JP2020070552A - Reflector for heat radiation, interior material containing said reflector, and radiation type cooling and heating system using said interior material - Google Patents

Reflector for heat radiation, interior material containing said reflector, and radiation type cooling and heating system using said interior material Download PDF

Info

Publication number
JP2020070552A
JP2020070552A JP2018202792A JP2018202792A JP2020070552A JP 2020070552 A JP2020070552 A JP 2020070552A JP 2018202792 A JP2018202792 A JP 2018202792A JP 2018202792 A JP2018202792 A JP 2018202792A JP 2020070552 A JP2020070552 A JP 2020070552A
Authority
JP
Japan
Prior art keywords
reflector
interior material
infrared
temperature
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018202792A
Other languages
Japanese (ja)
Inventor
雅弘 塚本
Masahiro Tsukamoto
雅弘 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2018202792A priority Critical patent/JP2020070552A/en
Publication of JP2020070552A publication Critical patent/JP2020070552A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Finishing Walls (AREA)

Abstract

To solve the following problems concerning thermal comfort in radiant air conditioning in a building structure: 1)since air conditioning effects exist only in a certain direction of a radiation type air conditioner and the air conditioning effect does not exist on the opposite side, a sufficient thermal comfortable environment cannot be realized; 2)even if the radiation type air conditioner is operated, until a sufficient time elapses or when the heat insulation of the wall or the like is insufficient, the walls, ceilings, and floor surfaces that do not include the radiation type air conditioner do not reach an appropriate temperature, so that the average temperature of the surrounding walls does not reach an appropriate temperature, and a sufficient thermal comfortable environment cannot be realized.SOLUTION: A thermal comfortable environment is realized by: applying Fresnel mirror type fine processing to a sheet formed of an opaque resin transmitting infrared rays and a metal layer reflecting infrared rays that are laminated with each other; and then expanding the processed sheet in an air-conditioned room as an interior material such as wallpaper, so as to reflect radiant heat and radiant cold via a radiant air conditioner to a predetermined position, and thereby appropriately setting an average temperature of a peripheral wall.SELECTED DRAWING: Figure 4

Description

本発明は、熱輻射用のレフレクター、該レフレクターを含む内装材、および該内装材を用いた輻射式冷暖房システムに関するものである。   TECHNICAL FIELD The present invention relates to a reflector for heat radiation, an interior material including the reflector, and a radiant cooling / heating system using the interior material.

(気温と周壁平均温度の等価性)
室内空気・周壁平均温の組み合わせと人体エクセルギー消費の関係についての非特許文献1中の図9に、横軸を室内空気温とし、縦軸を周壁平均温として、快適な温熱環境であることを示すPMV*=0のラインが、おおよそ右下がり傾き−1の直線としてプロットされている(転載した本明細書に添付した図1参照)。周壁平均温とは、室内壁面(ここでは、天井、床、ドア、窓も壁面に含める)の温度を各壁面の面積で荷重平均して算出した温度である。同図より、少なくとも同図の縦軸、横軸の範囲において、室内空気温が高くとも低くとも、周壁平均温を適切に設定できれば、PMV*=0の快適な温熱環境を実現できる、つまり、温熱快適性に対して室内空気温と周壁平均温は、等価な効果を持つ、ということが理解される。
(Equivalence between air temperature and average wall temperature)
In FIG. 9 in Non-Patent Document 1 regarding the relationship between the combination of indoor air / peripheral wall average temperature and human body exergy consumption, the horizontal axis represents the indoor air temperature and the vertical axis represents the peripheral wall average temperature, which is a comfortable thermal environment. The line of PMV * = 0 indicating is plotted as a straight line with an approximately downward slope of -1 (see FIG. 1 attached to the present specification reproduced). The peripheral wall average temperature is a temperature calculated by weight-averaging the temperature of the indoor wall surface (here, the ceiling, floor, door, and window are also included in the wall surface) by the area of each wall surface. From the figure, at least in the range of the vertical axis and the horizontal axis of the figure, a comfortable thermal environment of PMV * = 0 can be realized if the ambient wall average temperature is appropriately set regardless of whether the indoor air temperature is high or low. It is understood that the indoor air temperature and the peripheral wall average temperature have the same effect on the thermal comfort.

しかし、人体が感じる温熱快適性に、壁の温度が気温と同じだけの寄与があるとは、一般には、認識されていないようである。多くの場合、室内壁面だけを能動的に制御することはできず、また、定常状態においては気温と壁温は、ほぼ同一温度に平衡するためであろうと考えられる。この点、環境工学では、温熱快適性に対する壁温の重要性は古くからよく知られており、壁温を積極的に制御することで、つまり、壁面と人体との輻射伝熱を利用して、室内を空調する方法が既に提案され、実用化されている。   However, it has not generally been recognized that the wall temperature contributes as much as the air temperature to the thermal comfort felt by the human body. In many cases, it is considered that the indoor wall surface alone cannot be actively controlled, and that the air temperature and the wall temperature equilibrate to almost the same temperature in the steady state. In this respect, in environmental engineering, the importance of wall temperature for thermal comfort has long been well known, and by positively controlling the wall temperature, that is, by utilizing the radiant heat transfer between the wall surface and the human body. A method for air conditioning the room has already been proposed and put into practical use.

(床暖房)
床内側に温調用配管を設置し温水を循環することで暖房を行う、床暖房システムが実用化されている。床暖房の場合、足裏等からの接触伝熱による暖房効果も無視できないと考えられるが、ここでは、輻射暖房の効果に着目する。
(Floor heating)
A floor heating system that puts a temperature control pipe inside the floor and circulates hot water for heating has been put into practical use. In the case of floor heating, it can be considered that the heating effect due to contact heat transfer from the bottom of the feet cannot be ignored, but here we focus on the effect of radiant heating.

(輻射式空調パネル)
垂直壁内側または天井裏側に温調用配管を配置し、冷水または温水を循環することで、輻射式冷暖房を行うことも提案されている。
(Radiation type air conditioning panel)
It has also been proposed to arrange a temperature control pipe inside the vertical wall or on the back side of the ceiling and circulate cold water or hot water to perform radiant cooling and heating.

特開2017−102191号公報JP, 2017-102191, A 特開2000−88257号公報JP-A-2000-88257

室内空気・周壁平均温の組み合わせと人体エクセルギー消費の関係、伊澤康一、小溝隆裕、宿谷昌則 日本建築学会環境系論文集 第570号、29−35、2003年8月Relationship between combination of indoor air and average wall temperature and human body exergy consumption, Kouichi Izawa, Takahiro Kozomi, Masanori Sudani Journal of Architectural Institute of Japan No. 570, 29-35, August 2003 冬場の住居内の温度管理と健康について(地方独立行政法人 東京都健康長寿医療センター)平成25年12月2日About temperature control and health in the winter house (Tokyo Metropolitan Health and Longevity Medical Center) December 2, 2013

しかし、前述のごとき従来の技術には、以下に説明するような課題がある。   However, the conventional techniques as described above have the following problems.

(現状の輻射式冷暖房の課題1:温調の実情)
先に、室内空気温と周壁平均温は、等価な効果を持つと述べたが、現状の空調は気温を制御する対流式エアコンが主流であり、床暖房や輻射式空調パネルは、導入されていても補助的な役割しか担っていないように見受けられる。輻射式冷暖房は、周壁平均温で効果が算定されるので、現状のように、床面だけ、天井面だけ、あるいは、垂直壁面の一部、つまり室内の6面の一部の温度だけを制御するのでは、周壁平均温を十分に上げたり下げたりできないのは明らかである。室内の6面すべてを温調できればよいが、設備コスト上、一般に実現は難しい。制御する面の温度を、十二分に加熱したり、冷却したりすれば、残りの面が気温と平衡していても、計算上の周壁平均温を、室内の温熱快適性が好ましく計算されるように設定はできる。しかし、その場合、足裏が触れる床面温度が高くなりすぎたり、壁面に結露が生じたりするなどの弊害が懸念される。また、壁面の温度ばらつきは10K以内が望ましいとされる環境工学上の規範から外れ、温熱快適性を阻害するおそれも考えられる。したがって、壁面等の極端な温度設定は無理であり、温調する面が、室内表面の一部に限られる条件では、輻射式冷暖房は補助的な役割しか担うことができないと考えられる。
(Current issue of radiant cooling and heating 1: Actual condition of temperature control)
Although it was mentioned earlier that the indoor air temperature and the peripheral wall average temperature have an equivalent effect, the current air conditioning is mainly a convection type air conditioner that controls the temperature, and floor heating and radiant air conditioning panels have been introduced. However, it seems that they play only a supplementary role. The effect of radiant heating and cooling is calculated by the average temperature of the surrounding walls, so as in the current situation, only the floor surface, the ceiling surface, or part of the vertical wall surface, that is, the temperature of part of the six indoor surfaces is controlled. However, it is obvious that the average wall temperature cannot be raised or lowered sufficiently. It is only necessary to be able to control the temperature on all six surfaces in the room, but this is generally difficult to achieve due to equipment costs. If the temperature of the surface to be controlled is sufficiently heated or cooled, even if the remaining surface is in equilibrium with the air temperature, the calculated peripheral wall average temperature is calculated as the indoor thermal comfort. Can be set to. However, in that case, there is a concern that the floor surface temperature touching the soles of the feet may become too high, or that dew condensation may occur on the wall surface. Further, it is possible that the temperature variation of the wall surface deviates from the norm in the environmental engineering, which is desired to be within 10K, and the thermal comfort may be impaired. Therefore, it is considered impossible to set extreme temperatures such as wall surfaces, and under the condition that the temperature controlled surface is limited to a part of the indoor surface, the radiant cooling and heating can play only an auxiliary role.

(現状の輻射式冷暖房の課題2:冷暖房効果の偏り)
床暖房や天井全面に配置された輻射式冷暖房パネルであれば、人体から見た輻射面について、ある程度大きな立体角が確保されるが、壁面1面に設置された輻射式冷暖房パネルの場合、人体の片側だけしか冷暖房の効果にあずかれないので違和感が残り、十分な温熱快適性が得られない。
(Issue 2 of current radiant cooling and heating: bias in heating and cooling effects)
A radiation type heating / cooling panel placed on the entire floor or ceiling can secure a relatively large solid angle with respect to the radiation surface seen from the human body, but in the case of a radiation type heating / cooling panel installed on one wall surface, Only one side of the is involved in the effect of heating and cooling, so a sense of discomfort remains and sufficient thermal comfort cannot be obtained.

(現状の輻射式冷暖房の課題3:低応答速度)
現行の輻射冷暖房パネル等は、その設計上、輻射伝熱で冷暖房効果を得ようとするものであるが、多かれ少なかれ空気への熱伝導や空気の対流を引き起こすので、しだいに気温も冷却または加熱されるものである。輻射冷暖房パネル等の熱出力が十分あれば、気温が適当になり、さらには温調されていない壁面等も気温と平衡し、全体として温熱快適な空間を実現できる構成もありえる。しかしながら、部屋の初期温度が、高かったり低かったりした場合、輻射冷暖房パネルで快適な定常状態に至るまでには、長い時間を要す。
(Problem 3 of current radiant cooling and heating: low response speed)
Due to its design, the existing radiant cooling and heating panels try to obtain the cooling and heating effect by radiant heat transfer, but because they cause heat conduction to air and convection of air to a greater or lesser extent, the temperature gradually cools or heats. Is done. If the heat output of the radiant cooling / heating panel etc. is sufficient, the temperature will be appropriate, and even the wall surface that is not temperature-controlled will be in equilibrium with the temperature, so that a warm and comfortable space can be realized as a whole. However, when the initial temperature of the room is high or low, it takes a long time for the radiant cooling / heating panel to reach a comfortable steady state.

そこで、本発明は、前述のごとき各種課題を鑑み、室内の熱源から輻射される赤外線を効率よく反射させ、室内の所定領域がより短時間で快適な定常状態に至るようにした熱輻射用のレフレクター、該レフレクターを含む内装材、および該内装材を用いた輻射式冷暖房システムを提供することを目的とする。   Therefore, in view of various problems as described above, the present invention efficiently reflects infrared rays radiated from a heat source in a room, and a predetermined area in the room reaches a comfortable steady state in a shorter time. An object of the present invention is to provide a reflector, an interior material including the reflector, and a radiant cooling and heating system using the interior material.

課題1は、壁、天井、床の温度を、低コストで設定できれば解決しうる。ここで、輻射伝熱を考えているので、壁、天井、床の、それら自体の温度を変えなくとも、等価的に温度を変えられればよい。簡単な実験で例示する。図2に示す位置関係で、高反射率の金属半球の焦点位置に氷を置き、放射温度計で金属半球の温度をはかると、金属半球自体の温度は、室温であるにもかかわらず、その示度は0℃となる。これを敷衍(ふえん)し、冷却された物体または加熱された物体の温度を、部屋全体に反射させることを考えて見る。図3に示すように、仮に、部屋(図3において符号R1で示す)が回転楕円体形状であり、その内面が高反射率であるとし、回転楕円体のひとつの焦点に冷却または加熱された黒体Bを置き、人体Aが他方の焦点にあったとする。人体位置から放射温度計で壁面温度を測ると、回転楕円体内面が気温と平衡していても、いたるところ黒体Bの温度と一致することになる。これで原理的には、周壁平均温を簡単に制御できるようになり、課題1は解決できると考えられる。さらに、人体の場所は、回転楕円体の焦点近傍に制限されるが、人体が感じる輻射温度はあらゆる方向に一定であり、冷暖房効果に偏りがなくなることとなり、課題2も原理的には解決可能となる。また、人体が感じる輻射温度は、反射面自体の温度に依存しないので、反射面自体の温度が冷やされたり暖められたりするのを待たずとも、黒体Bの冷却応答速度または加熱応答速度が大きければ、即応性の高い冷暖房効果が得られる。課題3も、併せて原理的に解決可能なことが判った。   Problem 1 can be solved if the temperatures of the wall, ceiling, and floor can be set at low cost. Here, since radiant heat transfer is considered, the temperatures of the walls, ceiling, and floor may be changed equivalently without changing the temperatures of themselves. This is illustrated by a simple experiment. In the positional relationship shown in FIG. 2, when ice is placed at the focal position of a metal hemisphere having high reflectance and the temperature of the metal hemisphere is measured by a radiation thermometer, the temperature of the metal hemisphere itself is room temperature, The reading is 0 ° C. Let us consider this by spreading this and reflecting the temperature of a cooled object or a heated object to the entire room. As shown in FIG. 3, it is assumed that the room (indicated by reference numeral R1 in FIG. 3) has a spheroidal shape, the inner surface of which has a high reflectance, and the room is cooled or heated to one focal point of the spheroid. It is assumed that the black body B is placed and the human body A is at the other focal point. When the temperature of the wall surface is measured from the human body position with a radiation thermometer, even if the inner surface of the spheroid is in equilibrium with the air temperature, the temperature of the black body B coincides with the temperature of the black body B everywhere. In principle, this makes it possible to easily control the peripheral wall average temperature, and it is thought that Problem 1 can be solved. Furthermore, the location of the human body is limited to the vicinity of the focal point of the spheroid, but the radiation temperature felt by the human body is constant in all directions, and the heating and cooling effect will not be biased. Problem 2 can also be solved in principle. Becomes Further, since the radiant temperature felt by the human body does not depend on the temperature of the reflection surface itself, the cooling response speed or the heating response speed of the black body B can be achieved without waiting for the temperature of the reflection surface itself to be cooled or warmed. If it is large, a highly responsive cooling and heating effect can be obtained. It was also found that Problem 3 can also be solved in principle.

しかしながら、回転楕円体は、ふつうの直方体状の部屋の形とは馴染まないものである。そこで、図4に示すように、高反射率の反射面は直方体状の部屋R2の壁面、天井面、床面のそれぞれの表面に配置し、巨視的にみた反射面は壁面等に平行であるが、微視的にみた反射面の法線を適切に設定し、輻射つまり赤外線の方向を回転楕円体の場合と同様になるようにする。これは、フレネルミラーとして知られる構造で実現できる。フレネルミラーの説明と応用例は、例えば特許文献1として挙げる特開2017−102191号公報に見ることができる。同文献中の説明図を、図5として引用する。同文献でのフレネルミラー採用目的は、自動車の計器類を、無限遠方に、反射投影することである。   However, the spheroid does not fit well with the shape of an ordinary rectangular parallelepiped room. Therefore, as shown in FIG. 4, the reflecting surfaces having a high reflectance are arranged on the wall surface, the ceiling surface, and the floor surface of the rectangular parallelepiped room R2, and the reflecting surfaces viewed macroscopically are parallel to the wall surfaces. However, the normal line of the reflecting surface as seen microscopically is set appropriately so that the direction of radiation, that is, the direction of infrared rays is the same as in the case of a spheroid. This can be achieved with a structure known as a Fresnel mirror. A description and application examples of the Fresnel mirror can be found in, for example, Japanese Unexamined Patent Application Publication No. 2017-102191 cited as Patent Document 1. The explanatory diagram in the document is cited as FIG. The purpose of adopting the Fresnel mirror in this document is to reflect and project the instrumentation of an automobile to infinity.

本発明は前述のごとき種々の検討を経て想到するに至ったもので、フレネルミラー型の構造を採用することで、赤外線を設定する方向に反射させる。赤外線を反射するフレネルミラー型の構造を直方体状の部屋の壁面、天井面、床面に、適切に配置することで、部屋の形状が直方体状であっても、回転楕円体の場合と同様に、2つの焦点を形成することが可能であり、回転楕円体状の部屋の場合と同様に、課題1から課題3までを、原理的に解決することが可能である。   The present invention has been arrived at through the various studies as described above, and by adopting a Fresnel mirror type structure, infrared rays are reflected in a direction to be set. By appropriately arranging the Fresnel mirror type structure that reflects infrared rays on the wall surface, ceiling surface and floor surface of a rectangular parallelepiped room, even if the room shape is a rectangular parallelepiped, the same as in the case of the spheroid. It is possible to form two focal points, and in principle, it is possible to solve the problems 1 to 3 as in the case of the spheroidal room.

本発明の一態様は、フレネルミラー型の加工が施された赤外線反射層を含む熱輻射用のレフレクターである。   One embodiment of the present invention is a reflector for heat radiation, which includes a Fresnel mirror-type processed infrared reflective layer.

レフレクターは、赤外線反射層に積層された、赤外線を透過する赤外線透過層をさらに含むものであってもよい。また、レフレクターは、赤外線透過層と赤外線反射層とを積層して形成されたシートにフレネルミラー型の加工が施された構造であってもよい。赤外線透過層は、不透明または半透明の樹脂製であってもよい。赤外線透過層は、例えばポリエチレン製またはポリプロピレン製またはポリスチレン製である。赤外線反射層は、例えばアルミニウム製、銀製または金製である。   The reflector may further include an infrared transmitting layer that transmits infrared rays and is laminated on the infrared reflecting layer. Further, the reflector may have a structure in which a sheet formed by laminating an infrared transmitting layer and an infrared reflecting layer is subjected to Fresnel mirror type processing. The infrared transparent layer may be made of an opaque or translucent resin. The infrared transmitting layer is made of polyethylene, polypropylene, or polystyrene, for example. The infrared reflective layer is made of, for example, aluminum, silver or gold.

本発明の一態様に係る壁紙等の内装材は前述のごときレフレクターを含む。レフレクターに指向性が付与されていてもよい。レフレクターが、室内の熱源から輻射される赤外線を当該室内の他の特定個所に向けて反射する構造であってもよい。   Interior materials such as wallpaper according to an aspect of the present invention include the reflector as described above. Directionality may be imparted to the reflector. The reflector may have a structure that reflects infrared rays radiated from a heat source in the room toward other specific places in the room.

本発明の一態様に係る輻射式冷暖房システムは、前述のごとき内装材を用いたシステムである。   The radiant cooling / heating system according to an aspect of the present invention is a system using the interior material as described above.

本発明によれば、室内の熱源から輻射される赤外線を効率よく反射させ、室内の所定領域がより短時間で快適な定常状態に至るようにすることができる。   According to the present invention, infrared rays radiated from a heat source in a room can be efficiently reflected, and a predetermined area in the room can reach a comfortable steady state in a shorter time.

室内空気・周壁平均温の組み合わせと人体エクセルギー消費の関係について非特許文献1から転載した、横軸を室内空気温、縦軸を周壁平均温としたグラフである。6 is a graph reproduced from Non-Patent Document 1 regarding the relationship between the combination of indoor air / peripheral wall average temperature and human body exergy consumption, with the horizontal axis representing the indoor air temperature and the vertical axis representing the peripheral wall average temperature. 壁、天井、床についてそれら自体の温度を変えなくとも等価的に温度を変えるための実験例を説明する図である。It is a figure explaining the example of an experiment for changing temperature equivalently, without changing the temperature of the wall, the ceiling, and the floor itself. 仮に部屋が回転楕円体形状でありその内面が高反射率であるとした場合について説明するための図である。It is a figure for demonstrating the case where a room is spheroidal shape and the inner surface is high reflectance. 高反射率の反射面を直方体状の部屋の壁面、天井面、床面のそれぞれの表面に配置する概念について説明する図である。It is a figure explaining the concept which arranges the reflective surface of high reflectance on each surface of the wall surface, ceiling surface, and floor surface of a rectangular parallelepiped room. 特許文献1の図3から転載した図(ウインドシールド10に含まれるフレネルミラー形成部10aの構成および光路の例を示す光路図)である。FIG. 4 is a diagram reproduced from FIG. 3 of Patent Document 1 (an optical path diagram showing an example of a configuration and an optical path of a Fresnel mirror forming portion 10a included in the windshield 10). アルミニウム、銀、金の分光反射率について説明するグラフである。It is a graph explaining the spectral reflectance of aluminum, silver, and gold. 黒体の輻射スペクトルを示すグラフである。It is a graph which shows the radiation spectrum of a black body. ポリエチレン薄膜、ポリプロピレン薄膜、ポリスチレン薄膜の赤外線領域での高い透過性について説明するグラフである。It is a graph explaining the high transmittance in the infrared region of a polyethylene thin film, a polypropylene thin film, and a polystyrene thin film. 赤外線反射機能を有する輻射冷暖房用壁紙の構成例を示す図である。It is a figure which shows the structural example of the wallpaper for radiant cooling and heating which has an infrared reflection function. 特許文献2に示された遠赤外線を用いた面暖房システムの一例を示す図である。It is a figure which shows an example of the surface heating system using the far infrared rays shown by patent document 2. 図10の面暖房システムにおいて、反射面が一方の極端である鏡面反射の場合について説明する図である。It is a figure explaining the case where the reflective surface is a mirror reflection which is one extreme in the surface heating system of FIG. 図10の面暖房システムにおいて、反射面が他方の極端である拡散反射の場合について説明する図である。It is a figure explaining the case where the reflective surface is diffuse reflection which is the other extreme in the surface heating system of FIG. 本発明の実施例1における内装材の構成例を示す図である。It is a figure which shows the structural example of the interior material in Example 1 of this invention. 表面に微多孔性ポリエチレンフィルムを接着して赤外線透過層を形成した内装材について示す図である。It is a figure shown about the interior material which adhered the microporous polyethylene film on the surface, and formed the infrared penetration layer. 背面側に反射形成面と切り返し面とが形成された表面材を示す図である。It is a figure which shows the surface material in which the reflection formation surface and the cut back surface were formed in the back side. 表面材の背面側にアルミニウムを蒸着する工程を表す図である。It is a figure showing the process of vapor-depositing aluminum on the back surface side of a surface material. 背面側に反射面保護層が形成された表面材を示す図である。It is a figure which shows the surface material in which the reflective surface protection layer was formed in the back side. 実施例2の内装材において、表面材の表面側から入射した赤外線が該表面材を透過し、表面材と反射面保護層との境界で反射して出射する様子を示す図である。FIG. 7 is a diagram showing a state in which infrared rays incident from the surface side of the surface material are transmitted through the surface material of the interior material of Example 2 and are reflected and emitted at the boundary between the surface material and the reflection surface protection layer.

添付図面を参照して、本発明の好適な実施形態について説明する。   A preferred embodiment of the present invention will be described with reference to the accompanying drawings.

図9に、部屋の内装材を構成するレフレクターの一例を示す。レフレクターによって構成される内装材は、熱源を有する部屋における新規な輻射式冷暖房システムを構成しうる(図10〜図12等参照)。   FIG. 9 shows an example of the reflector that constitutes the interior material of the room. The interior material constituted by the reflector can constitute a novel radiant cooling / heating system in a room having a heat source (see FIGS. 10 to 12, etc.).

本実施形態のレフレクター20は、内装材基材12の表面の、フレネルミラー型の加工が施された赤外線反射層22と、該赤外線反射層22に積層された赤外線透過層24とを含む。本実施形態では、内装材基材12の表層にもフレネルミラー型の加工を施す(図9参照)。内装材基材12の表層に設けられるレフレクター20は、赤外線反射層22と赤外線透過層24とを積層して形成されたシートにフレネルミラー型の加工が施された構造であってもよい。   The reflector 20 of the present embodiment includes an infrared reflection layer 22 on the surface of the interior material substrate 12 that has been subjected to Fresnel mirror processing, and an infrared transmission layer 24 laminated on the infrared reflection layer 22. In this embodiment, Fresnel mirror type processing is also applied to the surface layer of the interior material base material 12 (see FIG. 9). The reflector 20 provided on the surface layer of the interior material substrate 12 may have a structure in which a sheet formed by laminating an infrared reflection layer 22 and an infrared transmission layer 24 is subjected to Fresnel mirror type processing.

赤外線反射層22は、赤外線に対して高い反射率を有する物質、例えばアルミニウム板によって形成されうる。参考資料として、図6にアルミニウムの分光反射率を示す。また、図7に黒体の輻射スペクトルを示す。室温から数100℃の黒体が輻射する赤外線の大半に対して、アルミニウムが高い反射率を有することが判る。図6には、銀または金はアルミニウム以上の高い反射率を有することが示されているが、材料コストの観点から、アルミニウムを用いることが好適である。   The infrared reflective layer 22 may be formed of a material having a high reflectance for infrared rays, such as an aluminum plate. As a reference material, FIG. 6 shows the spectral reflectance of aluminum. Moreover, the radiation spectrum of a black body is shown in FIG. It can be seen that aluminum has a high reflectance for most of the infrared rays radiated by a black body from room temperature to several hundred degrees Celsius. Although FIG. 6 shows that silver or gold has a higher reflectance than aluminum, it is preferable to use aluminum from the viewpoint of material cost.

前述のフレネルミラー加工が施されたアルミニウム板を、部屋の壁面、天井面、床面に敷き詰めることができるが、ただ、それだけだと、部屋全面が金属反射面となり、落ち着いて居住するには適しづらい。この点をふまえ、本実施形態では、赤外線反射層22に、例えば、可視域では白色不透明であり赤外域では透明である薄いシート状素材からなる赤外線透過層24を積層する。一例として、ポリエチレン微多孔薄膜は、見た目は白色半艶消しの落ち着いた外観であり、かつ、図8に示すように赤外線領域で高い透過性を持っている。フレネルミラー加工が施されたアルミニウムの層をポリエチレン微多孔薄膜でカバーすれば、目視外観上は白色半艶消しでありながら、反射方向を制御した高反射率の赤外線反射板として機能する。図8に示すように、ポリプロピレン薄膜、ポリスチレン薄膜、ポリテトラフルオロエチレン薄膜も赤外線領域で高い透過性を持っており、これらの微多孔薄膜も本発明のカバー部材として好適である。   The above-mentioned Fresnel mirrored aluminum plate can be laid on the walls, ceiling and floor of the room, but with that alone, the entire surface of the room becomes a metal reflective surface, suitable for calm living. It's hard. In consideration of this point, in the present embodiment, the infrared reflective layer 22 is laminated with, for example, an infrared transparent layer 24 made of a thin sheet material that is white and opaque in the visible range and transparent in the infrared range. As an example, the polyethylene microporous thin film has a white, semi-matt, and calm appearance, and has high transparency in the infrared region as shown in FIG. If the aluminum layer that has been subjected to the Fresnel mirror processing is covered with a polyethylene microporous thin film, it will function as an infrared reflection plate having a high reflectance with a controlled reflection direction while being white and semi-matt in appearance. As shown in FIG. 8, polypropylene thin film, polystyrene thin film, and polytetrafluoroethylene thin film also have high transparency in the infrared region, and these microporous thin films are also suitable as the cover member of the present invention.

赤外線反射は、アルミニウム板の表面で起こる。アルミニウム板は、アルミニウム箔のように薄くてもよく、あるいはアルミニウム箔が張り付けられた板状のものであってもよい。さらには、ポリエチレン微多孔薄膜の裏面側にアルミニウムを蒸着してレフレクター20が形成されていてもよい。   Infrared reflection occurs on the surface of the aluminum plate. The aluminum plate may be as thin as an aluminum foil, or may be a plate-shaped one to which an aluminum foil is attached. Further, the reflector 20 may be formed by vapor-depositing aluminum on the back surface side of the polyethylene microporous thin film.

前述のポリエチレン微多孔薄膜の層とアルミニウムの層を積層したシートは、適度な厚さと柔軟性を有する内装材基材12の表面に貼りつけ、全体として内装材10をなすように構成すると、取り扱いや壁面等への施工が容易となり好ましい。また、既存の壁に後付けできる構造の内装材10を例えば壁紙として構成すれば、新築のみならず既設の建物に対しても本実施形態に係る輻射式冷暖房システムを後付けして設置することが可能となる。   The sheet obtained by laminating the layer of the polyethylene microporous thin film and the layer of aluminum described above is attached to the surface of the interior material base material 12 having an appropriate thickness and flexibility to form the interior material 10 as a whole. It is preferable because it can be easily installed on walls and walls. Further, if the interior material 10 having a structure that can be retrofitted to an existing wall is configured as, for example, a wallpaper, the radiant cooling / heating system according to the present embodiment can be retrofitted and installed not only in a new building but also in an existing building. Becomes

また、ポリエチレン微多孔薄膜の孔に、染料を適度に染み込ませることで、赤外線反射層22の赤外線反射機能をほとんど妨害せずに、内装材10の表面に淡い色彩や薄い模様等の意匠を持たせることが可能である。   Further, by appropriately impregnating the dye in the pores of the polyethylene microporous thin film, the surface of the interior material 10 has a design such as a pale color or a thin pattern, while hardly disturbing the infrared reflection function of the infrared reflection layer 22. It is possible to

部屋の内装材10を構成するレフレクター20には、指向性が付与されていることが好ましい。本実施形態では、室内の特定の位置の熱源から輻射される赤外線が、当該室内の他の特定個所に向けて反射する構造のレフレクター20によって内装材10を構成している(図4参照)、特定個所とは、スポット温調したい領域であり、より具体的には、居住者や部屋の利用者らがより長く位置する個所である。   It is preferable that the reflector 20 that constitutes the interior material 10 of the room is provided with directivity. In the present embodiment, the interior material 10 is configured by the reflector 20 having a structure in which infrared rays radiated from a heat source at a specific position in the room are reflected toward other specific points in the room (see FIG. 4), The specific location is an area where the spot temperature is desired to be adjusted, and more specifically, a location where residents and room users are located longer.

前述のごとき熱輻射用のレフレクター20を含む内装材10、および該内装材10を用いた輻射式冷暖房システムによれば、以下に例示するごとき利点を得ることが可能である。   According to the interior material 10 including the reflector 20 for heat radiation as described above and the radiant cooling / heating system using the interior material 10, the following advantages can be obtained.

<住宅のトイレや浴室に隣接する脱衣室に適用した場合>
住宅全体の断熱性が十分に高くない場合、リビングルームや寝室が空調されていても、その効果はトイレや脱衣室にはほとんど及ばないので、特に冬季における寒い日には、寒い空間に、半身あるいは全身がさらされることになる。これは、ヒートショックを起こすリスクがあり、非特許文献2によれば、日本国内1年間で、約17000人が、ヒートショックに関連し入浴中に急死しているとされている。これを防ぐため、対流式エアコン等を脱衣室に設置する例もあるが、脱衣室が十分暖房されるまでには、少なくとも数分は要するので、あらかじめ起動する必要がある。トイレや脱衣室に輻射式ストーブを設置すれば、手軽に即応性高く暖房が可能であるが、輻射式ストーブのある側半面しか暖房効果が及ばないので、効果は限定的であり、反対側反面は冷気にさらされるので十分な快適性が得られない。
<When applied to a dressing room adjacent to a residential toilet or bathroom>
If the heat insulation of the whole house is not sufficiently high, even if the living room or bedroom is air-conditioned, its effect is almost inferior to the toilet or dressing room. Or the whole body will be exposed. This has a risk of causing a heat shock, and according to Non-Patent Document 2, it is said that about 17,000 people die suddenly during bathing in a year in Japan due to the heat shock. In order to prevent this, there is an example in which a convection air conditioner or the like is installed in the dressing room, but it takes at least several minutes until the dressing room is sufficiently heated, so it must be started in advance. If you install a radiant stove in the toilet or dressing room, you can easily and quickly heat it.However, the heating effect is limited to only the half side where the radiant stove is located, so the effect is limited and the other side is opposite. Is not exposed to cold air and therefore does not have sufficient comfort.

この点、前述のごとき熱輻射用のレフレクター20を含む内装材10を脱衣室またはトイレの壁表面および天井表面に展張し、応答性の高い輻射式ストーブまたは輻射式クーラーと組み合わせることで、方向性の偏りがすくない適切な周壁平均温の快適な温熱環境を、輻射式ストーブまたは輻射式クーラーの起動から間をおかずに、実現することができる。最近の輻射暖房装置の応答速度は0.2秒から数秒と大変速いものがあり、これを利用すれば、すぐに、ほぼ全方向から、体を温めることができることができ、快適であり、かつ、ヒートショックに関連するリスクを低減することができる。   In this respect, the interior material 10 including the reflector 20 for heat radiation as described above is spread on the wall surface and ceiling surface of a changing room or toilet and combined with a highly responsive radiant stove or radiant cooler to provide directional characteristics. It is possible to realize a comfortable thermal environment with a suitable average wall temperature of the surrounding wall without any bias, without activating the radiant stove or the radiant cooler. Recent radiant heating systems have very fast response speeds of 0.2 seconds to a few seconds, and if you use this, you can quickly warm your body from almost all directions, and it is comfortable and heat The risk associated with shock can be reduced.

<先行発明との比較>
特許文献2に示された遠赤外線を用いた面暖房システムでは、図10に示されるように、遠赤外線ヒータ34を設置する部屋32の天井材38および壁材40に、特定波長、たとえば3〜10μm程度の遠赤外線を反射する遠赤外線反射面36を形成し、遠赤外線ヒータ34より部屋32内に輻射される遠赤外線42をこの遠赤外線反射面36によって反射する、としている。これにより、暖房される部屋32のどの位置にいても、遠赤外線反射面によって反射された遠赤外線44による輻射熱を全身に受けることができ、快適でエネルギー効率の良い暖房が可能となる、という旨が開示されている。同文献に記載の発明では、反射面の光学特性について、波長に関する言及はあるが、鏡面反射か拡散反射か、あるいはその折衷的な反射かについての言及はない。ここで、反射面の違いの影響について考察する。
<Comparison with prior invention>
In the surface heating system using far infrared rays disclosed in Patent Document 2, as shown in FIG. 10, the ceiling material 38 and the wall material 40 of the room 32 in which the far infrared heater 34 is installed have a specific wavelength, for example, 3 to. The far-infrared reflecting surface 36 that reflects far-infrared rays of about 10 μm is formed, and the far-infrared ray 42 radiated from the far-infrared heater 34 into the room 32 is reflected by the far-infrared reflecting surface 36. As a result, regardless of the position of the room 32 to be heated, the radiant heat from the far infrared rays 44 reflected by the far infrared reflecting surface can be received by the whole body, and comfortable and energy efficient heating can be achieved. Is disclosed. In the invention described in the document, the optical characteristics of the reflecting surface are referred to as to the wavelength, but there is no reference to specular reflection, diffuse reflection, or eclectic reflection thereof. Here, the influence of the difference in the reflecting surface will be considered.

反射面が一方の極端である鏡面反射の場合を図11に示す。入射角と反射角は、反射面の法線を挟んで等しいという反射に関するSnellの法則により、放出された赤外線の大半は被加熱対象(人体)には1回の反射では到達できず、繰り返し反射の過程で、部屋全体を暖めることになる。反射面が他方の極端である拡散反射の場合を図12に示す。Lambertの余弦法則により、赤外線は四方に拡散し、この場合も、部屋全体を暖めることになる。   FIG. 11 shows the case of specular reflection, where the reflection surface is one extreme. According to Snell's law of reflection, that the incident angle and the reflection angle are equal across the normal of the reflecting surface, most of the infrared rays emitted cannot reach the object to be heated (human body) by one reflection, and are repeatedly reflected. In the process of, you will be heating the entire room. FIG. 12 shows the case of diffuse reflection, where the reflection surface is the other extreme. According to Lambert's cosine law, infrared rays are diffused in all directions, and in this case also, the whole room is heated.

部屋全体を輻射式ストーブで暖められることは、一面ではメリットであるが、ひと一人を暖めるスポット的な暖房を志向した場合には、非効率的であり、十分な暖房効果を得るためには、より大出力の輻射式ストーブが必要となり、経済的ではない   Being able to warm the entire room with a radiant stove is a merit in one aspect, but it is inefficient when aiming for spot-like heating that warms one person, and in order to obtain a sufficient heating effect, Larger output radiant stove required, not economical

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

本発明者らは、熱輻射用のレフレクター20を含む内装材10を実際に作成した。以下に実施例1として説明する(図13、図14参照)。   The present inventors actually created the interior material 10 including the reflector 20 for heat radiation. This will be described below as Example 1 (see FIGS. 13 and 14).

まず、内装材基材12を、その表面が反射面12rと切り返し面12sとが連なる形状となるように形成した(図13参照)。次に、内装材基材12の反射面12rと切り返し面12sにアルミニウムを蒸着して赤外線反射層22を形成した。その後、当該赤外線反射層22の表面に微多孔性ポリエチレンフィルムを接着し、赤外線透過層(表面材)24を形成した(図14参照)。本例では、反射面12rの近傍に形成された帯状の表面材接着面12tにおいて、接着材で微多孔性ポリエチレンフィルムを接着した(図13参照)。   First, the interior material base material 12 was formed so that the surface thereof had a shape in which the reflection surface 12r and the cut-back surface 12s were continuous (see FIG. 13). Next, aluminum was vapor-deposited on the reflecting surface 12r and the cut-back surface 12s of the interior material substrate 12 to form the infrared reflecting layer 22. Then, a microporous polyethylene film was adhered to the surface of the infrared reflection layer 22 to form an infrared transmission layer (surface material) 24 (see FIG. 14). In this example, the microporous polyethylene film was adhered with an adhesive on the strip-shaped surface material adhering surface 12t formed near the reflecting surface 12r (see FIG. 13).

本発明者らは、熱輻射用のレフレクター20を含む内装材10を、上記の実施例1とは別の方法で作成した。以下に実施例2として説明する(図15〜図18参照)。   The present inventors created the interior material 10 including the reflector 20 for heat radiation by a method different from that of the above-described Example 1. A second embodiment will be described below (see FIGS. 15 to 18).

まず、赤外線透過層24を形成する表面材の背面側(すなわち内装材1の表面になる面とは反対側の面)を、反射形成面24rと切り返し面24sとが連なる形状に形成した(図15参照)。次に、表面材の背面の反射形成面24rと切り返し面24sにアルミニウムを蒸着し(図16参照)、さらに、反射面保護層26を形成した(図17参照)。   First, the back surface side (that is, the surface opposite to the surface that becomes the surface of the interior material 1) of the surface material forming the infrared transmission layer 24 is formed into a shape in which the reflection forming surface 24r and the cutback surface 24s are continuous (FIG. 15). Next, aluminum was vapor-deposited on the reflection forming surface 24r and the cut-back surface 24s on the back surface of the surface material (see FIG. 16), and further the reflective surface protective layer 26 was formed (see FIG. 17).

本実施例2の内装材10において、赤外線透過層24を形成する表面材の表面側から入射した赤外線は、該表面材を透過し、表面材と反射面保護層26との境界で反射して出射する(図18参照)。   In the interior material 10 of the second embodiment, the infrared rays incident from the surface side of the surface material forming the infrared transmission layer 24 are transmitted through the surface material and reflected at the boundary between the surface material and the reflective surface protection layer 26. It is emitted (see FIG. 18).

本発明は、住宅等の新規建築、住宅のリフォーム等において、熱輻射用のレフレクター、該レフレクターを含む内装材、および該内装材を用いた輻射式冷暖房システムに適用して好適なものである。   INDUSTRIAL APPLICABILITY The present invention is suitable for application to a reflector for heat radiation, an interior material including the reflector, and a radiant cooling and heating system using the interior material in a new construction of a house or the like, a reform of a house, or the like.

10…内装材、12…内装材基材、20…レフレクター、22…フレネルミラー微細加工アルミ箔(赤外線反射層)、24…微多孔性ポリエチレンフィルム(赤外線透過層) 10 ... Interior material, 12 ... Interior material base material, 20 ... Reflector, 22 ... Fresnel mirror microfabricated aluminum foil (infrared reflecting layer), 24 ... Microporous polyethylene film (infrared transmitting layer)

Claims (10)

フレネルミラー型の加工が施された赤外線反射層を含む熱輻射用のレフレクター。   A reflector for heat radiation that includes a Fresnel mirror type infrared reflection layer. 前記赤外線反射層に積層された、赤外線を透過する赤外線透過層をさらに含む、請求項1に記載のレフレクター。   The reflector according to claim 1, further comprising an infrared transmitting layer which is laminated on the infrared reflecting layer and transmits infrared rays. 前記赤外線透過層と前記赤外線反射層とを積層して形成されたシートにフレネルミラー型の加工が施された構造である、請求項2に記載のレフレクター。   The reflector according to claim 2, which has a structure in which a sheet formed by laminating the infrared transmitting layer and the infrared reflecting layer is subjected to Fresnel mirror type processing. 前記赤外線透過層は、不透明または半透明の樹脂製である、請求項2または3に記載のレフレクター。   The reflector according to claim 2, wherein the infrared transmitting layer is made of an opaque or translucent resin. 前記赤外線透過層は、ポリエチレン製またはポリプロピレン製またはポリスチレン製である、請求項4に記載のレフレクター。   The reflector according to claim 4, wherein the infrared transmission layer is made of polyethylene, polypropylene, or polystyrene. 前記赤外線反射層は、アルミニウム製、銀製、または金製である、請求項1から5のいずれか一項に記載のレフレクター。   The reflector according to claim 1, wherein the infrared reflective layer is made of aluminum, silver, or gold. 請求項1から6のいずれか一項に記載のレフレクターを含む、内装材。   An interior material including the reflector according to claim 1. 前記レフレクターに指向性が付与されている、請求項7に記載の内装材。   The interior material according to claim 7, wherein directivity is imparted to the reflector. 前記レフレクターが、室内の熱源から輻射される赤外線を当該室内の他の特定個所に向けて反射する構造である、請求項8に記載の内装材。   The interior material according to claim 8, wherein the reflector has a structure that reflects infrared rays radiated from a heat source in a room toward another specific portion in the room. 請求項7から9のいずれか一項に記載の内装材を用いた輻射式冷暖房システム。   A radiant cooling and heating system using the interior material according to any one of claims 7 to 9.
JP2018202792A 2018-10-29 2018-10-29 Reflector for heat radiation, interior material containing said reflector, and radiation type cooling and heating system using said interior material Pending JP2020070552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018202792A JP2020070552A (en) 2018-10-29 2018-10-29 Reflector for heat radiation, interior material containing said reflector, and radiation type cooling and heating system using said interior material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018202792A JP2020070552A (en) 2018-10-29 2018-10-29 Reflector for heat radiation, interior material containing said reflector, and radiation type cooling and heating system using said interior material

Publications (1)

Publication Number Publication Date
JP2020070552A true JP2020070552A (en) 2020-05-07

Family

ID=70547197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018202792A Pending JP2020070552A (en) 2018-10-29 2018-10-29 Reflector for heat radiation, interior material containing said reflector, and radiation type cooling and heating system using said interior material

Country Status (1)

Country Link
JP (1) JP2020070552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246878A1 (en) * 2021-05-26 2022-12-01 佛山巧鸾科技有限公司 Intelligent and environmentally friendly suspended ceiling device capable of mid-infrared heating
JP7497736B2 (en) 2022-02-24 2024-06-11 Toppanホールディングス株式会社 Millimeter wave reflective building materials
JP7505533B2 (en) 2022-02-24 2024-06-25 Toppanホールディングス株式会社 Millimeter wave reflective building materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246878A1 (en) * 2021-05-26 2022-12-01 佛山巧鸾科技有限公司 Intelligent and environmentally friendly suspended ceiling device capable of mid-infrared heating
JP7497736B2 (en) 2022-02-24 2024-06-11 Toppanホールディングス株式会社 Millimeter wave reflective building materials
JP7505533B2 (en) 2022-02-24 2024-06-25 Toppanホールディングス株式会社 Millimeter wave reflective building materials

Similar Documents

Publication Publication Date Title
JP5862902B2 (en) Multifunctional structural components
US11815287B2 (en) Thermally radiative apparatus and method
JP2020070552A (en) Reflector for heat radiation, interior material containing said reflector, and radiation type cooling and heating system using said interior material
US8375933B2 (en) System and method for heat energy conservation via corner reflectors
US3410336A (en) Thermal conditioning system for an enclosed space
Simone et al. Operative temperature control of radiant surface heating and cooling systems
Smith et al. Environmental science
Morse Radiant cooling
KR20150034393A (en) Reflective heat insulating material having improved insulating perfomance
WO2019220823A1 (en) Prism window, and multi-stage prism window
JP2017062055A (en) Radiation cooling panel and air conditioning system
CN103076787A (en) Smart home system constructed based on glass material and smart home management method
DK1800521T3 (en) Heating device
Radhi et al. Sustainable heating system by infrared radiators
US20180279414A1 (en) Infrared heater
US20160076778A1 (en) Localized thermal management system
JP2019066101A (en) Sky radiation cooling device
CN203880821U (en) Far infrared warmer
US3567353A (en) Thermal conditioning system
JP2009287274A (en) Low emissivity construction material and interior finishing structure using the same
JP3881437B2 (en) Heat generation plate and building opening structure using the heat generation plate
JP3726100B2 (en) Thermal insulation glass
WO2021111949A1 (en) Composite material
RU2808160C1 (en) Thermal insulation coating with one-way conductivity of infrared and visible light
RU159288U1 (en) ELECTRIC HEATER