JP2020068364A - Method of manufacturing film substrate and substrate - Google Patents
Method of manufacturing film substrate and substrate Download PDFInfo
- Publication number
- JP2020068364A JP2020068364A JP2018202318A JP2018202318A JP2020068364A JP 2020068364 A JP2020068364 A JP 2020068364A JP 2018202318 A JP2018202318 A JP 2018202318A JP 2018202318 A JP2018202318 A JP 2018202318A JP 2020068364 A JP2020068364 A JP 2020068364A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- sol
- powder
- gel solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 27
- 230000010287 polarization Effects 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 150000002739 metals Chemical class 0.000 claims abstract description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 238000011282 treatment Methods 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 43
- 239000010936 titanium Substances 0.000 description 17
- 239000000243 solution Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000004020 conductor Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本願発明は、膜基板生産方法及び基板に関し、特に、高温の環境でもセンサ等として動作可能な膜を備える膜基板を生産する膜基板生産方法等に関する。 The present invention relates to a film substrate production method and a substrate, and more particularly to a film substrate production method and the like for producing a film substrate provided with a film operable as a sensor or the like even in a high temperature environment.
発明者らは、圧電体ゾルゲル溶液と圧電体粉末との複合体を塗布、焼成及び分極することにより、圧電材料を用いて対象物の表面に密着するセンサを形成する研究を行ってきた。強誘電体の粉末と誘電体のゾルゲル溶液を混合して薄膜を作製し、分極処理を行うと、多孔性セラミック薄膜が形成される。多孔性であることから熱衝撃に強く、音響損失材なしで周波数広帯域特性が実現できる。そのため、高温超音波トランスデューサなどへの応用に期待されている。非特許文献1及び非特許文献2には、発明者らがこれまでに試行したゾルゲル複合体圧電デバイスの一例が開示されている。 The inventors have conducted research on forming a sensor that adheres to the surface of an object using a piezoelectric material by applying, firing, and polarizing a composite of a piezoelectric sol-gel solution and piezoelectric powder. A porous ceramic thin film is formed by mixing a ferroelectric powder and a sol-gel solution of a dielectric to form a thin film and performing polarization treatment. Due to its porosity, it is resistant to thermal shock and can realize frequency broadband characteristics without acoustic loss material. Therefore, it is expected to be applied to high temperature ultrasonic transducers. Non-Patent Document 1 and Non-Patent Document 2 disclose an example of a sol-gel composite piezoelectric device that the inventors have tried so far.
例えば、次世代火力発電所を研究開発する場合、現行のボイラー管の温度は610−620℃であるのに対し、次世代火力発電はさらに高温高圧であり、温度は700℃が予想される。しかしながら、現在、700℃で2年の耐久性がある市販の超音波センサは開発されていない。このままでは、次世代火力発電所の余命診断を含むクリープモニタリングの非破壊検査が困難な状況である。 For example, in the case of researching and developing a next-generation thermal power plant, the temperature of the current boiler tube is 610 to 620 ° C., whereas the next-generation thermal power generation is further high temperature and high pressure, and the temperature is expected to be 700 ° C. However, currently, a commercially available ultrasonic sensor having a durability of 700 ° C. for 2 years has not been developed. As it stands, non-destructive inspection of creep monitoring including life expectancy diagnosis of next-generation thermal power plants is difficult.
発明者らは、代表的な強誘電体であるPb(Zr,Ti)O3をゾルゲル材料として使用して、良好な超音波パルスエコー波形を得ている。しかしながら、ゾルゲル材料であるPb(Zr,Ti)O3は環境負荷が高い鉛を含有するため産業化にあたって障害となる。 The inventors have obtained a good ultrasonic pulse echo waveform by using Pb (Zr, Ti) O 3 which is a typical ferroelectric substance as a sol-gel material. However, Pb (Zr, Ti) O 3 which is a sol-gel material contains lead, which has a high environmental load, and is an obstacle to industrialization.
そこで、発明者らは、非鉛の材料を試行する中でCaBi4Ti4O15(粉)/Bi4Ti3O12(ゾルゲル)及びCaBi4Ti4O15(粉)/(Ba,Sr)TiO3(ゾルゲル)の組み合わせで完全に非鉛の高温超音波トランスデューサを実現している。しかしながら、これらの材料に含まれるストロンチウム、チタン、ビスマス、バリウムはいわゆる希少金属であり、経済的にも技術的にも抽出が困難とされている。 Therefore, the inventors have tried CaBi 4 Ti 4 O 15 (powder) / Bi 4 Ti 3 O 12 (sol-gel) and CaBi 4 Ti 4 O 15 (powder) / (Ba, Sr in trial of a lead-free material. ) A completely lead-free high temperature ultrasonic transducer is realized by the combination of TiO 3 (sol-gel). However, strontium, titanium, bismuth, and barium contained in these materials are so-called rare metals, and are difficult to extract economically and technically.
そこで、本願発明は、鉛を含まず、かつ、従来よりも希少金属を使用せずに、高温下で動作可能な膜を作製して膜基板を生産する膜基板生産方法等を提案することを目的とする。 Therefore, the present invention proposes a film substrate production method or the like that produces a film substrate by producing a film that does not contain lead and that does not use a rare metal as compared with conventional ones and that can operate at high temperature. To aim.
本願発明の第1の観点は、基板に粉末とゾルゲル溶液の混合体を用いて膜を作製して膜基板を生産する作製ステップを含む膜基板を生産する膜基板生産方法であって、前記粉末は、鉛を含まず、前記ゾルゲル溶液は、Al2O3のゾルゲル溶液である。 A first aspect of the present invention is a film substrate production method for producing a film substrate, comprising a production step of producing a film substrate by producing a film by using a mixture of a powder and a sol-gel solution on the substrate, wherein the powder Contains no lead, and the sol-gel solution is a sol-gel solution of Al 2 O 3 .
本願発明の第2の観点は、第1の観点の膜基板生産方法であって、前記粉末は、Bi4Ti3O12の粉末である。 A second aspect of the present invention is the method for producing a film substrate according to the first aspect, wherein the powder is Bi 4 Ti 3 O 12 powder.
本願発明の第3の観点は、第1又は第2の観点の膜基板生産方法であって、前記膜は、少なくとも700℃の温度下において、入力波に対する反射波が観測され、並びに/又は、圧力及び/若しくは振動が検出される。 A third aspect of the present invention is the method for producing a film substrate according to the first or second aspect, wherein a reflected wave with respect to an input wave is observed in the film at a temperature of at least 700 ° C., and / or Pressure and / or vibrations are detected.
本願発明の第4の観点は、第1から第3のいずれかの観点の膜基板生産方法であって、前記作製ステップにおいて、前記基板に前記混合体を塗布する処理を含み、前記混合体を塗布する温度下で、前記膜に対して分極処理を行う分極ステップを含む。 A fourth aspect of the present invention is the method for producing a film substrate according to any one of the first to third aspects, including the step of applying the mixture to the substrate in the manufacturing step. A polarization step of subjecting the film to a polarization treatment at a coating temperature is included.
本願発明の第5の観点は、粉末と、ゾルゲル溶液の混合体によるゾルゲル複合体の膜を備える基板であって、前記粉末は、鉛を含まず、前記ゾルゲル溶液は、鉛も希少金属も含まず、前記膜は、少なくとも700℃の温度下において、入力波に対する反射波が観測され、並びに/又は、圧力及び/若しくは振動が検出される。 A fifth aspect of the present invention is a substrate comprising a film of a sol-gel composite made of a mixture of powder and a sol-gel solution, wherein the powder does not contain lead, and the sol-gel solution contains neither lead nor a rare metal. In the film, the reflected wave with respect to the input wave is observed and / or the pressure and / or the vibration is detected at a temperature of at least 700 ° C.
本願発明の第6の観点は、第5の観点の基板であって、前記ゾルゲル溶液は、Al2O3のゾルゲル溶液である。 A sixth aspect of the present invention is the substrate according to the fifth aspect, wherein the sol-gel solution is a sol-gel solution of Al 2 O 3 .
本願発明の第7の観点は、第5又は第6の観点の基板であって、前記粉末は、Bi4Ti3O12の粉末である。 A seventh aspect of the present invention is the substrate according to the fifth or sixth aspect, wherein the powder is Bi 4 Ti 3 O 12 powder.
本願発明の各観点によれば、鉛を含まない粉末と、鉛も希少金属(例えば、鉱業審議会レアメタル総合対策特別小委員会が対象とした31鉱種(47元素))も含まないゾルゲル溶液を利用して、700℃以上という高温下でも、超音波トランスデューサや感圧センサ等として動作可能な膜を実現することができる。特に、アルミニウムは酸素・ケイ素に次いで地表に多く存在する元素であり、その酸化物であるAl2O3はSiO2について多く地殻中に含まれる。そのため、希少性が低く非鉛の材料で、高温で動作する圧電デバイスを作製することができる。 According to each of the aspects of the present invention, a lead-free powder and a sol-gel solution that does not contain lead or a rare metal (for example, 31 mineral species (47 elements) targeted by the Special Subcommittee on the Countermeasures for Rare Metals of the Mining Council). By utilizing, it is possible to realize a film that can operate as an ultrasonic transducer, a pressure-sensitive sensor, or the like even at a high temperature of 700 ° C. or higher. In particular, aluminum is an element that is present on the surface of the earth next to oxygen and silicon, and its oxide Al 2 O 3 is contained in the earth's crust in large amounts with respect to SiO 2 . Therefore, it is possible to manufacture a piezoelectric device that operates at high temperature using a lead-free material with low rarity.
さらに第4の観点にあるように、混合液を塗布したのと同じ室温下で分極が可能であり、高温分極の必要がなく、分極処理が極めて容易である。 Furthermore, as in the fourth aspect, polarization can be performed at the same room temperature as when the mixed solution is applied, high temperature polarization is not required, and the polarization treatment is extremely easy.
以下では、図面を参照して、本願発明の実施例について説明する。なお、本願発明は、この実施例に限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to this embodiment.
図1は、発明者らが作製した膜基板の構成の一例を示す。図1(a)は、基板が絶縁体の場合の一例であり、図1(b)は、基板が導体の場合の一例である。 FIG. 1 shows an example of the structure of a film substrate manufactured by the inventors. FIG. 1A shows an example in which the substrate is an insulator, and FIG. 1B shows an example in the case where the substrate is a conductor.
図1(a)を参照して、膜基板1は、絶縁体基板3の上に下部電極5を設け、後に具体的に説明するように膜7を作製し、上部電極9を設けたものである。 With reference to FIG. 1A, a film substrate 1 is one in which a lower electrode 5 is provided on an insulator substrate 3, a film 7 is formed as described later in detail, and an upper electrode 9 is provided. is there.
膜7の生成処理について具体的に説明する。発明者らは、新たな圧電材料として、Bi4Ti3O12を粉体材料、Al2O3をゾルゲル材料とする複合体を用いた。Bi4Ti3O12(BiT)の粉末とAl2O3のゾルゲル溶液を混合し、下部電極5の上にスプレー塗布して製膜し、熱処理を行い、多孔性セラミックス薄膜であるBi4Ti3O12/Al2O3(BiT/Al2O3)を作製した。ここで、熱処理(焼成プロセス)は、例えば、スプレー塗布後にゾルゲル溶液中の水分を飛ばし、かつ結晶化を促進するための処理である。膜の厚みは、例えば、10μm以上500μm以下である。スプレー塗布して製膜する処理(作製ステップ)は、例えば室温(常温、例えば25℃)でもよい。必要であれば加熱して行ってもよい。室温で、高い電圧(例えば100μmあたりで30kV。膜厚等に応じて電圧を変更してもよい。)をかけてダイポールを揃えて分極処理を行った(分極ステップ)。そして、上部電極9を作製し、超音波トランスデューサとした。 The generation process of the film 7 will be specifically described. The inventors have used as a new piezoelectric material a composite body in which Bi 4 Ti 3 O 12 is a powder material and Al 2 O 3 is a sol-gel material. Bi 4 Ti 3 O 12 (BiT) powder and Al 2 O 3 sol-gel solution are mixed, spray-coated on the lower electrode 5 to form a film, and heat-treated to form a porous ceramic thin film Bi 4 Ti. 3 O 12 / Al 2 O 3 (BiT / Al 2 O 3 ) was prepared. Here, the heat treatment (baking process) is, for example, a treatment for removing water in the sol-gel solution after spray coating and for promoting crystallization. The thickness of the film is, for example, 10 μm or more and 500 μm or less. The process of applying a film by spraying (production step) may be performed at room temperature (normal temperature, for example, 25 ° C.). If necessary, heating may be performed. At room temperature, a high voltage (for example, 30 kV per 100 μm; the voltage may be changed depending on the film thickness, etc.) was applied to the dipoles to perform polarization treatment (polarization step). And the upper electrode 9 was produced and it was set as the ultrasonic transducer.
図1(b)を参照して、膜基板11は、導体基板13の上に、図1(a)と同様に膜17を作製し、上部電極19を設けたものである。なお、基板が導体の場合にも、下部電極を設けてもよい。 With reference to FIG. 1B, in the film substrate 11, the film 17 is formed on the conductor substrate 13 in the same manner as in FIG. 1A, and the upper electrode 19 is provided. The lower electrode may be provided even when the substrate is a conductor.
図2(a)は、図1(b)の膜基板11により作成された超音波トランスデューサによる実験の構成を示す。 FIG. 2A shows a structure of an experiment using the ultrasonic transducer created by the film substrate 11 of FIG. 1B.
図2(a)を参照して、導体基板21は、縦横各30mm、厚さ3mmのチタン基板である。膜23は、縦横各20mm、厚さ50μmのBiT/Al2O3の多孔性セラミックス薄膜である。上部電極25は、直径10mmの白金ペーストのものである。パルス生成部27は、導体基板21と上部電極25に白金リード線で接続されており、パルス波の入力波を生成する。波形観測部29は、例えばオシロスコープで、少なくとも反射波を検出する。 2A, the conductor substrate 21 is a titanium substrate having a length and width of 30 mm and a thickness of 3 mm. The film 23 is a BiT / Al 2 O 3 porous ceramic thin film having a length and width of 20 mm and a thickness of 50 μm. The upper electrode 25 is a platinum paste having a diameter of 10 mm. The pulse generation unit 27 is connected to the conductor substrate 21 and the upper electrode 25 with a platinum lead wire and generates an input wave of a pulse wave. The waveform observing section 29 is an oscilloscope, for example, and detects at least the reflected wave.
図2(b)の膜基板11の作成は、次のとおりである。商業的に利用可能なBiTの粉末で、Al2O3のゾルゲル溶液を混合した後、スプレー塗布に適切な粘度となるまで混合液をボールミルした。そして、混合液を、室温で、スプレー塗布法で3mm厚のチタン基板に塗布した。スプレー塗布後、乾燥及び焼成を、それぞれ、150℃及び650℃で、5分間、実行した。これらのステップ(スプレー塗布、乾燥及び焼成)は、フィルムの厚さがターゲットとなる厚さになるまで、繰り返し行われる。今回の実験でのターゲットのフィルム厚は、50μmであり、これらの手続きは4回繰り返した。白金ペーストは、準備したフィルムの上部電極として適用される。白金ペーストの硬化のため、それぞれ2時間の150℃と700℃の熱処理を行った。 The production of the film substrate 11 shown in FIG. 2B is as follows. A commercially available BiT powder was mixed with a sol-gel solution of Al 2 O 3 and then the mixture was ball milled to a suitable viscosity for spray application. Then, the mixed liquid was applied to a titanium substrate having a thickness of 3 mm by a spray coating method at room temperature. After spray application, drying and baking were carried out at 150 ° C. and 650 ° C. for 5 minutes, respectively. These steps (spray coating, drying and baking) are repeated until the film thickness reaches the target thickness. The target film thickness in this experiment was 50 μm, and these procedures were repeated 4 times. The platinum paste is applied as the top electrode of the prepared film. In order to cure the platinum paste, heat treatments of 150 ° C. and 700 ° C. were performed for 2 hours, respectively.
上部電極の準備後に、室温で分極処理を行った。電源の出力電圧は、約27kVであった。この実験では、アーク放電によるフィルムの絶縁破壊を防ぐために、針の先端とフィルムとの距離は30mmの距離に調整した。図2(b)は、3mm厚のチタン基板に形成したBiT/Al2O3のフィルムの外観を示す。 After preparation of the upper electrode, polarization treatment was performed at room temperature. The output voltage of the power supply was about 27 kV. In this experiment, the distance between the tip of the needle and the film was adjusted to 30 mm in order to prevent dielectric breakdown of the film due to arc discharge. FIG. 2B shows the appearance of a BiT / Al 2 O 3 film formed on a 3 mm thick titanium substrate.
BiT/Al2O3の高温耐久性を調査した。電気的接続を確立するために、上部電極とチタン基板に白金ワイヤを接続し、その上にセラミック製の重りを置いた。白金線は、高温耐久性のために使った。接着材料での熱膨張によるミスマッチで剥脱が生じ得るが、セラミック製の重りは、高温耐久性があり、剥脱がないために使った。サンプル全体を炉に置き、パルスエコーモードで超音波測定を行い、様々な温度で、デジタルオシロスコープで記録した。パルスエコーモードでは、3mm厚のチタン基板の底からの反射エコーを、室温から反射エコーが測定されなくなるまで測定した。温度は、600℃までは100℃ごとに、600℃を超えてからは10℃ごとに上昇させた。各温度で、温度を5分維持した。図3(a)及び(b)は、それぞれ、室温と720℃での時間領域での超音波応答を示す。反射エコーは、720℃において、比較的高い信号対雑音比(SNR)で、複数のエコーをきれいにみることができる。 The high temperature durability of BiT / Al 2 O 3 was investigated. To establish the electrical connection, a platinum wire was connected to the upper electrode and the titanium substrate, on which a ceramic weight was placed. Platinum wire was used for high temperature durability. Although the exfoliation could occur due to mismatch due to thermal expansion in the adhesive material, the ceramic weight was used because it has high temperature durability and no exfoliation. The entire sample was placed in a furnace, ultrasonic measurements were made in pulse echo mode and recorded at various temperatures with a digital oscilloscope. In the pulse echo mode, the reflection echo from the bottom of the titanium substrate having a thickness of 3 mm was measured from room temperature until no reflection echo was measured. The temperature was raised every 100 ° C up to 600 ° C and every 10 ° C after 600 ° C. At each temperature, the temperature was maintained for 5 minutes. FIGS. 3A and 3B show ultrasonic response in the time domain at room temperature and 720 ° C., respectively. The reflected echoes have a relatively high signal-to-noise ratio (SNR) at 720 ° C, and can clearly see multiple echoes.
温度効果を定量的に決定するために、感度を次の式で計算した。ここで、V1は、基準振幅であり、この実験では0.1Vp-pである。V2は、チタン基板の底面からの第3反射エコーのVp-pである。P/Rは、パルサー/レシーバーを意味する。この式は、0.1Vを達成するためにパルサー/レシーバーの真に必要なゲインを計算する。本質的な理解をアシストするために−1をかける。
(感度)=−(20 log(V1/V2)+ Gain of P/R)
To quantitatively determine the temperature effect, the sensitivity was calculated by the formula: Here, V 1 is the reference amplitude, which is 0.1 V pp in this experiment. V 2 is Vp-p of the third reflection echo from the bottom surface of the titanium substrate. P / R means pulser / receiver. This equation calculates the true required gain of the pulser / receiver to achieve 0.1V. Multiply by -1 to assist in the essential understanding.
(Sensitivity) = - (20 log (V 1 / V 2) + Gain of P / R)
図3(c)は、BiT/Al2O3のトランデューサの感度について、室温から720℃までの温度との関係性を示す。このグラフによれば、非鉛の超音波トランデューサについて、室温での分極処理をおこなっても、720℃でも感度を示している。特に500℃という高温まで、連続的な超音波トランデューサを実現できる可能性を証明する。さらに、同様にして、圧力や振動を検出することもできる。 FIG. 3 (c) shows the relationship between the sensitivity of the BiT / Al 2 O 3 transducer and the temperature from room temperature to 720 ° C. According to this graph, a lead-free ultrasonic transducer shows sensitivity even at 720 ° C. even when polarized at room temperature. In particular, we demonstrate the possibility of realizing a continuous ultrasonic transducer up to a high temperature of 500 ℃. Furthermore, pressure and vibration can be detected in the same manner.
1,11 膜基板、3 絶縁体基板、5 下部電極、7,17,23 膜、9,19,25 上部電極、13,21 導体基板、27 パルス生成部、29 波形観測部 1,11 film substrate, 3 insulator substrate, 5 lower electrode, 7,17,23 film, 9,19,25 upper electrode, 13,21 conductor substrate, 27 pulse generation unit, 29 waveform observation unit
Claims (7)
前記粉末は、鉛を含まず、
前記ゾルゲル溶液は、Al2O3のゾルゲル溶液である、膜基板生産方法。 A film substrate production method for producing a film substrate including a production step of producing a film substrate by producing a film using a mixture of a powder and a sol-gel solution on the substrate,
The powder does not contain lead,
The method for producing a film substrate, wherein the sol-gel solution is an Al 2 O 3 sol-gel solution.
前記混合体を塗布する温度下で、前記膜に対して分極処理を行う分極ステップを含む請求項1から3のいずれかに記載の膜基板生産方法。 In the manufacturing step, including a process of applying the mixture to the substrate,
The method for producing a film substrate according to claim 1, further comprising a polarization step of performing polarization processing on the film at a temperature at which the mixture is applied.
前記粉末は、鉛を含まず、
前記ゾルゲル溶液は、鉛も希少金属も含まず、
前記膜は、少なくとも700℃の温度下において、入力波に対する反射波が観測され、並びに/又は、圧力及び/若しくは振動が検出される、基板。 A substrate comprising a film of a sol-gel composite made of a mixture of powder and a sol-gel solution,
The powder does not contain lead,
The sol-gel solution contains neither lead nor rare metals,
The said substrate is a board | substrate in which the reflected wave with respect to an input wave is observed and / or pressure and / or vibration are detected at the temperature of at least 700 degreeC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018202318A JP7092277B2 (en) | 2018-10-26 | 2018-10-26 | Membrane substrate production method and substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018202318A JP7092277B2 (en) | 2018-10-26 | 2018-10-26 | Membrane substrate production method and substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020068364A true JP2020068364A (en) | 2020-04-30 |
JP7092277B2 JP7092277B2 (en) | 2022-06-28 |
Family
ID=70390564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018202318A Active JP7092277B2 (en) | 2018-10-26 | 2018-10-26 | Membrane substrate production method and substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7092277B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7066092B1 (en) * | 2020-12-04 | 2022-05-13 | 国立大学法人 熊本大学 | How to produce sensor devices and sensor devices |
WO2022118965A1 (en) * | 2020-12-04 | 2022-06-09 | 国立大学法人熊本大学 | Sensor device, and method for producing sensor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014040356A (en) * | 2012-08-23 | 2014-03-06 | Mitsubishi Heavy Ind Ltd | Method for manufacturing oxide-based piezoelectric material powder for ultrasonic thickness sensor, oxide-based piezoelectric material powder, method for manufacturing ultrasonic thickness sensor, and ultrasonic thickness sensor |
-
2018
- 2018-10-26 JP JP2018202318A patent/JP7092277B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014040356A (en) * | 2012-08-23 | 2014-03-06 | Mitsubishi Heavy Ind Ltd | Method for manufacturing oxide-based piezoelectric material powder for ultrasonic thickness sensor, oxide-based piezoelectric material powder, method for manufacturing ultrasonic thickness sensor, and ultrasonic thickness sensor |
Non-Patent Citations (2)
Title |
---|
M. KOBAYASHI ET AL.: ""Piezoelectric thick bismuth titanate / lead zirconate titanete composite film transducers for smart", SMART MATERIALS AND STRUCTURES, vol. 13, JPN7021004569, 2004, pages 951 - 956, XP020072501, ISSN: 0004627883, DOI: 10.1088/0964-1726/13/4/033 * |
M. KOBAYASHI ET AL.: ""PIEZOELECTRIC THICK FILM ULTRASONIC TRANSDUCERS FABLICATED BY A SPRAY TECHNIQUE"", 2000 IEEE ULTRASONICS SYMPOSIUM, JPN6021042693, 2000, pages 985 - 989, ISSN: 0004627884 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7066092B1 (en) * | 2020-12-04 | 2022-05-13 | 国立大学法人 熊本大学 | How to produce sensor devices and sensor devices |
WO2022118965A1 (en) * | 2020-12-04 | 2022-06-09 | 国立大学法人熊本大学 | Sensor device, and method for producing sensor device |
Also Published As
Publication number | Publication date |
---|---|
JP7092277B2 (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hsu et al. | Demonstration and characterization of PZT thin-film sensors and actuators for meso-and micro-structures | |
JP7092277B2 (en) | Membrane substrate production method and substrate | |
Yan et al. | Lead-free BNT composite film for high-frequency broadband ultrasonic transducer applications | |
Lau et al. | KNN/BNT composite lead-free films for high-frequency ultrasonic transducer applications | |
Dong et al. | Ultrasonic transducer with BiScO3-PbTiO3-based ceramics of operating temperature over 400° C | |
JP6829851B2 (en) | Substrate and membrane substrate production method | |
Burrows et al. | Sol–gel prepared bismuth titanate for high temperature ultrasound transducers | |
Yang et al. | Ultrabroad-bandwidth ultrasonic transducer based on Sm-doped PMN-PT ceramic/epoxy 1–3 composite | |
Bowen et al. | Flexible piezoelectric transducer for ultrasonic inspection of non-planar components | |
Nozawa et al. | New Lead-Free Bi 4 Ti 3 0 12 Based Sol-Gel Composites for Ultrasonic Transducers | |
Yugawa et al. | 3P1-7 Bi4Ti3O12 Based Lead-Free Sol-Gel Composite Ultrasonic Transducers | |
Nozawa et al. | 1P3-6 Low Temperature Fabrication of Bi4Ti3O12/TiO2 | |
Hidaka et al. | 3Pa1-1 Piezoelectric Characteristic Sustaining Temperature of Pb (Zr, Ti) O3/Pb (Zr, Ti) O3 | |
Okada et al. | 1P1-7 Low Temperature Fabrication of Bi4Ti3O12/Al2O3 Sol-Gel Composite Ultrasonic Transducer | |
Hara et al. | 3P1-5 Development of Pb (Zr, Ti) O3/TiO2 Ultrasonic Transducer | |
Xu et al. | Practical ultrasonic transducers for high-temperature applications using bismuth titanate and Ceramabind 830 | |
Kibe et al. | High temperature performance of PbTiO 3/PZT ultrasonic transducer above 400° C | |
Kimoto et al. | High temperature performance of PbTiO 3/BaTiO 3 ultrasonic transducer | |
Searfass et al. | SOL‐GEL DEPOSITED THICK FILM BISMUTH TITANATE BASED TRANSDUCER ACHIEVES OPERATION OVER 600° C | |
Zaito et al. | 3Pa1-5 Fabrication of LiNbO3/Al2O3 Ultrasonic Transducer | |
JP2023063187A (en) | Sol-gel composite piezoelectric sensor production method | |
Nozawa et al. | 2P3-7 Effect of TiO2 Sol-Gel Phase on Ultrasonic Properties | |
Kibe et al. | Continuous monitoring at 600 C by CaBi 4 Ti 4 O 15/Pb (Zr, Ti) O 3 sol-gel composite ultrasonic transducer | |
Ikari et al. | Pulse monitoring by sol-gel composite flexible piezoelectric sensors | |
Okada et al. | 1P1-2 High Temperature Properties of CaBi4Ti4O15/Bi4Ti3O12 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190722 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211029 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7092277 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |