aspect of the present invention, the step portion 113 is provided on the wall portion 110 of the first recess 104.
Is located on the stepped portion 113, and has the wiring conductor 108 to which the light emitting element 106 is connected. The stepped portion 113 is located on the side facing the second recess 105 in a plan view. With such a structure, the infrared light emitted from the light emitting element 106 is effectively blocked by the inner wall of the first recess 104, and is unlikely to leak to the light receiving element 107 mounted in the second recess 105.

つまり、段差部113が第2凹部105と相対する側に位置していることから、平面視における第1凹部104と発光素子106との間隔を小さくできるため、発光素子106から照射された
赤外線が壁部110で遮蔽され、物体を介さない赤外線が、受光素子107が搭載される第2凹部105側に照射され難い。
That is, since the step portion 113 is located on the side facing the second recess 105, the distance between the first recess 104 and the light emitting element 106 in plan view can be reduced, so that the infrared light emitted from the light emitting element 106 is emitted. Infrared rays that are shielded by the wall portion 110 and do not pass through an object are less likely to be emitted to the second recess 105 side where the light receiving element 107 is mounted.

平面視における第1凹部104と発光素子106との間隔が大きい場合、発光素子106から照
射される赤外線の角度が鉛直方向から傾いた方向にも照射され易くなり、スマートフォン400を構成するパネルの窓部において反射され、本来検知すべき物体からの赤外線の強さ
より、パネル窓部からの反射する赤外線が強くなる場合に、パネルを物体と誤認してしまう可能性があった。
When the distance between the first recess 104 and the light emitting element 106 in a plan view is large, the infrared rays emitted from the light emitting element 106 are likely to be emitted even in a direction inclined from the vertical direction, and the window of the panel configuring the smartphone 400. There is a possibility that the panel may be mistaken for an object when the infrared light reflected from the panel window portion is stronger than the infrared light reflected from the object to be detected.

しかし、このように段差部113が第2凹部105に対向する側を除く位置に位置することにより、発光素子106から物体に照射される赤外線の角度がより鉛直方向に近くなり、近接
センサ装置用の孔401の中央寄りを赤外線が通過して赤外線が物体側に向かって強度が強
い状態で照射され易くなることから、スマートフォン400を構成するパネルの窓部におい
て反射されることが低減される。よって、発光素子106から照射された赤外線が直接受光
素子107で検知されることによる近接センサの誤作動を抑制できる。
However, since the step portion 113 is located at a position other than the side facing the second recess 105 in this way, the angle of the infrared rays emitted from the light emitting element 106 to the object becomes closer to the vertical direction, and for the proximity sensor device. Since infrared rays pass through the hole 401 near the center and are easily irradiated toward the object side with high intensity, the infrared rays are reduced from being reflected by the window portion of the panel constituting the smartphone 400. Therefore, it is possible to suppress malfunction of the proximity sensor due to the infrared rays emitted from the light emitting element 106 being directly detected by the light receiving element 107.

なお、段差部113は第2凹部105に対向する側を除く側に位置することにより、発光素子106の電極と段差部113に位置した配線導体108とを接続するボンディングワイヤ115が受光素子107側の赤外線の強さを弱めることが抑制される。よって、赤外線が照射される際に
弱まり難い状態で物体に照射されるため、近接センサ装置200としての感度を高められる
Since the step portion 113 is located on the side excluding the side facing the second recess 105, the bonding wire 115 connecting the electrode of the light emitting element 106 and the wiring conductor 108 located on the step portion 113 is located on the light receiving element 107 side. The weakening of the infrared intensity of is suppressed. Therefore, when infrared rays are emitted, the object is emitted in a state where it is hard to be weakened, so that the sensitivity of the proximity sensor device 200 can be increased.

このような近接センサに用いられる発光素子106がガリウム−ヒ素(Ga−As)発光
ダイオード(赤外線)であれば、照射される赤外線の波長は例えば950nm程度であり、
物体から反射して戻ってきた赤外線を受光素子107で電流に変換し、電流をあらかじめ設
定した閾値と比較することにより、スマートフォン400等の携帯端末が物体に近づいたか
どうかを検知することができる。なお、近接センサ装置が搭載された携帯端末と物体との検知距離は、例えば受光素子107の出力電流に対する検知閾値を調整することで設定され
る。
When the light emitting element 106 used for such a proximity sensor is a gallium-arsenic (Ga-As) light emitting diode (infrared ray), the wavelength of infrared rays to be radiated is about 950 nm,
It is possible to detect whether or not the mobile terminal such as the smartphone 400 approaches the object by converting the infrared ray reflected from the object and returning to the current by the light receiving element 107 and comparing the current with a preset threshold value. The detection distance between the mobile terminal equipped with the proximity sensor device and the object is set by adjusting the detection threshold for the output current of the light receiving element 107, for example.

本発明の1つの態様の近接センサ装置200は、上記に記載の近接センサ用パッケージと
、第1凹部104に搭載された発光素子106と、第2凹部105に搭載された受光素子107とを有している。このような構造により、配線基板100を小型化しながらも発光素子106と受光素子107との間隔を大きくでき、物体を検知する際の誤作動が抑制された装置を実現できる
A proximity sensor device 200 according to one aspect of the present invention includes the proximity sensor package described above, a light emitting element 106 mounted in the first recess 104, and a light receiving element 107 mounted in the second recess 105. is doing. With such a structure, it is possible to realize a device in which the distance between the light emitting element 106 and the light receiving element 107 can be increased while the wiring board 100 is downsized, and malfunctions when detecting an object are suppressed.

つまり、第1凹部104と第2凹部105をそれぞれ配線基板100の角部に偏らせて、配線基
板100を小型化しながらも発光素子106と受光素子107との間隔を大きくできる。具体的に
は、配線基板100の一方の角部の近傍に発光素子106を搭載する第1凹部104を位置させて
おき、さらに他方の角部の近傍に受光素子107を搭載する第2凹部105を位置させることにより、小型化されて限られた大きさの配線基板100に有効に発光素子106と受光素子107が
配置された近接センサ装置200を製作できる。
That is, the first concave portion 104 and the second concave portion 105 are respectively biased to the corners of the wiring board 100, so that the distance between the light emitting element 106 and the light receiving element 107 can be increased while the wiring board 100 is downsized. Specifically, the first recess 104 for mounting the light emitting element 106 is located near one corner of the wiring board 100, and the second recess 105 for mounting the light receiving element 107 near the other corner. By arranging, the proximity sensor device 200 can be manufactured in which the light emitting element 106 and the light receiving element 107 are effectively arranged on the wiring board 100 having a small size and a limited size.

このような近接センサ装置200を用いることにより、物体を検知し、スマートフォン400等の携帯端末の液晶画面の点灯、消灯を自動調整するものであり、バッテリーの消耗を抑制し、携帯端末の使用時間を延長させることができる。   By using such a proximity sensor device 200, an object is detected, and the liquid crystal screen of a mobile terminal such as a smartphone 400 is automatically adjusted to be turned on and off, which suppresses battery consumption and reduces the usage time of the mobile terminal. Can be extended.

また、配線基板100に位置した第2凹部105の一部が第1凹部104側に延長する補助凹部112を備えているため、発光素子106から照射された赤外線が物体から反射し、受光素子107に戻ってきた際に、補助凹部112により第2凹部105の内壁の影響を受け難くなり、近接センサとしての感度が高められた近接センサ装置200を実現できる。   Further, since a part of the second concave portion 105 located on the wiring board 100 is provided with the auxiliary concave portion 112 extending to the first concave portion 104 side, the infrared light emitted from the light emitting element 106 is reflected from the object and the light receiving element 107. When it returns to, the auxiliary recess 112 makes it less likely to be affected by the inner wall of the second recess 105, and the proximity sensor device 200 with improved sensitivity as a proximity sensor can be realized.

つまり、発光素子106から照射された赤外線が物体から反射し、その赤外線の一部が第
1凹部104と第2凹部105を隔てる壁部110に遮蔽されてしまうが、補助凹部112により壁部110と受光素子107との間に隙間が位置していることから、壁部110の影響を受け難い構造
となり発光素子106から照射され、物体から反射した赤外線を受光素子107に導き易くなる。
That is, the infrared light emitted from the light emitting element 106 is reflected from the object, and a part of the infrared light is shielded by the wall portion 110 separating the first concave portion 104 and the second concave portion 105, but the auxiliary concave portion 112 causes the wall portion 110. Since the gap is located between the light receiving element 107 and the light receiving element 107, the structure is less likely to be affected by the wall portion 110, and the infrared light emitted from the light emitting element 106 and reflected from the object is easily guided to the light receiving element 107.

ここで、図1(b)、図2(b)では近接センサ装置200に搭載される発光素子106と受光素子107との搭載位置を同一面として示したが、図3に示したように近接センサ装置200に搭載される受光素子107の受光部が発光素子106の発光部よりも低い位置になるように搭載位置を設定することにより、発光素子106から照射される赤外線が直接受光素子107に検知されることによる近接センサ装置200の誤作動を抑制できる。このとき、発光素子106から照射された赤外線が物体から反射し、受光素子107に戻ってきた際に、第2凹部105の内壁の影響を受け易くなることが懸念されるが、図4に示すように、補助凹部112により第
2凹部105の内壁の影響を受け難くなり、近接センサとしての感度が高められた近接セン
サ装置200を実現できる。つまり、発光素子106から照射された赤外線が物体から反射し、その赤外線の一部が第1凹部104と第2凹部105を隔てる壁部110に遮蔽されてしまうが、
補助凹部112により壁部110と受光素子107との間に隙間が位置していることから、壁部110の影響を受け難い構造となり、発光素子106から照射され物体から反射した赤外線を受光
素子107に導き易い近接センサ装置200を実現できる。なお、近接センサ装置200に搭載さ
れる受光素子107の受光部は、発光素子106が搭載される第1搭載部104aより低い位置と
してもよく、発光素子106から照射される赤外線が直接受光素子107に検知されることによる近接センサ装置200の誤作動を効果的に抑制できる。
Here, in FIGS. 1B and 2B, the mounting positions of the light emitting element 106 and the light receiving element 107 mounted on the proximity sensor device 200 are shown on the same plane, but as shown in FIG. By setting the mounting position so that the light receiving portion of the light receiving element 107 mounted on the sensor device 200 is lower than the light emitting portion of the light emitting element 106, the infrared light emitted from the light emitting element 106 directly reaches the light receiving element 107. The malfunction of the proximity sensor device 200 due to the detection can be suppressed. At this time, when the infrared light emitted from the light emitting element 106 is reflected from the object and returns to the light receiving element 107, there is a concern that it may be easily affected by the inner wall of the second concave portion 105, as shown in FIG. As described above, the auxiliary recess 112 makes it difficult to be influenced by the inner wall of the second recess 105, and thus the proximity sensor device 200 having improved sensitivity as a proximity sensor can be realized. That is, the infrared light emitted from the light emitting element 106 is reflected from the object, and a part of the infrared light is shielded by the wall portion 110 separating the first recess 104 and the second recess 105,
Since the gap is located between the wall portion 110 and the light receiving element 107 by the auxiliary recess 112, the structure is less likely to be affected by the wall portion 110, and the infrared light emitted from the light emitting element 106 and reflected from the object is received by the light receiving element 107. It is possible to realize the proximity sensor device 200 that is easy to guide. The light receiving portion of the light receiving element 107 mounted on the proximity sensor device 200 may be located lower than the first mounting portion 104a on which the light emitting element 106 is mounted, and infrared rays emitted from the light emitting element 106 are directly received by the light receiving element 107. It is possible to effectively suppress the malfunction of the proximity sensor device 200 due to the detection by the sensor.

なお、近接センサ装置200には照度センサ(図示せず)を内蔵していてもよい。照度セ
ンサは、例えば受光素子107が搭載される第2凹部105、または補助凹部112に受光素子107と一緒に照度センサ素子を配置すればよい。このように照度センサを内蔵することにより、通話中に物体(被検出物としての人の肌)が液晶画面に触れることによる誤作動を抑制し、通話中の液晶画面の自動消灯ができ、周囲の明るさに応じた液晶画面のバックライトの輝度コントロールが可能となり、さらなる省電力化を実現できる。
The proximity sensor device 200 may include an illuminance sensor (not shown). For the illuminance sensor, for example, the illuminance sensor element may be arranged together with the light receiving element 107 in the second recess 105 in which the light receiving element 107 is mounted or the auxiliary recess 112. By incorporating the illuminance sensor in this way, it is possible to prevent malfunctions caused by the touching of the LCD screen by an object (human skin as an object to be detected) during a call, and the LCD screen during a call can be turned off automatically. It is possible to control the brightness of the backlight of the LCD screen according to the brightness of, and realize further power saving.

本発明の1つの態様の電子モジュール300は、接続導体301を有するモジュール用基板302と、複数の外部接続導体114が接続導体301に接続された上記記載の近接センサ装置200とを有している。このような構造により、スマートフォン400等の携帯端末の小型化が可能
であり、物体を検知する際の誤作動が抑制されたモジュールを実現できる。
An electronic module 300 according to one aspect of the present invention includes a module substrate 302 having a connection conductor 301, and the proximity sensor device 200 described above in which a plurality of external connection conductors 114 are connected to the connection conductor 301. .. With such a structure, a mobile terminal such as the smartphone 400 can be downsized, and a module in which malfunctions when detecting an object are suppressed can be realized.

つまり、配線基板100を小型化しながらも発光素子106と受光素子107との間隔を大きく
でき、物体を検知する際の誤作動が抑制された近接センサ装置200が搭載されており、ス
マートフォン400等の携帯端末のケースに位置する近接センサ装置用の孔401の大きさを、近接センサ装置200の大きさにあわせて小さくできる。よって、近接センサ装置が比較的
大きかった従来であれば、近接センサ装置用の孔401を長孔状、または2つの孔として位
置させなけなければならなかったが、このように近接センサ装置200を小型化したことに
より、図5に示したように1つの孔を位置させることで物体を検知できる。
That is, the distance between the light emitting element 106 and the light receiving element 107 can be increased while the wiring board 100 is downsized, and the proximity sensor device 200 in which malfunctions when detecting an object are suppressed is mounted, and the smartphone 400 or the like. The size of the hole 401 for the proximity sensor device located in the case of the mobile terminal can be reduced according to the size of the proximity sensor device 200. Therefore, in the conventional case where the proximity sensor device was relatively large, the hole 401 for the proximity sensor device had to be positioned in the shape of an elongated hole or as two holes. Due to the miniaturization, an object can be detected by positioning one hole as shown in FIG.

また、スマートフォン400等の携帯端末のケースに位置する近接センサ装置用の孔401を小径化できるため、ケースの窓部の幅を小さくでき、携帯端末の液晶画面をより大きなものに置換できる。   Further, since the diameter of the proximity sensor device hole 401 located in the case of the mobile terminal such as the smartphone 400 can be reduced, the width of the window portion of the case can be reduced, and the liquid crystal screen of the mobile terminal can be replaced with a larger one.

なお、本発明の近接センサ用パッケージ(配線基板100)、近接センサ装置200および電子モジュール300は、以上の実施の形態の例に限定されるものではなく、本発明の要旨を
逸脱しない範囲で種々の変更を加えても何ら差し支えない。上記実施形態の例において、第1凹部104を矩形状、第2凹部105を図1(a)のような異型状としたが、円形、楕円形、その他の形状で形成してもよい。また、受光素子107の上側の周囲に受光すべき以外の
光を遮蔽する樹脂等からなるカバーを位置させてもよい。
The proximity sensor package (wiring substrate 100), proximity sensor device 200, and electronic module 300 of the present invention are not limited to the examples of the above-described embodiments, and various types are possible without departing from the scope of the present invention. There is no problem even if you make changes. In the example of the above-described embodiment, the first recess 104 has a rectangular shape and the second recess 105 has an irregular shape as shown in FIG. 1A, but it may have a circular shape, an elliptical shape, or another shape. Further, a cover made of resin or the like for blocking light other than light to be received may be disposed around the upper side of the light receiving element 107.

また、近接センサ装置200を構成する配線基板100、およびモジュール用基板302の平面
視における形状は矩形状に限定されず、正方形状、八角状、円状、楕円状等として構成してもよい。
Further, the shapes of the wiring substrate 100 and the module substrate 302 that form the proximity sensor device 200 in plan view are not limited to the rectangular shape, and may be configured as a square shape, an octagonal shape, a circular shape, an elliptical shape, or the like.

また、本発明の近接センサ用パッケージ(配線基板100)、近接センサ装置200および電子モジュール300は、その用途を近接センサ装置として説明したが、発光素子106および受光素子107の一対のセンサ素子により動作するその他の装置、例えば近接照度一体型セン
サ装置、測距センサ装置、脈波血流センサ装置等に応用が可能である。
Further, the application of the proximity sensor package (wiring board 100), proximity sensor device 200, and electronic module 300 of the present invention has been described as a proximity sensor device, but it operates by a pair of sensor elements of the light emitting element 106 and the light receiving element 107. The present invention can be applied to other devices such as a proximity illuminance integrated sensor device, a distance measurement sensor device, a pulse wave blood flow sensor device, and the like.

100・・・配線基板(近接センサ用パッケージ)
101・・・絶縁基板
102・・・主面
103・・・主面と反対側の面
104・・・第1凹部
104a・・・第1搭載部
105・・・第2凹部
105a・・・第2搭載部
106・・・発光素子
107・・・受光素子
108・・・配線導体
110・・・壁部
111・・・曲部
112・・・補助凹部
112a・・・補助凹部の突出する方向の仮想延長領域
113・・・段差部
114・・・外部接続導体
115・・・ボンディングワイヤ
200・・・近接センサ装置
300・・・電子モジュール
301・・・接続導体
302・・・モジュール用基板
400・・・スマートフォン
401・・・近接センサ装置用の孔
100 ... Wiring board (Proximity sensor package)
101 ... Insulating substrate
102 ... Main surface
103 ... Surface opposite to main surface
104 ... first recess
104a: First mounting part
105 ... second recess
105a: Second mounting part
106 ... Light emitting element
107 ... Light receiving element
108-wiring conductor
110 ... wall
111 ... Bent
112 ... Auxiliary recess
112a ... Virtual extension region in the protruding direction of the auxiliary recess
113 ... Step
114 ... External connection conductor
115 ... Bonding wire
200 Proximity sensor device
300 ・ ・ ・ Electronic module
301 ・ ・ ・ Connecting conductor
302 ・ ・ ・ Module substrate
400 ... Smartphone
401 ... Hole for proximity sensor device

Claims (7)

主面を有しており、該主面に位置し、発光素子が第1搭載部に搭載される第1凹部、および受光素子が第2搭載部に搭載される第2凹部が位置した配線基板を含み、
平面視で前記第2搭載部が方形状であり、前記第1凹部が前記第2搭載部の角部側に位置しており、
平面視において、前記第1凹部と前記第2凹部との間の壁部が曲部を有していることを特徴とする近接センサ用パッケージ。
A wiring board having a main surface and having a first recessed portion on which the light emitting element is mounted on the first mounting portion and a second recessed portion on which the light receiving element is mounted on the second mounting portion. Including,
In a plan view, the second mounting portion has a rectangular shape, and the first recess is located on the corner side of the second mounting portion,
A proximity sensor package, wherein a wall portion between the first concave portion and the second concave portion has a curved portion in a plan view.
平面視において、前記第2搭載部と前記曲部との間隔が漸次大きくなっていることを特徴とする請求項1に記載の近接センサ用パッケージ。   The proximity sensor package according to claim 1, wherein a distance between the second mounting portion and the curved portion gradually increases in a plan view. 平面視において、前記第2凹部が、外側に突出する補助凹部を有しており、該補助凹部の突出する方向の仮想延長領域と前記第1凹部が重ならず、
前記補助凹部の突出する方向に垂直に交わる方向における側面透視において、前記補助凹部と前記第1凹部が重なっていることを特徴とする請求項1または請求項2に記載の近接センサ用パッケージ。
In a plan view, the second recess has an auxiliary recess protruding outward, and the virtual extension region in the protruding direction of the auxiliary recess does not overlap with the first recess,
The package for a proximity sensor according to claim 1 or 2, wherein the auxiliary recess and the first recess overlap each other in a side view in a direction perpendicular to a protruding direction of the auxiliary recess.
平面視において、前記第2搭載部と前記補助凹部の壁部とが同じ間隔となる部分を有していることを特徴とする請求項3に記載の近接センサ用パッケージ。   The proximity sensor package according to claim 3, wherein, in a plan view, the second mounting portion and the wall portion of the auxiliary recess have a portion with the same interval. 前記第1凹部の壁部に段差部が位置し、該段差部に位置し、発光素子が接続される配線導体を有しており、
平面視において、前記段差部は前記第2凹部と相対する側に位置していることを特徴とする請求項1乃至請求項4のいずれかに記載の近接センサ用パッケージ。
A step portion is located on the wall portion of the first recess, and the wiring conductor is located on the step portion and to which the light emitting element is connected;
The proximity sensor package according to any one of claims 1 to 4, wherein the step portion is located on a side facing the second recess in a plan view.
請求項1乃至請求項5のいずれかに記載の近接センサ用パッケージと、
前記第1凹部に搭載された発光素子と、前記第2凹部に搭載された受光素子とを有することを特徴とする近接センサ装置。
A proximity sensor package according to any one of claims 1 to 5,
A proximity sensor device comprising a light emitting element mounted in the first recess and a light receiving element mounted in the second recess.
接続導体を有するモジュール用基板と、
複数の外部接続導体が前記接続導体に接続された請求項6に記載の近接センサ装置とを有することを特徴とする電子モジュール。
A module substrate having a connection conductor,
The proximity sensor device according to claim 6, wherein a plurality of external connection conductors are connected to the connection conductors.
JP2018202958A 2018-10-29 2018-10-29 Proximity sensor package, proximity sensor device and electronic module Active JP7072486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018202958A JP7072486B2 (en) 2018-10-29 2018-10-29 Proximity sensor package, proximity sensor device and electronic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018202958A JP7072486B2 (en) 2018-10-29 2018-10-29 Proximity sensor package, proximity sensor device and electronic module

Publications (2)

Publication Number Publication Date
JP2020072119A true JP2020072119A (en) 2020-05-07
JP7072486B2 JP7072486B2 (en) 2022-05-20

Family

ID=70547992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018202958A Active JP7072486B2 (en) 2018-10-29 2018-10-29 Proximity sensor package, proximity sensor device and electronic module

Country Status (1)

Country Link
JP (1) JP7072486B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032566A (en) * 2004-07-14 2006-02-02 Sanyo Electric Co Ltd Light emitting and receiving element module, photo detector module, and light emitting element module
JP2009088435A (en) * 2007-10-03 2009-04-23 Citizen Electronics Co Ltd Photoreflector, and manufacturing method thereof
JP2013519995A (en) * 2010-02-12 2013-05-30 億光電子工業股▲ふん▼有限公司 Proximity sensor package structure and manufacturing method thereof
US20130341650A1 (en) * 2012-06-22 2013-12-26 Yin-Ming PENG Photosensor chip package structure
KR20140145392A (en) * 2013-06-13 2014-12-23 (주)신오전자 Optical proximity sensor with ambient light sensor and method of making the same
US20160307881A1 (en) * 2015-04-20 2016-10-20 Advanced Semiconductor Engineering, Inc. Optical sensor module and method for manufacturing the same
JP2018038546A (en) * 2016-09-06 2018-03-15 京セラ株式会社 Package for measurement sensor and measurement sensor
US20180306638A1 (en) * 2017-04-21 2018-10-25 Murata Manufacturing Co., Ltd. Optical sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032566A (en) * 2004-07-14 2006-02-02 Sanyo Electric Co Ltd Light emitting and receiving element module, photo detector module, and light emitting element module
JP2009088435A (en) * 2007-10-03 2009-04-23 Citizen Electronics Co Ltd Photoreflector, and manufacturing method thereof
JP2013519995A (en) * 2010-02-12 2013-05-30 億光電子工業股▲ふん▼有限公司 Proximity sensor package structure and manufacturing method thereof
US20130341650A1 (en) * 2012-06-22 2013-12-26 Yin-Ming PENG Photosensor chip package structure
KR20140145392A (en) * 2013-06-13 2014-12-23 (주)신오전자 Optical proximity sensor with ambient light sensor and method of making the same
US20160307881A1 (en) * 2015-04-20 2016-10-20 Advanced Semiconductor Engineering, Inc. Optical sensor module and method for manufacturing the same
JP2018038546A (en) * 2016-09-06 2018-03-15 京セラ株式会社 Package for measurement sensor and measurement sensor
US20180306638A1 (en) * 2017-04-21 2018-10-25 Murata Manufacturing Co., Ltd. Optical sensor

Also Published As

Publication number Publication date
JP7072486B2 (en) 2022-05-20

Similar Documents

Publication Publication Date Title
JP6626974B2 (en) Optical sensor package, optical sensor device, and electronic module
US10068885B2 (en) Optical apparatus
US8053800B2 (en) Reflection-type photointerrupter
CN109069043B (en) Measurement sensor package and measurement sensor
US10004140B2 (en) Three-dimensional circuit substrate and sensor module using three-dimensional circuit substrate
KR101476994B1 (en) Optical proximity sensor with ambient light sensor and method of making the same
CN109003950B (en) Packaging structure and packaging method of ultrasonic fingerprint chip
WO2017099022A1 (en) Sensor substrate and sensor device
JP7072486B2 (en) Proximity sensor package, proximity sensor device and electronic module
JP5762778B2 (en) Optical device
JP5754910B2 (en) Semiconductor device
KR20180053383A (en) Package for measuring sensor and measuring sensor
JP2001177118A (en) Infrared data communication module
JP2019129224A (en) Package and electronic apparatus
JPH1041540A (en) Structure of infrared transmitting/receiving module
JP2019024033A (en) Package for optical sensor, and optical sensor device
JP2019009301A (en) Substrate for optical sensor and optical sensor module
JP7257288B2 (en) Optical sensor package, multi-cavity wiring board, optical sensor device and electronic module
KR20080082476A (en) Illuminance detection apparatus and sensor module
KR101962236B1 (en) Optical sensor package
TWM445768U (en) Stacked type optical sensor chip package structure
CN102969388A (en) Integrated sensing packaging structure
TWM445260U (en) Light sensing type chip package structure
JP2016187060A (en) Optical semiconductor device
KR102554474B1 (en) Blood hear sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7072486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150