JP2020071004A - Cooling storage cabinet - Google Patents

Cooling storage cabinet Download PDF

Info

Publication number
JP2020071004A
JP2020071004A JP2018207113A JP2018207113A JP2020071004A JP 2020071004 A JP2020071004 A JP 2020071004A JP 2018207113 A JP2018207113 A JP 2018207113A JP 2018207113 A JP2018207113 A JP 2018207113A JP 2020071004 A JP2020071004 A JP 2020071004A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
cooler
exchanger component
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018207113A
Other languages
Japanese (ja)
Inventor
泰邦 鳥居
Yasukuni Torii
泰邦 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2018207113A priority Critical patent/JP2020071004A/en
Publication of JP2020071004A publication Critical patent/JP2020071004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

To restrain dry air from moving toward a storage chamber.SOLUTION: A cooling storage cabinet comprises: a storage cabinet body 12 comprising a storage chamber 11; a compressor 25; a condenser 26; an expansion valve 30; a cooler 28; a refrigerant pipe 24 connecting the compressor 25, the condenser 26, the expansion valve 30, and the cooler 28 in this order in a circulating manner; a cooling fan 29; and a heat exchanger 45. The heat exchanger 45 comprises a first heat exchanger component part 43 and a second heat exchanger component part 44. The expansion valve 30 is arranged between an inlet side of the first heat exchange component part 43 and an outlet side of the condenser 26, and is constituted so as to be capable of evaporating a refrigerant in the first heat exchanger component part 43.SELECTED DRAWING: Figure 2

Description

本発明は、冷却貯蔵庫に関する。   The present invention relates to a cold store.

従来、冷却貯蔵庫として、圧縮機、凝縮器、及び冷却器(蒸発器)を備えるものが知られている(下記特許文献1)。特許文献1において、圧縮機で圧縮された冷媒は、凝縮器にて液化した後、キャピラリーチューブにおいて減圧されることで、冷却器において蒸発する。これにより、冷却ファンによって冷却器を通過した空気を貯蔵室に供給することで、貯蔵室を冷却することができる。   BACKGROUND ART Conventionally, as a cooling storage, one provided with a compressor, a condenser, and a cooler (evaporator) is known (Patent Document 1 below). In Patent Document 1, the refrigerant compressed by the compressor is liquefied by the condenser and then decompressed in the capillary tube, so that the refrigerant is evaporated in the cooler. Accordingly, the storage chamber can be cooled by supplying the air that has passed through the cooler by the cooling fan to the storage chamber.

特開2002−195726号公報JP-A-2002-195726

空気が冷却器を通過する過程では、冷却器の表面で結露が発生することで、空気が除湿される。上記構成のように冷却器で冷媒を蒸発させる構成では、蒸発熱によって冷却器の温度が低くなり、冷却器を通過する際の空気の除湿量が多くなってしまう。その結果、貯蔵室に乾燥した空気が供給されることで貯蔵室内の食品等が乾燥し易くなってしまうという問題点があった。   In the process of the air passing through the cooler, dew condensation occurs on the surface of the cooler to dehumidify the air. In the configuration in which the cooling device evaporates the refrigerant as in the above configuration, the temperature of the cooling device decreases due to the heat of evaporation, and the amount of dehumidification of air when passing through the cooling device increases. As a result, there is a problem in that food and the like in the storage chamber are easily dried by supplying dry air to the storage chamber.

本発明は上記のような事情に基づいて完成されたものであって、乾燥した空気が貯蔵室に向かう事態を抑制することを目的とする。   The present invention has been completed based on the above situation, and an object thereof is to suppress a situation in which dry air goes to a storage chamber.

上記課題を解決するために、本発明の冷却貯蔵庫は、貯蔵室を有する貯蔵庫本体と、圧縮機と、凝縮器と、膨張手段と、冷却器と、前記圧縮機、前記凝縮器、前記膨張手段、前記冷却器をこの順番で循環接続する冷媒管と、前記冷却器を通過した空気を前記貯蔵室に供給する冷却ファンと、熱交換器と、を備え、前記冷媒管のうち前記凝縮器の出口側と前記冷却器の入口側とを接続する部分を第1管部とし、前記冷媒管のうち前記冷却器の出口側と前記圧縮機の入口側とを接続する部分を第2管部とした場合において、前記熱交換器は、前記第1管部に設けられた管である第1熱交換器構成部と、前記第2管部に設けられた管である第2熱交換器構成部と、を備え、前記第1熱交換器構成部を流れる冷媒と前記第2熱交換器構成部を流れる冷媒との間で熱を交換することが可能な構成とされ、前記膨張手段は、前記第1熱交換器構成部の入口側と前記凝縮器の出口側との間に配されると共に、前記第1熱交換器構成部において冷媒を蒸発させることが可能な構成となっていることに特徴を有する。   In order to solve the above problems, a cooling storage of the present invention is a storage main body having a storage chamber, a compressor, a condenser, an expansion means, a cooler, the compressor, the condenser, the expansion means. A refrigerant pipe that circulates and connects the cooler in this order, a cooling fan that supplies air that has passed through the cooler to the storage chamber, and a heat exchanger. A portion connecting the outlet side and the inlet side of the cooler is referred to as a first pipe portion, and a portion of the refrigerant pipe connecting the outlet side of the cooler and the inlet side of the compressor is referred to as a second pipe portion. In such a case, the heat exchanger has a first heat exchanger component that is a pipe provided in the first pipe portion and a second heat exchanger component that is a pipe provided in the second pipe portion. And a cooling medium flowing through the first heat exchanger component and a cooling medium flowing through the second heat exchanger component. The expansion means is arranged between the inlet side of the first heat exchanger component and the outlet side of the condenser, and It is characterized in that the refrigerant can be evaporated in the one heat exchanger component.

上記構成によれば、第1熱交換器構成部において冷媒が蒸発するため、冷却器には気体状の冷媒が送られる。このため、冷却器において冷媒が蒸発することを抑制でき、蒸発熱によって冷却器の温度が低下する事態を抑制できる。この結果、空気が冷却器を通過する過程で結露が発生する事態を抑制でき、乾燥した空気が貯蔵室に向かう事態を抑制できる。   According to the above configuration, the refrigerant evaporates in the first heat exchanger component, so that the gaseous refrigerant is sent to the cooler. Therefore, it is possible to prevent the refrigerant from evaporating in the cooler, and it is possible to prevent the temperature of the cooler from decreasing due to heat of evaporation. As a result, it is possible to suppress a situation in which dew condensation occurs in the process of air passing through the cooler, and a situation in which dry air goes to the storage chamber.

また、前記膨張手段は、前記第1熱交換器構成部の出口における冷媒の温度に基づいて開度が変化する温度式自動膨張弁であるものとすることができる。第1熱交換器構成部の出口での冷媒の温度に基づいて温度式自動膨張弁の開度(第1熱交換器構成部への冷媒の流量)が変化するため、第1熱交換器構成部における冷媒の蒸発量をより高い精度で制御することができ、第1熱交換器構成部において液状の冷媒をより確実に蒸発させることが可能となるため、冷却器に液状の冷媒が向かう事態をより確実に抑制できる。   Further, the expansion means may be a thermal automatic expansion valve whose opening degree changes based on the temperature of the refrigerant at the outlet of the first heat exchanger component. Since the opening degree of the temperature type automatic expansion valve (the flow rate of the refrigerant to the first heat exchanger component) changes based on the temperature of the refrigerant at the outlet of the first heat exchanger component, the first heat exchanger configuration Since the evaporation amount of the refrigerant in the cooling unit can be controlled with higher accuracy, and the liquid refrigerant can be more reliably evaporated in the first heat exchanger component, the situation in which the liquid refrigerant is directed to the cooler Can be suppressed more reliably.

また、前記第1熱交換器構成部の少なくとも一部は、前記第2熱交換器構成部の内部に収容されているものとすることができる。上記構成では、第1熱交換器構成部において冷媒を蒸発させるため、第1熱交換器構成部の温度が低下することになるが、第1熱交換器構成部の少なくとも一部を第2熱交換器構成部の内部に収容することで、第1熱交換器構成部において外気に触れる部分をより少なくすることができ、第1熱交換器構成部の表面において結露が発生する事態を抑制できる。   Further, at least a part of the first heat exchanger component may be housed inside the second heat exchanger component. In the above configuration, since the refrigerant is evaporated in the first heat exchanger constituent part, the temperature of the first heat exchanger constituent part is lowered, but at least a part of the first heat exchanger constituent part is used as the second heat exchanger. By accommodating the heat exchanger inside the exchanger component, the portion of the first heat exchanger component that comes into contact with the outside air can be further reduced, and the occurrence of dew condensation on the surface of the first heat exchanger component can be suppressed. ..

本発明によれば、乾燥した空気が貯蔵室に向かう事態を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the situation where dry air goes to a storage chamber can be suppressed.

本発明の実施形態1に係る冷蔵庫を示す断面図Sectional drawing which shows the refrigerator which concerns on Embodiment 1 of this invention. 冷蔵庫が備える冷却サイクルを示す図Diagram showing the cooling cycle of the refrigerator 熱交換器を示す図Diagram showing heat exchanger 実施形態2に係る熱交換器を示す図The figure which shows the heat exchanger which concerns on Embodiment 2.

<実施形態1>
本発明の実施形態1を図1から図4によって説明する。本実施形態では、冷却貯蔵庫としてプレハブ式の冷蔵庫10を例示する。冷蔵庫10は、図1に示すように、貯蔵室11を有する貯蔵庫本体12と、冷却装置13と、を備える。貯蔵庫本体12(断熱箱体)は、複数の断熱パネルを箱状に組み立てることで構成されている。貯蔵庫本体12には出入口となる開口部16が形成され、開口部16は、断熱扉17によって開閉可能となっている。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 4. In this embodiment, a prefabricated refrigerator 10 is exemplified as the cooling storage. As shown in FIG. 1, the refrigerator 10 includes a storage main body 12 having a storage chamber 11 and a cooling device 13. The storage main body 12 (heat insulating box) is configured by assembling a plurality of heat insulating panels in a box shape. An opening 16 serving as a doorway is formed in the storage main body 12, and the opening 16 can be opened and closed by a heat insulating door 17.

冷却装置13は、室外機21と、室内機22と、コントロールボックス23と、室外機21と室内機22とを循環接続する冷媒管24(図2参照)と、を備える。室外機21は、図2に示すように、圧縮機25と、凝縮器26と、凝縮器26を冷却するための凝縮器ファン27と、を備える。室内機22は、冷却器28と、冷却ファン29と、膨張弁30(膨張手段)と、熱交換器45と、感温筒33と、を備える。圧縮機25、凝縮器26、膨張弁30及び冷却器28は、冷媒が封入された冷媒管24によってこの順番で循環接続されている。コントロールボックス23内には、冷却装置13を構成する各機器(圧縮機25、凝縮器ファン27、冷却ファン29等)の動作を制御する制御部(図示せず)が収容されている。   The cooling device 13 includes an outdoor unit 21, an indoor unit 22, a control box 23, and a refrigerant pipe 24 (see FIG. 2) that circulates and connects the outdoor unit 21 and the indoor unit 22. As shown in FIG. 2, the outdoor unit 21 includes a compressor 25, a condenser 26, and a condenser fan 27 for cooling the condenser 26. The indoor unit 22 includes a cooler 28, a cooling fan 29, an expansion valve 30 (expansion means), a heat exchanger 45, and a temperature sensing cylinder 33. The compressor 25, the condenser 26, the expansion valve 30, and the cooler 28 are circulated and connected in this order by a refrigerant pipe 24 in which a refrigerant is sealed. The control box 23 accommodates a control unit (not shown) that controls the operation of each device (the compressor 25, the condenser fan 27, the cooling fan 29, etc.) that configures the cooling device 13.

冷媒管24は、凝縮器26の出口側と冷却器28の入口側とを接続する部分(凝縮器26の出口と冷却器28の入口との間の部分)である第1管部41と、冷却器28の出口側と圧縮機25の入口側とを接続する部分(冷却器28の出口と圧縮機25の入口との間の部分)である第2管部42と、を有する。熱交換器45は、第1管部41に設けられた管である第1熱交換器構成部43と、第2管部42に設けられた管である第2熱交換器構成部44と、を備える。本実施形態では、圧縮機25、凝縮器26、膨張弁30、第1熱交換器構成部43、冷却器28、第2熱交換器構成部44の順番で冷媒が循環する。   The refrigerant pipe 24 is a portion that connects the outlet side of the condenser 26 and the inlet side of the cooler 28 (a portion between the outlet of the condenser 26 and the inlet of the cooler 28), and a first pipe portion 41, The second pipe portion 42 that is a portion (a portion between the outlet of the cooler 28 and the inlet of the compressor 25) that connects the outlet side of the cooler 28 and the inlet side of the compressor 25. The heat exchanger 45 includes a first heat exchanger component 43 which is a pipe provided in the first pipe part 41, a second heat exchanger component 44 which is a pipe provided in the second pipe part 42, Equipped with. In the present embodiment, the refrigerant circulates in the order of the compressor 25, the condenser 26, the expansion valve 30, the first heat exchanger component 43, the cooler 28, and the second heat exchanger component 44.

第1熱交換器構成部43及び第2熱交換器構成部44は図3に示すように、互いに隣接する形で配されており、外周面同士が接触する形で設けられている。これにより、第1熱交換器構成部43(ひいては第1管部41)を流れる冷媒と第2熱交換器構成部44(ひいては第2管部42)を流れる冷媒との間で熱を交換することが可能な構成となっている。このような熱交換器45を備えることで、低圧冷媒が液化する事態を抑制でき、液状の冷媒が圧縮機25に吸入される事態を抑制することができる。なお、第1熱交換器構成部43及び第2熱交換器構成部44は、例えば、第1管部41及び第2管部42と比べて、管の内径が大きいものとされる。   As shown in FIG. 3, the first heat exchanger constituent part 43 and the second heat exchanger constituent part 44 are arranged adjacent to each other, and are provided so that their outer peripheral surfaces are in contact with each other. As a result, heat is exchanged between the refrigerant flowing through the first heat exchanger forming part 43 (and thus the first pipe part 41) and the refrigerant flowing through the second heat exchanger forming part 44 (and the second pipe part 42). It is possible to configure. By providing such a heat exchanger 45, it is possible to suppress the situation where the low-pressure refrigerant is liquefied and to suppress the situation where the liquid refrigerant is sucked into the compressor 25. The first heat exchanger component 43 and the second heat exchanger component 44 have, for example, larger inner diameters of the pipes than the first pipe portion 41 and the second pipe portion 42.

膨張弁30は、冷媒管24において第1熱交換器構成部43の入口付近となる箇所に設けられている。つまり、膨張弁30は、第1熱交換器構成部43の入口側と、凝縮器26の出口側との間に配されている。膨張弁30は、通過する冷媒の圧力を下げることで、第1熱交換器構成部43において、液状の冷媒を蒸発させることが可能な構成となっている。膨張弁30は、温度式自動膨張弁であり、冷媒管24において第1熱交換器構成部43の出口付近に設けられた感温筒33と接続されている。   The expansion valve 30 is provided in the refrigerant pipe 24 at a location near the inlet of the first heat exchanger component 43. That is, the expansion valve 30 is arranged between the inlet side of the first heat exchanger component 43 and the outlet side of the condenser 26. The expansion valve 30 has a configuration capable of evaporating a liquid refrigerant in the first heat exchanger component 43 by lowering the pressure of the refrigerant passing through. The expansion valve 30 is a temperature-type automatic expansion valve, and is connected to a temperature sensitive tube 33 provided in the refrigerant pipe 24 near the outlet of the first heat exchanger component 43.

温度式自動膨張弁の構成については周知であるため膨張弁30の構成については図示省略するが、膨張弁30は、ダイヤフラムと、ダイヤフラムの変位に伴って変位する弁体と、を備え、弁体が変位することで膨張弁30の開度が変化する構成となっている。膨張弁30のダイヤフラムには、感温筒33に封入された冷媒の圧力(感温筒33の温度)が作用し、ダイヤフラムはその圧力に応じて変位する。このため、膨張弁30は、第1熱交換器構成部43の出口における冷媒の温度に基づいて開度が変化することで、第1熱交換器構成部43から流出する冷媒の過熱度が所定の目標値となるように制御することが可能となっている。なお、感温筒33の検知温度が低くなる(第1熱交換器構成部43における冷媒の過熱度が小さくなる)と、ダイヤフラムに作用する圧力が低下し、膨張弁30の開度は小さくなる。膨張弁30の開度が小さくなると、第1熱交換器構成部43に流れ込む冷媒の量が低下し、冷媒の量が少ない程、第1熱交換器構成部43では液状の冷媒が気体状の冷媒になり易いため、過熱度が高くなる。   Although the configuration of the temperature-controlled automatic expansion valve is well known, the configuration of the expansion valve 30 is not shown, but the expansion valve 30 includes a diaphragm and a valve body that is displaced according to the displacement of the diaphragm. Is configured to change the opening degree of the expansion valve 30. The pressure of the refrigerant enclosed in the temperature sensing cylinder 33 (the temperature of the temperature sensing cylinder 33) acts on the diaphragm of the expansion valve 30, and the diaphragm is displaced according to the pressure. For this reason, the opening degree of the expansion valve 30 changes based on the temperature of the refrigerant at the outlet of the first heat exchanger component 43, so that the degree of superheat of the refrigerant flowing out of the first heat exchanger component 43 is predetermined. It is possible to control the target value of. When the temperature detected by the temperature sensitive tube 33 becomes low (the degree of superheat of the refrigerant in the first heat exchanger component 43 becomes low), the pressure acting on the diaphragm decreases and the opening degree of the expansion valve 30 decreases. .. When the opening degree of the expansion valve 30 decreases, the amount of the refrigerant flowing into the first heat exchanger component 43 decreases, and as the amount of the refrigerant decreases, the liquid refrigerant in the first heat exchanger component 43 becomes gaseous. Since it easily becomes a refrigerant, the degree of superheat becomes high.

また、膨張弁30は、ダイヤフラムを感温筒33の圧力が作用する側と反対側から押圧するスプリングと、ダイヤフラムを押圧するスプリングの押圧力を調整することが可能なスピンドル(過熱度調整用のスピンドル)と、を備える。膨張弁30のスピンドルを調整することで、第1熱交換器構成部43から流出する冷媒の過熱度(より詳しくは過熱度の目標値)を設定することができる。そして、本実施形態では、第1熱交換器構成部43において、液状の冷媒が蒸発するように、膨張弁30のスプリングの押圧力(冷媒の過熱度の目標値)が設定されている。膨張弁30に流入した高温且つ液状の冷媒は、膨張弁30において減圧され、第1熱交換器構成部43において、第2熱交換器構成部44を流れる冷媒との間で熱交換される結果、蒸発することで、低温且つ気体状の冷媒となり、冷却器28に向かう。なお、冷却器28において冷媒は貯蔵室11内の空気と熱交換される。このため、第2熱交換器構成部44の冷媒は、第1熱交換器構成部43の冷媒よりも高温となっている。これにより、第1熱交換器構成部43の冷媒を、第2熱交換器構成部44の冷媒との熱交換によって蒸発させることができ、液状の冷媒が冷却器28に向かう事態及び圧縮機25に吸入される事態を抑制することができる。   Further, the expansion valve 30 includes a spring that presses the diaphragm from the side opposite to the side of the temperature-sensitive cylinder 33 where the pressure acts, and a spindle (for superheat adjustment) that can adjust the pressing force of the spring that presses the diaphragm. Spindle), and. By adjusting the spindle of the expansion valve 30, it is possible to set the superheat degree (more specifically, the target value of the superheat degree) of the refrigerant flowing out from the first heat exchanger component 43. In the present embodiment, the pressing force of the spring of the expansion valve 30 (the target value of the degree of superheat of the refrigerant) is set in the first heat exchanger component 43 so that the liquid refrigerant evaporates. As a result, the high temperature and liquid refrigerant that has flowed into the expansion valve 30 is decompressed in the expansion valve 30 and is heat-exchanged with the refrigerant flowing in the second heat exchanger forming portion 44 in the first heat exchanger forming portion 43. , Becomes a low-temperature and gaseous refrigerant by evaporation, and goes to the cooler 28. In the cooler 28, the refrigerant exchanges heat with the air in the storage chamber 11. Therefore, the refrigerant in the second heat exchanger forming part 44 has a higher temperature than the refrigerant in the first heat exchanger forming part 43. As a result, the refrigerant in the first heat exchanger component 43 can be evaporated by heat exchange with the refrigerant in the second heat exchanger component 44, and the liquid refrigerant is directed to the cooler 28 and the compressor 25. It is possible to suppress the situation of being inhaled.

冷却ファン29は、冷却器28に隣接されている。冷却ファン29が駆動することで、貯蔵室11内の空気が室内機22に吸引され、その空気は冷却器28を通過する過程で冷却器28内の低温冷媒と熱交換することで冷却され、その後、冷却器28を通過した空気は貯蔵室11に供給される(このような空気の流れを図1において矢線A1で示す)。このような空気の循環が連続的に行われることで、貯蔵室11全体が冷却される。   The cooling fan 29 is adjacent to the cooler 28. By driving the cooling fan 29, the air in the storage chamber 11 is sucked into the indoor unit 22, and the air is cooled by exchanging heat with the low-temperature refrigerant in the cooler 28 while passing through the cooler 28. After that, the air that has passed through the cooler 28 is supplied to the storage chamber 11 (the flow of such air is shown by the arrow A1 in FIG. 1). By continuously circulating such air, the entire storage chamber 11 is cooled.

次に本実施形態の効果について説明する。本実施形態では、第1熱交換器構成部43において冷媒が蒸発するため、冷却器28には気体状の冷媒が送られる。このため、冷却器28において冷媒が蒸発することを抑制でき、蒸発熱によって冷却器28の温度が低下する事態を抑制できる。この結果、空気が冷却器28を通過する過程で結露が発生する事態を抑制でき、乾燥した空気が貯蔵室11に向かう事態を抑制できる。なお、本実施形態の冷蔵庫10は、比較的緩やかに貯蔵室11を冷却することができ、乾燥した空気が貯蔵室11に向かう事態を抑制できることから、恒温高湿庫として用いる場合に好適である。   Next, the effect of this embodiment will be described. In the present embodiment, since the refrigerant evaporates in the first heat exchanger component 43, the gaseous refrigerant is sent to the cooler 28. For this reason, it is possible to prevent the refrigerant from evaporating in the cooler 28, and it is possible to prevent the temperature of the cooler 28 from decreasing due to the heat of evaporation. As a result, it is possible to suppress the situation where dew condensation occurs in the process of the air passing through the cooler 28, and it is possible to suppress the situation where the dry air goes to the storage chamber 11. The refrigerator 10 of the present embodiment can cool the storage chamber 11 relatively slowly and can suppress the situation in which dry air goes to the storage chamber 11, and is therefore suitable for use as a constant temperature and high humidity chamber. ..

なお、本願の発明者が実施した実験の一例によれば、貯蔵室11内の設定温度を0℃とした場合において、従来の構成(膨張弁30を第1熱交換器構成部43と冷却器28の間に設置することで冷却器28において冷媒を蒸発させる構成)では、冷却器28の温度が約マイナス15℃になることが確認されており、本実施形態の構成では、冷却器28の温度が約マイナス1℃になることが確認されている。つまり、本実施形態の構成では、貯蔵室11内の温度と冷却器28の温度との差がより小さくなっていることが確認できた。   According to an example of an experiment conducted by the inventor of the present application, when the set temperature in the storage chamber 11 is set to 0 ° C., the conventional configuration (the expansion valve 30 includes the first heat exchanger component 43 and the cooler) is used. It has been confirmed that the temperature of the cooler 28 becomes about minus 15 ° C. in the configuration in which the refrigerant is evaporated in the cooler 28 by installing it between the coolers 28. It has been confirmed that the temperature will be about -1 ° C. That is, in the configuration of the present embodiment, it was confirmed that the difference between the temperature inside the storage chamber 11 and the temperature of the cooler 28 was smaller.

また、本実施形態では、膨張手段として、第1熱交換器構成部43の出口における冷媒の温度に基づいて開度が変化する温度式自動膨張弁を用いている。第1熱交換器構成部43の出口での冷媒の温度に基づいて温度式自動膨張弁の開度(第1熱交換器構成部43への冷媒の流量)が変化するため、第1熱交換器構成部43における冷媒の蒸発量をより高い精度で制御することができ、第1熱交換器構成部43において液状の冷媒をより確実に蒸発させることが可能となるため、冷却器28に液状の冷媒が向かう事態をより確実に抑制できる。   Further, in the present embodiment, a thermal automatic expansion valve whose opening degree changes based on the temperature of the refrigerant at the outlet of the first heat exchanger component 43 is used as the expansion means. Since the opening degree of the temperature type automatic expansion valve (the flow rate of the refrigerant to the first heat exchanger forming section 43) changes based on the temperature of the refrigerant at the outlet of the first heat exchanger forming section 43, the first heat exchange Since it is possible to control the evaporation amount of the refrigerant in the container component 43 with higher accuracy, and to more reliably evaporate the liquid refrigerant in the first heat exchanger component 43, the liquid in the cooler 28 can be controlled. It is possible to more reliably suppress the situation where the refrigerant goes to.

また、従来、庫外で冷却したブラインを冷却器に循環供給し、冷却器温度を庫内温度と同じ程度に保つことで、冷却器における結露を抑制し、乾燥した空気が貯蔵室に向かう事態を抑制できる冷却装置が知られている。このような冷却装置では、ブラインを冷却するための装置に加え、ブラインを貯留するためのタンクや、ブラインを冷却器まで圧送するためのポンプ等が必要となり、装置が大掛かりなものとなってしまう。これに対して本実施形態では、従来の冷却装置(冷却器にて冷媒を蒸発させる冷却装置)と部品点数はほぼ同じであり、膨張弁30の位置を変更するだけでよいため、ブラインを用いた冷却装置と比べてより簡易な構成で、乾燥した空気が貯蔵室11に向かう事態を抑制できる。   Moreover, conventionally, brine that has been cooled outside the refrigerator is circulated and supplied to the cooler to keep the cooler temperature at the same level as the temperature inside the refrigerator, thereby suppressing condensation in the cooler and allowing dry air to go to the storage room. A cooling device capable of suppressing the above is known. In such a cooling device, in addition to a device for cooling the brine, a tank for storing the brine, a pump for pumping the brine to the cooler, and the like are required, which makes the device large-scale. .. On the other hand, in the present embodiment, the number of parts is almost the same as that of the conventional cooling device (the cooling device that evaporates the refrigerant in the cooler), and it suffices to change the position of the expansion valve 30. It is possible to suppress the situation in which the dried air is directed to the storage chamber 11 with a simpler configuration than that of the conventional cooling device.

<実施形態2>
次に、本発明の実施形態2を図4によって説明する。上記実施形態と同一部分には、同一符号を付して重複する説明を省略する。本実施形態においては、熱交換器の構成が上記実施形態と異なる。図4に示すように、本実施形態の熱交換器145は、第1熱交換器構成部143が、第2熱交換器構成部144の内部に収容された二重管構造をなしている。本実施形態では、第1熱交換器構成部143の手前側に膨張弁30が配されており、第1熱交換器構成部143において冷媒を蒸発させるため、第1熱交換器構成部143の温度が低下することになるが、第1熱交換器構成部143を第2熱交換器構成部144の内部に収容することで、第1熱交換器構成部143において外気に触れる部分をより少なくすることができ、第1熱交換器構成部143の表面において結露が発生する事態を抑制できる。なお、第1熱交換器構成部143の一部(例えば端部)が第2熱交換器構成部の外部に配されていてもよい。
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIG. The same parts as those in the above-described embodiment are designated by the same reference numerals, and duplicate description will be omitted. In this embodiment, the structure of the heat exchanger is different from that of the above-described embodiments. As shown in FIG. 4, the heat exchanger 145 of the present embodiment has a double pipe structure in which the first heat exchanger component 143 is housed inside the second heat exchanger component 144. In the present embodiment, the expansion valve 30 is arranged on the front side of the first heat exchanger component 143, and the refrigerant is evaporated in the first heat exchanger component 143. Although the temperature will decrease, by accommodating the first heat exchanger component 143 inside the second heat exchanger component 144, the portion of the first heat exchanger component 143 that comes into contact with the outside air is reduced. Therefore, it is possible to suppress the occurrence of dew condensation on the surface of the first heat exchanger component 143. In addition, a part (for example, an end portion) of the first heat exchanger component 143 may be arranged outside the second heat exchanger component.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、膨張手段として膨張弁30を用いたが、これに限定されない。例えば、膨張手段として、キャピラリーチューブを用いてもよい。なお、キャピラリーチューブの長さが長い程、第1熱交換器構成部において冷媒は蒸発し易くなる。また、キャピラリーチューブの径が小さい程、第1熱交換器構成部において冷媒は蒸発し易くなる。このため、キャピラリーチューブの長さ及び径を適宜設定することで、第1熱交換器構成部において、冷媒を蒸発させ、冷却器28に液冷媒が向かわないようにすることが可能である。
(2)また、膨張弁としては、温度式自動膨張弁以外に、定圧自動膨張弁や電子膨張弁を用いてもよい。なお、電子膨張弁を用いる場合には、第1熱交換器構成部の出口にサーミスタ等の温度検知手段を設け、その検知温度に基づいて電子膨張弁の開度を制御することで過熱度を制御し、第1熱交換器構成部において、冷媒を蒸発させるようにすることができる。
<Other Embodiments>
The present invention is not limited to the embodiments described by the above description and drawings, and the following embodiments are also included in the technical scope of the present invention.
(1) In the above embodiment, the expansion valve 30 was used as the expansion means, but the expansion means is not limited to this. For example, a capillary tube may be used as the expansion means. The longer the capillary tube is, the easier the refrigerant is to evaporate in the first heat exchanger component. Further, the smaller the diameter of the capillary tube, the easier the refrigerant is to evaporate in the first heat exchanger component. Therefore, by appropriately setting the length and diameter of the capillary tube, it is possible to evaporate the refrigerant and prevent the liquid refrigerant from going to the cooler 28 in the first heat exchanger component.
(2) Further, as the expansion valve, a constant pressure automatic expansion valve or an electronic expansion valve may be used in addition to the temperature type automatic expansion valve. When using the electronic expansion valve, a temperature detecting means such as a thermistor is provided at the outlet of the first heat exchanger component, and the degree of superheat is controlled by controlling the opening degree of the electronic expansion valve based on the detected temperature. It is possible to control and evaporate the refrigerant in the first heat exchanger component.

10…冷蔵庫(冷却貯蔵庫)、11…貯蔵室、12…貯蔵庫本体、24…冷媒管、25…圧縮機、26…凝縮器、28…冷却器、29…冷却ファン、30…膨張弁(膨張手段)、41…第1管部、42…第2管部、43,143…第1熱交換器構成部、44,144…第2熱交換器構成部、45,145…熱交換器 10 ... Refrigerator (cooling storage), 11 ... Storage room, 12 ... Storage body, 24 ... Refrigerant pipe, 25 ... Compressor, 26 ... Condenser, 28 ... Cooler, 29 ... Cooling fan, 30 ... Expansion valve (expansion means) ), 41 ... First pipe part, 42 ... Second pipe part, 43, 143 ... First heat exchanger constituent part, 44, 144 ... Second heat exchanger constituent part, 45, 145 ... Heat exchanger

Claims (3)

貯蔵室を有する貯蔵庫本体と、
圧縮機と、
凝縮器と、
膨張手段と、
冷却器と、
前記圧縮機、前記凝縮器、前記膨張手段、前記冷却器をこの順番で循環接続する冷媒管と、
前記冷却器を通過した空気を前記貯蔵室に供給する冷却ファンと、
熱交換器と、を備え、
前記冷媒管のうち前記凝縮器の出口側と前記冷却器の入口側とを接続する部分を第1管部とし、前記冷媒管のうち前記冷却器の出口側と前記圧縮機の入口側とを接続する部分を第2管部とした場合において、
前記熱交換器は、前記第1管部に設けられた管である第1熱交換器構成部と、前記第2管部に設けられた管である第2熱交換器構成部と、を備え、前記第1熱交換器構成部を流れる冷媒と前記第2熱交換器構成部を流れる冷媒との間で熱を交換することが可能な構成とされ、
前記膨張手段は、前記第1熱交換器構成部の入口側と前記凝縮器の出口側との間に配されると共に、前記第1熱交換器構成部において冷媒を蒸発させることが可能な構成となっている冷却貯蔵庫。
A storage main body having a storage chamber,
A compressor,
A condenser,
Expansion means,
A cooler,
A refrigerant pipe that circulates and connects the compressor, the condenser, the expansion means, and the cooler in this order,
A cooling fan that supplies the air passing through the cooler to the storage chamber;
A heat exchanger,
A portion of the refrigerant pipe that connects the outlet side of the condenser and the inlet side of the cooler is defined as a first pipe portion, and the outlet side of the cooler and the inlet side of the compressor of the refrigerant pipe are connected to each other. When the connecting part is the second pipe part,
The heat exchanger includes a first heat exchanger component that is a pipe provided in the first pipe portion, and a second heat exchanger component that is a pipe provided in the second pipe portion. A configuration capable of exchanging heat between the refrigerant flowing through the first heat exchanger component and the refrigerant flowing through the second heat exchanger component,
The expansion means is arranged between the inlet side of the first heat exchanger component and the outlet side of the condenser and is capable of evaporating a refrigerant in the first heat exchanger component. Has become a cold storage.
前記膨張手段は、前記第1熱交換器構成部の出口における冷媒の温度に基づいて開度が変化する温度式自動膨張弁である請求項1に記載の冷却貯蔵庫。   The cooling storage according to claim 1, wherein the expansion unit is a temperature-type automatic expansion valve whose opening changes according to the temperature of the refrigerant at the outlet of the first heat exchanger component. 前記第1熱交換器構成部の少なくとも一部は、前記第2熱交換器構成部の内部に収容されている請求項1又は請求項2に記載の冷却貯蔵庫。   The cooling storage according to claim 1 or 2, wherein at least a part of the first heat exchanger component is housed inside the second heat exchanger component.
JP2018207113A 2018-11-02 2018-11-02 Cooling storage cabinet Pending JP2020071004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018207113A JP2020071004A (en) 2018-11-02 2018-11-02 Cooling storage cabinet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018207113A JP2020071004A (en) 2018-11-02 2018-11-02 Cooling storage cabinet

Publications (1)

Publication Number Publication Date
JP2020071004A true JP2020071004A (en) 2020-05-07

Family

ID=70547863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018207113A Pending JP2020071004A (en) 2018-11-02 2018-11-02 Cooling storage cabinet

Country Status (1)

Country Link
JP (1) JP2020071004A (en)

Similar Documents

Publication Publication Date Title
US10760798B2 (en) HVAC unit with hot gas reheat
KR100585991B1 (en) Air conditioner and method for controlling thereof
JP6105831B2 (en) Method and apparatus for equalizing pumping refrigerant system
WO2015093235A1 (en) Sublimation defrost system for refrigeration devices and sublimation defrost method
JP4553964B2 (en) Cooling device for communication equipment and control method thereof
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
JP5514787B2 (en) Environmental test equipment
JP5979112B2 (en) Refrigeration equipment
JP5868416B2 (en) Refrigeration air conditioner and humidity control device
WO2014122922A1 (en) Heating system
JP4783048B2 (en) Constant temperature and humidity device
WO2020021593A1 (en) Air-conditioning apparatus
JP2006284063A (en) Thermo-hygrostat
JP4328892B2 (en) Temperature and humidity control device and environmental test device
KR101166385B1 (en) A air conditioning system by water source and control method thereof
KR100529892B1 (en) Refrigerator
Xu Potential of controlling subcooling in residential air conditioning system
JP6470033B2 (en) Air conditioner
KR102191560B1 (en) Heat pump system and control method of the same
JP2007309585A (en) Refrigerating device
JP2010230184A (en) Temperature and humidity control device
US20160327313A1 (en) Direct Expansion Heat Recovery Method and Device
JP2020071004A (en) Cooling storage cabinet
KR20130090133A (en) Air conditoner
US3421337A (en) Reverse cycle refrigeration system