JP2020070506A - Composite reinforcement bar with heat-shrinkable tubing and production method thereof - Google Patents

Composite reinforcement bar with heat-shrinkable tubing and production method thereof Download PDF

Info

Publication number
JP2020070506A
JP2020070506A JP2018203843A JP2018203843A JP2020070506A JP 2020070506 A JP2020070506 A JP 2020070506A JP 2018203843 A JP2018203843 A JP 2018203843A JP 2018203843 A JP2018203843 A JP 2018203843A JP 2020070506 A JP2020070506 A JP 2020070506A
Authority
JP
Japan
Prior art keywords
rod
heat
composite
shrinkable tube
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018203843A
Other languages
Japanese (ja)
Other versions
JP7134836B2 (en
Inventor
淳 大藪
Atsushi Oyabu
淳 大藪
尚幸 田辺
Naoyuki Tanabe
尚幸 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2018203843A priority Critical patent/JP7134836B2/en
Publication of JP2020070506A publication Critical patent/JP2020070506A/en
Priority to JP2022135317A priority patent/JP7474293B2/en
Application granted granted Critical
Publication of JP7134836B2 publication Critical patent/JP7134836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a composite reinforcement bar with a heat-shrinkable tubing capable of making a flexure finished product having excellent rigidity and excellent quality.SOLUTION: A composite reinforcement bar includes: a composite reinforcement bar 1 in which a core material 2 obtained by bundling in a bar with each constituent fiber yarn 21 of a reinforcement fiber arranged in a yarn longitudinal direction is integrated by embedding in a matrix resin 3 made of a thermoplastic resin or an in-situ polymerization type thermoplastic epoxy resin; and a heat-shrinkable tubing 5 that is a cylindrical body shorter than the composite reinforcement bar 1, and shrinks larger in a diameter direction than in a longitudinal direction by heating by making a cylinder inner diameter 51d larger than a bar diameter 1D of the composite reinforcement bar 1, in which the heat-shrinkable tubing 5 is loosely fitted to the composite reinforcement bar 1 and is arranged to a flexure processing part 14 of the composite reinforcement bar 1.SELECTED DRAWING: Figure 1

Description

本発明は曲げ加工等の二次成形用に好適な熱収縮チューブ付き複合強化棒及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a composite reinforcing rod with a heat-shrinkable tube suitable for secondary forming such as bending and a method for manufacturing the same.

近年、炭素繊維は軽量,耐食性等に優れることから、クリールに巻かれた炭素繊維を引き出して熱硬化性樹脂を含浸させた後、加熱した金型を通過させて、熱硬化性樹脂を硬化,成形した引抜成形品が提供されている。さらに、マトリックス樹脂に熱可塑性樹脂を用いた成形品にして、一旦成形した製品を購入者が曲げ加工品として活用できる発明品も提案されている(例えば特許文献1)。   In recent years, since carbon fiber is excellent in light weight and corrosion resistance, the carbon fiber wound on the creel is drawn out and impregnated with the thermosetting resin, and then passed through a heated mold to cure the thermosetting resin, Molded pultruded articles are provided. Further, there is also proposed an invention product in which a molded product using a thermoplastic resin as a matrix resin is used and a purchaser can utilize the molded product as a bending product (for example, Patent Document 1).

特表2010−513751号公報Japanese Patent Publication No. 2010-513751

しかるに、特許文献1は、請求項1の「複合材料強化棒構造において、…前記棒は、扁平な横断面形状を有する、複合材料強化棒構造。」とし、請求項2に記載の「…前記棒は、らせん状のねじりを有する、構造」の発明にとどまる。段落0007で、「…都合良く曲げることができる性能は、横断面の形状及び縦横比と棒に与えられたねじりとによって補助されている。」とするが、その曲げには限界がある。
特許文献1をはじめとする従来の棒状体は、二次加工により曲げ加工しようとすると支障をきたすケースがある。炭素繊維糸には直径数ミクロンのフィラメントが用いられており、曲げ加工を行おうとすると、不具合を招く。前記棒状体中の炭素繊維は極度に伸び難い特性から、曲げ外側の炭素繊維長で曲げ半径が決まる。その内側に在る炭素繊維糸は、特許文献1のごとくねじっていても、曲げに伴う余剰長さ分が変形して棒状体7の形状を保てなくなる。
例えば、図6のように紙面垂直方向に走る支柱6に、所定温度にした棒状体7の曲げ加工部位74を当てて、その両側に下方向の外力を加えて曲げようとすると、図7のように変形してしまう場合がある。図7(イ)で、支柱6に近い最下側繊維糸814は、曲げに伴う糸長の余剰分がシワになって、支柱6から遠のく最上側繊維糸811の方へ近づく。さらには、曲げ加工部位74では、マトリックス樹脂9の下面側が上面側に近づいて扁平化し、芯材8はその上部の繊維糸81から下部の繊維糸81が剥離し、シワが発生する。図7(ロ)のごとく、曲げ半径を決める最上繊維糸811が中心ライン上に位置して、両外側に中心軸寄り繊維糸812、下側寄り繊維糸813、最下側繊維糸814と、最上繊維糸よりも下方の各炭素繊維糸が水平横方向に広がって、バラけてしまう外観不良を招く。棒状体を曲げた時の外周と内周との間に距離差が生じ、曲げ加工を行う軟化状態にあるマトリックス樹脂9中で、炭素繊維が剥離し、さらに行き場のなくなった炭素繊維があばれて変形を引き起こす。シワが発生し大きく変形してしまうと、外観品質の問題にとどまらず、構造体としての剛性を保つことができず、二次加工の恩恵を受けることができなくなる。
However, Patent Document 1 states that "in the composite material reinforced rod structure ... In the composite material reinforced rod structure, the rod has a flat cross-sectional shape." The rod remains the invention of "structure, having a helical twist." Paragraph 0007 says, "... the ability to bend conveniently is aided by the shape and aspect ratio of the cross section and the twist imparted to the bar."
Conventional rod-shaped bodies such as those disclosed in Patent Document 1 may have a problem when they are bent by secondary processing. A filament with a diameter of several microns is used for the carbon fiber thread, and when bending is attempted, problems occur. Since the carbon fibers in the rod-shaped body are extremely hard to stretch, the bending radius is determined by the length of the carbon fibers on the outside of the bending. Even if the carbon fiber yarn inside thereof is twisted as in Patent Document 1, the excess length due to bending is deformed and the shape of the rod-shaped body 7 cannot be maintained.
For example, when the bending portion 74 of the rod-shaped body 7 heated to a predetermined temperature is applied to the column 6 running in the direction perpendicular to the paper surface as shown in FIG. 6 and an attempt is made to bend by applying downward external force to both sides thereof, It may be deformed like this. In FIG. 7A, in the lowermost fiber yarn 814 near the strut 6, the surplus of the yarn length due to bending becomes wrinkled, and approaches the uppermost fiber yarn 811 farther from the strut 6. Further, in the bent portion 74, the lower surface side of the matrix resin 9 approaches the upper surface side to be flattened, and the core material 8 separates the upper fiber threads 81 from the lower fiber threads 81 to cause wrinkles. As shown in FIG. 7B, the uppermost fiber yarn 811 that determines the bending radius is located on the center line, and the fiber yarn 812 near the center axis, the fiber yarn 813 near the lower side, and the fiber yarn 814 at the lowermost side are provided on both outer sides. Each of the carbon fiber yarns below the uppermost fiber yarn spreads in the horizontal direction, leading to a defective appearance. A distance difference occurs between the outer circumference and the inner circumference when the rod-shaped body is bent, and the carbon fibers are separated in the matrix resin 9 in a softened state where bending is performed, and carbon fibers that have no place to go are exposed. Cause deformation. If wrinkles occur and are greatly deformed, not only the problem of appearance quality, but also the rigidity of the structure cannot be maintained, and the benefits of secondary processing cannot be obtained.

本発明は、上記問題を解決するもので、必要剛性を保って品質良好な曲げ加工品を作ることができる熱収縮チューブ付き複合強化棒を提供することを目的とする。   The present invention solves the above problems, and an object of the present invention is to provide a composite reinforced rod with a heat-shrinkable tube, which is capable of producing a bent product of good quality while maintaining the required rigidity.

上記目的を達成すべく、請求項1に記載の発明の要旨は、強化繊維の各構成繊維糸を糸長方向に揃えて棒状に束ねた芯材が、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂のマトリックス樹脂に埋設されて一体化している複合強化棒と、該複合強化棒よりも短尺の筒状体で、且つその筒内径が前記複合強化棒の棒径よりも大にして、加熱により長さ方向よりも径方向に大きく収縮する熱収縮チューブと、を具備し、該熱収縮チューブが、前記複合強化棒に遊嵌されて、該複合強化棒の曲げ加工部位に配設されるようにしたことを特徴とする熱収縮チューブ付き複合強化棒にある。請求項2の発明たる熱収縮チューブ付き複合強化棒は、請求項1で、複合強化棒に遊嵌されてその曲げ加工部位に配置された前記熱収縮チューブが、加熱により前記マトリックス樹脂の軟化点よりも低い温度で収縮して前記複合強化棒に密着保持されていることを特徴とする。請求項3の発明たる熱収縮チューブ付き複合強化棒は、請求項1又は2で、芯材が炭素繊維のトウで形成されたことを特徴とする。請求項4の発明たる熱収縮チューブ付き複合強化棒は、請求項1〜3で、マトリックス樹脂が現場重合型熱可塑エポキシ樹脂からなることを特徴とする。
請求項5に記載の発明の要旨は、棒方向に強化繊維の各構成繊維糸を糸長方向に揃えて棒状に束ねた芯材を、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂の溶融マトリックス樹脂に含浸させた後、硬化一体化させた複合強化棒を作製し、続いて、該複合強化棒を、その棒径よりも筒内径が大の筒状体にして且つ該複合強化棒よりも短尺の熱収縮チューブに挿通して、加熱により長さ方向よりも径方向に大きく収縮する該熱収縮チューブを前記複合強化棒の曲げ加工部位に配設するようにしたことを特徴とする熱収縮チューブ付き複合強化棒の製造方法にある。請求項6の発明たる熱収縮チューブ付き複合強化棒の製造方法は、請求項5で、複合強化棒を熱収縮チューブに挿通して、前記複合強化棒の曲げ加工部位に該熱収縮チューブを配設し、その後、熱を加えて、前記マトリックス樹脂の軟化点よりも低い温度で該熱収縮チューブを収縮させ、前記複合強化棒に密着保持させるようにしたことを特徴とする。請求項7の発明たる熱収縮チューブ付き複合強化棒の製造方法は、請求項5又は6で、芯材を炭素繊維のトウで形成し、且つ前記マトリックス樹脂を現場重合型熱可塑エポキシ樹脂としたことを特徴とする。
In order to achieve the above object, the gist of the invention according to claim 1 is that a core material in which each constituent fiber thread of a reinforcing fiber is aligned in the thread length direction and bundled in a rod shape is a thermoplastic resin or an in-situ polymerization type thermoplastic epoxy. A composite reinforcing rod that is embedded and integrated in a matrix resin of a resin, and a tubular body that is shorter than the composite reinforcing rod, and has an inner diameter larger than the rod diameter of the composite reinforcing rod, and is heated. A heat-shrinkable tube that shrinks more in the radial direction than in the lengthwise direction, the heat-shrinkable tube being loosely fitted to the composite strengthening rod and arranged at a bending portion of the composite strengthening rod. It is a composite reinforcing rod with a heat-shrinkable tube. A composite reinforced rod with a heat-shrinkable tube according to a second aspect of the present invention is the composite reinforced rod according to the first aspect, wherein the heat-shrinkable tube loosely fitted to the composite reinforced rod and arranged at a bending portion thereof has a softening point of the matrix resin by heating. It is characterized in that it contracts at a lower temperature and is held in close contact with the composite reinforcing rod. According to a third aspect of the present invention, there is provided a composite strengthening rod with a heat-shrinkable tube according to the first or second aspect, wherein the core material is formed of carbon fiber tow. A composite reinforced rod with a heat-shrinkable tube according to a fourth aspect of the present invention is characterized in that, in the first to third aspects, the matrix resin is made of an in-situ polymerization type thermoplastic epoxy resin.
The gist of the invention according to claim 5 is a molten matrix of a thermoplastic resin or an in-situ polymerization type thermoplastic epoxy resin, which comprises a core material obtained by aligning the respective constituent fiber threads of the reinforcing fiber in the rod direction in the thread length direction and bundling them in a rod shape. After the resin is impregnated, it is cured and integrated to prepare a composite strengthening rod, and then the composite strengthening rod is formed into a tubular body having a cylinder inner diameter larger than the rod diameter and A heat shrinkage characterized in that the heat shrinkable tube is inserted into a short length heat shrinkable tube and shrinks in the radial direction more than in the lengthwise direction when heated, and the heat shrinkable tube is arranged at a bending portion of the composite reinforcing rod. The method is for manufacturing a composite reinforcing rod with a tube. According to a sixth aspect of the present invention, in the method for producing a composite reinforced rod with a heat-shrinkable tube according to the fifth aspect, the composite reinforced rod is inserted into the heat-shrinkable tube, and the heat-shrinkable tube is arranged at a bending portion of the composite reinforced rod. After that, heat is applied to shrink the heat-shrinkable tube at a temperature lower than the softening point of the matrix resin so that the heat-shrinkable tube is held in close contact with the composite reinforcing rod. According to a seventh aspect of the present invention, there is provided a method for manufacturing a composite reinforced rod with a heat-shrinkable tube according to the fifth or sixth aspect, wherein the core material is formed of carbon fiber tow, and the matrix resin is an in-situ polymerization thermoplastic epoxy resin. It is characterized by

本発明の熱収縮チューブ付き複合強化棒及びその製造方法は、曲げ加工時に芯材の構成繊維糸がバラけようとしても、曲げ加工部位の周面を熱収縮チューブが覆って密着しているので、熱収縮チューブで各構成繊維糸がバラけるのを効果的に押しとどめることができ、外観品質だけでなく必要剛性も維持できるなど優れた効果を発揮する。   Since the composite reinforcing rod with a heat-shrinkable tube and the method for manufacturing the same according to the present invention, even if the constituent fiber yarns of the core material tend to come apart during bending, the heat-shrinkable tube covers and adheres to the peripheral surface of the bent part. The heat-shrinkable tube can effectively prevent the constituent fiber yarns from coming apart, and exerts excellent effects such as maintaining not only the appearance quality but also the required rigidity.

本発明の熱収縮チューブ付き複合強化棒及びその製造方法の一形態で、(イ)が熱収縮チューブが複合強化棒に遊嵌されている斜視図、(ロ)が(イ)のI-I線断面図である。In one form of the composite reinforced rod with a heat-shrinkable tube and the manufacturing method thereof of the present invention, (a) is a perspective view in which the heat-shrinkable tube is loosely fitted to the composite reinforced rod, and (b) is a sectional view taken along line II of (a). It is a figure. (イ)が図1の熱収縮チューブが収縮し複合強化棒に密着している斜視図、(ロ)が(イ)のII-II線断面図である。(A) is a perspective view in which the heat-shrinkable tube of FIG. 1 contracts and is in close contact with the composite reinforcing rod, and (B) is a sectional view taken along line II-II of (A). 支柱を支点にして、図2の熱収縮チューブ付き複合強化棒を曲げようとする説明断面図である。FIG. 3 is an explanatory cross-sectional view of an attempt to bend the composite reinforcing rod with a heat-shrinkable tube of FIG. 図3の状態から熱収縮チューブ付き複合強化棒を曲げ終えた説明図である。It is explanatory drawing which finished bending the composite strengthening rod with a heat-shrinkable tube from the state of FIG. 複合強化棒を造る概略製造工程図である。It is a schematic manufacturing process drawing which makes a composite strengthening rod. 図3に対応させて、複合強化棒だけを曲げようとする説明断面図である。FIG. 4 is an explanatory cross-sectional view corresponding to FIG. 3 in which only the composite reinforcing rod is bent. (イ)が図4に対応させて、複合強化棒だけを用いた説明断面図、(ロ)が(イ)の説明平面図である。FIG. 6A is an explanatory cross-sectional view using only the composite reinforcing rods, and FIG. 6B is an explanatory plan view of FIG.

以下、本発明に係る熱収縮チューブ付き複合強化棒及びその製造方法について詳述する。図1〜図6は本発明の熱収縮チューブ付き複合強化棒及びその製造方法の一形態で、図1は複合強化棒に熱収縮チューブが遊嵌した斜視図、図2は図1の熱収縮チューブが収縮し複合強化棒に密着した斜視図、図3は図2の熱収縮チューブ付き複合強化棒を曲げようとする断面図、図4は熱収縮チューブ付き複合強化棒を曲げ終えた説明図、図5は複合強化棒の製造工程図、図6,図7は図3,図4に対応させた複合強化棒だけの説明図を示す。各図は発明要部を強調図示し、また本発明と直接関係しない部分を簡略化又は省略する。   Hereinafter, the composite reinforcing rod with a heat shrinkable tube and the method for producing the same according to the present invention will be described in detail. 1 to 6 show one embodiment of a composite reinforcing rod with a heat shrinkable tube and a method of manufacturing the same according to the present invention. FIG. 1 is a perspective view in which a heat shrinkable tube is loosely fitted to the composite reinforcing rod, and FIG. 2 is a heat shrinkage of FIG. FIG. 3 is a perspective view in which the tube contracts and is in close contact with the composite reinforcing rod, FIG. 3 is a sectional view of the composite reinforcing rod with a heat shrinkable tube attempting to bend, and FIG. FIG. 5 is a manufacturing process drawing of the composite reinforcing rod, and FIGS. 6 and 7 are explanatory views of only the composite reinforcing rod corresponding to FIGS. 3 and 4. In each drawing, the essential parts of the invention are highlighted, and the parts not directly related to the present invention are simplified or omitted.

(1)熱収縮チューブ付き複合強化棒
熱収縮チューブ付き複合強化棒は、複合強化棒1と熱収縮チューブ5とを具備する(図1,図2)。
複合強化棒1は、強化繊維の各構成繊維糸21を糸長方向に揃えて棒状に束ねた芯材2が、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂のマトリックス樹脂3に埋設されて一体化している棒状体である。棒状になるよう、強化繊維の各構成繊維糸21が糸長方向に揃えて束ねられた芯材2を、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂の液状マトリックス樹脂3Aに含浸、硬化させて、芯材2とマトリックス樹脂3とが一体化している。強化繊維とは、複合強化棒1の機械的強度を高めるためのマトリックス樹脂強化用の繊維をいう。例えば無機繊維としてガラス繊維,炭素繊維等があり、有機繊維としてはアラミド繊維等がある。
(1) Composite reinforced rod with heat shrinkable tube The composite reinforced rod with heat shrinkable tube comprises a composite reinforced rod 1 and a heat shrinkable tube 5 (FIGS. 1 and 2).
In the composite reinforcing rod 1, a core material 2 in which each constituent fiber yarn 21 of the reinforcing fiber is aligned in the yarn length direction and bundled in a rod shape is embedded in a matrix resin 3 of a thermoplastic resin or an in-situ polymerization type thermoplastic epoxy resin to be integrated. It is a solidified rod. The core material 2 in which the respective constituent fiber threads 21 of the reinforcing fiber are aligned and bundled in the thread length direction so as to be rod-shaped is impregnated and cured in the liquid matrix resin 3A of the thermoplastic resin or the in-situ polymerization type thermoplastic epoxy resin. The core material 2 and the matrix resin 3 are integrated. The reinforcing fiber is a fiber for reinforcing the matrix resin for increasing the mechanical strength of the composite reinforcing rod 1. For example, the inorganic fibers include glass fibers and carbon fibers, and the organic fibers include aramid fibers.

前記芯材2は、構成する各フィラメント間にマトリックス樹脂3が浸透し、双方が図1(ロ)のように一体化している。芯材2を判り易く説明するため、図1(イ)は左端に便宜的に芯材2の部分のみを露出させている。ここでは、強化繊維として炭素繊維を用い、その各構成繊維糸21たる長繊維(フィラメント)糸を糸長方向に揃えて棒状に束ねた芯材2とする。図1では、芯材2をつくるフィラメント糸21の本数を極端に減らして図示するが、実際は例えば3000本(3kと呼ぶ)とか12,000本(12k)といった極めて多数の炭素繊維のフィラメント糸21(直径21Dが数μm)で長繊維束にして撚りのないトウ2Aで形成される。尚、図1で、複合強化棒1の左端から突き出したトウ2Aのみの部分は、出荷前にカッターCT等で適宜、切断除去される。   In the core material 2, the matrix resin 3 permeates between the constituent filaments, and both are integrated as shown in FIG. In order to make the core material 2 easier to understand, only the portion of the core material 2 is exposed at the left end in FIG. Here, carbon fibers are used as the reinforcing fibers, and long fibers (filaments) that are the respective constituent fiber threads 21 are aligned in the thread length direction and bundled into a rod-like core material 2. In FIG. 1, the number of filament yarns 21 forming the core material 2 is extremely reduced and shown, but in reality, for example, an extremely large number of carbon fiber filament yarns 21 (diameter: 3000 (3k) or 12,000 (12k)) 21D is several μm in length, and is formed of long fiber bundles and tow 2A without twist. In FIG. 1, the portion of only the toe 2A protruding from the left end of the composite reinforcing rod 1 is appropriately cut and removed by a cutter CT or the like before shipping.

図1,図2の芯材2は、炭素繊維フィラメント糸21で長繊維束にして撚りのない一本のトウ2Aで形成しているが、後述する表1に掲載した「紐集合体」の欄で、左端側に在るストレートの「模式図」にあるように、複数本のトウ2Aをストレート状態で束ねた芯材2とすることができる。また左側から二列目のように組み紐の「模式図」にある筒状の芯材2としてもよく、左から三列目のように「模式図」にある撚り紐のごとく撚り合わせた芯材2とすることもできる。さらに、図示を省略するが、短繊維(ステーブル)として製造し、紡績工程を経て、強化繊維の構成繊維糸21としてもよい。   The core material 2 shown in FIGS. 1 and 2 is formed of a single tow 2A that is a long fiber bundle made of carbon fiber filament yarn 21. In the column, as shown in the straight “schematic diagram” on the left end side, a plurality of tows 2A can be bundled in a straight state to form the core material 2. Alternatively, the core material 2 may be a tubular core 2 in the “schematic diagram” of the braid as in the second row from the left side, or a core material twisted like a twisted string in the “schematic diagram” as in the third row from the left. It can also be 2. Further, although not shown, it may be manufactured as a short fiber (stable), and subjected to a spinning process to be the constituent fiber yarn 21 of the reinforcing fiber.

マトリックス樹脂3は、強化繊維が組み込まれる母材で、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂からなる。熱可塑性樹脂は、成形後に、再度熱をかけることで、軟化させて二次成形できる長所を有する。熱可塑性樹脂にはPP(ポリプロピレン)、PA(ナイロン)、PC(ポリカーボネート)等がある。熱可塑性樹脂ではないが、現場重合型熱可塑エポキシ樹脂も本発明のマトリックス樹脂3とする。現場重合型熱可塑エポキシ樹脂は、重合前状態であれば、常温で液状にして粘度を低い状態で維持できる。加熱すれば架橋反応で硬化し、強固な成形品が得られる。そして、一旦硬化した後も、再加熱すると「熱可塑性樹脂」と同様の形相を示し、軟化,二次成形が可能になっている。   The matrix resin 3 is a base material into which reinforcing fibers are incorporated, and is made of a thermoplastic resin or an in-situ polymerization type thermoplastic epoxy resin. The thermoplastic resin has an advantage that it can be softened and secondary molded by applying heat again after molding. The thermoplastic resin includes PP (polypropylene), PA (nylon), PC (polycarbonate) and the like. Although not a thermoplastic resin, an in-situ polymerization type thermoplastic epoxy resin is also the matrix resin 3 of the present invention. If the in-situ polymerization type thermoplastic epoxy resin is in a pre-polymerization state, it can be liquefied at room temperature to maintain its viscosity in a low state. If heated, it is cured by a crosslinking reaction, and a strong molded product is obtained. Then, even after once cured, when it is reheated, it has the same shape as that of the "thermoplastic resin", and softening and secondary molding are possible.

このマトリックス樹脂3に前記芯材2を埋設一体化しているプラスチック複合棒状材が複合強化棒1になる。本実施形態は、強化繊維として炭素繊維を用いた熱可塑性プラスチック複合棒状材になっている。炭素繊維の直径21Dが数μのフィラメントを数千〜数万本を束ねたトウ2Aで形成された芯材2を、クリールから引き出し、マトリックス樹脂3として例えば現場重合型熱可塑エポキシ樹脂の溶融母材3Aに含浸後、硬化させて、図1のような棒状品に成形した複合強化棒1である。該棒状品を必要長さにカットし、複合強化棒1としている。   The plastic composite rod-shaped material in which the core material 2 is embedded and integrated in the matrix resin 3 becomes the composite reinforced rod 1. The present embodiment is a thermoplastic composite rod-shaped material using carbon fibers as reinforcing fibers. A core material 2 formed of a tow 2A obtained by bundling thousands to tens of thousands of filaments each having a carbon fiber diameter 21D of several μ is drawn out from a creel and used as a matrix resin 3, for example, a melt matrix of an in-situ polymerization type thermoplastic epoxy resin. After being impregnated in the material 3A, it is cured to form a composite reinforcing rod 1 formed into a rod-shaped product as shown in FIG. The rod-shaped product is cut into a required length to form a composite reinforcing rod 1.

熱収縮チューブ5は、プラスチックの形状記憶特性を応用したもので、加熱することによって長さの変化が少なく、径が大きく収縮するチューブである。複合強化棒1よりも短尺の筒状体で、且つその筒内径51dが前記複合強化棒1の棒径1Dよりも大にして、加熱により長さ方向よりも径方向に大きく収縮する熱収縮チューブ5とする。熱収縮チューブ5の材質は、ポリオレフィン,塩化ビニル,エチレンプロピレン,シリコーンゴム,フッ素系ポリマー,熱可塑性エラストマー等である。   The heat-shrinkable tube 5 is a tube to which the shape memory characteristic of plastic is applied. The heat-shrinkable tube 5 has a small change in length and has a large diameter when heated. A heat-shrinkable tube that is a tubular body that is shorter than the composite strengthening rod 1 and that has a cylinder inner diameter 51d that is larger than the rod diameter 1D of the composite strengthening rod 1 and that shrinks more largely in the radial direction than in the longitudinal direction by heating. Set to 5. The material of the heat-shrinkable tube 5 is polyolefin, vinyl chloride, ethylene propylene, silicone rubber, fluoropolymer, thermoplastic elastomer, or the like.

熱収縮チューブ5は一般に電線の絶縁保護等として利用される。しかるに、本発明では、複合強化棒1を曲げる際にその曲げ加工部位14における強化繊維の剥離を押しとどめて、複合強化棒1の必要剛性を保って品質良好な曲げ加工を円滑になす役目を担う熱収縮チューブ5となっている。
詳しくは、可撓性を有する熱収縮チューブ5は、そのチューブ内径51dを複合強化棒1の棒径1Dよりも若干大きめにして、該熱収縮チューブ5が複合強化棒1の曲げ加工部位14に遊嵌される。加温下又は加温した後の曲げ加工時に、曲げ加工部位14に係る複合強化棒1の周面1aを熱収縮チューブ5が包み込んだまま撓み且つ加温に伴う熱収縮により曲げ加工部位14に当接し、曲げ加工で発生する繊維剥離を抑制する。より好ましくは、加熱により前記マトリックス樹脂3の軟化点よりも低い温度で径方向に収縮する熱収縮チューブ5とする。加温により、マトリックス樹脂3の軟化点に達する前に複合強化棒1に係る曲げ加工部位14の周面14aに、熱収縮チューブ5が図2のごとく収縮,密着して、収縮力を伴って強化繊維の繊維剥離を効果的に抑制できるからである。
本実施形態は、複合強化棒1のマトリックス樹脂3として、再加熱してその二次成形開始可能温度が90〜150℃ほどの現場重合型熱可塑エポキシ樹脂を用いる一方、熱収縮チューブ5に、株式会社オーム電機の「収縮チューブ 6.0K」、型番DZ-TR60/Kを用いる。熱収縮チューブ5の材質がポリオレフィンで、その収縮開始温度は、上記マトリックス樹脂3の二次成形開始温度よりも低い70℃になっている。
The heat shrinkable tube 5 is generally used for insulation protection of electric wires. However, in the present invention, when the composite reinforcing rod 1 is bent, the separation of the reinforcing fibers at the bending portion 14 is stopped, and the required rigidity of the composite reinforcing rod 1 is maintained, and the bending work of good quality is performed smoothly. It is a heat-shrinkable tube 5.
Specifically, the flexible heat-shrinkable tube 5 has a tube inner diameter 51d slightly larger than the rod diameter 1D of the composite strengthening rod 1 so that the heat-shrinkable tube 5 can be applied to the bending portion 14 of the composite strengthening rod 1. It is fitted loosely. At the time of bending under heating or after heating, the peripheral surface 1a of the composite strengthening rod 1 related to the bent portion 14 is bent while the heat-shrinkable tube 5 is wrapped and the heat-contracted heat shrinks to the bent portion 14. Contact and suppress fiber separation that occurs during bending. More preferably, the heat-shrinkable tube 5 shrinks radially by heating at a temperature lower than the softening point of the matrix resin 3. Before the softening point of the matrix resin 3 is reached by heating, the heat-shrinkable tube 5 contracts and adheres to the peripheral surface 14a of the bending portion 14 of the composite reinforcing rod 1 as shown in FIG. This is because it is possible to effectively prevent fiber separation of the reinforcing fibers.
In the present embodiment, as the matrix resin 3 of the composite reinforcing rod 1, an in-situ polymerization type thermoplastic epoxy resin having a temperature at which secondary molding can be started by reheating is about 90 to 150 ° C. is used, while the heat shrinkable tube 5 is Use "Shrink tube 6.0K", model number DZ-TR60 / K from Ohm Electric Co., Ltd. The material of the heat-shrinkable tube 5 is polyolefin, and its shrinkage start temperature is 70 ° C., which is lower than the secondary molding start temperature of the matrix resin 3.

熱収縮チューブ付き複合強化棒は、熱収縮チューブ5が、別体の複合強化棒1に遊嵌されて、該複合強化棒1の曲げ加工部位14に配設されるようにした図1ごとくの組合せセット品とする。販売用の本発明品は、複合強化棒1に熱収縮チューブ5が横並びに添えられ、セットにして包装された製品であってもよい。
また、複合強化棒1に遊嵌され、その曲げ加工部位14にかぶさって配置された熱収縮チューブ5が、加熱により収縮して複合強化棒1に密着保持されている図2ごとくの、複合強化棒1に熱収縮チューブ5が一体の熱収縮チューブ付き複合強化棒とすることもできる。曲げ加工部位14の部分を加熱して、速やかに曲げ加工作業ができ、作業性を向上させ、使い勝手に優れた所望の熱収縮チューブ付き複合強化棒となる。
符号3aは複合強化棒1の樹脂マトリックス表面、符号5aは熱収縮チューブ5の外面、符号51Dは熱収縮チューブ5の当初外径、符号55Dは熱収縮チューブ5の熱収縮後の外径を示す。
The composite reinforced rod with the heat-shrinkable tube is arranged such that the heat-shrinkable tube 5 is loosely fitted to the separate composite reinforced rod 1 and arranged at the bending portion 14 of the composite reinforced rod 1 as shown in FIG. Combined set product. The product of the present invention for sale may be a product in which the heat-shrinkable tubes 5 are attached side by side to the composite reinforcing rod 1 and packaged as a set.
Further, the heat-shrinkable tube 5 loosely fitted to the composite strengthening rod 1 and arranged over the bending portion 14 is shrunk by heating and closely held to the composite strengthening rod 1 as shown in FIG. It is also possible to use a composite reinforced rod with a heat-shrinkable tube in which the heat-shrinkable tube 5 is integrated with the rod 1. By heating the portion of the bending portion 14 and quickly performing the bending operation, the workability is improved, and the desired composite reinforced rod with a heat-shrinkable tube is provided with excellent usability.
Reference numeral 3a indicates the resin matrix surface of the composite reinforcing rod 1, reference numeral 5a indicates the outer surface of the heat shrink tube 5, reference numeral 51D indicates the initial outer diameter of the heat shrink tube 5, and reference numeral 55D indicates the outer diameter of the heat shrink tube 5 after heat shrink. ..

(2)熱収縮チューブ付き複合強化棒の製造方法とその一使用方法
熱収縮チューブ付き複合強化棒の製造方法は、例えば以下のようにして造られる。まず、(1)熱収縮チューブ付き複合強化棒で述べた前記複合強化棒1を、図5のようにして造る。クリールCRから強化繊維の各構成繊維糸21を糸長方向に揃えて棒状に束ねられた芯材2を引き出す。この芯材2に、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂の液状マトリックス樹脂3Aを含浸させた後、棒状に硬化一体化させた複合強化棒1を作製する。
芯材2に係る各構成繊維糸21の繊維内部にマトリックス樹脂3を含浸させるべく、該マトリックス樹脂3を溶融温度以上に加熱し、溶融マトリックス樹脂(溶融母材)3Aの状態に保たれた槽4中に、芯材2を通過させる。そうして、芯材2に係る各構成繊維糸21の内部及び芯材2の表層部にマトリックス樹脂3が含浸、着層した後、該マトリックス樹脂3付き芯材2を金型T、後硬化炉Hに通して、強固な成形品の複合強化棒1とする。
(2) Method for producing composite reinforced rod with heat shrinkable tube and one method of using the same A method for producing a composite reinforced rod with a heat shrinkable tube is produced, for example, as follows. First, the composite strengthening rod 1 described in (1) Composite strengthening rod with heat shrink tube is manufactured as shown in FIG. From the creel CR, the constituent fiber threads 21 of the reinforcing fiber are aligned in the thread length direction and the core material 2 bundled in a rod shape is pulled out. The core material 2 is impregnated with a liquid matrix resin 3A of a thermoplastic resin or an in-situ polymerization type thermoplastic epoxy resin.
In order to impregnate the inside of the fibers of each constituent fiber yarn 21 related to the core material 2 with the matrix resin 3, the matrix resin 3 is heated to a melting temperature or higher and kept in the state of the molten matrix resin (molten base material) 3A. Then, the core material 2 is passed through the inside. Then, after the matrix resin 3 is impregnated into the inside of each constituent fiber yarn 21 related to the core material 2 and the surface layer portion of the core material 2 and layered, the core material 2 with the matrix resin 3 is subjected to a mold T and post-curing. The mixture is passed through the furnace H to form a strong molded composite reinforced rod 1.

具体的には、二液配合タイプの現場重合型熱可塑エポキシ樹脂(ナガセケムテックス株式会社製)を用いて、主剤を100℃付近まで加熱する。その後、主剤との配合比を100:2にした硬化促進剤を添加し、撹拌混合した液状状態下の現場重合型熱可塑エポキシ樹脂を、直径が7μmほどの炭素繊維フィラメント糸を多数束ねて長繊維束(トウ2A)にした芯材2に含浸させる。続いて、この芯材2に現場重合型熱可塑エポキシ樹脂を含浸させたものを金型Tに通し、目的の棒状形状に加工する。しかる後、後硬化炉Hの約140℃に加熱した温度で架橋反応によって硬化させ、直径約5mmφの強固な棒状品を引き出し、棒状品を連続成形する。ここでの複合強化棒1は、上述したごとく炭素繊維を一方向に配列したトウ2Aからなる芯材22に、現場重合型熱可塑エポキシ樹脂を含浸させて、棒状に連続成形し硬化したもので、その後、裁断機CTで所定長さにカットする。図5中、符号Rはローラを示す。   Specifically, the main component is heated to around 100 ° C. by using a two-component type in-situ polymerization type thermoplastic epoxy resin (manufactured by Nagase Chemtex Co., Ltd.). After that, a curing accelerator with a compounding ratio of 100: 2 with the main agent was added, and the in-situ polymerization type thermoplastic epoxy resin in a liquid state, which was stirred and mixed, was bundled with a large number of carbon fiber filament yarns with a diameter of 7 μm The core material 2 formed into a fiber bundle (tow 2A) is impregnated. Then, the core material 2 impregnated with the in-situ polymerization type thermoplastic epoxy resin is passed through the mold T to be processed into a desired rod-like shape. After that, it is cured by a crosslinking reaction at a temperature of about 140 ° C. in a post-curing furnace H, and a strong rod-shaped product having a diameter of about 5 mmφ is drawn out to continuously mold the rod-shaped product. The composite reinforcing rod 1 here is obtained by impregnating a core material 22 made of tow 2A in which carbon fibers are arranged in one direction with an in-situ polymerization type thermoplastic epoxy resin, and continuously molding and hardening into a rod shape. After that, it is cut into a predetermined length by a cutting machine CT. In FIG. 5, reference symbol R indicates a roller.

次いで、前記複合強化棒1を前記熱収縮チューブ5に挿通する。熱収縮チューブ5は、複合強化棒1よりも短尺にして、その筒内径51dが該複合強化棒1の棒径1Dよりも大の筒状体とする(図1のロ)。熱収縮チューブ5を複合強化棒1よりも短い長さ5Lとするのは、曲げ加工部位14にあてがえれば足りるからである。
続いて、複合強化棒1に挿通させた熱収縮チューブ5をずらしたり位置調整したりして、曲げ加工部位14の棒周面14aに熱収縮チューブ5を被せる(図1のイ)。この段階では、熱収縮チューブ5は複合強化棒1に遊嵌状態にあり、曲げ加工部位14に配設された該熱収縮チューブ5の位置を微調整できる。
Next, the composite reinforcing rod 1 is inserted into the heat shrinkable tube 5. The heat-shrinkable tube 5 is shorter than the composite strengthening rod 1 and has a cylindrical inner diameter 51d larger than the rod diameter 1D of the composite strengthening rod 1 (see FIG. 1B). The length of the heat-shrinkable tube 5 is shorter than that of the composite reinforcing rod 1 by 5 L, because it is sufficient to apply it to the bent portion 14.
Subsequently, the heat-shrinkable tube 5 inserted into the composite reinforcing rod 1 is displaced or adjusted in position to cover the rod peripheral surface 14a of the bent portion 14 with the heat-shrinkable tube 5 (a in FIG. 1). At this stage, the heat-shrinkable tube 5 is loosely fitted to the composite reinforcing rod 1, and the position of the heat-shrinkable tube 5 arranged in the bending portion 14 can be finely adjusted.

斯かる状態でも熱収縮チューブ付き複合強化棒となるが、さらに必要に応じて、その後、複合強化棒1をまっすぐに保ったまま加熱処理して、熱収縮チューブ5を曲げ加工部位14に密着させる。複合強化棒1に遊嵌され、配設調整を終えた熱収縮チューブ5に熱を加え、熱収縮チューブ内面5bが曲げ加工部位14の周面14aに密着するよう該熱収縮チューブ5を収縮させる。熱収縮チューブ5を収縮させて複合強化棒1に嵌った状態で密着保持させ、図2のような所望の熱収縮チューブ付き複合強化棒が造られる。熱収縮チューブ5が一体の複合強化棒1が造られる。他の構成は、(1)熱収縮チューブ付き複合強化棒と同様で、その説明を省く。(1)熱収縮チューブ付き複合強化棒と同一符号は同一又は相当部分を示す。   Even in such a state, the composite reinforced rod with a heat-shrinkable tube is provided, but if necessary, after that, heat treatment is performed while keeping the composite reinforced rod 1 straight to bring the heat-shrinkable tube 5 into close contact with the bending portion 14. .. Heat is applied to the heat-shrinkable tube 5 that has been loosely fitted to the composite strengthening rod 1 and whose arrangement and adjustment has been completed, and the heat-shrinkable tube 5 is shrunk so that the inner surface 5b of the heat-shrinkable tube is in close contact with the peripheral surface 14a of the bent portion 14. .. The heat-shrinkable tube 5 is shrunk so that the heat-shrinkable tube 5 is tightly held in the state where it is fitted in the composite strengthening rod 1, and a desired composite strengthening rod with a heat shrinkable tube as shown in FIG. 2 is manufactured. The composite strengthening rod 1 in which the heat shrinkable tube 5 is integrated is manufactured. Other configurations are the same as (1) the composite reinforced rod with the heat-shrinkable tube, and the description thereof will be omitted. (1) The same reference numerals as those of the composite reinforcing rod with the heat-shrinkable tube indicate the same or corresponding portions.

(3)熱収縮チューブ付き複合強化棒の一加工例
次に、こうして得た熱収縮チューブ付き複合強化棒に曲げ加工を施す一加工方法を作用とともに説明する。
熱収縮チューブ5は前述した株式会社オーム電機の「収縮チューブ 6.0K」、型番DZ-TR60/Kを用い、チューブ内径が6mmφのものである。複合強化棒1は炭素繊維フィラメント糸のトウ2Aにして長繊維束の芯材2が、現場重合型熱可塑エポキシ樹脂の溶融樹脂槽4を通過して、長繊維束のフィラメント糸21間に溶融状態にある現場重合型熱可塑エポキシ樹脂が含浸し、硬化一体化している複合強化棒1とする(図5)。この複合強化棒1の棒径は約5mmφである。
ここでは、上記熱収縮チューブ5が上記複合強化棒1に僅かの隙間εを確保して遊嵌され、該複合強化棒1の曲げ加工部位14に熱収縮チューブ5を被せた図1ごとくの熱収縮チューブ付き複合強化棒を用いる。
(3) One Processing Example of Composite Reinforcement Rod with Heat Shrink Tube Next, one processing method of bending the composite reinforced rod with heat shrink tube thus obtained will be described together with its action.
The heat-shrinkable tube 5 uses the above-mentioned "shrinkable tube 6.0K" of Ohm Electric Co., Ltd., model number DZ-TR60 / K, and has a tube inner diameter of 6 mmφ. The composite reinforcing rod 1 is made into a tow 2A of carbon fiber filament yarn, and the core material 2 of the long fiber bundle passes through the molten resin tank 4 of the in-situ polymerization type thermoplastic epoxy resin and melts between the filament yarns 21 of the long fiber bundle. The composite reinforced rod 1 is impregnated with the in-situ polymerization type thermoplastic epoxy resin in the state and is cured and integrated (FIG. 5). The diameter of the composite reinforcing rod 1 is about 5 mmφ.
Here, the heat-shrinkable tube 5 is loosely fitted to the composite strengthening rod 1 with a slight clearance ε, and the heat-shrinkable tube 5 is covered on the bending portion 14 of the composite strengthening rod 1 as shown in FIG. Use a composite reinforcing rod with a shrink tube.

まず熱収縮チューブ付き複合強化棒を炉内で加温する。加温により70℃付近に達すると、熱収縮チューブ5の収縮開始温度70℃になり、炉内で熱収縮チューブ5が収縮し図2のように曲げ加工部位14の複合強化棒周面1aに密着する。さらに炉内で150℃程度まで加温する。複合強化棒1を構成する現場重合型熱可塑エポキシ樹脂が軟化し、二次成形が可能な状態となる。   First, a composite strengthening rod with a heat shrink tube is heated in a furnace. When the temperature reaches around 70 ° C due to heating, the shrinkage start temperature of the heat shrinkable tube 5 reaches 70 ° C, and the heat shrinkable tube 5 shrinks in the furnace, and as shown in FIG. In close contact. Furthermore, heat up to about 150 ℃ in the furnace. The in-situ polymerization type thermoplastic epoxy resin forming the composite reinforcing rod 1 is softened, and the secondary molding becomes possible.

その後、炉の外へ熱収縮チューブ付き複合強化棒1を取り出し、温度が90℃以下にまで冷めないうちに曲げ加工を行う。図3のごとく紙面垂直方向に起立する支柱6へ曲げ加工部位14を当て、曲げ加工部位14の両外方に伸びた複合強化棒1の部分を手に持って、矢印方向に曲げる。曲げ作業に伴い、軟化状態にある現場重合型熱可塑エポキシ樹脂中で、従来は図7(ロ)のように曲げ外力を受けてバラけ、剥離していた芯材2の各構成繊維糸21(フィラメント糸)が、熱収縮し且つ曲げ加工部位14に密着した熱収縮チューブ5の規制を受けて押しとどめられる。熱収縮チューブ5のない従来品7であると、図7のごとく曲げ加工部位74で芯材8の構成繊維糸81がバラけて剥離状態になるのを、本発明では、熱収縮チューブ5が曲げ加工部位14の周面14aに密着して取り巻き、剥離状態になるのを阻止する。軟化状態にある現場重合型熱可塑エポキシ樹脂の扁平化も、熱収縮チューブが押しとどめる。図4のごとく複合強化棒1の断面形状をほぼ保形しながら曲げ加工部位14が綺麗な形で曲がる。
さらにいえば、図3で複合強化棒1を矢印方向に曲げる際、ねじりながら曲げるとより好ましくなる。曲げ加工部位14における支柱6に近い構成繊維糸21と支柱6から離れた構成繊維糸21との距離を少なくできるからである。
かくして、芯材2の構成繊維糸21を剥離させることなく、曲げ等の二次成形加工が円滑に進み、外観品質や必要強度を確保した曲げ加工が完了する。曲げ加工後は、熱収縮チューブ5は付けたままでもよいが、刃具等で簡単に切れるので、曲げ加工部位14から該熱収縮チューブ5を取り外して外観向上を図ることもできる。
After that, the composite strengthening rod 1 with a heat-shrinkable tube is taken out of the furnace and is bent before the temperature is cooled to 90 ° C or lower. As shown in FIG. 3, the bending portion 14 is applied to the column 6 standing upright in the direction perpendicular to the paper surface, and the portion of the composite reinforcing rod 1 extending outward from both sides of the bending portion 14 is held in the hand and bent in the arrow direction. With the bending work, in the in-situ polymerization type thermoplastic epoxy resin which is in a softened state, each constituent fiber yarn 21 of the core material 2 which has been separated and peeled by the external bending force as shown in FIG. (Filament yarn) is restrained by being restricted by the heat-shrinkable tube 5 which is heat-shrinked and which is in close contact with the bending portion 14. In the conventional product 7 without the heat-shrinkable tube 5, the constituent fiber threads 81 of the core material 8 are separated and come into a separated state at the bending portion 74 as shown in FIG. The bent portion 14 is closely adhered to and surrounds the peripheral surface 14a to prevent the peeled state. The heat-shrinkable tube keeps the flattening of the in-situ polymerization type thermoplastic epoxy resin in a softened state. As shown in FIG. 4, the bending portion 14 bends in a beautiful shape while substantially maintaining the cross-sectional shape of the composite reinforcing rod 1.
Furthermore, when bending the composite reinforcing rod 1 in the direction of the arrow in FIG. 3, it is more preferable to bend it while twisting. This is because it is possible to reduce the distance between the constituent fiber yarns 21 near the support columns 6 and the constituent fiber yarns 21 away from the support columns 6 in the bending portion 14.
Thus, the secondary forming process such as bending smoothly proceeds without peeling the constituent fiber yarns 21 of the core material 2, and the bending process that secures the appearance quality and the required strength is completed. After the bending process, the heat-shrinkable tube 5 may be left attached, but since it can be easily cut with a cutting tool or the like, the heat-shrinkable tube 5 can be removed from the bent part 14 to improve the appearance.

また、表1に、従来の複合強化棒単独の場合と熱収縮チューブ付き複合強化棒との対比試験結果を示す。熱収縮チューブ5の厚みは1.5mmとして、曲げ加工部位14(ここでは「曲げ部」という。)で最小となった厚みや、曲げ部の外観について調べた。   Table 1 shows the results of a comparison test between the conventional composite reinforcing rod alone and the composite reinforcing rod with a heat-shrinkable tube. The thickness of the heat-shrinkable tube 5 was set to 1.5 mm, and the minimum thickness at the bending portion 14 (herein referred to as "bending portion") and the appearance of the bending portion were examined.

表1
Table 1

表1は、左半分の三つの欄が複合強化棒単独(従来品7)の場合を示す。模式図にあるようなストレート、組み紐、さらに撚り紐の各紐集合体をそれぞれ炭素繊維で形成して、該紐集合体が現場重合型熱可塑エポキシ樹脂のマトリックス樹脂3に埋設一体化されている複合強化棒である。右半分の三つの欄は、左半分の各複合強化棒1にそれぞれ熱収縮チューブ5を遊嵌し、加温して各複合強化棒に熱収縮チューブ5を被着一体化させた熱収縮チューブ付き複合強化棒の場合を示す。曲げ加工を終えた後の総合判定で、ストレート、組み紐、さらに撚り紐の各紐集合体について、いずれも本発明の熱収縮チューブ付き複合強化棒の方に、曲げ加工部位14の外観品質に良好な結果を得た。   Table 1 shows the case where the three columns in the left half are the composite reinforcing rod alone (conventional product 7). A straight string, a braided string, and a twisted string as shown in the schematic diagram are each formed of carbon fiber, and the string assembly is embedded and integrated in the matrix resin 3 of the in-situ polymerization type thermoplastic epoxy resin. It is a composite strengthening rod. The three columns in the right half are heat-shrinkable tubes in which the heat-shrinkable tubes 5 are loosely fitted to the respective composite reinforced rods 1 in the left-half and heated to adhere the heat-shrinkable tubes 5 to the respective composite reinforced rods. The case of a composite reinforced rod with a bar is shown. Comprehensive evaluation after finishing the bending process, the straight, braided, and twisted string aggregates are all excellent in appearance quality of the bent portion 14 for the composite reinforced rod with the heat shrinkable tube of the present invention. I got good results.

(4)効果
このように構成した熱収縮チューブ付き複合強化棒及びその製造方法によれば、マトリックス樹脂3に熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂を用いるので、棒状に成形された複合強化棒であっても、再度熱をかけて軟化させることができる。この軟化状態下で、曲げ加工等の二次成形が行えるので、幅広い分野で使用可能な汎用性の高い複合強化棒1になる。そして、棒状の複合強化棒1であると、一定断面の成形品にして成形容易で、且つ剛性が最も高い棒状方向に炭素繊維等の強化繊維の各構成繊維糸21を簡単に配設できるので、安価でしかも強固な複合強化棒1の成形品を得ることができる。
(4) Effects According to the composite reinforced rod with a heat-shrinkable tube and the manufacturing method thereof configured as described above, since the thermoplastic resin or the in-situ-polymerized thermoplastic epoxy resin is used as the matrix resin 3, the composite reinforced molded into a rod shape. Even a stick can be reheated to soften it. Under this softened state, secondary forming such as bending can be performed, so that the composite reinforcing rod 1 with high versatility can be used in a wide range of fields. The rod-shaped composite reinforcing rod 1 is easy to form into a molded product having a constant cross section, and each constituent fiber yarn 21 of the reinforcing fiber such as carbon fiber can be easily arranged in the rod-shaped direction having the highest rigidity. It is possible to obtain a molded article of the composite reinforcing rod 1 that is inexpensive and strong.

また、複合強化棒1よりも短尺の筒状体で、且つその筒内径51dが複合強化棒1の棒径1Dよりも大の熱収縮チューブ5が複合強化棒1に遊嵌され、曲げ加工部位14に配設されると、複合強化棒1を加温して曲げ加工を行う時に、構成繊維糸21が図7(ロ)のようにバラけてしまうのを該熱収縮チューブ5で押しとどめることができる。曲げ加工部位14での複合強化棒1の曲げ作業時には、マトリックス樹脂3が軟化状態にあり、曲げ度合が進むにつれ、強化繊維の例えば炭素繊維の構成繊維糸21は曲げ力を受けてバラけて剥離し易くなるが、複合強化棒1に係る曲げ加工部位14の周面14aに熱収縮チューブ5が当接してこれを抑制する。
加えて、複合強化棒1の曲げ加工部位14に遊嵌配置された熱収縮チューブ5が、加熱によりマトリックス樹脂3の軟化点よりも低い温度で収縮すると、曲げ加工時には、複合強化棒1の曲げ加工周面14aに熱収縮チューブ5が収縮力を伴って密着するので、前記炭素繊維が曲げ力を受けてバラけて剥離するのを、より効果的に抑え込むことができる。熱収縮チューブ5を曲げ加工部位14に密着保持させることで、複合強化棒だけを用いていた従来法と比較して、表1からも明らかに曲げ加工部位14での外観品質を良好に保ち、さらに曲げ加工部位14での強度不足も解消している。
Further, the heat-shrinkable tube 5 having a tubular body shorter than the composite strengthening rod 1 and having a cylinder inner diameter 51d larger than the rod diameter 1D of the composite strengthening rod 1 is loosely fitted to the composite strengthening rod 1 to form a bent portion. When it is arranged in No. 14, when the composite reinforcing rod 1 is heated and bent, the constituent fiber yarns 21 are prevented from coming apart as shown in FIG. be able to. During the bending operation of the composite reinforcing rod 1 at the bending portion 14, the matrix resin 3 is in a softened state, and as the bending degree progresses, the reinforcing fiber, for example, the carbon fiber constituting fiber yarn 21 is subjected to a bending force and is separated. Although it is easy to peel off, the heat-shrinkable tube 5 abuts on the peripheral surface 14a of the bent portion 14 of the composite reinforcing rod 1 to suppress it.
In addition, when the heat-shrinkable tube 5 loosely fitted to the bending portion 14 of the composite strengthening rod 1 shrinks at a temperature lower than the softening point of the matrix resin 3 due to heating, the bending of the composite strengthening rod 1 occurs at the time of bending. Since the heat-shrinkable tube 5 comes into close contact with the processed peripheral surface 14a with a contracting force, it is possible to more effectively suppress the carbon fibers from undergoing bending force and being separated and separated. By keeping the heat-shrinkable tube 5 in close contact with the bending portion 14, it is clear from Table 1 that the appearance quality of the bending portion 14 is kept good as compared with the conventional method using only the composite reinforcing rod. Furthermore, the lack of strength in the bent portion 14 is eliminated.

さらにいえば、芯材2が炭素繊維のトウ2Aで形成されると、構造が単純になり複合強化棒1を低コスト生産できる。マトリックス樹脂3が現場重合型熱可塑エポキシ樹脂からなると、これを再加熱すれば、熱可塑性樹脂と同様に軟化し二次成形が可能になるだけでなく、重合前状態が常温で液状にして低粘度で維持できることから、使い勝手,生産性,品質向上等に優れ、曲げ加工がし易い複合強化棒1を提供できる。
かくのごとく、本熱収縮チューブ付き複合強化棒及びその製造方法は、上述した種々の優れた効果を発揮し、極めて有益である。
Furthermore, when the core material 2 is formed of the carbon fiber tow 2A, the structure becomes simple and the composite reinforcing rod 1 can be produced at low cost. If the matrix resin 3 is composed of a thermoplastic epoxy resin in-situ polymerization, if it is reheated, it softens like the thermoplastic resin to enable secondary molding, and the pre-polymerization state becomes liquid at room temperature and becomes low. Since the viscosity can be maintained, it is possible to provide the composite strengthening rod 1 which is excellent in usability, productivity, quality improvement and the like, and which can be easily bent.
As described above, the composite reinforcing rod with a heat-shrinkable tube and the method for producing the same exert the various excellent effects described above, and are extremely useful.

尚、本発明においては前記実施形態に示すものに限られず、目的,用途に応じて本発明の範囲で種々変更できる。複合強化棒1,芯材2,樹脂マトリックス3,熱収縮チューブ5等の形状,大きさ,個数,材質等は用途に合わせて適宜選択できる。例えば、曲げ加工部位への熱収縮チューブの安定固定を図るべく、実施形態の熱収縮チューブ5の内面に接着剤が付与された熱収縮チューブとすることもできる。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention depending on the purpose and application. The shape, size, number, material and the like of the composite reinforcing rod 1, the core material 2, the resin matrix 3, the heat shrinkable tube 5, etc. can be appropriately selected according to the application. For example, the heat-shrinkable tube in which an adhesive is applied to the inner surface of the heat-shrinkable tube 5 of the embodiment may be used in order to stably fix the heat-shrinkable tube to the bent portion.

1 複合強化棒
1D 棒径
2 芯材
2A トウ
21 構成繊維糸(フィラメント糸)
3 樹脂マトリックス
5 熱収縮チューブ
51d 熱収縮チューブの当初の内径(当初の筒内径)
1 Composite reinforcing rod 1D Rod diameter 2 Core material 2A Tow 21 Constituent fiber yarn (filament yarn)
3 Resin matrix 5 Heat shrink tube 51d Initial inner diameter of heat shrink tube (original cylinder inner diameter)

Claims (7)

強化繊維の各構成繊維糸を糸長方向に揃えて棒状に束ねた芯材が、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂のマトリックス樹脂に埋設されて一体化している複合強化棒と、
該複合強化棒よりも短尺の筒状体で、且つその筒内径が前記複合強化棒の棒径よりも大にして、加熱により長さ方向よりも径方向に大きく収縮する熱収縮チューブと、を具備し、
該熱収縮チューブが、前記複合強化棒に遊嵌されて、該複合強化棒の曲げ加工部位に配設されるようにしたことを特徴とする熱収縮チューブ付き複合強化棒。
A core material in which each constituent fiber yarn of the reinforcing fiber is aligned in the yarn length direction and bundled in a rod shape, and a composite reinforcing rod which is embedded and integrated in a matrix resin of a thermoplastic resin or a thermoplastic epoxy resin in situ,
A heat-shrinkable tube which is a tubular body shorter than the composite strengthening rod, and whose inner diameter is larger than the rod diameter of the composite strengthening rod, and which shrinks more largely in the radial direction than in the longitudinal direction by heating. Be equipped with
A composite reinforced rod with a heat-shrinkable tube, characterized in that the heat-shrinkable tube is loosely fitted to the composite reinforced rod so as to be disposed at a bending portion of the composite reinforced rod.
前記複合強化棒に遊嵌されてその曲げ加工部位に配置された前記熱収縮チューブが、加熱により前記マトリックス樹脂の軟化点よりも低い温度で収縮して前記複合強化棒に密着保持されている請求項1記載の熱収縮チューブ付き複合強化棒。 The heat-shrinkable tube loosely fitted to the composite strengthening rod and arranged at a bending portion thereof is shrunk at a temperature lower than the softening point of the matrix resin by heating and is tightly held to the composite strengthening rod. Item 2. A composite reinforcing rod with a heat-shrinkable tube according to Item 1. 前記芯材が炭素繊維のトウで形成された請求項1又は2に記載の熱収縮チューブ付き複合強化棒。 The composite reinforcing rod with a heat-shrinkable tube according to claim 1, wherein the core material is formed of a carbon fiber tow. 前記マトリックス樹脂が現場重合型熱可塑エポキシ樹脂からなる請求項1乃至3のいずれか1項に記載の熱収縮チューブ付き複合強化棒。 The composite reinforcing rod with a heat-shrinkable tube according to any one of claims 1 to 3, wherein the matrix resin is made of an in-situ polymerization type thermoplastic epoxy resin. 棒方向に強化繊維の各構成繊維糸を糸長方向に揃えて棒状に束ねた芯材を、熱可塑性樹脂又は現場重合型熱可塑エポキシ樹脂の溶融マトリックス樹脂に含浸させた後、硬化一体化させた複合強化棒を作製し、続いて、該複合強化棒を、その棒径よりも筒内径が大の筒状体にして且つ該複合強化棒よりも短尺の熱収縮チューブに挿通して、加熱により長さ方向よりも径方向に大きく収縮する該熱収縮チューブを前記複合強化棒の曲げ加工部位に配設するようにしたことを特徴とする熱収縮チューブ付き複合強化棒の製造方法。 The core material in which each constituent fiber yarn of the reinforcing fiber is aligned in the rod direction in the rod direction and bundled in a rod shape is impregnated with the thermoplastic resin or the molten matrix resin of the in-situ polymerization type thermoplastic epoxy resin, and then cured and integrated. And then heat the composite reinforcing rod into a heat-shrinkable tube that is shorter than the composite reinforcing rod and has a tubular inner diameter larger than the rod diameter. The heat-shrinkable tube that shrinks more in the radial direction than in the lengthwise direction is arranged at the bending portion of the composite strengthened rod according to the method for producing a composite strengthened rod with a heat-shrinkable tube. 前記複合強化棒を熱収縮チューブに挿通して、前記複合強化棒の曲げ加工部位に該熱収縮チューブを配設し、その後、熱を加えて、前記マトリックス樹脂の軟化点よりも低い温度で該熱収縮チューブを収縮させ、前記複合強化棒に密着保持させるようにした請求項5記載の熱収縮チューブ付き複合強化棒の製造方法。 The composite reinforcing rod is inserted into a heat shrinkable tube, the heat shrinkable tube is disposed at a bending portion of the composite strengthening rod, and then heat is applied to the composite reinforcing rod at a temperature lower than the softening point of the matrix resin. The method for manufacturing a composite strengthening rod with a heat shrinkable tube according to claim 5, wherein the heat shrinkable tube is shrunk so as to be closely held on the composite strengthening rod. 前記芯材を炭素繊維のトウで形成し、且つ前記マトリックス樹脂を現場重合型熱可塑エポキシ樹脂とした請求項5又は6に記載の熱収縮チューブ付き複合強化棒の製造方法。 The method for producing a composite reinforced rod with a heat shrinkable tube according to claim 5 or 6, wherein the core material is formed of carbon fiber tow, and the matrix resin is an in-situ polymerization type thermoplastic epoxy resin.
JP2018203843A 2018-10-30 2018-10-30 Composite reinforcing bar with heat-shrinkable tube and manufacturing method thereof Active JP7134836B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018203843A JP7134836B2 (en) 2018-10-30 2018-10-30 Composite reinforcing bar with heat-shrinkable tube and manufacturing method thereof
JP2022135317A JP7474293B2 (en) 2018-10-30 2022-08-26 Composite reinforcement rod with heat shrink tube and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203843A JP7134836B2 (en) 2018-10-30 2018-10-30 Composite reinforcing bar with heat-shrinkable tube and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022135317A Division JP7474293B2 (en) 2018-10-30 2022-08-26 Composite reinforcement rod with heat shrink tube and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020070506A true JP2020070506A (en) 2020-05-07
JP7134836B2 JP7134836B2 (en) 2022-09-12

Family

ID=70547162

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018203843A Active JP7134836B2 (en) 2018-10-30 2018-10-30 Composite reinforcing bar with heat-shrinkable tube and manufacturing method thereof
JP2022135317A Active JP7474293B2 (en) 2018-10-30 2022-08-26 Composite reinforcement rod with heat shrink tube and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022135317A Active JP7474293B2 (en) 2018-10-30 2022-08-26 Composite reinforcement rod with heat shrink tube and its manufacturing method

Country Status (1)

Country Link
JP (2) JP7134836B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361022A (en) * 1991-06-07 1992-12-14 Mitsui Constr Co Ltd Manufacture of material for structure
JPH06330587A (en) * 1993-05-24 1994-11-29 Mitsui Constr Co Ltd Reinforcement for concrete, and manufacture thereof
JPH1170596A (en) * 1997-06-20 1999-03-16 Tonen Corp Reinforced fiber reinforced bar, reinforcing method for concrete structure, and manufacture of reinforced fiber reinforced bar

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195918A (en) 2013-03-29 2014-10-16 東レ株式会社 Manufacturing method for joint structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361022A (en) * 1991-06-07 1992-12-14 Mitsui Constr Co Ltd Manufacture of material for structure
JPH06330587A (en) * 1993-05-24 1994-11-29 Mitsui Constr Co Ltd Reinforcement for concrete, and manufacture thereof
JPH1170596A (en) * 1997-06-20 1999-03-16 Tonen Corp Reinforced fiber reinforced bar, reinforcing method for concrete structure, and manufacture of reinforced fiber reinforced bar

Also Published As

Publication number Publication date
JP7474293B2 (en) 2024-04-24
JP2022174120A (en) 2022-11-22
JP7134836B2 (en) 2022-09-12

Similar Documents

Publication Publication Date Title
EP3271132B1 (en) A fiber-reinforced composite sports article and its method of manufacture
US5084221A (en) Process for manufacturing a twisted frp structure
US4857124A (en) Fiber-reinforced plastic strut connecting link
JP2012528746A (en) Fiber-reinforced resin bolt and method for manufacturing the same
JP2010513751A (en) Bendable fiber reinforced composite rebar
KR101756678B1 (en) Carbon fiber reinforced composite spring manufacturing method
EP3450145A1 (en) Method for making bicycle crank arm
JP7134836B2 (en) Composite reinforcing bar with heat-shrinkable tube and manufacturing method thereof
JP4077300B2 (en) Drop optical fiber cable
JP3375375B2 (en) Method for producing fiber-reinforced resin tubular body
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP6574268B2 (en) Grip material for sports equipment
CN113646556B (en) Composite coil spring with carbon fiber and glass fiber layers
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
CN114174687A (en) Fiber reinforced composite tubular shaft and method of making same
JP7133881B2 (en) Molding system and manufacturing method for composite molding
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP2007064389A (en) Coil spring made of fiber-reinforced resin, and its manufacturing method
US20110290405A1 (en) Method for the production of composite hollow articles
JP6972764B2 (en) Manufacturing method of glass fiber reinforced thermosetting resin molded body and glass fiber reinforced thermosetting resin molded body
JPH09267401A (en) Frp pipe and its production
JP2996481B2 (en) Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber
JPH09226012A (en) Manufacture of frp yarn stock for frp coil spring
JP2003300256A (en) Frp spring and manufacturing method therefor
JP6706872B2 (en) Multifilament reinforced curable resin linear material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7134836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150