JP2020070222A - Lime cake (high-water-content calcium carbonate) baking system - Google Patents

Lime cake (high-water-content calcium carbonate) baking system Download PDF

Info

Publication number
JP2020070222A
JP2020070222A JP2018207050A JP2018207050A JP2020070222A JP 2020070222 A JP2020070222 A JP 2020070222A JP 2018207050 A JP2018207050 A JP 2018207050A JP 2018207050 A JP2018207050 A JP 2018207050A JP 2020070222 A JP2020070222 A JP 2020070222A
Authority
JP
Japan
Prior art keywords
lime cake
calcium oxide
cao
heat exchanger
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018207050A
Other languages
Japanese (ja)
Other versions
JP6607584B1 (en
Inventor
瀬戸 弘
Hiroshi Seto
弘 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETEKKU KK
Original Assignee
SETEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETEKKU KK filed Critical SETEKKU KK
Priority to JP2018207050A priority Critical patent/JP6607584B1/en
Application granted granted Critical
Publication of JP6607584B1 publication Critical patent/JP6607584B1/en
Publication of JP2020070222A publication Critical patent/JP2020070222A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

To provide a lime cake baking system that reliably prevents re-carbonation of calcium oxide and improves the thermal efficiency by circumventing the re-carbonates from being stuck in a baking exhaust gas flow path to stop the operation as the lime cake (high-water-content calcium carbonate CaCO) is dried and baked to produce calcium oxide (CaO) and the calcium oxide in baked exhaust gas in the baking furnace is re-carbonated by carbon dioxide (CO) in the baked exhaust gas.SOLUTION: In order to prevent the re-carbonation of powdered calcium oxide contained in the baked exhaust gas which is discharged from lime cake baking, the baked exhaust gas discharged from the baking furnace is mixed with air, and the baking gas is rapidly cooled to a temperature of 550°C or lower. The partial pressure of carbon dioxide in the baking gas is reduced to 0.012 MPa or less to prevent re-carbonation. By bringing the mixed gas obtained by separating and collecting calcium oxide from the baked exhaust gas into direct contact with the lime cake, the efficiency of the dry heat transfer of the lime cake is improved.SELECTED DRAWING: Figure 2

Description

本発明は、ライムケーキ(高含水炭酸カルシウム)の焼成システムに関し、詳しくはライムケーキ(高含水炭酸カルシウム)を焼成し、粉状酸化カルシウムを製造するシステムに関する。   The present invention relates to a lime cake (highly water-containing calcium carbonate) baking system, and more particularly to a system for producing a powdery calcium oxide by baking a lime cake (highly water-containing calcium carbonate).

近年、環境対策より電気自動車は急速に普及の兆しを見せており、その電源となる自動車搭載用蓄電池として、リチウム畜電池の利用が期待されている。リチウム畜電池は、その電極材の出発原料として水酸化リチウムを使用するが、水酸化リチウムの精製工程においては水酸化カルシウムを使用することから、廃棄物としてライムケーキ(高含水炭酸カルシウム)が発生する。
廃棄物となるライムケーキの主成分は、粉状炭酸カルシウムと水分である。このライムケーキを乾燥・焼成して酸化カルシウムとし、さらに水和反応により水酸化カルシウムとしてリサイクルすることは、石灰石資源の節約、及び廃棄物の有効利用による環境負荷軽減に寄与するため、リチウム畜電池の生産拡大に関連して焦眉の課題といえる。
In recent years, electric vehicles have been showing rapid signs of widespread use due to environmental measures, and lithium battery cells are expected to be used as a vehicle-mounted storage battery for the power source. Lithium battery uses lithium hydroxide as the starting material for its electrode material, but since calcium hydroxide is used in the lithium hydroxide purification process, lime cake (high water content calcium carbonate) is generated as waste. To do.
The main components of the waste lime cake are powdery calcium carbonate and water. Recycling this lime cake by drying and baking it to calcium oxide, and then rehydrating it as calcium hydroxide through a hydration reaction contributes to the saving of limestone resources and the reduction of environmental load by the effective use of waste. It can be said that this is an urgent issue in connection with the expansion of production.

従来、石灰石〜炭酸カルシウム(CaCO3)を焼成して生石灰(酸化カルシウムCaO)を製造する場合、塊状石灰石の粒径につき、100〜50mm、または25〜10mm程度のものを竪型炉で焼成しているが、塊状石灰石の焼成においては焼成温度1200°C程度、焼成時間3〜6時間を要し、焼成された酸化カルシウム(CaO)の比表面積(単位質量あたりの表面積)は10〜15m/gとなる。
一方、石灰石は、その焼成特性において、高温、長時間の焼成になるほど比表面積は小さくなって結果的に酸化カルシウム(CaO)の活性が低くなる。このため、高活性酸化カルシウム(CaO)を得るためには、石灰石粒径を小粒径(粒径3mmΦ程度以下)にし、焼成時間の短縮を図るとともに焼成温度を900°C程度に低下させると、比表面積は40〜50m/g(JIS規格の約3倍)程度に大きくなる。酸化カルシウム(CaO)は水和消化して高反応消石灰が得られ焼却炉などの排煙ガス中の硫黄酸化物の脱硫、塩化水素除去などの排煙浄化剤として用いられる。
Conventionally, when calcining limestone to calcium carbonate (CaCO 3 ) to produce quick lime (calcium oxide CaO), lumpy limestone having a particle size of 100 to 50 mm, or 25 to 10 mm is calcined in a vertical furnace. However, the firing of lumpy limestone requires a firing temperature of about 1200 ° C. and a firing time of 3 to 6 hours, and the fired calcium oxide (CaO) has a specific surface area (surface area per unit mass) of 10 to 15 m 2. / g.
On the other hand, in calcination characteristics of limestone, the higher the temperature and the longer the time, the smaller the specific surface area and the lower the activity of calcium oxide (CaO). For this reason, in order to obtain highly active calcium oxide (CaO), the particle size of limestone should be made small (particle size is about 3 mmΦ or less) to shorten the baking time and to lower the baking temperature to about 900 ° C. The specific surface area is increased to about 40 to 50 m 2 / g (about 3 times the JIS standard). Calcium oxide (CaO) is used as a flue gas purifying agent for desulfurization of sulfur oxides in flue gas such as incinerators and removal of hydrogen chloride by high-reactivity slaked lime obtained by hydration digestion.

ライムケーキ中の炭酸カルシウムは5μm以下の微細粒子であるので、乾燥して焼成すれば高活性の酸化カルシウム(CaO)製造の好適な原料となる。
従来、高活性の酸化カルシウム(CaO)を製造するための手段として流動層焼成炉が開発されたが、流動層焼成炉から排出される焼成排ガスは粉状の酸化カルシウム(CaO)を含有する。このことから、焼成ガス温度の低下に伴い、酸化カルシウム(CaO)は焼成ガス中の二酸化炭素(CO2)と再結合して再炭酸化現象を生じ、炭酸カルシウム(CaCO3)を生成する。この再結合によって生成された炭酸カルシウム(CaCO3)は、焼成ガスの流路にて固着硬化現象を生じることから、流動層焼成炉の長時間の安定した操業は困難であり、国内外において現在、粉状の(CaCO3)を用いた焼成炉の稼動実績は無い状況である。
Since the calcium carbonate in the lime cake is fine particles of 5 μm or less, it is a suitable raw material for producing highly active calcium oxide (CaO) if it is dried and calcined.
Conventionally, a fluidized bed firing furnace has been developed as a means for producing highly active calcium oxide (CaO), but the firing exhaust gas discharged from the fluidized bed firing furnace contains powdery calcium oxide (CaO). From this, as the temperature of the firing gas decreases, calcium oxide (CaO) recombines with carbon dioxide (CO 2 ) in the firing gas to cause a recarbonation phenomenon to generate calcium carbonate (CaCO 3 ). Calcium carbonate (CaCO 3 ) generated by this recombination causes a sticking and hardening phenomenon in the flow path of the firing gas, which makes it difficult to operate the fluidized bed firing furnace for a long period of time. However, there is no record of operating a firing furnace using powdery (CaCO 3 ).

以上より、ライムケーキの焼成による高活性酸化カルシウム(CaO)を得るにあたり、その焼成時に再炭酸化現象を防止し得るならば、流動層・噴流層焼成による高活性酸化カルシウム(CaO)の製造は可能となるが、一方、流動層焼成炉による焼成は、従来の焼成法に比較して焼成燃料消費率は増加傾向にあるため、その熱効率向上が望まれる。 From the above, in obtaining highly active calcium oxide (CaO) by firing lime cake, if high carbonation can be prevented during firing, production of highly active calcium oxide (CaO) by fluidized bed / jet bed firing is possible. On the other hand, on the other hand, in the case of firing in a fluidized bed firing furnace, the burning fuel consumption rate tends to increase as compared with the conventional firing method, and therefore it is desired to improve its thermal efficiency.

下記に示される先行技術文献は以下の内容が記載されている。文献1(特公昭58−11367号公報)記載の発明はライムケーキ(文献ではライムケーク)から焼成石灰の製造、文献2(特許第4474533号公報)記載の発明は粒径が0.3mm以下の炭酸カルシウムを用いて生石灰〜酸化カルシウム(CaO)の焼成する方法に関するもの、文献3(特許第4825994号公報)、文献4(特開2000−256047号公報)記載の発明はライムケーキを焼成する方法に関するものである。これらの発明は本願発明と同様に、高活性酸化カルシウム(CaO)の製造を目的としている。 The following contents are described in the prior art documents shown below. The invention described in Document 1 (Japanese Patent Publication No. 58-11367) is production of calcined lime from lime cake (lime cake in the document), and the invention described in Document 2 (Japanese Patent No. 4474533) is carbonic acid having a particle size of 0.3 mm or less. The inventions relating to a method of baking quick lime to calcium oxide (CaO) using calcium, the inventions described in Document 3 (Japanese Patent No. 4825994) and Document 4 (Japanese Patent Laid-Open No. 2000-256047) relate to a method of baking a lime cake. It is a thing. These inventions, like the present invention, are aimed at producing highly active calcium oxide (CaO).

特公昭58−11367号公報Japanese Patent Publication No. 58-11367 特許第4474533号公報Japanese Patent No. 4474533 特許第4825994号公報Japanese Patent No. 4825994 特開2000−256047号公報JP 2000-256047 A

Zement‐Kalk‐Gips、Vol 42, No 12, p621Zement‐Kalk‐Gips, Vol 42, No 12, p621

しかしながら、従来の生石灰〜酸化カルシウム(CaO)の製造に関し、又、前述した各特許文献記載の発明には以下の課題があった。 However, the inventions related to the conventional production of quick lime to calcium oxide (CaO), and the inventions described in the above-mentioned patent documents have the following problems.

(課題1)
第1の課題としてライムケーキのリサイクルにおいて、高活性の酸化カルシウム(CaO)を得るためには、炉の焼成温度を1,000°C以下とする必要がある。その場合、焼成炉から排出する焼成排ガスに随伴する酸化カルシウム(CaO)は、焼成炉から排出される際の温度低下過程において、その排出ガス中に含有されている二酸化炭素(CO2)と酸化カルシウム(CaO)との再結合により再炭酸化が生じ、この再炭酸化物は焼成排ガス流路に対する固着硬化現象を発現し、流路を閉塞させるという課題があった。即ち、焼成炉排出ガス中の酸化カルシウム(CaO)の再炭酸化を極力防止する必要がある。
(Issue 1)
As a first problem, in recycling lime cake, in order to obtain highly active calcium oxide (CaO), it is necessary to set the firing temperature of the furnace to 1,000 ° C or lower. In that case, the calcium oxide (CaO) that accompanies the calcination exhaust gas discharged from the calcination furnace is oxidized with the carbon dioxide (CO 2 ) contained in the exhaust gas during the temperature decrease process when it is discharged from the calcination furnace. There was a problem that recarbonation occurs due to recombining with calcium (CaO), and this recarbonate causes a sticking and hardening phenomenon in the calcination exhaust gas flow passage to block the flow passage. That is, it is necessary to prevent re-carbonation of calcium oxide (CaO) in the exhaust gas from the firing furnace as much as possible.

(課題2)
第2の課題として従来、流動層焼成炉による石灰石焼成は竪型炉に比較して熱効率が低いため実用化に際してはシステムとして熱効率を改善する必要があった。特に焼成炉から出る排出ガスの保有熱量を高含水ライムケーキの乾燥工程で利用する場合、乾燥炉における排出ガスとライムケーキとの熱伝達効率の向上が必要である。
(Issue 2)
As the second problem, conventionally, limestone firing in a fluidized bed firing furnace has a lower thermal efficiency than a vertical furnace, and therefore, it was necessary to improve the thermal efficiency as a system in practical use. In particular, when the amount of heat retained by the exhaust gas from the firing furnace is used in the drying process of the high-water content lime cake, it is necessary to improve the heat transfer efficiency between the exhaust gas and the lime cake in the drying furnace.

(課題3)
第3の課題として、排出ガスの保有熱量から熱回収をする熱交換器は、再炭酸化物の固着が生じ難い構造であるとともに、また微小なりとも固着を生ずることがあれば容易に点検・除去が出来る構造でなければならないという課題がある。
(Problem 3)
The third problem is that the heat exchanger that recovers heat from the amount of heat of the exhaust gas has a structure in which recarbonite is not likely to stick to it. There is a problem that the structure must be able to

請求項1記載の発明は、高含水ライムケーキを乾燥させるライムケーキ乾燥機、このライムケーキ乾燥機から供給される高含水ライムケーキ〜高含水粉状炭酸カルシウム(CaCO3)を焼成して酸化カルシウム(CaO)、並びに、二酸化炭素(CO2)に熱分解する焼成炉を具備するライムケーキ焼成システムであって、前記焼成炉より排出される焼成排ガスに含有されている酸化カルシウム(CaO)と二酸化炭素(CO2)による再炭酸化を防止するため、該焼成炉の排ガス排出部にて、該焼成排ガスに大気常温空気を混合して急速冷却し、該混合ガスの温度を550°C以下とするとともに、該混合ガスにおける二酸化炭素(CO2)の分圧を0.012MPa以下として、酸化カルシウム(CaO)の再炭酸化反応を抑制することを特徴としている。 The invention according to claim 1 is a lime cake dryer for drying a high water content lime cake, and a high water content lime cake to a high water content powdery calcium carbonate (CaCO 3 ) supplied from this lime cake dryer is calcined to obtain calcium oxide. (CaO), and a lime cake firing system comprising a firing furnace for thermally decomposing into carbon dioxide (CO 2 ), wherein calcium oxide (CaO) and dioxide contained in the firing exhaust gas discharged from the firing furnace. In order to prevent recarbonation due to carbon (CO 2 ), the firing exhaust gas is mixed with atmospheric normal temperature air and rapidly cooled at the exhaust gas discharge portion of the firing furnace, and the temperature of the mixed gas is set to 550 ° C. or lower. In addition, the carbon dioxide (CO 2 ) partial pressure in the mixed gas is set to 0.012 MPa or less to suppress the re-carbonation reaction of calcium oxide (CaO).

即ち、請求項1記載の発明は、課題1の解決策として、焼成炉内の炭酸カルシウム(CaCO3)の熱分解温度(CaCO3=CaO+CO2)は、焼成により生成されるCaOの比表面積を45m/g以上を確保するため1000°C以下で焼成するようにしている。
また、焼成炉から排出する焼成排ガス中の酸化カルシウム(CaO)と、二酸化炭素(CO2)の共存下においては、ガス温度とガス中のCO2分圧により平衡状態が存在するが、両者の結合による再炭酸化物が生じ難いシステム構成とするため、焼成炉から排出する焼成ガスに対して大気常温空気を混合し、当該混合ガス温度を550°C以下に急速冷却する。また、併せて当該混合ガス中のCO2分圧を0.012MPa以下に低下させることにより、両者の結合速度を低下させて、再炭酸化を抑制するようにしている。
That is, the invention according to claim 1 is, as a solution to the problem 1, the thermal decomposition temperature (CaCO 3 = CaO + CO 2 ) of calcium carbonate (CaCO 3 ) in the firing furnace is the ratio of CaO produced by firing. In order to secure a surface area of 45 m 2 / g or more, firing is performed at 1000 ° C or less.
In the coexistence of calcium oxide (CaO) and carbon dioxide (CO 2 ) in the calcined exhaust gas discharged from the calciner, an equilibrium state exists due to the gas temperature and the CO 2 partial pressure in the gas. In order to have a system configuration in which recarburized oxides due to bonding do not easily occur, atmospheric temperature air is mixed with the firing gas discharged from the firing furnace, and the temperature of the mixed gas is rapidly cooled to 550 ° C or lower. In addition, by reducing the partial pressure of CO 2 in the mixed gas to 0.012 MPa or less, the binding rate of the both is reduced and recarbonation is suppressed.

請求項2に記載の発明は、上記1項において、前記焼成炉における排ガス排出部の後段に熱交換器を設け、該熱交換器の高温側に導入される前記混合ガスで、該熱交換器の低温側から供給される空気を加熱して焼成炉用の燃焼空気とし、該燃焼空気を前記焼成炉に導入するとともに、さらに該熱交換器の後段に粉状酸化カルシウム(CaO)の集塵機を設置して、該混合ガスから酸化カルシウム(CaO)を分離捕集し、分離補修後の混合ガスを前記ライムケーキ乾燥機に導入し、当該混合ガスとライムケーキとの直接接触により乾燥熱伝達効率の向上を図ることを特徴としている。
当該請求項2記載の発明によれば、混合ガスをライムケーキと直接接触させるようにしていることから乾燥熱伝達効率が向上し、ライムケーキの含水率を能率的に低下させることができ、且つ、ライムケーキ乾燥機のコストの低減が図られる。
The invention according to claim 2 is the above-mentioned item 1, in which a heat exchanger is provided in a stage subsequent to the exhaust gas discharge part in the firing furnace, and the mixed gas introduced into the high temperature side of the heat exchanger is used to heat the heat exchanger. The air supplied from the low temperature side of the is heated to combustion air for a firing furnace, and the combustion air is introduced into the firing furnace, and a dust collector for powdered calcium oxide (CaO) is further provided in the latter stage of the heat exchanger. Installed, the calcium oxide (CaO) is separated and collected from the mixed gas, the mixed gas after separation and repair is introduced into the lime cake dryer, and the dry heat transfer efficiency is achieved by direct contact between the mixed gas and the lime cake. The feature is to improve.
According to the invention of claim 2, since the mixed gas is brought into direct contact with the lime cake, the dry heat transfer efficiency is improved, and the water content of the lime cake can be efficiently reduced, and The cost of the lime cake dryer can be reduced.

請求項3に記載の発明は、上記1項及び2項において、前記熱交換器の使用に際し、焼成排ガスと空気との混合ガスを該熱交換器の高温側熱流体として用いて、その流路を直菅部で構成する細管群を流路として、酸化カルシウム(CaO)の再炭酸化固着防止を図るとともに、被加熱側空気は伝熱菅ケース部を多室に分割し、伝熱菅に直交して外表面を多段に直交して熱回収する流路を低温側流路とし、直菅部の再炭酸化付着物の点検、除去用点検口を設ける熱交換器の適用を特徴としている。 According to a third aspect of the present invention, in the above-mentioned first and second aspects, when the heat exchanger is used, a mixed gas of firing exhaust gas and air is used as a hot fluid on the high temperature side of the heat exchanger, and a flow path thereof A thin tube group consisting of a straight tube section is used as a flow path to prevent re-carbonation and fixation of calcium oxide (CaO), and the air on the heated side divides the heat transfer tube case into multiple chambers to form a heat transfer tube. It is characterized by the application of a heat exchanger that has a low-temperature side flow path for heat recovery with the outer surface orthogonal to each other in multiple stages and has an inspection port for checking and removing recarbonated deposits in the straight pipe section. .

近時、地球環境改善のため電気自動車の普及が図られ、それに伴い、自動車搭載用電池として、リチウム蓄電池の利用が期待されている。リチウム蓄電池の生産拡大に関連して、その電極材料の出発原料は水酸化リチウムであるが、その精製工程において水酸化カルシウムを必要とし、廃棄物として高含水のライムケーキを生ずる。そのライムケーキを乾燥・焼成して、高活性な酸化カルシウム(CaO)を得、さらに水和反応により水酸化カルシウムにリサイクルすることは石灰石資源の節約、また廃棄物の低減による環境負荷軽減に寄与し得るものとなる。本発明は、高活性酸化カルシウムを得ることを可能ならしめ、かかる目的にかなうものである。   In recent years, electric vehicles have been widely used to improve the global environment, and along with this, it is expected that lithium batteries will be used as on-vehicle batteries. In connection with the expansion of production of lithium storage batteries, the starting material of the electrode material is lithium hydroxide, but calcium hydroxide is required in the refining process, and high-water content lime cake is produced as waste. Drying and baking the lime cake to obtain highly active calcium oxide (CaO), and recycling it to calcium hydroxide through a hydration reaction contributes to saving limestone resources and reducing environmental load by reducing waste. It will be possible. The present invention makes it possible to obtain highly active calcium oxide and fulfills such a purpose.

炭酸カルシウム(CaCO3)を焼成炉にて熱分解する場合の平衡温度と、二酸化炭素(CO2)の分圧の関係とを示すグラフである。And equilibrium temperature in the case of pyrolysis in a firing furnace calcium carbonate (CaCO 3), is a graph showing the relationship between the partial pressure of carbon dioxide (CO 2). ライムケーキを焼成して酸化カルシウム(CaO)を製造する際に利用される焼成システムの構成図であって、焼成炉に導入される空気加熱用熱交換器を酸化カルシウム(CaO)捕集用集塵機の前段に設置した場合を示している。FIG. 1 is a block diagram of a firing system used when firing lime cake to produce calcium oxide (CaO), in which a heat exchanger for heating air introduced into a firing furnace is a dust collector for collecting calcium oxide (CaO). It shows the case where it is installed in the previous stage. ライムケーキを焼成して酸化カルシウム(CaO)を製造する際に利用される焼成システムの構成図であって、焼成炉に導入される空気加熱用熱交換器を酸化カルシウム(CaO)捕集用集塵機の後段に設置した場合を示している。FIG. 1 is a block diagram of a firing system used when firing lime cake to produce calcium oxide (CaO), in which a heat exchanger for heating air introduced into a firing furnace is a dust collector for collecting calcium oxide (CaO). It shows the case where it is installed in the latter stage. 本発明の焼成システムの実施形態にて使用される熱回収用熱交換器の概要を示した説明図である。It is an explanatory view showing an outline of a heat recovery heat exchanger used in an embodiment of a firing system of the present invention.

以下、添付図面にしたがって本発明に係るライムケーキ(高含水炭酸カルシウム)の焼成システムについて、詳細に説明する。
図1はライムケーキの主成分である炭酸カルシウム(CaCO3)を熱分解(CaCO3→CaO+CO2)するに際し、焼成ガス中に含有する二酸化炭素(CO2)の分圧と、炉内の平衡温度との関係を示すグラフであり、破線は前述の非特許文献1に記載された式に基づいて記載された曲線、実線は特許文献1に記載された式に基づき記載された曲線である。
図1に示されるように、これらの特性曲線を境界として、その高温側上部がCaCO3の熱分解域(CaO+CO2)であり、また特性曲線の下部は結合域(CaCO3)である。つまり、焼成温度が低下すると、CO2が低分圧(低濃度)の場合、CaOとCO2は、再炭酸化反応(CaO+CO2→CaCO3)が生起する。本発明は、かかる再炭酸化反応を抑制し、酸化カルシウムCaOを焼成する際、その収率の向上を図るものである。
Hereinafter, a lime cake (high-hydrated calcium carbonate) baking system according to the present invention will be described in detail with reference to the accompanying drawings.
Figure 1 shows the partial pressure of carbon dioxide (CO 2 ) contained in the firing gas and the equilibrium in the furnace during the thermal decomposition (CaCO 3 → CaO + CO 2 ) of calcium carbonate (CaCO 3 ) which is the main component of lime cake. It is a graph which shows the relationship with temperature, a broken line is a curve described based on the formula described in Non-Patent Document 1 described above, and a solid line is a curve described based on the formula described in Patent Document 1.
As shown in FIG. 1, with these characteristic curves as boundaries, the upper part on the high temperature side is the thermal decomposition region of CaCO 3 (CaO + CO 2 ), and the lower part of the characteristic curve is the binding region (CaCO 3 ). That is, when the firing temperature is lowered, when CO 2 has a low partial pressure (low concentration), re-carbonation reaction (CaO + CO 2 → CaCO 3 ) occurs between CaO and CO 2 . The present invention is intended to suppress such recarboxylation reaction and improve the yield of calcium oxide CaO when it is calcined.

図2はライムケーキを焼成してCaOを製造する際に利用されるシステムの概略構成の一例を示した図である。
図2に示されるように、本実施形態のライムケーキ(高含水炭酸カルシウム)の焼成システムは、ライムケーキ供給部1、焼成処理前のライムケーキを乾燥させる乾燥機2、焼成炉3、冷空気混合部(排ガス排出部)5、熱交換器6、酸化カルシウム(CaO)捕集用集塵機7等を具備して構成されている。
供給部1から供給されたライムケーキは乾燥機2にて、その含水率を10%以下にした後、焼成炉3に供給され、焼成温度1000°C以下で焼成され、炭酸カルシウムの熱分解により、酸化カルシウム(CaO)と、二酸化炭素(CO2)とが生成し、焼成炉3から焼成排ガスが排出されるが、この焼成排ガスには分解された微粒子の酸化カルシウム(CaO)が随伴されている。
FIG. 2 is a diagram showing an example of a schematic configuration of a system used when baking lime cake to produce CaO.
As shown in FIG. 2, the lime cake (high-hydrated calcium carbonate) baking system of the present embodiment includes a lime cake supply unit 1, a dryer 2 for drying the lime cake before baking, a baking furnace 3, and cold air. It comprises a mixing section (exhaust gas discharge section) 5, a heat exchanger 6, a dust collector 7 for collecting calcium oxide (CaO), and the like.
The water content of the lime cake supplied from the supply unit 1 is reduced to 10% or less by the dryer 2, and then the lime cake is supplied to the firing furnace 3 and fired at a firing temperature of 1000 ° C or less, and the thermal decomposition of calcium carbonate causes , Calcium oxide (CaO) and carbon dioxide (CO 2 ) are generated, and the calcination exhaust gas is discharged from the calcination furnace 3. The calcination exhaust gas is accompanied by decomposed fine particles of calcium oxide (CaO). There is.

焼成炉3から排出される焼成排ガスには、冷空気供給部50、冷空気混合部(排ガス排出部)5を介して冷空気(常温大気空気)が混合されることによって、550°C以下に急速冷却される。また、冷空気の導入により焼成排ガス中のCO2分圧を0.012MPa以下に低下させて、焼成排ガスに含まれる微粒子の酸化カルシウム(CaO)の再炭酸化反応を抑制し、焼成炉3と熱交換機6とを連結する管路内の固着・目詰まりを防止するようになっている。
また、空気混合部5にて焼成排ガスに空気を混入し、その混合ガスは熱交換器(ガスガスヒーター、GGH)6に導入されて高温側熱流体となる一方、熱交換器6の低温側空気入口63に低温側熱流体として、空気供給部55から空気が供給され、この空気を熱交換により加熱した後、低温側空気出口64から、燃焼用空気として焼成炉3に供給する。
The calcined exhaust gas discharged from the calcining furnace 3 is mixed with cold air (normal temperature atmospheric air) through a cold air supply unit 50 and a cold air mixing unit (exhaust gas discharge unit) 5 to reduce the temperature to 550 ° C or lower. It is cooled rapidly. In addition, by introducing cold air, the partial pressure of CO 2 in the calcination exhaust gas is reduced to 0.012 MPa or less to suppress the recarbonation reaction of the fine particles of calcium oxide (CaO) contained in the calcination exhaust gas, and to heat the combustion furnace 3 and heat. It is designed to prevent sticking and clogging in the pipe line connecting with the exchange 6.
Further, air is mixed in the calcination exhaust gas in the air mixing section 5, and the mixed gas is introduced into the heat exchanger (gas gas heater, GGH) 6 to become a high temperature side heat fluid, while the low temperature side air of the heat exchanger 6 Air is supplied from the air supply unit 55 to the inlet 63 as a low-temperature side heat fluid, and this air is heated by heat exchange and then supplied from the low-temperature side air outlet 64 to the firing furnace 3 as combustion air.

図3は、本発明の焼成システムの他の実施形態を示した焼成システムの構成図であって、図2における焼成炉3に導入される空気加熱用の熱交換器6を酸化カルシウム(CaO)の捕集用集塵機7の後段に設置した場合である。
図3に示されるように、熱交換器6を集塵機6の後段に設置した場合、熱交換器6に導入される混合ガスには酸化カルシウム(CaO)が随伴していないことから、熱交換器6は粉塵対策を要しない。このため、直管型熱交換器以外のプレート型など他の熱交換器を適用できるメリットを有するが、集塵機7には熱交換前の高温の混合ガスが導入されることとなるため、使用可能な集塵機は高温用に限定される。また、乾燥機2に供給される混合ガスは、集塵機の使用温度以下に限定されるため、焼成炉3の燃焼用空気温度が低下し、ライムケーキ焼成システムの熱効率は低下することから、図2のシステム構成を採用することが望ましい。
FIG. 3 is a configuration diagram of a firing system showing another embodiment of the firing system of the present invention, in which the heat exchanger 6 for heating air introduced into the firing furnace 3 in FIG. 2 is replaced with calcium oxide (CaO). This is the case where it is installed in the latter stage of the dust collector 7 for collection.
As shown in FIG. 3, when the heat exchanger 6 is installed in the latter stage of the dust collector 6, since the mixed gas introduced into the heat exchanger 6 is not accompanied by calcium oxide (CaO), the heat exchanger 6 6 does not require dust measures. Therefore, there is an advantage that other heat exchangers such as a plate type other than the straight tube heat exchanger can be applied, but since the high temperature mixed gas before heat exchange is introduced into the dust collector 7, it can be used. Dust collectors are limited to high temperatures. Further, since the mixed gas supplied to the dryer 2 is limited to the operating temperature of the dust collector or lower, the temperature of the combustion air in the firing furnace 3 is lowered, and the thermal efficiency of the lime cake firing system is lowered. It is desirable to adopt the system configuration of.

図4は本実施形態の焼成システムにて使用される熱回収用の熱交換器6の基本構造の概要を示した説明図である。同図に示されるように、熱交換器6は、その高温側の熱流体が、微粒子の酸化カルシウム(CaO)を随伴していることから、管路内での微粉付着を避けるため、高温側ガス入口61及び高温側ガス出口62に連通する高温側ガス流路は、直菅部60で構成し複数の細菅群としている。
一方、低温側空気入口63から導入される空気(低温側流体)は、高温側熱流体の流路である直管部60の表面を直交し、低温側空気入口64まで移動することで熱回収し、焼成炉3用の燃焼空気となる。
即ち、熱交換器6における高温側の流路は、混合ガスに随伴する粉状の酸化カルシウム(CaO)の再炭酸化による固着防止を図るために、直菅部60として清掃を簡便ならしめ、さらに熱交換器6の上部に天板65、下部に底板66を各々脱着自在に設置して点検清掃が容易な構造としている。
FIG. 4 is an explanatory view showing an outline of the basic structure of the heat exchanger 6 for heat recovery used in the firing system of this embodiment. As shown in the figure, since the heat fluid on the high temperature side of the heat exchanger 6 is accompanied by fine particles of calcium oxide (CaO), in order to avoid adhesion of fine powder in the pipe, The high temperature side gas flow path communicating with the gas inlet 61 and the high temperature side gas outlet 62 is constituted by the straight tube portion 60 to form a plurality of thin tube groups.
On the other hand, the air (low temperature side fluid) introduced from the low temperature side air inlet 63 crosses the surface of the straight pipe portion 60 which is the flow path of the high temperature side thermal fluid, and moves to the low temperature side air inlet 64 to recover heat. And becomes combustion air for the firing furnace 3.
That is, the high temperature side flow path of the heat exchanger 6 is a straight pipe part 60 for easy cleaning in order to prevent sticking due to recarbonation of powdery calcium oxide (CaO) accompanying the mixed gas, Further, a top plate 65 is installed on the upper part of the heat exchanger 6 and a bottom plate 66 is installed on the lower part of the heat exchanger 6 so as to be detachable, so that inspection and cleaning are easy.

熱交換器6にて熱交換された高温側熱流体である混合ガスは、捕集用集塵機7に導入されて随伴する酸化カルシウム(CaO)が回収され、この混合ガスは熱交換器6を通って温度が低下し、且つ、混合ガス中には粉塵を有しないため、各種の集塵機の使用が可能となり、システム全体のコスト低減を図ることができるようになる。捕集用集塵機7から排出される混合ガスは、ライムケーキ乾燥機2に吹き込んで導かれ、乾燥機2内にてライムケーキと直接接触して加熱乾燥させる。これによってライムケーキの乾燥熱伝達効率が向上するので、乾燥機2における伝熱面積が低減され、乾燥機のコスト低廉化に有効である。さらに、乾燥機2から排出された混合ガスは、その随伴する粉塵がサイクロン集塵機8により集塵されて分離後、排気筒9から排出される。 The mixed gas, which is the high temperature side heat fluid that has been heat-exchanged in the heat exchanger 6, is introduced into the collecting dust collector 7 to collect the associated calcium oxide (CaO), and the mixed gas passes through the heat exchanger 6. As a result, the temperature decreases, and since the mixed gas does not contain dust, various dust collectors can be used, and the cost of the entire system can be reduced. The mixed gas discharged from the dust collector 7 for collection is blown into the lime cake drier 2 to be guided, and is brought into direct contact with the lime cake in the drier 2 to be heated and dried. As a result, the heat transfer efficiency of the lime cake is improved, so that the heat transfer area of the dryer 2 is reduced, which is effective in reducing the cost of the dryer. Further, in the mixed gas discharged from the dryer 2, the accompanying dust is collected by the cyclone dust collector 8 and separated, and then discharged from the exhaust pipe 9.

(実施例)
以下に、本実施形態の焼成システムを使用して、ライムケーキより酸化カルシウムを製造する場合の実施例を以下に示す。
ライムケーキ(1.5t/h): CaCO3 1,050kg/h、水分450kg/h
ライムケーキ乾燥後 : CaCO3 1,050kg/h、水分105kg/h
燃料消費量 LNG 105m/h
CaO収量 580kg/h
(Example)
Below, the Example in the case of manufacturing calcium oxide from a lime cake using the baking system of this embodiment is shown below.
Lime cake (1.5t / h): CaCO 3, 1,050kg / h, moisture 450kg / h
After drying lime cake: CaCO 3, 1,050 kg / h, water content 105 kg / h
Fuel consumption LNG 105m 3 / h
CaO yield 580kg / h

地球環境改善のため電気自動車は普及が進みつつあるが、使用する電池にはリチウム蓄電池が期待されている。リチウム電池生産拡大に関連してその電極材料の出発原料は水酸化リチウムである。その製造工程においては、水酸化カルシウムを必要とし、廃棄物として高含水ライムケーキを生ずる。ライムケーキを乾燥・焼成して酸化カルシウムとし、その酸化カルシウムを水和反応によって水酸化カルシウムとすることが可能となることから、本発明は、リチウム蓄電池の生産に必要不可欠なリサイクルシステムとして利用可能である。
また、本発明の低温焼成によって製造される酸化カルシウム(CaO)を、水和反応させることによって得られる水酸化カルシウムは、高反応消石灰として排煙乾式脱硫(SOx除去)、脱塩(HCl除去)などの浄化剤として、通常のJIS規格消石灰に比較して除去性能が高く、使用量は1/2程度に低減し得る。
さらに甜菜製糖などの精製過程において排出されているライムケーキは農地土壌改良材などに利用されているが、その使用される土壌によってはアルカリ過剰のケースもあることから、本発明はライムケーキの用途を拡げることに繋がり、適切なリサイクル事業を構築しうるものとなる。以上、粉状の酸化カルシウム(CaO)の焼成技術は多方面の分野にて利用可能である。
Although electric vehicles are becoming popular for improving the global environment, lithium batteries are expected to be used as batteries. In connection with the expansion of lithium battery production, the starting material for the electrode material is lithium hydroxide. Calcium hydroxide is required in the manufacturing process, and a high water content lime cake is produced as a waste product. The present invention can be used as an indispensable recycling system for the production of lithium storage batteries because it is possible to dry and bake a lime cake into calcium oxide, and the calcium oxide can be converted into calcium hydroxide by a hydration reaction. Is.
Calcium hydroxide (CaO) produced by low-temperature calcination of the present invention is obtained by hydrating, and calcium hydroxide is flue gas dry desulfurization (SOx removal) and desalination (HCl removal) as highly reactive slaked lime. As a purifying agent such as, the removal performance is higher than that of ordinary JIS standard slaked lime, and the usage amount can be reduced to about 1/2.
Further, the lime cake discharged in the process of refining sugar beet sugar and the like is used as a soil improver for agricultural land, but depending on the soil used, there is a case of excess alkali, so the present invention uses the lime cake. This will lead to the expansion of recycling and will be able to build an appropriate recycling business. As described above, the firing technique of powdery calcium oxide (CaO) can be used in various fields.

1 高含水炭酸カルシウム(ライムケーキ)供給部
2 燃料貯槽ライムケーキ乾燥機
3 焼成炉
4 燃料供給部
5 冷空気混合部
50 冷空気供給部
55 空気供給部
6 熱交換器
60 熱交換器高温側細管
61 熱交換器高温側ガス入口
62 熱交換器高温側ガス出口
63 熱交換器低温側空気入口
64 熱交換器低温側空気出口
65 熱交換器天板
66 熱交換器底板
7 CaO捕集用集塵機
70 CaO捕集部
8 サイクロン集塵機
9 排気筒
1 High Hydrous Calcium Carbonate (Lime Cake) Supply Unit 2 Fuel Storage Tank Lime Cake Dryer 3 Baking Furnace 4 Fuel Supply Unit 5 Cold Air Mixing Unit 50 Cold Air Supply Unit 55 Air Supply Unit 6 Heat Exchanger 60 Heat Exchanger High Temperature Side Small Tube 61 Heat Exchanger High Temperature Side Gas Inlet 62 Heat Exchanger High Temperature Side Gas Outlet 63 Heat Exchanger Low Temperature Side Air Inlet 64 Heat Exchanger Low Temperature Side Air Outlet 65 Heat Exchanger Top Plate 66 Heat Exchanger Bottom Plate 7 CaO Dust Collector 70 CaO collector 8 Cyclone dust collector 9 Exhaust stack

即ち、請求項1記載の発明は課題1の解決策として、高含水ライムケーキを乾燥させるライムケーキ乾燥機、このライムケーキ乾燥機から供給される高含水ライムケーキ(高含水粉状炭酸カルシウムCaCO3)を焼成して酸化カルシウム(CaO)、並びに、二酸化炭素(CO2)に熱分解する焼成炉を具備するライムケーキ焼成システムであって、前記焼成炉より排出される焼成排ガスに含有されている酸化カルシウム(CaO)と二酸化炭素(CO2)による再炭酸化を防止するため、該焼成炉の排ガス排出部にて、該焼成排ガスに空気を混合して急速冷却し、該混合ガスの温度を550°C以下とするとともに、該混合ガスにおける二酸化炭素(CO2)の分圧を0.012MPa以下として、酸化カルシウム(CaO)の再炭酸化反応を抑制し、前記焼成炉における排ガス排出部の後段に熱交換器を設け、該熱交換器の高温側に導入される前記混合ガスで、該熱交換器の低温側から供給される空気を加熱して焼成炉用の燃焼空気とし、該燃焼空気を前記焼成炉に導入するとともに、さらに該熱交換器の後段に粉状酸化カルシウム(CaO)の集塵機を設置して、該混合ガスから酸化カルシウム(CaO)を分離捕集し、分離補修後の該混合ガスを前記ライムケーキ乾燥機に導入し、該混合ガスとライムケーキとの直接接触により乾燥熱伝達効率の向上を図ることを特徴としている。 That is, the invention according to claim 1 is, as a solution to the problem 1, a lime cake dryer for drying a high water content lime cake, and a high water content lime cake supplied from the lime cake dryer (high water content powdery calcium carbonate CaCO 3 ) Is calcined to calcinate calcium oxide (CaO) and carbon dioxide (CO 2 ) to form a lime cake calcination system, which is contained in calcination exhaust gas discharged from the calcination furnace. In order to prevent re-carbonation due to calcium oxide (CaO) and carbon dioxide (CO 2 ), air is mixed with the calcined exhaust gas at the exhaust gas discharge part of the calcining furnace to rapidly cool the temperature of the mixed gas. with a 550 ° C or less, the partial pressure of carbon dioxide (CO 2) in the mixed gas as follows 0.012 MPa, to suppress re-carbonation reaction of calcium oxide (CaO), the exhaust gas discharge in the firing furnace A heat exchanger is provided in the latter part of the section, and the mixed gas introduced to the high temperature side of the heat exchanger heats air supplied from the low temperature side of the heat exchanger to form combustion air for a firing furnace, While introducing the combustion air into the firing furnace, a dust collector for powdered calcium oxide (CaO) is further installed in the latter stage of the heat exchanger to separate and collect calcium oxide (CaO) from the mixed gas. The repaired mixed gas is introduced into the lime cake drier, and the dry heat transfer efficiency is improved by direct contact between the mixed gas and the lime cake .

請求項2記載の発明は、高含水ライムケーキを乾燥させるライムケーキ乾燥機、このライムケーキ乾燥機から供給される高含水ライムケーキ(高含水粉状炭酸カルシウムCaCO 3 )を焼成して酸化カルシウム(CaO)、並びに、二酸化炭素(CO 2 )に熱分解する焼成炉を具備するライムケーキ焼成システムであって、前記焼成炉より排出される焼成排ガスに含有されている酸化カルシウム(CaO)と二酸化炭素(CO 2 )による再炭酸化を防止するため、該焼成炉の排ガス排出部にて、該焼成排ガスに空気を混合して急速冷却し、該混合ガスの温度を550°C以下とするとともに、該混合ガスにおける二酸化炭素(CO 2 )の分圧を0.012MPa以下として、酸化カルシウム(CaO)の再炭酸化反応を抑制し、
前記焼成炉における排ガス排出部の後段に、粉状酸化カルシウム(CaO)の捕集用集塵機を設置するとともに、更に該捕集用集塵機の後段に熱交換器を設置し、該熱交換器に導入される高温側熱流体としての混合ガスに、粉状酸化カルシウム(CaO)が随伴しないようにして、該混合ガスを前記ライムケーキ乾燥機に導入し、該混合ガスとライムケーキとの直接接触により乾燥熱伝達効率の向上を図るとともに、該熱交換器の低温側から供給される空気を熱交換により加熱して焼成炉用の燃焼空気として前記焼成炉に導入するようにしたことを特徴としている。
The invention according to claim 2 is a lime cake dryer for drying a high water content lime cake, and a high water content lime cake (high water content powdery calcium carbonate CaCO 3 ) supplied from this lime cake dryer is calcined to obtain calcium oxide ( CaO) and a lime cake firing system having a firing furnace for thermally decomposing into carbon dioxide (CO 2 ), wherein calcium oxide (CaO) and carbon dioxide contained in the firing exhaust gas discharged from the firing furnace. In order to prevent recarbonation due to (CO 2 ), air is mixed with the calcined exhaust gas in the exhaust gas discharge part of the calcining furnace to rapidly cool it, and the temperature of the mixed gas is set to 550 ° C. or lower. The partial pressure of carbon dioxide (CO 2 ) in the mixed gas is set to 0.012 MPa or less to suppress the recarbonation reaction of calcium oxide (CaO),
A dust collector for collecting powdery calcium oxide (CaO) is installed in the latter stage of the exhaust gas discharge section in the firing furnace, and a heat exchanger is further installed in the latter stage of the dust collector for collection, and introduced into the heat exchanger. The mixed gas as the high-temperature side hot fluid is not accompanied by powdery calcium oxide (CaO), the mixed gas is introduced into the lime cake dryer, and the mixed gas is directly contacted with the lime cake. The drying heat transfer efficiency is improved, and the air supplied from the low temperature side of the heat exchanger is heated by heat exchange and introduced into the firing furnace as combustion air for the firing furnace . ..

請求項3記載の発明は、上記1項において、前記熱交換器の使用に際し、焼成排ガスと空気との混合ガスを該熱交換器の高温側熱流体として用いて、その流路を直管部で構成する細管群を流路として、酸化カルシウム(CaO)の再炭酸化固着防止を図るとともに、被加熱側空気は伝熱管ケース部を多室に分割し、伝熱管に直交して外表面を多段に直交して熱回収する流路を低温側流路とし、直管部の再炭酸化付着物の点検、除去用点検口を設ける熱交換器の適用を特徴としている。 According to a third aspect of the present invention, in the above-mentioned first aspect, when the heat exchanger is used, a mixed gas of firing exhaust gas and air is used as a high temperature side heat fluid of the heat exchanger, and a flow path thereof is a straight pipe part. The thin tube group composed of is used as a flow path to prevent re-carbonation and fixation of calcium oxide (CaO), and for the heated air, the heat transfer tube case is divided into multiple chambers and the outer surface is orthogonal to the heat transfer tube. It is characterized by the application of a heat exchanger in which the flow path for heat recovery orthogonal to multiple stages is the low temperature side flow path, and an inspection port for the inspection and removal of recarbonated deposits on the straight pipe section is provided.

焼成炉3から排出される焼成排ガスには、冷空気供給部50、冷空気混合部(排ガス排出部)5を介して冷空気(常温大気空気)が混合されることによって、550°C以下に急速冷却される。また、冷空気の導入により焼成排ガス中のCO2分圧を0.012MPa以下に低下させて、焼成排ガスに含まれる微粒子の酸化カルシウム(CaO)の再炭酸化反応を抑制し、焼成炉3と熱交換機6とを連結する管路内の固着・目詰まりを防止するようになっている。
また、冷空気混合部5にて焼成排ガスに空気を混入し、その混合ガスは熱交換器(ガスガスヒーター、GGH)6に導入されて高温側熱流体となる一方、熱交換器6の低温側空気入口63に低温側熱流体として、空気供給部55から空気が供給され、この空気を熱交換により加熱した後、低温側空気出口64から、燃焼用空気として焼成炉3に供給する。
The calcined exhaust gas discharged from the calcining furnace 3 is mixed with cold air (normal temperature atmospheric air) through a cold air supply unit 50 and a cold air mixing unit (exhaust gas discharge unit) 5 to reduce the temperature to 550 ° C or lower. It is cooled rapidly. In addition, by introducing cold air, the partial pressure of CO 2 in the calcination exhaust gas is reduced to 0.012 MPa or less to suppress the recarbonation reaction of the fine particles of calcium oxide (CaO) contained in the calcination exhaust gas, and to heat the combustion furnace 3 and heat. It is designed to prevent sticking and clogging in the pipe line connecting with the exchange 6.
Further, air is mixed with the calcination exhaust gas in the cold air mixing section 5 , and the mixed gas is introduced into the heat exchanger (gas gas heater, GGH) 6 to become a high temperature side heat fluid, while the low temperature side of the heat exchanger 6 Air is supplied to the air inlet 63 from the air supply unit 55 as a low temperature side heat fluid, and this air is heated by heat exchange, and then supplied from the low temperature side air outlet 64 to the firing furnace 3 as combustion air.

図3は、本発明の焼成システムの他の実施形態を示した焼成システムの構成図であって、図2における焼成炉3に導入される空気加熱用の熱交換器6を酸化カルシウム(CaO)の捕集用集塵機7の後段に設置した場合である。
図3に示されるように、熱交換器6を捕集用集塵機7の後段に設置した場合、熱交換器6に導入される混合ガスには酸化カルシウム(CaO)が随伴していないことから、熱交換器6は粉塵対策を要しない。このため、直管型熱交換器以外のプレート型など他の熱交換器を適用できるメリットを有するが、捕集用集塵機7には熱交換前の高温の混合ガスが導入されることとなるため、使用可能な集塵機は高温用に限定される。また、乾燥機2に供給される混合ガスは、集塵機の使用温度以下に限定されるため、焼成炉3の燃焼用空気温度が低下し、ライムケーキ焼成システムの熱効率は低下することから、図2のシステム構成を採用することが望ましい。
FIG. 3 is a configuration diagram of a firing system showing another embodiment of the firing system of the present invention, in which the heat exchanger 6 for heating air introduced into the firing furnace 3 in FIG. 2 is replaced with calcium oxide (CaO). This is the case where it is installed in the latter stage of the dust collector 7 for collection.
As shown in FIG. 3, when the heat exchanger 6 is installed in the latter stage of the collecting dust collector 7 , since the mixed gas introduced into the heat exchanger 6 is not accompanied by calcium oxide (CaO), The heat exchanger 6 does not require dust countermeasures. Therefore, there is an advantage that other heat exchangers such as a plate type other than the straight tube heat exchanger can be applied, but since the hot dust mixed gas before the heat exchange is introduced into the collecting dust collector 7. The dust collectors that can be used are limited to high temperatures. Further, since the mixed gas supplied to the dryer 2 is limited to the operating temperature of the dust collector or lower, the temperature of the combustion air in the firing furnace 3 is lowered, and the thermal efficiency of the lime cake firing system is lowered. It is desirable to adopt the system configuration of.

図4は本実施形態の焼成システムにて使用される熱回収用の熱交換器6の基本構造の概要を示した説明図である。同図に示されるように、熱交換器6は、その高温側の熱流体が、微粒子の酸化カルシウム(CaO)を随伴していることから、管路内での微粉付着を避けるため、高温側ガス入口61及び高温側ガス出口62に連通する高温側ガス流路は、直管部60で構成し複数の細管群としている。
一方、低温側空気入口63から導入される空気(低温側流体)は、高温側熱流体の流路である直管部60の表面を直交し、低温側空気入口64まで移動することで熱回収し、焼成炉3用の燃焼空気となる。
即ち、熱交換器6における高温側の流路は、混合ガスに随伴する粉状の酸化カルシウム(CaO)の再炭酸化による固着防止を図るために、直管部60として清掃を簡便ならしめ、さらに熱交換器6の上部に天板65、下部に底板66を各々脱着自在に設置して点検清掃が容易な構造としている。
FIG. 4 is an explanatory view showing an outline of the basic structure of the heat exchanger 6 for heat recovery used in the firing system of this embodiment. As shown in the figure, since the heat fluid on the high temperature side of the heat exchanger 6 is accompanied by fine particles of calcium oxide (CaO), in order to avoid adhesion of fine powder in the pipe, The high temperature side gas flow path communicating with the gas inlet 61 and the high temperature side gas outlet 62 is constituted by the straight pipe portion 60 to form a plurality of thin tube groups .
On the other hand, the air (low temperature side fluid) introduced from the low temperature side air inlet 63 crosses the surface of the straight pipe portion 60 which is the flow path of the high temperature side thermal fluid, and moves to the low temperature side air inlet 64 to recover heat. And becomes combustion air for the firing furnace 3.
That is, the high temperature side flow path of the heat exchanger 6 is a straight pipe part 60 for easy cleaning in order to prevent sticking due to recarbonation of powdery calcium oxide (CaO) accompanying the mixed gas, Further, a top plate 65 is installed on the upper part of the heat exchanger 6 and a bottom plate 66 is installed on the lower part of the heat exchanger 6 so as to be detachable, so that inspection and cleaning are easy.

即ち、請求項1記載の発明は課題1の解決策として、高含水ライムケーキを乾燥させるライムケーキ乾燥機(2)、このライムケーキ乾燥機(2)から供給される高含水ライムケーキ(高含水粉状炭酸カルシウムCaCO3)を焼成して酸化カルシウム(CaO)、並びに、二酸化炭素(CO2)に熱分解する焼成炉(3)を具備するライムケーキ焼成システムであって、
前記焼成炉(3)より排出される焼成排ガスに含有されている酸化カルシウム(CaO)と二酸化炭素(CO2)による再炭酸化を防止するため、該焼成炉(3)の排ガス排出部(5)にて、該焼成排ガスに空気を混合して急速冷却し、該混合ガスの温度を550°C以下とするとともに、該混合ガスにおける二酸化炭素(CO2)の分圧を0.012MPa以下として、酸化カルシウム(CaO)の再炭酸化反応を抑制し、
前記焼成炉(3)における排ガス排出部(5)の後段に熱交換器(6)を設け、該熱交換器(6)の高温側に導入される前記混合ガスで、該熱交換器(6)の低温側から供給される空気を加熱して焼成炉(3)用の燃焼空気とし、該燃焼空気を前記焼成炉(3)に導入するとともに、さらに該熱交換器(6)の後段に粉状酸化カルシウム(CaO)の集塵機(7)を設置して、該混合ガスから酸化カルシウム(CaO)を分離捕集し、分離捕集後の該混合ガスを前記ライムケーキ乾燥機(2)に導入し、該混合ガスとライムケーキとの直接接触により乾燥熱伝達効率の向上を図ることを特徴としている。
That is, the invention according to claim 1 is, as a solution to the problem 1, a lime cake dryer (2) for drying a high water content lime cake, and a high water content lime cake (high water content ) supplied from the lime cake dryer (2). powdery calcium CaCO 3) calcined to calcium oxide carbonate (CaO), as well as a lime cake baking system comprising a carbon dioxide (CO 2) thermally decomposing sintering furnace (3),
To prevent the firing furnace (3) calcium oxide contained in the firing exhaust gas discharged from the (CaO) and re-carbonation by carbon dioxide (CO 2), and exhaust gas discharge portion of the calcination furnace (3) (5 ) , The air is mixed with the calcined exhaust gas for rapid cooling, the temperature of the mixed gas is set to 550 ° C. or lower, and the partial pressure of carbon dioxide (CO 2 ) in the mixed gas is set to 0.012 MPa or lower, Suppresses recarboxylation of calcium oxide (CaO),
Said heat exchanger downstream of the exhaust gas discharge portion of the sintering furnace (3) (5) (6) provided in the mixed gas to be introduced into the high temperature side of the heat exchanger (6), heat exchanger (6 ) , The air supplied from the low temperature side is heated to combustion air for the firing furnace (3) , and the combustion air is introduced into the firing furnace (3) , and further to the subsequent stage of the heat exchanger (6) . A powdery calcium oxide (CaO) dust collector (7) is installed to separate and collect calcium oxide (CaO) from the mixed gas, and the mixed gas after separation and collection is fed to the lime cake dryer (2) . It is characterized in that it is introduced and the dry heat transfer efficiency is improved by direct contact between the mixed gas and the lime cake.

請求項2記載の発明は、高含水ライムケーキを乾燥させるライムケーキ乾燥機(2)、このライムケーキ乾燥機(2)から供給される高含水ライムケーキ(高含水粉状炭酸カルシウムCaCO3)を焼成して酸化カルシウム(CaO)、並びに、二酸化炭素(CO2)に熱分解する焼成炉(3)を具備するライムケーキ焼成システムであって、
前記焼成炉(3)より排出される焼成排ガスに含有されている酸化カルシウム(CaO)と二酸化炭素(CO2)による再炭酸化を防止するため、該焼成炉(3)の排ガス排出部(5)にて、該焼成排ガスに空気を混合して急速冷却し、該混合ガスの温度を550°C以下とするとともに、該混合ガスにおける二酸化炭素(CO2)の分圧を0.012MPa以下として、酸化カルシウム(CaO)の再炭酸化反応を抑制し、
前記焼成炉(3)における排ガス排出部(5)の後段に、粉状酸化カルシウム(CaO)の捕集用集塵機(7)を設置するとともに、更に該捕集用集塵機(7)の後段に熱交換器(6)を設置し、該捕集用集塵機(7)によって該熱交換器(6)に導入される前の前記混合ガスから粉状酸化カルシウム(CaO)を回収して、該熱交換器(6)に導入される高温側熱流体としての該混合ガスが粉状酸化カルシウム(CaO)随伴しないようにした後、該混合ガスを前記ライムケーキ乾燥機(2)に導入し、該混合ガスとライムケーキとの直接接触により乾燥熱伝達効率の向上を図るとともに、
該熱交換器(6)の低温側から供給される空気を熱交換により加熱して焼成炉用(3)の燃焼空気として前記焼成炉(3)に導入するようにしたことを特徴としている。
The invention according to claim 2 provides a lime cake dryer (2) for drying a high water content lime cake, and a high water content lime cake (high water content powdery calcium carbonate CaCO 3 ) supplied from the lime cake dryer (2). A lime cake baking system comprising a baking furnace (3) for baking calcium oxide (CaO) and carbon dioxide (CO 2 ) to thermally decompose,
To prevent the firing furnace (3) calcium oxide contained in the firing exhaust gas discharged from the (CaO) and re-carbonation by carbon dioxide (CO 2), and exhaust gas discharge portion of the calcination furnace (3) (5 ) , The air is mixed with the calcined exhaust gas for rapid cooling, the temperature of the mixed gas is set to 550 ° C. or lower, and the partial pressure of carbon dioxide (CO 2 ) in the mixed gas is set to 0.012 MPa or lower, Suppresses recarboxylation of calcium oxide (CaO),
A dust collector (7) for collecting powdery calcium oxide (CaO ) is installed after the exhaust gas discharge part (5 ) in the firing furnace (3), and heat is further provided after the dust collector (7) for collection. An exchanger (6) is installed, powdery calcium oxide (CaO) is recovered from the mixed gas before being introduced into the heat exchanger (6) by the dust collector (7) for collection, and the heat exchange is performed. after the mixed gas as a high-temperature side heat fluid introduced into a vessel (6) was prevented from being entrained powdered calcium oxide (CaO), and introducing the mixed gas into the lime cake drier (2), the The direct contact between the mixed gas and the lime cake improves the drying heat transfer efficiency.
Is characterized in that the air supplied from the low temperature side of the heat exchanger (6) so as to introduce into said sintering furnace (3) as combustion air for the firing furnace is heated by heat exchange (3).

Claims (3)

高含水ライムケーキを乾燥させるライムケーキ乾燥機、このライムケーキ乾燥機から供給される高含水ライムケーキ(高含水粉状炭酸カルシウムCaCO3)を焼成して酸化カルシウム(CaO)、並びに、二酸化炭素(CO2)に熱分解する焼成炉を具備するライムケーキ焼成システムであって、
前記焼成炉より排出される焼成排ガスに含有されている酸化カルシウム(CaO)と二酸化炭素(CO2)による再炭酸化を防止するため、該焼成炉の排ガス排出部にて、該焼成排ガスに空気を混合して急速冷却し、該混合ガスの温度を550°C以下とするとともに、該混合ガスにおける二酸化炭素(CO2)の分圧を0.012MPa以下として、酸化カルシウム(CaO)の再炭酸化反応を抑制することを特徴とするライムケーキ焼成システム。
A lime cake dryer for drying a high water content lime cake, a high water content lime cake (high water content powdery calcium carbonate CaCO 3 ) supplied from this lime cake dryer is baked to give calcium oxide (CaO), and carbon dioxide ( A lime cake baking system comprising a baking furnace for thermally decomposing to CO 2 ),
In order to prevent recarbonation due to calcium oxide (CaO) and carbon dioxide (CO 2 ) contained in the calcination exhaust gas discharged from the calcination furnace, air is added to the calcination exhaust gas at the flue gas discharge part of the calcination furnace. Are rapidly cooled, the temperature of the mixed gas is set to 550 ° C. or lower, and the partial pressure of carbon dioxide (CO 2 ) in the mixed gas is set to 0.012 MPa or lower to re-carbonate calcium oxide (CaO). A lime cake baking system characterized by suppressing a reaction.
前記焼成炉における排ガス排出部の後段に熱交換器を設け、該熱交換器の高温側に導入される前記混合ガスで、該熱交換器の低温側から供給される空気を加熱して焼成炉用の燃焼空気とし、該燃焼空気を前記焼成炉に導入するとともに、さらに該熱交換器の後段に粉状酸化カルシウム(CaO)の集塵機を設置して、該混合ガスから酸化カルシウム(CaO)を分離捕集し、分離補修後の混合ガスを前記ライムケーキ乾燥機に導入し、当該混合ガスとライムケーキとの直接接触により乾燥熱伝達効率の向上を図ることを特徴とする請求項1に記載のライムケーキ焼成システム。 A heat exchanger is provided in the latter stage of the exhaust gas discharge part in the firing furnace, and the air supplied from the low temperature side of the heat exchanger is heated by the mixed gas introduced into the high temperature side of the heat exchanger to perform the firing furnace. As combustion air for use, the combustion air is introduced into the firing furnace, and a dust collector for powdered calcium oxide (CaO) is further installed in the latter stage of the heat exchanger to remove calcium oxide (CaO) from the mixed gas. The mixed gas after being separated and collected and repaired is introduced into the lime cake dryer, and the dry heat transfer efficiency is improved by direct contact between the mixed gas and the lime cake. Lime cake baking system. 前記熱交換器の使用に際し、焼成排ガスと空気との混合ガスを該熱交換器の高温側熱流体として用いて、その流路を直菅部で構成する細管群を流路として、酸化カルシウム(CaO)の再炭酸化固着防止を図るとともに、
被加熱側空気は伝熱菅ケース部を多室に分割し、伝熱菅に直交して外表面を多段に直交して熱回収する流路を低温側流路とし、直菅部の再炭酸化付着物の点検、除去用点検口を設ける熱交換器の適用を特徴とする請求項1及び2に記載のライムケーキ焼成システム。


When the heat exchanger is used, a mixed gas of calcined exhaust gas and air is used as a high-temperature side heat fluid of the heat exchanger, and the flow path is formed by a thin tube group composed of a straight tube portion, and calcium oxide ( To prevent re-carbonation and sticking of CaO),
For the heated air, the heat transfer tube case is divided into multiple chambers, and the flow path for heat recovery is orthogonal to the heat transfer tube and the outer surface is orthogonal to the multi-stage to be the low temperature side flow path. The lime cake baking system according to claim 1 or 2, wherein a heat exchanger provided with an inspection port for inspecting and removing chemical deposits is applied.


JP2018207050A 2018-11-02 2018-11-02 Lime cake (high water content calcium carbonate) baking system Active JP6607584B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018207050A JP6607584B1 (en) 2018-11-02 2018-11-02 Lime cake (high water content calcium carbonate) baking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018207050A JP6607584B1 (en) 2018-11-02 2018-11-02 Lime cake (high water content calcium carbonate) baking system

Publications (2)

Publication Number Publication Date
JP6607584B1 JP6607584B1 (en) 2019-11-20
JP2020070222A true JP2020070222A (en) 2020-05-07

Family

ID=68613343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018207050A Active JP6607584B1 (en) 2018-11-02 2018-11-02 Lime cake (high water content calcium carbonate) baking system

Country Status (1)

Country Link
JP (1) JP6607584B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193688B1 (en) 2021-11-15 2022-12-21 株式会社 セテック Method for reusing lime cake (calcium carbonate with high water content) and recycling system for lime cake (calcium carbonate with high water content)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141541A (en) * 1983-12-29 1985-07-26 Nippon Soken Inc Manufacture of block-type heat exchanger elements
JPS61128088A (en) * 1984-11-28 1986-06-16 三菱重工業株式会社 Fluidizing roasting furnace
JPH1095642A (en) * 1996-09-24 1998-04-14 Shinagawa Rozai Kk Heat exchanger for furnace
JP2000256047A (en) * 1999-03-10 2000-09-19 Kawasaki Heavy Ind Ltd Method for preventing limestone from being coated
JP2002316194A (en) * 2001-04-20 2002-10-29 Kawasaki Heavy Ind Ltd Method and apparatus for producing ground improvement material
JP2010053016A (en) * 2008-07-28 2010-03-11 Setekku:Kk Method for firing powdery calcium carbonate
JP2010091205A (en) * 2008-10-09 2010-04-22 Kawasaki Plant Systems Ltd Vertical type heat exchanger of lime baking plant
JP4825994B2 (en) * 2010-02-18 2011-11-30 株式会社 セテック Method for firing powdered calcium carbonate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141541A (en) * 1983-12-29 1985-07-26 Nippon Soken Inc Manufacture of block-type heat exchanger elements
JPS61128088A (en) * 1984-11-28 1986-06-16 三菱重工業株式会社 Fluidizing roasting furnace
JPH1095642A (en) * 1996-09-24 1998-04-14 Shinagawa Rozai Kk Heat exchanger for furnace
JP2000256047A (en) * 1999-03-10 2000-09-19 Kawasaki Heavy Ind Ltd Method for preventing limestone from being coated
JP2002316194A (en) * 2001-04-20 2002-10-29 Kawasaki Heavy Ind Ltd Method and apparatus for producing ground improvement material
JP2010053016A (en) * 2008-07-28 2010-03-11 Setekku:Kk Method for firing powdery calcium carbonate
JP2010091205A (en) * 2008-10-09 2010-04-22 Kawasaki Plant Systems Ltd Vertical type heat exchanger of lime baking plant
JP4825994B2 (en) * 2010-02-18 2011-11-30 株式会社 セテック Method for firing powdered calcium carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193688B1 (en) 2021-11-15 2022-12-21 株式会社 セテック Method for reusing lime cake (calcium carbonate with high water content) and recycling system for lime cake (calcium carbonate with high water content)

Also Published As

Publication number Publication date
JP6607584B1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
CN102303883B (en) Method for preparing calcium oxide and sulfur by double-atmosphere fluidized roasting of desulfurated gypsum
CN101445333B (en) Method for calcining active lime by taking tail gas from sealing type calcium carbide furnace as fuel for rotary kiln
CN114853369A (en) Method and apparatus for preparing calcined compound for producing calcined product
WO2006113673A2 (en) Methods and systems for reducing emissions
CN101311628A (en) Circulating fluid bed boiler flue calcium injection and desulfurization process
WO2014026641A1 (en) Apparatus and process using cao as carrier for cycled-capturing of carbon dioxide
CN107903921B (en) Carbon emission reduction system coupling cement production and spent bleaching clay recycling
CN109482049B (en) Dry desulfurization, denitrification and purification integrated process for coke oven flue gas
CN108970354B (en) Device and method for three-generation of iron, sulfur and coal gas in pyrite smelting process
CN102850172A (en) Coal chemical poly-generation process and system
CN113606946B (en) Carbon dioxide capturing system and emission reduction method for cement kiln tail flue gas
CN113237337B (en) Cement production carbon capture device and process with waste co-processing
CN101955166B (en) Method for decomposing semi-hydrated phosphogypsum
CN113200693B (en) Off-line decomposing furnace and calcium circulation coupled cement production carbon capture device and process
CN113509834B (en) Local calcium circulation and pure oxygen combustion coupled cement production carbon capture device and process
JP6607584B1 (en) Lime cake (high water content calcium carbonate) baking system
KR20230118839A (en) Cement clinker manufacturing system and cement clinker manufacturing method
CN101372333B (en) Method and apparatus for producing carbon dioxide by heat decomposition of carbonate
WO2023202486A1 (en) System for coupling carbon dioxide capture in flue gas with industrial solid waste-based carbon dioxide mineralization
CN109126435B (en) Double-alkali flue gas desulfurization process
Criado et al. A flexible CO 2 capture system for backup power plants using Ca (OH) 2/CaCO 3 solid storage
CN110125160A (en) A kind of method of the burning chemistry chains processing plant of poor iron ore as oxygen carrier
CN113120906B (en) Cement production carbon trapping device and process for treating local calcium circulation coupling waste
CN109502555A (en) The system and technique of calcium sulfate Recovered sulphur and calcium oxide are decomposed in a kind of charcoal sulphur collaboration
CN109499344B (en) Calcium/magnesium-based wet desulphurization and calcium sulfite/magnesium sulfite resource utilization system and process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190207

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6607584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250