JP2020067373A - Photoelectronic sensor - Google Patents

Photoelectronic sensor Download PDF

Info

Publication number
JP2020067373A
JP2020067373A JP2018200240A JP2018200240A JP2020067373A JP 2020067373 A JP2020067373 A JP 2020067373A JP 2018200240 A JP2018200240 A JP 2018200240A JP 2018200240 A JP2018200240 A JP 2018200240A JP 2020067373 A JP2020067373 A JP 2020067373A
Authority
JP
Japan
Prior art keywords
light
light receiving
amount
parameter
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200240A
Other languages
Japanese (ja)
Inventor
信太郎 安藤
Shintaro Ando
信太郎 安藤
雄介 飯田
Yusuke Iida
雄介 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2018200240A priority Critical patent/JP2020067373A/en
Publication of JP2020067373A publication Critical patent/JP2020067373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

To provide a photoelectronic sensor that can adjust sensitivity without using a variable divisor and can reduce a calculation cost.SOLUTION: A photoelectronic sensor 1 comprises: a light projection unit 10 that projects light designated in a first parameter on a detection area; a light receiving unit 20 that receives light from the detection area at a sensitivity designated in a second parameter; a determination unit 31 that, based on the quantity of received light obtained by the light receiving unit 20, refers to an adjustment magnification table 500 associating the quantity of received light obtained by the light receiving unit with an adjustment magnification for adjusting the quantity of received light to a predetermined target value, and determines the adjustment magnification; and an update unit 32 that updates at least one of the first parameter and second parameter based on the determined adjustment magnification. The photoelectronic sensor is communicably connected to a storage unit 40 that stores the adjustment magnification table.SELECTED DRAWING: Figure 1

Description

本発明は、光電センサに関する。   The present invention relates to photoelectric sensors.

従来、検出対象物に光を投光し、検出対象物から反射した光を受光する光電センサでは、反射率や検出距離の異なる様々な検出対象物を検出することがある。光電センサは、このように様々な検出対象物を検出する際、反射率や検出距離によって反射光の強度が変わるため、受光素子上に適切な光量を入力させるために感度を動的に調整することがある。このような感度調整は、例えば、一次元イメージセンサを用いた三角測距方式の測距センサ等に用いられる。   Conventionally, a photoelectric sensor that projects light onto a detection target and receives light reflected from the detection target may detect various detection targets having different reflectances or detection distances. Since the photoelectric sensor changes the intensity of the reflected light depending on the reflectance and the detection distance when detecting various detection objects in this way, the sensitivity is dynamically adjusted in order to input an appropriate amount of light on the light receiving element. Sometimes. Such sensitivity adjustment is used, for example, in a triangulation distance measuring sensor using a one-dimensional image sensor.

上記のような感度調整において、例えば、感度調整のパラメータの一つである露光時間について、次回の露光時間dを、次式(1)のように前回の露光時間cと、光電センサの受光部における受光量bに対する目標値aの倍率とを用いて求める方法がある。なお、この露光時間は、光電センサにおける投光期間と受光期間とが重複する期間をいう。下記特許文献1には、次式(1)のように次回の露光時間を求めて、受光量が目標値より低い場合には露光時間を引き上げて、受光量が目標値より高い場合には露光時間を引き下げることで感度調整処理を行う光学式センサが開示されている。   In the sensitivity adjustment as described above, for example, for the exposure time that is one of the parameters of the sensitivity adjustment, the next exposure time d is the previous exposure time c as in the following equation (1) and the light receiving unit of the photoelectric sensor. There is a method of obtaining it by using the magnification of the target value a with respect to the received light amount b in. The exposure time is a period in which the light projecting period and the light receiving period of the photoelectric sensor overlap. In Patent Document 1 below, the next exposure time is calculated as in the following equation (1), and if the received light amount is lower than the target value, the exposure time is increased, and if the received light amount is higher than the target value, exposure is performed. An optical sensor is disclosed that performs sensitivity adjustment processing by reducing the time.

特開2013−190378号公報JP, 2013-190378, A

上記のような感度調整の方法では、次回の感度調整のパラメータを求めるために可変の受光量で除算しているため、演算コストが増加してしまう場合がある。具体的には、上記のような感度調整方法では、可変の除数を用いた演算が必要となるが、光電センサの回路に用いられるCPUやFPGA等においてはハードウェア除算器を備えていない場合が多いため、演算結果を得るまでに比較的多くの時間を要する。また、FPGAで除算回路を実装しようとすると回路規模が増大してしまう。   In the sensitivity adjustment method as described above, the calculation cost may increase because the variable light reception amount is used for division in order to obtain the parameter for the next sensitivity adjustment. Specifically, the sensitivity adjustment method as described above requires an operation using a variable divisor, but a CPU or FPGA used in a circuit of a photoelectric sensor may not include a hardware divider. Since it is large, it takes a relatively long time to obtain the calculation result. Moreover, if an attempt is made to implement a division circuit in FPGA, the circuit scale will increase.

そこで、本発明は、可変の除数を用いずに感度調整することができ、演算コストを低減させることができる光電センサを提供することを目的とする。   Therefore, an object of the present invention is to provide a photoelectric sensor that can adjust the sensitivity without using a variable divisor and can reduce the calculation cost.

本発明の一態様に係る光電センサは、検出領域に第1パラメータで指定された光を投光する投光部と、検出領域から光を第2パラメータで指定された感度で受光する受光部と、受光部により得られた受光量に基づいて、受光部の受光量と当該受光量を予め定めた目標値に調整するための調整倍率とを対応付ける調整倍率テーブルを参照し、調整倍率を判定する判定部と、判定された調整倍率に基づいて、第1パラメータ及び第2パラメータの少なくともいずれかを更新する更新部と、を備え、調整倍率テーブルを記憶する記憶部と通信可能に接続されている。   A photoelectric sensor according to an aspect of the present invention includes a light projecting unit that projects light specified by a first parameter onto a detection region, and a light receiving unit that receives light from the detection region at a sensitivity specified by a second parameter. Based on the amount of light received by the light receiver, the adjustment ratio is determined by referring to an adjustment ratio table that associates the amount of light received by the light receiver with an adjustment ratio for adjusting the amount of light received to a predetermined target value. A determination unit and an update unit that updates at least one of the first parameter and the second parameter based on the determined adjustment magnification, and is communicably connected to a storage unit that stores an adjustment magnification table. .

この態様によれば、光電センサは、感度調整において、受光部により得られた受光量に応じた固定の調整倍率に基づいて、投光部で投光する光を指定する第1パラメータ及び/又は受光部の感度を指定する第2パラメータを更新することができる。このため、光電センサは、可変の除数を用いずにこれらのパラメータを更新し、受光部の受光量を予め定めた目標値に調整することができる。よって、光電センサは、可変の除数を用いずに感度調整することができ、演算コストを低減させることができる。   According to this aspect, in the sensitivity adjustment, the photoelectric sensor specifies the first parameter and / or the first parameter for designating the light projected by the light projecting unit based on the fixed adjustment magnification corresponding to the light receiving amount obtained by the light receiving unit. The second parameter designating the sensitivity of the light receiving unit can be updated. Therefore, the photoelectric sensor can update these parameters without using a variable divisor and adjust the amount of light received by the light receiving unit to a predetermined target value. Therefore, the photoelectric sensor can adjust the sensitivity without using a variable divisor, and can reduce the calculation cost.

上記態様において、第1パラメータは、投光部の投光に適用される投光期間、及び投光部による投光強度の少なくともいずれかを含み、第2パラメータは、受光部の受光に適用される受光期間、及び受光部の受光ゲインの少なくともいずれかを含んでもよい。   In the above aspect, the first parameter includes at least one of a light projection period applied to the light projection of the light projection unit and a light projection intensity by the light projection unit, and the second parameter is applied to the light reception of the light reception unit. At least one of the light receiving period and the light receiving gain of the light receiving unit may be included.

この態様によれば、光電センサは、投光部においては投光期間と投光強度とで感度調整することができ、受光部においては受光期間と受光ゲインとで感度調整することができ、様々な手段をもって感度調整することができる。   According to this aspect, in the photoelectric sensor, the sensitivity can be adjusted by the light projecting period and the light projecting intensity in the light projecting unit, and the sensitivity can be adjusted by the light receiving period and the light receiving gain in the light receiving unit. The sensitivity can be adjusted by any means.

上記態様において、調整倍率は、受光部の受光量を引数とする所定の関数の値であってもよい。   In the above aspect, the adjustment magnification may be a value of a predetermined function having the light receiving amount of the light receiving unit as an argument.

この態様によれば、従来受光の都度求めていた倍率(光電センサの受光部における受光量bに対する目標値aの倍率)と同様に、調整倍率の値を設定することができる。   According to this aspect, the value of the adjustment magnification can be set in the same manner as the magnification (the magnification of the target value a with respect to the received light amount b in the light receiving portion of the photoelectric sensor) which is conventionally obtained each time light is received.

上記態様において、受光部により得られた受光量が調整倍率テーブルに設定された受光量の最小値から所定の範囲内の場合、調整倍率は、所定の関数と異なる固定値になっていてもよい。   In the above aspect, when the received light amount obtained by the light receiving unit is within a predetermined range from the minimum value of the received light amount set in the adjustment magnification table, the adjustment magnification may be a fixed value different from the predetermined function. .

この態様によれば、受光量の最小値から所定の範囲内の光量不足の場合、具体的には受光量が極端に少なく受光波形が検知できない場合についても、調整倍率として、調整倍率テーブルに設定された光量不足の場合に適用する固定値を用いることができる。このため、別途光量不足に対する処理を設けて分岐させなくとも、通常時と同様に調整倍率テーブルを参照して調整倍率を判定することができる。   According to this aspect, when the amount of light is insufficient within a predetermined range from the minimum value of the amount of received light, specifically, when the amount of received light is extremely small and the received light waveform cannot be detected, the adjustment ratio is set in the adjustment ratio table. It is possible to use a fixed value that is applied when the amount of light is insufficient. For this reason, it is possible to determine the adjustment magnification by referring to the adjustment magnification table in the same manner as in normal times, without separately providing processing for light quantity shortage and branching.

上記態様において、受光部により得られた受光量が調整倍率テーブルに設定された受光量の最大値から所定の範囲内の場合、調整倍率は、所定の関数と異なる固定値になっていてもよい。   In the above aspect, when the received light amount obtained by the light receiving unit is within a predetermined range from the maximum value of the received light amount set in the adjustment magnification table, the adjustment magnification may be a fixed value different from the predetermined function. .

この態様によれば、受光量の最大値から所定の範囲内の光量飽和の場合についても、調整倍率として、調整倍率テーブルに設定された光量飽和の場合に適用する固定値を用いることができる。このため、別途光量飽和に対する処理を設けて分岐させなくとも、通常時と同様に調整倍率テーブルを参照し調整倍率を判定することができる。   According to this aspect, even in the case where the light amount is saturated within a predetermined range from the maximum value of the received light amount, it is possible to use, as the adjustment magnification, the fixed value set in the case where the light amount is saturated set in the adjustment magnification table. For this reason, it is possible to determine the adjustment magnification by referring to the adjustment magnification table as in the normal state without separately branching by separately providing a process for light amount saturation.

上記態様において、調整倍率は、2のべき乗の整数として、更新部は、第1パラメータ及び第2パラメータの少なくともいずれかに調整倍率を乗算した値を2のべき乗で除算して、除算した値をもって第1パラメータ及び第2パラメータの少なくともいずれかを更新してもよい。   In the above aspect, the adjustment scale factor is an integer of a power of 2, and the updating unit divides a value obtained by multiplying the adjustment scale factor by at least one of the first parameter and the second parameter by a power of 2 and has a value obtained by the division. At least one of the first parameter and the second parameter may be updated.

この態様によれば、予め調整倍率を整数とすることで小数部分をなくした状態で乗算し、その後2のべき乗で除算する処理、すなわちビットシフト処理で元に戻すことができるため、演算コストを削減することができる。   According to this aspect, it is possible to restore by the process of multiplying in a state where the fractional part is eliminated by setting the adjustment magnification to an integer in advance, and then dividing by a power of 2, that is, the bit shift process, so that the calculation cost is reduced. Can be reduced.

上記態様において、受光部の受光素子はCMOSセンサ素子であり、光電センサは、三角測距方式を用いた測距センサであってもよい。   In the above aspect, the light receiving element of the light receiving unit may be a CMOS sensor element, and the photoelectric sensor may be a distance measuring sensor using a triangulation distance measuring method.

光電センサが三角測距方式を用いた測距センサの場合、検出距離の異なる様々な検出対象物の測距を行うため感度調整の機会が多くなる。すなわち従来、検出対象物の有無を検出するセンサ等よりも多くのタイミングで可変の除数によって演算コストが増加していた。このため、光電センサは、測距センサの場合、固定の調整倍率を用いてより効果的に演算コストを削減することができる。   In the case where the photoelectric sensor is a distance measuring sensor using a triangulation distance measuring method, since the distances of various detection objects having different detection distances are measured, the chances of sensitivity adjustment increase. That is, conventionally, the calculation cost has been increased by a variable divisor at more timings than a sensor that detects the presence or absence of a detection target. For this reason, in the case of the distance measuring sensor, the photoelectric sensor can more effectively reduce the calculation cost by using the fixed adjustment magnification.

本発明によれば、可変の除数を用いずに感度調整することができ、演算コストを低減させることができる光電センサを提供することができる。   According to the present invention, it is possible to provide a photoelectric sensor capable of adjusting the sensitivity without using a variable divisor and reducing the calculation cost.

実施形態に係る光電センサの概略ブロック図である。It is a schematic block diagram of the photoelectric sensor which concerns on embodiment. 実施形態に係る受光量のデータ構造の一例を説明するための模式図である。FIG. 3 is a schematic diagram for explaining an example of a data structure of the amount of received light according to the embodiment. 実施形態に係る調整倍率テーブルのデータ構造の一例を説明するための図である。It is a figure for demonstrating an example of the data structure of the adjustment ratio table which concerns on embodiment. 実施形態に係る光電センサの感度調整動作の一例を示したフロー図である。FIG. 7 is a flowchart showing an example of sensitivity adjustment operation of the photoelectric sensor according to the embodiment.

添付図面を参照して、本発明の好適な実施形態(以下「本実施形態」という。)について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。   A preferred embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the accompanying drawings. In addition, in each of the drawings, those denoted by the same reference numerals have the same or similar configurations.

<1.構成例>
図1を用いて、本実施形態に係る光電センサ1の構成例について説明する。
<1. Configuration example>
A configuration example of the photoelectric sensor 1 according to the present embodiment will be described with reference to FIG.

図1は、実施形態に係る光電センサ1の概略ブロック図である。本実施形態に係る光電センサ1は、例えば、物体までの距離を測定するための三角測距方式を用いた測距センサである。光電センサ1が測距センサである場合、検出距離の異なる様々な検出対象物の測距を行うため感度調整の機会がより多くなる。すなわち従来、検出対象物の有無を検出するセンサ等よりも多くのタイミングで可変の除数による除算を行って演算コストが増加していた。このため、光電センサ1は、特に測距センサの場合、固定の調整倍率を用いてより効果的に演算コストを低減することができる。また、光電センサ1は、このように演算コストを低減させることで、高速処理が可能となる。   FIG. 1 is a schematic block diagram of a photoelectric sensor 1 according to the embodiment. The photoelectric sensor 1 according to the present embodiment is, for example, a distance measurement sensor that uses a triangulation distance measurement method for measuring the distance to an object. When the photoelectric sensor 1 is a distance measuring sensor, since the distances of various detection objects having different detection distances are measured, the chances of sensitivity adjustment increase. That is, conventionally, the calculation cost is increased by performing the division by the variable divisor at more timings than the sensor for detecting the presence or absence of the detection target. Therefore, the photoelectric sensor 1 can reduce the calculation cost more effectively by using a fixed adjustment magnification, particularly in the case of the distance measuring sensor. Further, the photoelectric sensor 1 can perform high-speed processing by reducing the calculation cost in this way.

光電センサ1は、投光部10と、受光部20と、制御部30と、記憶部40と、を備える。光電センサ1は、例えば、反射型のセンサの場合、検出対象物に向けて投光部10から光を投光し、検出対象物からの反射光を受光部20で受光する。   The photoelectric sensor 1 includes a light projecting unit 10, a light receiving unit 20, a control unit 30, and a storage unit 40. In the case of a reflection type sensor, for example, the photoelectric sensor 1 projects light from the light projecting unit 10 toward an object to be detected, and receives light reflected from the object to be detected by the light receiving unit 20.

投光部10は、投光素子11と、投光素子11を駆動させる投光制御回路12と、を備えている。投光部10は、検出領域に第1パラメータで指定された光を投光する。ここで「第1パラメータ」とは、投光部10の投光制御を行うために指定されるパラメータである。第1パラメータは、例えば、投光部10の投光に適用される投光期間、及び投光部10による投光強度の少なくともいずれかを含んでもよい。このような構成によれば、光電センサは、投光部においては投光期間と投光強度とで感度調整することができ、様々な手段をもって感度調整することができる。   The light projecting unit 10 includes a light projecting element 11 and a light projecting control circuit 12 that drives the light projecting element 11. The light projecting unit 10 projects the light designated by the first parameter onto the detection area. Here, the “first parameter” is a parameter designated for performing light emission control of the light emitting unit 10. The first parameter may include, for example, at least one of a light projection period applied to the light projection of the light projection unit 10 and a light projection intensity by the light projection unit 10. According to such a configuration, the photoelectric sensor can adjust the sensitivity in the light projecting section by the light projecting period and the light projecting intensity, and the sensitivity can be adjusted by various means.

投光素子11は、検出領域に光を投光する素子である。投光素子11は、例えば、レーザダイオードであってよいが、発光ダイオード等の素子で構成されてもよい。投光制御回路12は、制御部30からの第1パラメータを含む投光指令信号に基づいて、投光素子11を駆動するための駆動信号を投光素子11に出力する。   The light projecting element 11 is an element that projects light onto the detection region. The light projecting element 11 may be, for example, a laser diode, but may also be configured by an element such as a light emitting diode. The light projecting control circuit 12 outputs a drive signal for driving the light projecting element 11 to the light projecting element 11 based on the light projecting command signal including the first parameter from the control unit 30.

受光部20は、受光素子21と、信号処理回路22と、A/D変換回路23と、を備える。受光部20は、検出領域から光を第2パラメータで指定された感度で受光する。ここで「第2パラメータ」とは、受光部20の受光制御を行うために指定されるパラメータである。第2パラメータは、例えば、受光部20の受光に適用される受光期間、及び受光部20の受光ゲインの少なくともいずれかを含んでもよい。このような構成によれば、光電センサ1は、受光部20においては受光期間と受光ゲインとで感度調整することができ、様々な手段をもって感度調整することができる。   The light receiving section 20 includes a light receiving element 21, a signal processing circuit 22, and an A / D conversion circuit 23. The light receiving unit 20 receives light from the detection region with the sensitivity specified by the second parameter. Here, the “second parameter” is a parameter designated for performing light reception control of the light receiving unit 20. The second parameter may include, for example, at least one of the light receiving period applied to the light receiving of the light receiving unit 20 and the light receiving gain of the light receiving unit 20. With such a configuration, the photoelectric sensor 1 can perform sensitivity adjustment in the light receiving section 20 depending on the light receiving period and the light receiving gain, and can perform sensitivity adjustment using various means.

受光素子21は、例えば、CMOSセンサ素子又はCCDセンサ素子等の撮像素子であり、シャッター機能を有してもよい。信号処理回路22は、受光素子21から出力された受光信号に対して増幅等の処理をする。A/D変換回路23は、信号処理回路22から出力された信号をデジタル信号に変換して受光量を表すデータを生成する。受光部20は、受光素子21が一次元の撮像素子の場合、一次元に配列された画素を探索して受光量分布のピークの光量(以下、単に「受光量」という)を得る。なお、光電センサ1が三角測距方式を用いた測距センサの場合、このピークの画素位置によって検出対象物までの距離が測定される。   The light receiving element 21 is, for example, an image pickup element such as a CMOS sensor element or a CCD sensor element, and may have a shutter function. The signal processing circuit 22 performs processing such as amplification on the received light signal output from the light receiving element 21. The A / D conversion circuit 23 converts the signal output from the signal processing circuit 22 into a digital signal to generate data representing the amount of received light. When the light receiving element 21 is a one-dimensional image pickup element, the light receiving unit 20 searches for pixels arranged in a one-dimensional manner and obtains the peak light amount of the received light amount distribution (hereinafter, simply referred to as “light receiving amount”). When the photoelectric sensor 1 is a distance measuring sensor using the triangulation distance measuring method, the distance to the detection target is measured by the pixel position of this peak.

制御部30は、判定部31と、更新部32と、を備える。制御部30は、後述の記憶部40に格納されたプログラムに基づき検出対象物までの距離の測定や感度調整に係る処理を実行する。制御部30は、例えば、CPU(Central Processing Unit)又はFPGA (Field Programmable Gate Array)等で構成されている。なお、本発明によれば演算コストを抑えることができるため、制御部30は、小規模のCPUやFPGAで実装することができる。   The control unit 30 includes a determination unit 31 and an updating unit 32. The control unit 30 executes processing related to measurement of the distance to the detection target and sensitivity adjustment based on a program stored in the storage unit 40 described later. The control unit 30 is composed of, for example, a CPU (Central Processing Unit) or an FPGA (Field Programmable Gate Array). Note that, according to the present invention, since the calculation cost can be suppressed, the control unit 30 can be implemented by a small-scale CPU or FPGA.

判定部31は、受光部20により得られた受光量に基づいて、調整倍率テーブルを参照し、調整倍率を判定する。ここで「調整倍率」とは、受光部20の受光量を予め定めた目標値に調整するための倍率である。光電センサ1は、調整倍率によって受光量を予め定めた目標値に調整することで感度調整を行う。また、「調整倍率テーブル」とは、受光部20の受光量と調整倍率とを対応付けるテーブルである。   The determination unit 31 determines the adjustment magnification by referring to the adjustment magnification table based on the amount of received light obtained by the light receiving unit 20. Here, the “adjustment magnification” is a magnification for adjusting the amount of light received by the light receiving unit 20 to a predetermined target value. The photoelectric sensor 1 adjusts the sensitivity by adjusting the received light amount to a predetermined target value by the adjustment magnification. The “adjustment magnification table” is a table that associates the amount of light received by the light receiving unit 20 with the adjustment magnification.

図2及び図3を用いて、調整倍率テーブルの構成及び受光部20の受光量による調整倍率テーブルの参照方法について説明する。図2は、受光部20の受光量のデータ構造の一例を示す図である。図3は、本実施形態に係る調整倍率テーブル500のデータ構造の一例を示す表である。本例において、調整倍率テーブルを参照する際に用いる受光部20の受光量は、一次元に配列された画素により得られた受光量とする。   The configuration of the adjustment magnification table and the method of referring to the adjustment magnification table based on the amount of light received by the light receiving unit 20 will be described with reference to FIGS. 2 and 3. FIG. 2 is a diagram showing an example of a data structure of the amount of light received by the light receiving unit 20. FIG. 3 is a table showing an example of the data structure of the adjustment magnification table 500 according to this embodiment. In this example, the light receiving amount of the light receiving unit 20 used when referring to the adjustment magnification table is the light receiving amount obtained by the pixels arranged one-dimensionally.

図2には、受光部20により得られた受光量を、A/D変換回路23によって10bitのバイナリーデータに変換したデータ構造の一例を示している。判定部31は、当該変換されたバイナリーデータのうち、上位5bitの値をキーとして調整倍率テーブルの参照を行う。また、当該変換されたバイナリーデータの下位5bitの値は切り捨てられるため、この上位5bitの値は、実際には、後述の調整倍率に対する受光量の最小値503から最大値504までの値を含んでいる。例えば、受光部20により得られた受光量が「720」であった場合、10bitのバイナリーデータに変換すると、「1011010000」となる。判定部31は、このバイナリーデータのうち上位5bitの「10110」を取得し、下位5bitの「10000」は切り捨てる。   FIG. 2 shows an example of a data structure in which the amount of light received by the light receiving unit 20 is converted into 10-bit binary data by the A / D conversion circuit 23. The determination unit 31 refers to the adjustment magnification table using the value of the upper 5 bits of the converted binary data as a key. Further, since the value of the lower 5 bits of the converted binary data is truncated, the value of the upper 5 bits actually includes a value from the minimum value 503 to the maximum value 504 of the amount of received light with respect to the adjustment magnification described later. There is. For example, when the amount of received light obtained by the light receiving unit 20 is “720”, it becomes “1011010000” when converted into 10-bit binary data. The determination unit 31 acquires the upper 5 bits “10110” of this binary data and discards the lower 5 bits “10000”.

図3に示すように、調整倍率テーブル500は、No501と、アドレス502と、最小値503と、最大値504と、中央値505と、調整倍率(整数)506と、調整倍率507とを含む。これらの情報は、調整倍率テーブル500に全て含まれる必要はなく、また、調整倍率テーブル500には、これら以外の情報が含まれてもよく、調整倍率テーブル500を用いた調整倍率判定処理等に応じて適宜設定すればよい。   As illustrated in FIG. 3, the adjustment magnification table 500 includes a No 501, an address 502, a minimum value 503, a maximum value 504, a median value 505, an adjustment magnification (integer) 506, and an adjustment magnification 507. These pieces of information do not need to be all included in the adjustment magnification table 500, and the adjustment magnification table 500 may include information other than these, and may be included in the adjustment magnification determination processing using the adjustment magnification table 500. It may be appropriately set depending on the situation.

アドレス502は、調整倍率テーブル500の主キーであり、バイナリーで表現され受光量の上位5bitに相当する。例えば、受光量の上位5bitが「10110」であった場合は、判定部31は、アドレス502が「10110」のレコード、すなわちNo501が「22」のレコードの調整倍率(整数)506「32」又は調整倍率507「1.00」を参照する。   The address 502 is the main key of the adjustment magnification table 500 and is expressed in binary and corresponds to the upper 5 bits of the received light amount. For example, when the upper 5 bits of the received light amount is “10110”, the determination unit 31 determines that the adjustment magnification (integer) 506 “32” of the record whose address 502 is “10110”, that is, the record whose No 501 is “22” or The adjustment magnification 507 “1.00” is referred to.

最小値503は、あるアドレス502に対応する受光量の最小値を示す。最小値503は、アドレス502の値に対して下位5bitが全て「0」の受光量に相当する。最大値504は、あるアドレス502に対応する受光量の最大値を示す。最大値504は、アドレス502の値に対して下位5bitが全て「1」の受光量に相当する。中央値505は、あるアドレス502に対応する受光量の中央値を示す。   The minimum value 503 indicates the minimum value of the amount of received light corresponding to a certain address 502. The minimum value 503 corresponds to the amount of received light in which the lower 5 bits of the value of the address 502 are all “0”. The maximum value 504 indicates the maximum value of the amount of received light corresponding to a certain address 502. The maximum value 504 corresponds to the amount of received light in which the lower 5 bits of the value of the address 502 are all “1”. The median value 505 indicates the median value of the amount of received light corresponding to a certain address 502.

調整倍率(整数)506は、調整倍率507の値を2のべき乗倍した整数である。調整倍率(整数)506は、例えば、調整倍率507の値を32倍した整数である。このように2のべき乗倍された整数を用いることで、後述の更新部32は、受光部20により得られた受光量に小数部分をなくした状態の調整倍率を乗算することができる。更新部32は、その後2のべき乗で除算する処理、すなわちビットシフト処理で元に戻すことができるため、演算コストを削減することができる。   The adjustment magnification (integer) 506 is an integer obtained by multiplying the value of the adjustment magnification 507 by a power of 2. The adjustment magnification (integer) 506 is, for example, an integer obtained by multiplying the value of the adjustment magnification 507 by 32. By using an integer that is a power of 2 as described above, the updating unit 32, which will be described later, can multiply the received light amount obtained by the light receiving unit 20 by the adjustment magnification in a state in which the fractional part is eliminated. Since the updating unit 32 can restore the original value by a process of dividing by a power of 2, that is, a bit shift process, the operation cost can be reduced.

調整倍率507は、受光部20の受光量を引数とする所定の関数の値であってもよい。例えば、次回の露光時間は、従来の方法を用いると、前回の露光時間と、光電センサの受光部における受光量に対する目標値の倍率(目標値/受光量)とを用いて求めることができる。調整倍率507は、この受光量に対する目標値の倍率に相当するため、受光量を引数とした関数で求めることができる。このような構成によれば、従来受光の都度求めていた倍率(光電センサの受光部における受光量に対する目標値の倍率)と同様に、調整倍率507の値を設定することができる。なお、露光時間は、一般には受光期間の長さであるが、投光期間と受光期間とが異なる場合には、両期間が重複する期間とする。露光時間は、例えば、受光素子がCMOSセンサ素子でありシャッター機能を有する場合、受光素子21のシャッターの開放期間と、投光素子11の投光期間との重なりの時間に相当する。   The adjustment magnification 507 may be a value of a predetermined function having the light receiving amount of the light receiving unit 20 as an argument. For example, the next exposure time can be obtained by using the conventional method using the previous exposure time and the magnification of the target value with respect to the amount of light received by the light receiving portion of the photoelectric sensor (target value / light receiving amount). Since the adjustment magnification 507 corresponds to the magnification of the target value with respect to the received light amount, it can be obtained by a function using the received light amount as an argument. With such a configuration, the value of the adjustment magnification 507 can be set in the same manner as the magnification (the magnification of the target value with respect to the amount of light received by the light receiving unit of the photoelectric sensor) that is conventionally obtained each time light is received. Note that the exposure time is generally the length of the light receiving period, but when the light projecting period and the light receiving period are different, the two periods overlap. For example, when the light receiving element is a CMOS sensor element and has a shutter function, the exposure time corresponds to the overlap time of the shutter open period of the light receiving element 21 and the light projecting period of the light projecting element 11.

受光部20により得られた受光量が調整倍率テーブル500に設定された受光量の最小値から所定の範囲内の場合、調整倍率507は、所定の関数の値と異なる固定値になってもよい。例えば、受光部20により得られた受光量が調整倍率テーブル500に設定された受光量の最小値又は最小値から所定の範囲内の場合、具体的にはNo501が「0」の受光量の場合、受光部20において受光波形が検知できない等の光量不足の状態が含まれる。このような光量不足の状態においては、受光量が判定できないため受光量を引数とする所定の関数の値を用いて調整倍率507を設定することができない。このため、このような光量不足の状態に適用する調整倍率おいては、調整倍率507を所定の関数の値と異なる固定値(例えば、10倍等)で設定してもよい。   When the amount of received light obtained by the light receiving unit 20 is within a predetermined range from the minimum value of the amount of received light set in the adjustment magnification table 500, the adjustment magnification 507 may be a fixed value different from the value of the predetermined function. . For example, when the received light amount obtained by the light receiving unit 20 is the minimum value of the received light amount set in the adjustment magnification table 500 or within a predetermined range from the minimum value, specifically, when the received light amount of No 501 is “0” The light receiving section 20 includes a state in which the light receiving waveform cannot be detected and the light amount is insufficient. In such a state of insufficient light amount, the amount of received light cannot be determined, so the adjustment magnification 507 cannot be set using the value of a predetermined function with the amount of received light as an argument. Therefore, as the adjustment magnification applied to such a state of insufficient light quantity, the adjustment magnification 507 may be set to a fixed value (for example, 10 times) different from the value of the predetermined function.

従来、受光量が最小値から所定の範囲内であるか否かに応じて処理を分岐させ、受光量が最小値から所定の範囲内である場合には調整倍率を10倍等の固定値として、受光量が最小値から所定の範囲内でない場合には、例えば数式(1)により調整倍率を算出していた。しかしながら、受光量に応じて処理を分岐させることとすると、演算負荷が増大してしまう。この点、本実施形態に係る光電センサ1では、上記構成によって、受光量の最小値から所定の範囲内の光量不足の場合、具体的には受光量が極端に少ない場合でも、判定部31は、別途光量不足に対する処理を設けて分岐させないで通常時と同様に調整倍率テーブルを参照し調整倍率を判定することができる。ひいては、光電センサ1は、調整倍率テーブルにより自由度の高い特性を持たせることができるため、光量不足時における感度調整収束時間を最適化できる。   Conventionally, the process is branched depending on whether the received light amount is within a predetermined range from the minimum value, and when the received light amount is within the predetermined range from the minimum value, the adjustment magnification is set to a fixed value such as 10 times. When the amount of received light is not within the predetermined range from the minimum value, the adjustment magnification is calculated by, for example, the mathematical expression (1). However, if the processing is branched according to the amount of received light, the calculation load will increase. In this respect, in the photoelectric sensor 1 according to the present embodiment, the determination unit 31 has the above-described configuration even when the amount of received light is insufficient within a predetermined range from the minimum value of the amount of received light, specifically, when the amount of received light is extremely small. The adjustment magnification can be determined by referring to the adjustment magnification table as in the normal state without separately providing a process for the insufficient light amount and branching. As a result, the photoelectric sensor 1 can be given a characteristic with a high degree of freedom by means of the adjustment magnification table, so that the sensitivity adjustment convergence time when the light quantity is insufficient can be optimized.

受光部20により得られた受光量が調整倍率テーブルに設定された受光量の最大値から所定の範囲内の場合、調整倍率507は、所定の関数の値と異なる固定値になってもよい。例えば、受光部20により得られた受光量が調整倍率テーブル500に設定された受光量の最大値又は最大値から所定の範囲内の場合、具体的にはNo501が「31」の受光量の場合、受光部20において受光波形が飽和している等の光量飽和の状態が含まれる。このような光量飽和の状態においては、受光量が判定できないため受光量を引数とする所定の関数の値を用いて調整倍率507を設定することができない。このため、このような光量飽和の状態に適用される調整倍率においては、調整倍率507を所定の関数の値と異なる固定値(例えば、0.1倍等)で設定してもよい。   When the amount of received light obtained by the light receiving unit 20 is within a predetermined range from the maximum value of the amount of received light set in the adjustment magnification table, the adjustment magnification 507 may be a fixed value different from the value of the predetermined function. For example, when the received light amount obtained by the light receiving unit 20 is the maximum value of the received light amount set in the adjustment magnification table 500 or within a predetermined range from the maximum value, specifically, when the received light amount of No 501 is “31” A state in which the light receiving waveform is saturated in the light receiving unit 20 is included. In such a light amount saturation state, since the received light amount cannot be determined, the adjustment magnification 507 cannot be set using the value of a predetermined function having the received light amount as an argument. Therefore, in the adjustment magnification applied to such a saturated light amount state, the adjustment magnification 507 may be set to a fixed value (eg, 0.1 times) different from the value of the predetermined function.

従来、受光量が最大値から所定の範囲内であるか否かに応じて処理を分岐させ、受光量が最大値から所定の範囲内である場合には調整倍率を0.1倍等の固定値として、受光量が最大値から所定の範囲内でない場合には、例えば数式(1)により調整倍率を算出していた。しかしながら、受光量に応じて処理を分岐させることとすると、演算負荷が増大してしまう。この点、本実施形態に係る光電センサ1では、上記構成によって、受光量の最大値から所定の範囲内の光量飽和の場合、判定部31は、別途光量飽和に対する処理を設けて分岐させないで通常時と同様に調整倍率テーブルを参照し調整倍率を判定することができる。ひいては、光電センサ1は、調整倍率テーブルにより自由度の高い特性を持たせることができるため、光量飽和時における感度調整収束時間を最適化できる。   Conventionally, processing is branched depending on whether the received light amount is within a predetermined range from the maximum value, and when the received light amount is within a predetermined range from the maximum value, the adjustment magnification is fixed to 0.1 times or the like. As the value, when the received light amount is not within the predetermined range from the maximum value, the adjustment magnification is calculated by, for example, the mathematical expression (1). However, if the processing is branched according to the amount of received light, the calculation load will increase. In this regard, in the photoelectric sensor 1 according to the present embodiment, with the above configuration, when the light amount saturation is within the predetermined range from the maximum value of the received light amount, the determination unit 31 does not perform branching by separately providing a process for the light amount saturation. The adjustment magnification can be determined by referring to the adjustment magnification table as in the case of the above. As a result, the photoelectric sensor 1 can be given a characteristic with a high degree of freedom by the adjustment magnification table, so that the sensitivity adjustment convergence time at the time of light amount saturation can be optimized.

再び図1を参照して説明を続ける。更新部32は、判定部31により判定された調整倍率に基づいて、第1パラメータ及び第2パラメータの少なくともいずれかを更新する。このような構成によれば、更新部32は、受光部により得られた受光量に応じた固定の調整倍率に基づいて、投光部で投光する光を指定する第1パラメータ及び/又は受光部の感度を指定する第2パラメータを更新することができる。このため、光電センサ1は、可変の除数を用いずにこれらのパラメータを更新し、受光部の受光量を予め定めた目標値に調整することができる。よって、光電センサ1は、可変の除数を用いずに感度調整することができ、演算コストを低減させることができる。   The description will be continued with reference to FIG. 1 again. The updating unit 32 updates at least one of the first parameter and the second parameter based on the adjustment magnification determined by the determining unit 31. According to such a configuration, the updating unit 32 uses the first parameter and / or the light receiving unit that specifies the light to be emitted by the light emitting unit, based on the fixed adjustment magnification corresponding to the light receiving amount obtained by the light receiving unit. A second parameter specifying the sensitivity of the part can be updated. Therefore, the photoelectric sensor 1 can update these parameters without using a variable divisor and adjust the amount of light received by the light receiving unit to a predetermined target value. Therefore, the photoelectric sensor 1 can adjust the sensitivity without using a variable divisor, and can reduce the calculation cost.

更新部32は、調整倍率が2のべき乗の整数の場合、第1パラメータ及び第2パラメータの少なくともいずれかに調整倍率を乗算した値を2のべき乗で除算して、当該除算した値をもって第1パラメータ及び第2パラメータの少なくともいずれかを更新してもよい。更新部32は、例えば、調整倍率が32倍された整数の場合、第1パラメータに当該調整倍率を乗算した後、5ビットシフトして第1パラメータ及び/又は第2パラメータを更新してもよい。   When the adjustment ratio is an integer power of 2, the updating unit 32 divides a value obtained by multiplying the adjustment ratio by at least one of the first parameter and the second parameter by a power of 2 and uses the divided value as the first value. At least one of the parameter and the second parameter may be updated. For example, when the adjustment ratio is an integer multiplied by 32, the updating unit 32 may update the first parameter and / or the second parameter by multiplying the first parameter by the adjustment ratio and then shifting by 5 bits. .

更新部32は、具体的には、次回の露光時間dを、次式(2)のように前回の露光時間cと、光電センサの受光部における受光量bに基づいて判定された調整倍率eと、2のべき乗の固定値fとを用いて求めてもよい。なお、この調整倍率eは、所定関数の値又は固定値の調整倍率507を予め2のべき乗倍した整数である調整倍率(整数)506の値を用いる。   Specifically, the updating unit 32 determines the next exposure time d as the adjustment magnification e determined based on the previous exposure time c and the light reception amount b in the light receiving unit of the photoelectric sensor as shown in the following equation (2). And a fixed value f of a power of 2 may be used. As the adjustment magnification e, the value of the adjustment magnification (integer) 506, which is an integer obtained by previously multiplying the value of a predetermined function or the fixed value of the adjustment magnification 507 by a power of 2, is used.

上記構成によれば、更新部32は、予め調整倍率を整数とすることで小数部分をなくした状態で乗算し、その後2のべき乗で除算する処理、すなわちビットシフト処理で元に戻すことができる。すなわち、除算する固定値を2のべき乗とすることで、固定値による除算はビットシフト処理で代用することができる。このため、更新部32は、第1パラメータ及び/又は第2パラメータの更新において、演算コストを削減することができる。   According to the above configuration, the updating unit 32 can restore the original value by the process of multiplying in a state where the fractional part is eliminated by setting the adjustment magnification to an integer in advance and then dividing by a power of 2, that is, the bit shift process. . That is, if the fixed value to be divided is a power of 2, the division by the fixed value can be substituted by the bit shift process. Therefore, the updating unit 32 can reduce the calculation cost in updating the first parameter and / or the second parameter.

更新部32は、感度調整では主として、露光時間を更新するが、露光時間の調整範囲を超える調整が必要な場合には、投光部10による投光強度又は受光部20の受光ゲイン(受光部20における増幅率)を更新してもよい。例えば、更新部32は、露光時間を下限値に設定しても受光量が飽和する場合には、投光強度や受光ゲインを下げ、露光時間を上限値に設定しても受光量が十分な強度にならない場合には、投光強度や受光ゲインを上げるよう更新してもよい。このような構成によれば、光電センサは、感度調整において、露光時間(投光期間及び/又は受光期間)、投光強度又は受光ゲインといった複数のパラメータによって様々な手段によって感度調整することができる。   The updating unit 32 mainly updates the exposure time in the sensitivity adjustment, but when the adjustment exceeding the adjustment range of the exposure time is necessary, the light emitting intensity of the light emitting unit 10 or the light receiving gain of the light receiving unit 20 (light receiving unit). The amplification factor in 20) may be updated. For example, if the received light amount is saturated even when the exposure time is set to the lower limit value, the update unit 32 lowers the light projection intensity and the received light gain, and sets the exposure time to the upper limit value to obtain a sufficient received light amount. When the intensity does not become high, the light emission intensity and the light receiving gain may be updated. With such a configuration, the photoelectric sensor can perform sensitivity adjustment by various means according to a plurality of parameters such as exposure time (light emitting period and / or light receiving period), light emitting intensity, or light receiving gain in sensitivity adjustment. .

記憶部40は、調整倍率テーブルを記憶する。また、記憶部40は、検出対象物までの距離の測定や感度調整に係る処理を実行させるプログラムを記憶してもよい。また、記憶部40は、光電センサ1と通信可能に接続されている。すなわち、記憶部40は、光電センサ1内の制御部30と通信可能に接続されていれば、光電センサ1内部に設けてもよいし、光電センサ1外部に設けてもよい。   The storage unit 40 stores an adjustment magnification table. In addition, the storage unit 40 may store a program that executes processing relating to measurement of the distance to the detection target and sensitivity adjustment. Further, the storage unit 40 is connected to the photoelectric sensor 1 so as to be able to communicate therewith. That is, the storage unit 40 may be provided inside the photoelectric sensor 1 or outside the photoelectric sensor 1 as long as the storage unit 40 is communicably connected to the control unit 30 inside the photoelectric sensor 1.

<2.動作例>
図4を用いて、本実施形態に係る光電センサ1の感度調整の動作例を説明する。本例では、光電センサ1の動作中常に感度処理を実行する例を用いて説明する。なお、他の例として、光電センサ1は、例えば、ユーザからの指示によりの手動で感度調整処理を開始/終了してもよいし、検出された受光量が目標値の所定の範囲内であった場合、自動で感度調整処理を終了してもよい。
<2. Operation example>
An operation example of sensitivity adjustment of the photoelectric sensor 1 according to the present embodiment will be described with reference to FIG. In this example, an example in which the sensitivity process is always executed during the operation of the photoelectric sensor 1 will be described. Note that, as another example, the photoelectric sensor 1 may manually start / end the sensitivity adjustment process according to an instruction from the user, or the detected light receiving amount is within a predetermined range of the target value. If so, the sensitivity adjustment processing may be automatically terminated.

図4に示すように、投光部10は検出領域に第1パラメータで指定された光を投光する(S10)。受光部20は、当該検出領域から上記投光された光を第2パラメータで指定された感度で受光する(S11)。受光部20は、受光量分布中の最大ピークである受光量を検出する(S12)。   As shown in FIG. 4, the light projecting unit 10 projects the light designated by the first parameter onto the detection area (S10). The light receiving unit 20 receives the light projected from the detection area with the sensitivity specified by the second parameter (S11). The light receiving unit 20 detects the light receiving amount which is the maximum peak in the light receiving amount distribution (S12).

判定部31は、受光部20により得られた受光量に基づいて、調整倍率テーブルを参照し、調整倍率を判定する(S13)。更新部32は、当該判定された調整倍率に基づいて、第1パラメータ及び第2パラメータの少なくともいずれかを更新する(S14)。光電センサ1は、電源がOFFの場合(S15のYes)、感度調整処理を終了する。光電センサ1は、電源がONの場合(S15のNo)、ステップS10の前まで戻り、更新された第1パラメータ及び/又は第2パラメータによって再度感度調整処理を行う。   The determination unit 31 determines the adjustment magnification by referring to the adjustment magnification table based on the amount of light received by the light receiving unit 20 (S13). The updating unit 32 updates at least one of the first parameter and the second parameter based on the determined adjustment magnification (S14). The photoelectric sensor 1 ends the sensitivity adjustment process when the power is off (Yes in S15). When the power source is ON (No in S15), the photoelectric sensor 1 returns to the state before step S10, and performs the sensitivity adjustment process again with the updated first parameter and / or second parameter.

以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。   The embodiments described above are for facilitating the understanding of the present invention and are not for limiting the interpretation of the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size and the like are not limited to the exemplified ones and can be appropriately changed. Further, the configurations shown in different embodiments can be partially replaced or combined.

本実施形態の一部又は全部は、以下の附記のようにも記載されうるが、以下には限られない。   The whole or part of the exemplary embodiment can be described as, but not limited to, the following supplementary notes.

[附記]
検出領域に第1パラメータで指定された光を投光する投光部(10)と、
前記検出領域から前記光を第2パラメータで指定された感度で受光する受光部(20)と、
前記受光部(20)により得られた受光量に基づいて、前記受光部(20)の受光量と、当該受光量を予め定めた目標値に調整するための調整倍率と、を対応付ける調整倍率テーブル(500)を参照し、前記調整倍率を判定する判定部(31)と、
前記判定された調整倍率に基づいて、前記第1パラメータ及び前記第2パラメータの少なくともいずれかを更新する更新部(32)と、を備え、
前記調整倍率テーブル(500)を記憶する記憶部(40)と通信可能に接続されている、
光電センサ(1)。
[Appendix]
A light projecting section (10) for projecting the light designated by the first parameter to the detection region;
A light receiving section (20) for receiving the light from the detection region with a sensitivity designated by a second parameter,
Based on the amount of light received by the light receiving unit (20), an adjustment magnification table that associates the amount of light received by the light receiving unit (20) with an adjustment magnification for adjusting the amount of light received to a predetermined target value. A determination unit (31) for determining the adjustment magnification with reference to (500),
An update unit (32) for updating at least one of the first parameter and the second parameter based on the determined adjustment magnification,
Connected to a storage unit (40) that stores the adjustment magnification table (500) in a communicable manner,
Photoelectric sensor (1).

1…光電センサ、10…投光部、11…投光素子、12…投光制御回路、20…受光部、21…受光素子、22…信号処理回路、23…A/D変換回路、30…制御部、31…判定部、32…更新部、40…記憶部   DESCRIPTION OF SYMBOLS 1 ... Photoelectric sensor, 10 ... Emitting part, 11 ... Emitting element, 12 ... Emitting control circuit, 20 ... Light receiving part, 21 ... Light receiving element, 22 ... Signal processing circuit, 23 ... A / D conversion circuit, 30 ... Control unit, 31 ... Judgment unit, 32 ... Update unit, 40 ... Storage unit

Claims (7)

検出領域に第1パラメータで指定された光を投光する投光部と、
前記検出領域から前記光を第2パラメータで指定された感度で受光する受光部と、
前記受光部により得られた受光量に基づいて、前記受光部の受光量と当該受光量を予め定めた目標値に調整するための調整倍率とを対応付ける調整倍率テーブルを参照し、前記調整倍率を判定する判定部と、
前記判定された調整倍率に基づいて、前記第1パラメータ及び前記第2パラメータの少なくともいずれかを更新する更新部と、を備え、
前記調整倍率テーブルを記憶する記憶部と通信可能に接続されている、
光電センサ。
A light projecting unit for projecting the light designated by the first parameter to the detection region;
A light-receiving unit that receives the light from the detection region with a sensitivity specified by a second parameter,
On the basis of the amount of light received by the light receiving unit, the adjustment magnification is referred to by referring to an adjustment magnification table that associates the amount of light received by the light receiving unit with an adjustment magnification for adjusting the amount of light received to a predetermined target value. A determination unit for determining,
An updating unit that updates at least one of the first parameter and the second parameter based on the determined adjustment magnification,
A storage unit that stores the adjustment magnification table is communicably connected to the storage unit.
Photoelectric sensor.
前記第1パラメータは、前記投光部の投光に適用される投光期間及び前記投光部による投光強度の少なくともいずれかを含み、
前記第2パラメータは、前記受光部の受光に適用される受光期間及び前記受光部の受光ゲインの少なくともいずれかを含む、
請求項1に記載の光電センサ。
The first parameter includes at least one of a light projection period applied to the light projection of the light projection unit and a light projection intensity by the light projection unit,
The second parameter includes at least one of a light receiving period applied to light reception of the light receiving unit and a light receiving gain of the light receiving unit,
The photoelectric sensor according to claim 1.
前記調整倍率は、前記受光部の受光量を引数とする所定の関数の値である、
請求項1又は2に記載の光電センサ。
The adjustment magnification is a value of a predetermined function with the light receiving amount of the light receiving unit as an argument,
The photoelectric sensor according to claim 1.
前記受光部により得られた受光量が前記調整倍率テーブルに設定された受光量の最小値から所定の範囲内の場合、前記調整倍率は、前記所定の関数の値と異なる固定値になっている、
請求項3に記載の光電センサ。
When the amount of received light obtained by the light receiving unit is within a predetermined range from the minimum value of the amount of received light set in the adjustment magnification table, the adjustment magnification is a fixed value different from the value of the predetermined function. ,
The photoelectric sensor according to claim 3.
前記受光部により得られた受光量が前記調整倍率テーブルに設定された受光量の最大値から所定の範囲内の場合、前記調整倍率は、前記所定の関数の値と異なる固定値になっている、
請求項3又は4に記載の光電センサ。
When the amount of received light obtained by the light receiving unit is within a predetermined range from the maximum value of the amount of received light set in the adjustment magnification table, the adjustment magnification is a fixed value different from the value of the predetermined function. ,
The photoelectric sensor according to claim 3 or 4.
前記調整倍率は、2のべき乗の整数であり、
前記更新部は、前記第1パラメータ及び前記第2パラメータの少なくともいずれかに前記調整倍率を乗算した値を2のべき乗で除算して、前記除算した値をもって前記第1パラメータ及び前記第2パラメータの少なくともいずれかを更新する、
請求項1から5のいずれか一項に記載の光電センサ。
The adjustment ratio is an integer power of 2,
The update unit divides a value obtained by multiplying at least one of the first parameter and the second parameter by the adjustment scale factor by a power of 2, and uses the divided value as a value of the first parameter and the second parameter. Update at least one,
The photoelectric sensor according to any one of claims 1 to 5.
前記受光部の受光素子はCMOSセンサ素子であり、
前記光電センサは、三角測距方式を用いた測距センサである。
請求項1から6のいずれか一項に記載の光電センサ。
The light receiving element of the light receiving unit is a CMOS sensor element,
The photoelectric sensor is a distance measuring sensor using a triangular distance measuring method.
The photoelectric sensor according to any one of claims 1 to 6.
JP2018200240A 2018-10-24 2018-10-24 Photoelectronic sensor Pending JP2020067373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200240A JP2020067373A (en) 2018-10-24 2018-10-24 Photoelectronic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200240A JP2020067373A (en) 2018-10-24 2018-10-24 Photoelectronic sensor

Publications (1)

Publication Number Publication Date
JP2020067373A true JP2020067373A (en) 2020-04-30

Family

ID=70390129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200240A Pending JP2020067373A (en) 2018-10-24 2018-10-24 Photoelectronic sensor

Country Status (1)

Country Link
JP (1) JP2020067373A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106608A (en) * 2003-09-30 2005-04-21 Omron Corp Multiple optical axis photoelectric sensor
JP2011215037A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Sunx Co Ltd Displacement sensor
JP2013190378A (en) * 2012-03-15 2013-09-26 Omron Corp Optical sensor and setting method for sensitivity adjustment control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106608A (en) * 2003-09-30 2005-04-21 Omron Corp Multiple optical axis photoelectric sensor
JP2011215037A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Sunx Co Ltd Displacement sensor
JP2013190378A (en) * 2012-03-15 2013-09-26 Omron Corp Optical sensor and setting method for sensitivity adjustment control

Similar Documents

Publication Publication Date Title
US7751065B2 (en) Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program
JP6424338B2 (en) Ranging device
US7489410B2 (en) Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program
JP5056780B2 (en) Image processing device
CN109212538A (en) Flight time depth map with parallax compensation
JP2009192499A (en) Apparatus for generating distance image
JP4321540B2 (en) Object detection device
US5987261A (en) Strobe device
JP2012168049A (en) Distance image generation device and method
KR20190030027A (en) LiDAR apparatus and method of operating LiDAR apparatus
US11333765B2 (en) Distance measuring device and method
JP2015087244A (en) Image processor and image processing method
JP2020067373A (en) Photoelectronic sensor
JP2007139494A (en) Photoelectric sensor
JP5560766B2 (en) Image processing apparatus, imaging apparatus, and program
CN109905610B (en) Exposure time adjusting method of optical ranging system
WO2011074614A1 (en) Millimeter wave image pickup device, millimeter wave image pickup system and program
WO2020148868A1 (en) Information processing device, information processing method, and information processing program
US20230243974A1 (en) Method And Device For The Dynamic Extension of a Time-of-Flight Camera System
CN110476130B (en) Measurement system and method for performing time-of-flight measurements
WO2024101195A1 (en) Three-dimensional shape measurement device and three-dimensional shape measurement method
JP2012199804A (en) Image processor and image processing method
JPWO2017072837A1 (en) Optical scanning endoscope apparatus and control method of optical scanning endoscope apparatus
JP7390216B2 (en) Sampling circuit and laser scanning microscope
JP7407021B2 (en) Distance detection device, distance detection method, distance image generation device, distance image generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221216