JP2017062055A - Radiation cooling panel and air conditioning system - Google Patents

Radiation cooling panel and air conditioning system Download PDF

Info

Publication number
JP2017062055A
JP2017062055A JP2015186536A JP2015186536A JP2017062055A JP 2017062055 A JP2017062055 A JP 2017062055A JP 2015186536 A JP2015186536 A JP 2015186536A JP 2015186536 A JP2015186536 A JP 2015186536A JP 2017062055 A JP2017062055 A JP 2017062055A
Authority
JP
Japan
Prior art keywords
heat
cooling panel
air
cooled
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015186536A
Other languages
Japanese (ja)
Other versions
JP6662595B2 (en
Inventor
尚士 ▲高▼橋
尚士 ▲高▼橋
Naoshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2015186536A priority Critical patent/JP6662595B2/en
Publication of JP2017062055A publication Critical patent/JP2017062055A/en
Application granted granted Critical
Publication of JP6662595B2 publication Critical patent/JP6662595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radiation cooling panel and an air conditioning system, capable of suppressing deterioration of a cooling effect in a room.SOLUTION: A radiation cooling panel 10 includes: a heat insulation container 12 that comprises a heat insulation member, and in which an opening 12a is formed from one surface side; a permeable body 13 provided so as to cover an opening 12a formed in the heat insulation container 12, and enabling infrared ray to be permeated; and a heat radiation body 11 installed in the heat insulation container 12, and capable of cooling the heat radiation body itself by a heat radiation phenomenon and performing heat exchange between itself and introduced air to cool the air. A plurality of permeable bodies 13 are installed between the heat radiation body 11 and an opening end 12d of the heat insulation container 12.SELECTED DRAWING: Figure 2

Description

本発明は、放射冷却パネル及び空調システムに関する。   The present invention relates to a radiant cooling panel and an air conditioning system.

従来、熱の放射現象を利用して空気の冷却を行う放射冷却パネルが提案されている。この放射冷却パネルは、一面が開口された断熱容器と、断熱容器の開口を覆う透光板と、透光板の内部に開口を覆うように設けられた熱放射体とを備えている。熱放射体は日光(可視光)を反射し熱を放射するものであり、赤外線領域の波長における熱放射が大気からの熱放射を上回る。このため、熱放射体は熱を失うこととなり、放射冷却パネル内部は冷却される。このような放射冷却パネルは、空気を導入して室内に低温空気を供給する空調システムに利用される(特許文献1参照)。   Conventionally, a radiant cooling panel that cools air by using a heat radiation phenomenon has been proposed. This radiant cooling panel includes a heat insulating container having one surface opened, a translucent plate covering the opening of the heat insulating container, and a heat radiator provided to cover the opening inside the translucent plate. A thermal radiator reflects sunlight (visible light) and emits heat, and thermal radiation at wavelengths in the infrared region exceeds thermal radiation from the atmosphere. For this reason, the heat radiator loses heat, and the inside of the radiation cooling panel is cooled. Such a radiant cooling panel is used in an air conditioning system that introduces air and supplies low-temperature air into the room (see Patent Document 1).

特開昭61−223468号公報JP 61-223468 A

ここで、特許文献1に記載の放射冷却パネルは、外気の熱が透光板に伝わり透光板の温度はほぼ外気温度となる。しかし、通常、放射冷却パネルは角度をつけて設置されるため、熱放射体と透光板との間の空気層においては温度差が駆動力となり自然対流が発生して熱放射体が加熱されてしまう。この結果、熱放射体を低温に保つことができず、室内等の冷房効果が低下してしまう。   Here, in the radiation cooling panel described in Patent Document 1, the heat of the outside air is transmitted to the light transmissive plate, and the temperature of the light transmissive plate is substantially the outside air temperature. However, since the radiant cooling panel is usually installed at an angle, the temperature difference is the driving force in the air layer between the thermal radiator and the translucent plate, generating natural convection and heating the thermal radiator. End up. As a result, the heat radiator cannot be kept at a low temperature, and the cooling effect of the room or the like is lowered.

本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、室内等の冷房効果の低下を抑えることができる放射冷却パネル及び空調システムを提供することにある。   The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a radiant cooling panel and an air conditioning system that can suppress a decrease in the cooling effect of a room or the like. is there.

本発明の放射冷却パネルは、断熱部材により構成され、一面側から開口が形成された断熱容器と、前記断熱容器に形成された開口を塞ぐように設けられ、赤外線に対し透光性を有する透過体と、前記断熱容器内に設置され、熱の放射現象により自己が冷却されると共に、導入した被冷却体との熱交換を行って当該被冷却体を冷却する熱放射体と、を備え、前記透過体は、前記熱放射体から、前記断熱容器の開口端までの間において、複数枚設置されていることを特徴とする。   The radiant cooling panel of the present invention is constituted by a heat insulating member, and is provided so as to close the heat insulating container having an opening formed from one side thereof, and the opening formed in the heat insulating container, and is transmissive to infrared rays. And a thermal radiator that is installed in the heat insulation container and is cooled by the radiation phenomenon of heat and cools the cooled object by performing heat exchange with the cooled object introduced, A plurality of the transmissive bodies are installed between the thermal radiator and the open end of the heat insulating container.

本発明の放射冷却パネルによれば、透過体は、熱放射体から、断熱容器の開口端までの間に、複数枚設置されているため、複数枚の透過体にて隔てられてそれぞれの空気層が形成される。よって、たとえ温度差が駆動力となり自然対流が発生したとしても層毎に隔てられている関係上、熱放射体が加熱されにくくなり、室内等の冷房効果の低下を抑えることができる。   According to the radiation cooling panel of the present invention, since a plurality of transmission bodies are installed between the heat radiation body and the opening end of the heat insulating container, each air is separated by the plurality of transmission bodies. A layer is formed. Therefore, even if the temperature difference becomes a driving force and natural convection occurs, the heat radiator is less likely to be heated due to the separation between the layers, and a decrease in the cooling effect of the room or the like can be suppressed.

この放射冷却パネルにおいて、前記熱放射体は、板材であって、板材の両面側において導入した被冷却体と熱交換することが好ましい。   In this radiation cooling panel, the heat radiator is a plate material, and it is preferable to exchange heat with a cooled object introduced on both sides of the plate material.

この放射冷却パネルによれば、熱放射体は、板材の両面側において導入した被冷却体と熱交換するため、導入した被冷却体との熱交換を効率よく行え、室内等の冷房効果の向上を図ることができる。   According to this radiant cooling panel, the heat radiator exchanges heat with the cooled object introduced on both sides of the plate material, so heat exchange with the introduced cooled object can be performed efficiently, and the cooling effect of the room and the like is improved. Can be achieved.

この放射冷却パネルにおいて、前記被冷却体は、空気及び液体であって、前記熱放射体に隣接して配置される水路をさらに備え、前記熱放射体は、導入した空気、及び、前記水路に流れる液体と熱交換することが好ましい。   In this radiant cooling panel, the object to be cooled is air and liquid, and further includes a water channel arranged adjacent to the heat radiator, and the heat radiator is introduced into the introduced air and the water channel. It is preferable to exchange heat with the flowing liquid.

この放射冷却パネルによれば、熱放射体に隣接して配置される水路をさらに備え、熱放射体は、さらに水路に流れる液体と熱交換する。このため、空気のみならず液体との熱交換も行うことができる。   According to the radiant cooling panel, the water radiator disposed further adjacent to the heat radiator is further provided, and the heat radiator further performs heat exchange with the liquid flowing in the water channel. For this reason, heat exchange not only with air but also with liquid can be performed.

本発明の空調システムは、被冷却体に空気を含み、傾斜配置される上記のいずれか1つに記載の放射冷却パネルと、室内の空気を取り込んで傾斜配置される前記放射冷却パネルの鉛直上側に供給する第1流路と、前記放射冷却パネルの鉛直下側に接続され、前記放射冷却パネルにて冷却された空気を室内に供給する第2流路と、を備えることを特徴とする。   An air conditioning system according to the present invention includes a radiant cooling panel according to any one of the above, which includes air in a body to be cooled and is disposed in an inclined manner, and a vertical upper side of the radiant cooling panel that is inclined to take in indoor air. And a second flow path connected to a vertically lower side of the radiant cooling panel and supplying air cooled by the radiant cooling panel to the room.

本発明の空調システムによれば、放射冷却パネルと、傾斜配置される放射冷却パネルの鉛直上側に供給する第1流路と、放射冷却パネルの鉛直下側に接続される第2流路とを備えるため、室内の空気は第1流路を通じて放射冷却パネルの鉛直上側に供給され、放射冷却パネルでの冷却により徐々に鉛直下側に移動し、放射冷却パネルの鉛直下側に接続される第2流路を通じて室内に戻されることとなる。このように、ファン等の空気を移送させるための動力を要することなく自然循環にて室内に冷房空気を供給することができる。   According to the air conditioning system of the present invention, the radiation cooling panel, the first flow path that is supplied to the vertically upper side of the radiation cooling panel that is inclined, and the second flow path that is connected to the vertically lower side of the radiation cooling panel are provided. Therefore, the indoor air is supplied to the vertical upper side of the radiant cooling panel through the first flow path, gradually moves downward by cooling with the radiant cooling panel, and is connected to the vertical lower side of the radiant cooling panel. It will be returned to the room through the two flow paths. In this way, the cooling air can be supplied into the room by natural circulation without requiring power for transferring air such as a fan.

本発明によれば、室内等の冷房効果の低下を抑えることができる放射冷却パネル及び空調システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the radiation | emission cooling panel and air conditioning system which can suppress the fall of the cooling effects, such as a room | chamber interior, can be provided.

本発明の実施形態に係る空調システムを示す概略構成図である。It is a schematic structure figure showing an air-conditioning system concerning an embodiment of the present invention. 図1に示した放射冷却パネルの拡大断面図である。It is an expanded sectional view of the radiation cooling panel shown in FIG. 外気温センサ及び放射面温度センサの温度推移を示すグラフである。It is a graph which shows the temperature transition of an outside temperature sensor and a radiation surface temperature sensor. 本実施形態に係る放射冷却パネルの変形例の拡大断面図である。It is an expanded sectional view of the modification of the radiation cooling panel concerning this embodiment.

以下、本発明を好適な実施形態に沿って説明する。なお、本発明は以下に示す実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾点が発生しない範囲内において、適宜公知又は周知の技術が適用されていることはいうまでもない。   Hereinafter, the present invention will be described according to preferred embodiments. Note that the present invention is not limited to the embodiments described below, and can be appropriately changed without departing from the spirit of the present invention. Further, in the embodiment described below, there is a part where illustration or description of a part of the configuration is omitted, but details of the omitted technology are within a range in which there is no contradiction with the contents described below. Needless to say, known or well-known techniques are applied as appropriate.

図1は、本発明の実施形態に係る空調システムを示す概略構成図である。図1に示す空調システム1は、室内の空気の冷却を行うものであって、放射冷却パネル10と、第1流路20と、第2流路30とを備えて構成されている。   FIG. 1 is a schematic configuration diagram illustrating an air conditioning system according to an embodiment of the present invention. An air conditioning system 1 shown in FIG. 1 cools indoor air and includes a radiation cooling panel 10, a first flow path 20, and a second flow path 30.

放射冷却パネル10は、熱の放射現象を利用して空気(被冷却体)の冷却を行う熱放射体11を有するものである。この放射冷却パネル10は、熱放射体11の構成にもよるが、例えば日射が遮断される箇所において傾斜配置されている。   The radiant cooling panel 10 includes a thermal radiator 11 that cools air (a body to be cooled) using a radiation phenomenon of heat. Although this radiation cooling panel 10 is based on the structure of the heat radiator 11, it is inclinedly arranged in the location where solar radiation is interrupted, for example.

第1流路20は、一端が室内の天井付近に接続され、他端が傾斜配置される放射冷却パネル10の鉛直上側に接続されている。第2流路30は、一端が傾斜配置される放射冷却パネル10の鉛直下側に接続され、他端が室内の天井付近に接続されている。   One end of the first flow path 20 is connected to the vicinity of the ceiling in the room, and the other end is connected to the vertical upper side of the radiation cooling panel 10 that is inclined. The second flow path 30 is connected to the vertically lower side of the radiation cooling panel 10 whose one end is inclined and the other end is connected to the vicinity of the ceiling in the room.

このような構成であるため、室内の暖かい空気は上昇していき(矢印A1参照)、第1流路20を通じて傾斜配置される放射冷却パネル10の鉛直上側に供給される(矢印A2参照)。放射冷却パネル10内では熱の放射現象によって冷却された熱放射体11が放射冷却パネル10と同様の傾斜状態で設置されており、暖かい空気は熱放射体11との熱交換により次第に冷却されていく。また、空気は冷却されることにより下降するため、傾斜配置される熱放射体11に沿って下降しながら冷却されていく(矢印A3参照)。   Due to such a configuration, warm air in the room rises (see arrow A1) and is supplied to the vertical upper side of the radiant cooling panel 10 that is inclinedly arranged through the first flow path 20 (see arrow A2). In the radiant cooling panel 10, the heat radiator 11 cooled by the heat radiation phenomenon is installed in an inclined state similar to that of the radiant cooling panel 10, and the warm air is gradually cooled by heat exchange with the heat radiator 11. Go. Further, since the air descends by being cooled, the air is cooled while descending along the thermal radiator 11 that is inclined (see arrow A3).

冷却された空気は、放射冷却パネル10の鉛直下側の第2流路30との接続部に至り、第2流路30を介して室内に供給される(矢印A4参照)。これにより、空気の自然循環を利用して室内の冷房が実現される。   The cooled air reaches the connecting portion with the second flow path 30 on the vertical lower side of the radiant cooling panel 10 and is supplied indoors through the second flow path 30 (see arrow A4). Thereby, indoor cooling is realized using natural circulation of air.

なお、放射冷却パネル10により冷却された空気は、直接室内に吹き込まれる構成であってもよいし、冷却空気を分散させる他の部材を介して室内に吹き込まれる構成であってもよい。   The air cooled by the radiant cooling panel 10 may be directly blown into the room, or may be blown into the room through another member that disperses the cooling air.

図2は、図1に示した放射冷却パネル10の拡大断面図である。図2に示すように、放射冷却パネル10は、熱放射体11に加えて、断熱容器12、透過体13、及びケーシング14を備えている。   FIG. 2 is an enlarged cross-sectional view of the radiant cooling panel 10 shown in FIG. As shown in FIG. 2, the radiant cooling panel 10 includes a heat insulating container 12, a transmissive body 13, and a casing 14 in addition to the heat radiating body 11.

断熱容器12は、発泡スチロール等の断熱材にて構成された箱体であって、箱上面側が刳り貫かれるようにして開口12aが形成されている。ここで、断熱容器12の内面(開口12aの壁部)には、アルミテープが貼り付けられるなどして、可視光や赤外線の反射率が所定値よりも高くされていることが好ましい。また、断熱容器12は、第1流路20及び第2流路30との接続用の開口部12b,12cが形成されている。   The heat insulating container 12 is a box made of a heat insulating material such as polystyrene foam, and an opening 12a is formed so that the upper surface side of the box is penetrated. Here, it is preferable that the reflectance of visible light or infrared light be higher than a predetermined value by attaching an aluminum tape to the inner surface of the heat insulating container 12 (wall portion of the opening 12a). The heat insulating container 12 has openings 12b and 12c for connection to the first flow path 20 and the second flow path 30.

透過体13は、断熱容器12の開口12aを塞いで設けられた赤外線に対し透光性を有するシート状又は板状の部材である。透過体13は、例えばポリエチレン又はポリプロピレンなどの樹脂シート(例えば保湿フィルム)、又は、赤外線透過ガラスなどによって構成されている。なお、以下の説明において開口12aを塞ぐとは、開口端12dのみを塞ぐものではなく、矢印A方向に平面視して開口12aの形成領域の全域を塞いでいれば、その深さは問うものではない。   The transmissive body 13 is a sheet-like or plate-like member having a light-transmitting property with respect to infrared rays provided by closing the opening 12 a of the heat insulating container 12. The transmissive body 13 is made of, for example, a resin sheet (for example, a moisture retaining film) such as polyethylene or polypropylene, or infrared transmissive glass. In the following description, closing the opening 12a does not cover only the opening end 12d, but if the entire area where the opening 12a is formed is closed in plan view in the direction of the arrow A, the depth is questionable. is not.

熱放射体11は、断熱容器12内に設置され、熱の放射現象により自己が冷却されると共に、導入した空気との熱交換を行って当該空気を冷却するものである。この熱放射体11は、板材により構成されると共に、板材の表面(開口端12d側)には太陽光に対して反射率が高く且つ赤外光の放射率が所定値よりも高い黒色塗料(例えばブラック酸化チタン)が塗布されている。これにより、冷却効果を有しつつも太陽光が反射されて日射を遮る必要がなくなるためである。また、板材の裏面にはアルミテープが貼り付けられるなどして、可視光や赤外線の反射率が所定値よりも高くされている。   The thermal radiator 11 is installed in the heat insulating container 12 and is cooled by the heat radiation phenomenon and cools the air by exchanging heat with the introduced air. This thermal radiator 11 is made of a plate material, and has a black paint (having a high reflectance with respect to sunlight and an infrared light emissivity higher than a predetermined value on the surface of the plate material (opening end 12d side). For example, black titanium oxide) is applied. This is because it is not necessary to block sunlight by reflecting sunlight while having a cooling effect. Moreover, the reflectance of visible light or infrared rays is made higher than a predetermined value by attaching an aluminum tape on the back surface of the plate material.

また、熱放射体11は、板材に孔が設けられるなどして開口12aを完全に塞ぐことなく設置されている。このため、熱放射体11は、第1流路20からの空気と板材の両面にて熱交換可能となっている。なお、熱放射体11は、断熱容器12に対して直接又は他の部材を介して間接的に取り付けられているが、その接触面積は極力小さいことが好ましい。   Further, the heat radiator 11 is installed without completely closing the opening 12a, for example, by providing a hole in the plate material. For this reason, the heat radiator 11 can exchange heat between the air from the first flow path 20 and both surfaces of the plate material. In addition, although the heat radiator 11 is attached to the heat insulation container 12 directly or indirectly through another member, it is preferable that the contact area is as small as possible.

ケーシング14は、断熱容器12を補強して放射冷却パネル10の耐久性を確保するための金属部材であって、開口12a、並びに、第1流路20及び第2流路30との接続用の開口部12b,12cを除いて、放射冷却パネル10の全周を覆う構成となっている。   The casing 14 is a metal member for reinforcing the heat insulating container 12 to ensure the durability of the radiant cooling panel 10. The casing 14 is used to connect the opening 12 a, the first flow path 20, and the second flow path 30. Except for the openings 12b and 12c, the entire periphery of the radiation cooling panel 10 is covered.

さらに、本実施形態において透過体13は、熱放射体11から、断熱容器12の開口端12dまでの間において、開口12aを塞ぐ状態で複数枚設置されている。具体的に透過体13は3枚であって、例えば第1透過体13aが開口端12dに設けられ、第2透過体13bが第1透過体13aと熱放射体11との間に設けられ、第3透過体13cが第2透過体13bと熱放射体11との間に設けられている。   Further, in the present embodiment, a plurality of transmission bodies 13 are installed between the thermal radiator 11 and the opening end 12d of the heat insulating container 12 so as to close the opening 12a. Specifically, the number of the transmission bodies 13 is three. For example, the first transmission body 13a is provided at the opening end 12d, and the second transmission body 13b is provided between the first transmission body 13a and the heat radiator 11, A third transmissive body 13 c is provided between the second transmissive body 13 b and the thermal radiator 11.

このような3枚の透過体13a〜13cを設けることによって、空気による2段の断熱層が形成されることとなる。なお、3枚の透過体13a〜13cはそれぞれの深さ方向の間隔が10mm以下となることが好ましい。これにより、熱対流が起こり難くなるためである。また、上記において透過体13a〜13cは赤外線に対し透光性を有する必要がある。   By providing such three pieces of the transmitting bodies 13a to 13c, a two-stage heat insulating layer made of air is formed. In addition, it is preferable that the space | interval of each depth direction of the three transmission bodies 13a-13c becomes 10 mm or less. This is because heat convection hardly occurs. In addition, in the above, the transmissive bodies 13a to 13c need to have translucency with respect to infrared rays.

次に、本実施形態に係る放射冷却パネル10の動作を説明する。まず、放射冷却パネル10は大気および天空からの熱放射を受ける。さらに、熱放射体11は大気および天空へ熱放射する。熱放射体11の熱放射は赤外線領域の波長において大気および天空からの熱放射を上回る。このため、熱放射体11は冷却されることとなる。   Next, the operation of the radiant cooling panel 10 according to the present embodiment will be described. First, the radiant cooling panel 10 receives heat radiation from the atmosphere and the sky. Further, the thermal radiator 11 radiates heat to the atmosphere and the sky. The thermal radiation of the thermal radiator 11 exceeds the thermal radiation from the atmosphere and the sky at wavelengths in the infrared region. For this reason, the thermal radiator 11 is cooled.

ここで、放射冷却パネル10には第1流路20との接続用の開口部12bから空気が導入される。この導入された空気は熱放射体11の両面側を流れていく過程で熱交換されて冷却される。そして、冷却された空気は、第2流路30との接続用の開口部12cから外部に排出される。   Here, air is introduced into the radiation cooling panel 10 from the opening 12 b for connection with the first flow path 20. The introduced air is heat-exchanged and cooled in the process of flowing on both sides of the thermal radiator 11. And the cooled air is discharged | emitted outside from the opening part 12c for a connection with the 2nd flow path 30. FIG.

ここで、本実施形態において透過体13は、熱放射体11から断熱容器12の開口端12dまでの間に3枚設置されている。このため、3枚の透過体13a〜13cにて隔てられて2段の空気層が形成される。よって、たとえ温度差が駆動力となり熱対流が発生したとしても層毎に隔てられている関係上、熱放射体11が加熱され難くなる。特に、3枚の透過体13a〜13cの間隔を10mm以下としておけば、そもそも熱対流が発生し難くなり、一層断熱効果が高まることとなる。以上により、室内等の冷房効果の向上を図ることができる。   Here, in the present embodiment, three transmissive bodies 13 are installed between the heat radiator 11 and the open end 12 d of the heat insulating container 12. Therefore, a two-stage air layer is formed by being separated by the three transmission bodies 13a to 13c. Therefore, even if the temperature difference becomes a driving force and thermal convection is generated, the thermal radiator 11 is hardly heated due to the separation between the layers. In particular, if the interval between the three transmission bodies 13a to 13c is set to 10 mm or less, thermal convection hardly occurs in the first place, and the heat insulating effect is further enhanced. As described above, the cooling effect of the room or the like can be improved.

次に、本実施形態に係る放射冷却パネル10を用いた実験結果を説明する。この実験では、熱放射体11として板厚0.5mmの鋼板を用い、表面に艶消し黒塗装を行い、裏面にアルミテープを貼り付けた。断熱容器12には厚さ50mmの発泡スチロールを用い開口12aの内側壁部にはアルミテープを貼り付けた。透過体13には3枚のポリエチレン保湿フィルムを用いた。   Next, experimental results using the radiation cooling panel 10 according to the present embodiment will be described. In this experiment, a steel plate having a thickness of 0.5 mm was used as the thermal radiator 11, matte black coating was applied to the surface, and aluminum tape was attached to the back surface. The heat insulating container 12 was made of foamed polystyrene having a thickness of 50 mm, and an aluminum tape was attached to the inner wall portion of the opening 12a. Three polyethylene moisturizing films were used for the transmission body 13.

このような放射冷却パネル10の外側に外気温センサを設けると共に、熱放射体11の裏面側に放射面温度センサを取り付けた。図3は、外気温センサ及び放射面温度センサの温度推移を示すグラフである。   An outside air temperature sensor was provided outside the radiation cooling panel 10, and a radiation surface temperature sensor was attached to the back side of the heat radiator 11. FIG. 3 is a graph showing temperature transitions of the outside air temperature sensor and the radiation surface temperature sensor.

図3に示すように、外気温センサにより検出される温度は前日の19時以降において次第に低下していき、19時において21℃強であり、20時半頃で20℃付近となり、22時50分頃に17℃強となった。その後、外気温センサにより検出される温度は翌日の5時までにおいて15℃弱から16℃強の範囲で推移した。   As shown in FIG. 3, the temperature detected by the outside air temperature sensor gradually decreases after 19:00 on the previous day, is slightly over 21 ° C. at 19:00, reaches around 20 ° C. around 20:30, and reaches 22:50. The temperature became slightly over 17 ° C. After that, the temperature detected by the outside air temperature sensor changed in a range from a little less than 15 ° C. to a little over 16 ° C. until 5 o'clock the next day.

一方、放射面温度センサにより検出される温度は前日の19時において21℃強であり、20時半頃で7℃付近となり、22時50分頃に4℃弱となった。その後、放射面温度センサにより検出される温度は翌日の5時までにおいて約4℃から約8℃の範囲で推移した。   On the other hand, the temperature detected by the radiation surface temperature sensor was a little over 21 ° C. at 19:00 the day before, was around 7 ° C. around 20:30, and was a little less than 4 ° C. around 22:50. Thereafter, the temperature detected by the radiation surface temperature sensor changed in a range from about 4 ° C. to about 8 ° C. until 5 o'clock the next day.

特に、両者の温度差は22時50分頃において14.4℃と最大値となった。ここで、特許文献1に記載の実験結果では外気との温度差が7.8℃〜9.3℃に収まるため、冷房効果が向上していることがわかった。   In particular, the temperature difference between them reached a maximum value of 14.4 ° C. around 22:50. Here, in the experimental result described in Patent Document 1, it was found that the cooling effect was improved because the temperature difference from the outside air was within 7.8 ° C. to 9.3 ° C.

このようにして、本実施形態に係る放射冷却パネル10によれば、透過体13は、熱放射体11から、断熱容器12の開口端12dまでの間に、複数枚設置されているため、複数の透過体13a〜13cにて隔てられてそれぞれの空気層が形成される。よって、たとえ温度差が駆動力となり自然対流が発生したとしても層毎に隔てられている関係上、熱放射体11が加熱されにくくなり、室内等の冷房効果の低下を抑えることができる。   Thus, according to the radiation cooling panel 10 according to the present embodiment, a plurality of transmission bodies 13 are installed between the heat radiation body 11 and the opening end 12d of the heat insulating container 12, and thus a plurality of transmission bodies 13 are installed. Each air layer is formed by being separated by the transparent bodies 13a to 13c. Therefore, even if the temperature difference becomes a driving force and natural convection occurs, the heat radiator 11 is not easily heated because of the separation between the layers, and a decrease in the cooling effect of the room or the like can be suppressed.

また、熱放射体11は、板材の両面側において導入した空気と熱交換するため、導入した空気との熱交換を効率よく行え、室内等の冷房効果の向上を図ることができる。   Further, since the heat radiator 11 exchanges heat with the air introduced on both sides of the plate material, heat exchange with the introduced air can be performed efficiently, and the cooling effect of the room or the like can be improved.

また、本実施形態に係る空調システム1によれば、放射冷却パネル10と、傾斜配置される放射冷却パネル10の鉛直上側に供給する第1流路20と、放射冷却パネル10の鉛直下側に接続される第2流路30とを備えるため、室内の空気は第1流路20を通じて放射冷却パネル10の鉛直上側に供給され、放射冷却パネル10での冷却により徐々に鉛直下側に移動し、放射冷却パネル10の鉛直下側に接続される第2流路30を通じて室内に戻されることとなる。このように、ファン等の空気を移送させるための動力を要することなく自然循環にて室内に冷房空気を供給することができる。   Further, according to the air conditioning system 1 according to the present embodiment, the radiation cooling panel 10, the first flow path 20 that is supplied to the vertically upper side of the radiation cooling panel 10 that is inclined, and the vertically lower side of the radiation cooling panel 10. The indoor air is supplied to the vertical upper side of the radiant cooling panel 10 through the first flow path 20 and gradually moves downward in the vertical direction due to the cooling by the radiant cooling panel 10. Then, it is returned to the room through the second flow path 30 connected to the vertical lower side of the radiation cooling panel 10. In this way, the cooling air can be supplied into the room by natural circulation without requiring power for transferring air such as a fan.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、各実施形態を組み合わせてもよい。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to the said embodiment, You may add a change in the range which does not deviate from the meaning of this invention, and combines each embodiment. Also good.

図4は、本実施形態に係る放射冷却パネル10の変形例の拡大断面図である。図4に示すように、変形例に係る放射冷却パネル10は水路15を備えている。水路15は、熱放射体11の裏面側に熱放射体11に隣接して配置されており、熱放射体11は水路15に流れる水(液体)とも熱交換するようになっている。水路15は、一端側が第1流路20との接続用の開口部12bにつながっており、他端側が第2流路30との接続用の開口部12cにつながっている。このように、放射冷却パネル10は、上記した構成に限らず、水路15のような他の構成を備えていてもよい。これにより、空気のみならず水との熱交換も行うことができるからである。   FIG. 4 is an enlarged cross-sectional view of a modified example of the radiation cooling panel 10 according to the present embodiment. As shown in FIG. 4, the radiation cooling panel 10 according to the modification includes a water channel 15. The water channel 15 is disposed adjacent to the heat radiator 11 on the back side of the heat radiator 11, and the heat radiator 11 also exchanges heat with water (liquid) flowing through the water channel 15. One end of the water channel 15 is connected to the opening 12 b for connection to the first flow path 20, and the other end is connected to the opening 12 c for connection to the second flow path 30. Thus, the radiation cooling panel 10 is not limited to the above-described configuration, and may have another configuration such as the water channel 15. This is because heat can be exchanged not only with air but also with water.

加えて、図4の変形例に係る放射冷却パネル10は、空気及び液体の双方が被冷却体となっているが、これに限らず、液体のみを被冷却体とする構成であってもよい。また、水路15が熱放射体11の両面側に隣接して設けられ、液体についても熱放射体11の両面側にて熱交換可能に構成されていてもよい。   In addition, the radiant cooling panel 10 according to the modified example of FIG. 4 is configured such that both air and liquid are objects to be cooled. However, the configuration is not limited thereto, and only the liquid may be configured to be cooled. . Further, the water channel 15 may be provided adjacent to both sides of the heat radiator 11, and the liquid may also be configured to be able to exchange heat on both sides of the heat radiator 11.

また、本実施形態に係る空調システム1には空気のみを被冷却体とする放射冷却パネル1を用いているが、空気のみに限らず、図4の変形例に示すように、空気及び液体の双方を被冷却体とする放射冷却パネル10を用いてもよい。この際、空気は自然循環可能であるが、液体についてはポンプ等を利用して駆動されることはいうまでもない。   Moreover, although the radiation cooling panel 1 which uses only air as a to-be-cooled body is used in the air conditioning system 1 according to the present embodiment, not only air but also air and liquid as shown in the modification of FIG. A radiant cooling panel 10 may be used in which both are cooled. At this time, air can naturally circulate, but it goes without saying that the liquid is driven using a pump or the like.

さらには、可能であれば、液体のみと熱交換する放射冷却パネル10を用い、放射冷却パネル10にて得られた冷却液体を、空調機器の冷媒に利用するようにしてもよい。これによっても、室内等の冷房を行うことができるからである。   Furthermore, if possible, the radiant cooling panel 10 that exchanges heat with only the liquid may be used, and the cooling liquid obtained by the radiant cooling panel 10 may be used as a refrigerant of the air conditioning equipment. This is also because the room can be cooled.

1 :空調システム
10 :放射冷却パネル
11 :熱放射体
12 :断熱容器
12a :開口
12b,12c :開口部
12d :開口端
13,13a〜13c :透過体
14 :ケーシング
15 :水路
20 :第1流路
30 :第2流路
1: Air-conditioning system 10: Radiation cooling panel 11: Thermal radiator 12: Thermal insulation container 12a: Opening 12b, 12c: Opening 12d: Open end 13, 13a-13c: Permeator 14: Casing 15: Waterway 20: First flow Path 30: second flow path

Claims (4)

断熱部材により構成され、一面側から開口が形成された断熱容器と、
前記断熱容器に形成された開口を塞ぐように設けられ、赤外線に対し透光性を有する透過体と、
前記断熱容器内に設置され、熱の放射現象により自己が冷却されると共に、導入した被冷却体との熱交換を行って当該被冷却体を冷却する熱放射体と、を備え、
前記透過体は、前記熱放射体から、前記断熱容器の開口端までの間において、複数枚設置されている
ことを特徴とする放射冷却パネル。
A heat insulating container constituted by a heat insulating member and having an opening formed from one side; and
A transparent body that is provided so as to close the opening formed in the heat-insulating container, and is transparent to infrared rays;
A thermal radiator that is installed in the heat insulating container and is cooled by the radiation phenomenon of heat and cools the cooled object by performing heat exchange with the cooled object introduced,
A plurality of the transmissive bodies are installed between the thermal radiator and the open end of the heat insulating container.
前記熱放射体は、板材であって、板材の両面側において導入した被冷却体と熱交換する
ことを特徴とする請求項1に記載の放射冷却パネル。
The radiant cooling panel according to claim 1, wherein the heat radiator is a plate material, and exchanges heat with a body to be cooled introduced on both sides of the plate material.
前記被冷却体は、空気及び液体であって、
前記熱放射体に隣接して配置される水路をさらに備え、
前記熱放射体は、導入した空気、及び、前記水路に流れる液体と熱交換する
ことを特徴とする請求項1又は請求項2のいずれかに記載の放射冷却パネル。
The object to be cooled is air and liquid,
Further comprising a water channel disposed adjacent to the thermal radiator;
The radiant cooling panel according to claim 1, wherein the heat radiator exchanges heat with the introduced air and a liquid flowing in the water channel.
被冷却体に空気を含み、傾斜配置される請求項1から請求項3のいずれか1項に記載の放射冷却パネルと、
室内の空気を取り込んで傾斜配置される前記放射冷却パネルの鉛直上側に供給する第1流路と、
前記放射冷却パネルの鉛直下側に接続され、前記放射冷却パネルにて冷却された空気を室内に供給する第2流路と、
を備えることを特徴とする空調システム。
The radiant cooling panel according to any one of claims 1 to 3, wherein the object to be cooled includes air and is disposed at an inclination.
A first flow path that takes in indoor air and supplies the air to a vertically upper side of the radiation cooling panel that is inclined and disposed;
A second flow path connected to a vertically lower side of the radiant cooling panel and supplying air cooled by the radiant cooling panel into the room;
An air conditioning system comprising:
JP2015186536A 2015-09-24 2015-09-24 Radiant cooling panel and air conditioning system Active JP6662595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186536A JP6662595B2 (en) 2015-09-24 2015-09-24 Radiant cooling panel and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186536A JP6662595B2 (en) 2015-09-24 2015-09-24 Radiant cooling panel and air conditioning system

Publications (2)

Publication Number Publication Date
JP2017062055A true JP2017062055A (en) 2017-03-30
JP6662595B2 JP6662595B2 (en) 2020-03-11

Family

ID=58429526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186536A Active JP6662595B2 (en) 2015-09-24 2015-09-24 Radiant cooling panel and air conditioning system

Country Status (1)

Country Link
JP (1) JP6662595B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062011A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Radiant cooling device
WO2018179594A1 (en) 2017-03-28 2018-10-04 クラリオン株式会社 Vehicle-mounted device and map update system
JP2019066101A (en) * 2017-09-29 2019-04-25 研介 藤村 Sky radiation cooling device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150767A (en) * 1981-03-13 1982-09-17 Matsushita Electric Works Ltd Radiation cooler
JPS5883168A (en) * 1981-11-10 1983-05-18 株式会社豊田中央研究所 Radiational cooler
JPS60243435A (en) * 1984-05-16 1985-12-03 Takeo Saito Long-time cold storage apparatus for cooling
JPS61134553A (en) * 1984-12-04 1986-06-21 株式会社竹中工務店 Radiational cooler
JPS61223468A (en) * 1985-03-26 1986-10-04 株式会社竹中工務店 Radiational cooler
JPH0961006A (en) * 1995-08-25 1997-03-07 Misawa Homes Co Ltd Cooling device for building
JP2001193970A (en) * 2000-01-11 2001-07-17 Takeo Saito Three-dimensional compound parabolic concentrator(cpc) type radiant cooler
JP2001336870A (en) * 2000-05-30 2001-12-07 National Institute For Rural Engineering Cooler/refrigerator for agricultural product
JP2003004331A (en) * 2001-06-20 2003-01-08 Takeo Saito High efficiency heat pump system utilizing composite solar heat/radiation cooling
JP2008201662A (en) * 2007-01-23 2008-09-04 Asahi Glass Co Ltd Method for manufacturing evacuated double glazing unit
JP2011099665A (en) * 2009-10-05 2011-05-19 Mitaka Koki Co Ltd Cold/warm water producing device
US8459248B2 (en) * 2010-12-06 2013-06-11 Solarlogic, Llc Solar fluid heating and cooling system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150767A (en) * 1981-03-13 1982-09-17 Matsushita Electric Works Ltd Radiation cooler
JPS5883168A (en) * 1981-11-10 1983-05-18 株式会社豊田中央研究所 Radiational cooler
JPS60243435A (en) * 1984-05-16 1985-12-03 Takeo Saito Long-time cold storage apparatus for cooling
JPS61134553A (en) * 1984-12-04 1986-06-21 株式会社竹中工務店 Radiational cooler
JPS61223468A (en) * 1985-03-26 1986-10-04 株式会社竹中工務店 Radiational cooler
JPH0961006A (en) * 1995-08-25 1997-03-07 Misawa Homes Co Ltd Cooling device for building
JP2001193970A (en) * 2000-01-11 2001-07-17 Takeo Saito Three-dimensional compound parabolic concentrator(cpc) type radiant cooler
JP2001336870A (en) * 2000-05-30 2001-12-07 National Institute For Rural Engineering Cooler/refrigerator for agricultural product
JP2003004331A (en) * 2001-06-20 2003-01-08 Takeo Saito High efficiency heat pump system utilizing composite solar heat/radiation cooling
JP2008201662A (en) * 2007-01-23 2008-09-04 Asahi Glass Co Ltd Method for manufacturing evacuated double glazing unit
JP2011099665A (en) * 2009-10-05 2011-05-19 Mitaka Koki Co Ltd Cold/warm water producing device
US8459248B2 (en) * 2010-12-06 2013-06-11 Solarlogic, Llc Solar fluid heating and cooling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062011A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Radiant cooling device
JPWO2018062011A1 (en) * 2016-09-30 2019-02-07 富士フイルム株式会社 Radiant cooling device
US10591190B2 (en) 2016-09-30 2020-03-17 Fujifilm Corporation Radiative cooling device
WO2018179594A1 (en) 2017-03-28 2018-10-04 クラリオン株式会社 Vehicle-mounted device and map update system
JP2019066101A (en) * 2017-09-29 2019-04-25 研介 藤村 Sky radiation cooling device

Also Published As

Publication number Publication date
JP6662595B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6905797B2 (en) curtain wall
US20130220296A1 (en) Oven door for a domestic cooking oven
JP2017062055A (en) Radiation cooling panel and air conditioning system
US11815287B2 (en) Thermally radiative apparatus and method
TWI477723B (en) The heat storing type radiation air conditioning system using a heat pump air conditioner
CN101392563B (en) Energy-conserving wall structure with controllable semiconductor heat transfer capability
KR20160038904A (en) Pair Glass Window system with heating and cooling air curtain function
KR20130081982A (en) A windows and doors with cooling and heating module
JP2016196974A (en) Radiation air-conditioning system
JP2007132557A (en) Radiation air conditioning panel structure
NO774152L (en) FACILITIES FOR TRANSFER OF HEAT.
FI3472531T3 (en) Sandwich roof panels to serve as thermal collectors
JP2017128853A (en) Building and air conditioner
JP2009262378A (en) Surface material, its manufacturing method, building, outdoor unit casing of air-conditioner, and outdoor heat exchanger
JP2007127294A (en) Solar-based heat storage ceiling structure
JP2004069129A (en) Air circulation panel
Fält et al. Experimentation and modeling of an active skylight
CN107614823A (en) Glass unit
CN106948535A (en) The ventilation on the roof and wall of building and heat insulation structural
JP5084407B2 (en) Building air conditioning system
KR101745922B1 (en) Window system with heating and cooling air curtain function
JPS5852926A (en) Method of air-conditioning building and building air-conditioned
JP2002309689A (en) Wall structure conducting heat insulation and heat transfer
KR101745923B1 (en) Pair Glass Window system with heating and cooling air curtain function
KR101929799B1 (en) Curtain wall frame with cold and warm air function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200213

R150 Certificate of patent or registration of utility model

Ref document number: 6662595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250