JP2020066772A - Spheroidal graphite cast iron - Google Patents

Spheroidal graphite cast iron Download PDF

Info

Publication number
JP2020066772A
JP2020066772A JP2018200109A JP2018200109A JP2020066772A JP 2020066772 A JP2020066772 A JP 2020066772A JP 2018200109 A JP2018200109 A JP 2018200109A JP 2018200109 A JP2018200109 A JP 2018200109A JP 2020066772 A JP2020066772 A JP 2020066772A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
mass
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200109A
Other languages
Japanese (ja)
Inventor
水野 慎也
Shinya Mizuno
慎也 水野
皇太 吉田
Kota Yoshida
皇太 吉田
平田 耕一
Koichi Hirata
耕一 平田
友克 松尾
Tomokatsu Matsuo
友克 松尾
駿 伊熊
Shun Ikuma
駿 伊熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Production Engineering Corp
Original Assignee
Toyota Motor Corp
Toyota Production Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Production Engineering Corp filed Critical Toyota Motor Corp
Priority to JP2018200109A priority Critical patent/JP2020066772A/en
Publication of JP2020066772A publication Critical patent/JP2020066772A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

To provide a spheroidal graphite cast iron showing more excellent strength and ductility than an existing spheroidal graphite cast iron by improving the ratio in an elemental composition to be blended with the spheroidal graphite cast iron.SOLUTION: In a composition containing C:3.70-4.10 mass%, Si:1.40-2.00 mass%, Mn:0.30 mass% or less, Cu:0.30-0.51 mass%, Mg:0.027-0.045 mass%, S:0.006-0.009 mass%, P:0.015-0.021 mass% and Cr:0.06 mass% or less, and having a residue comprising Fe and inevitable impurities, a tensile strength of the composition is 600 MPa or more, an elongation of the composition is 5% or more, and an impact value of the composition at a room temperature and at -40°C is 6 J/cmor more.SELECTED DRAWING: Figure 7

Description

本発明は、球状黒鉛鋳鉄に関し、特に球状の黒鉛を含有することにより強度と延性を両立させた鋳鉄に関する。   TECHNICAL FIELD The present invention relates to spheroidal graphite cast iron, and particularly to cast iron having both strength and ductility by containing spherical graphite.

自動車等の燃費向上、炭酸ガス削減等のため、車体部品の軽量化がこれまでにも増して一段と求められている。車体部品の軽量化に際し、鉄の鋳造品に代えてアルミニウム合金、マグネシウム合金等の軽金属材料の使用も検討されている。   In order to improve fuel efficiency of automobiles and reduce carbon dioxide gas, weight reduction of body parts is required more than ever. When reducing the weight of vehicle body parts, the use of light metal materials such as aluminum alloys and magnesium alloys is being considered in place of iron castings.

しかしながら、アルミニウム合金、マグネシウム合金の場合、鋳鉄と比較して曲げ性(ヤング率)は低い。このため、自動車の車体のサスペンション、車輪軸と車体の接続箇所等の足廻り等に関連する部品に前記の軽金属材料を適用する場合、部品自体の剛性を確保するために当該部品の断面積を大きくする必要がある。それゆえ、軽金属材料の使用であっても十分な軽量化を達成していなかった。加えて、軽金属材料は高価であることから車体部品としての使用範囲は限定的である。   However, aluminum alloys and magnesium alloys have lower bendability (Young's modulus) than cast iron. Therefore, when applying the above-mentioned light metal material to parts related to the suspension of the automobile body, suspension parts such as connection points between the wheel shaft and the vehicle body, etc., in order to secure the rigidity of the part itself, the cross-sectional area of the part should be changed. Need to be bigger. Therefore, even if a light metal material is used, sufficient weight reduction has not been achieved. In addition, since the light metal material is expensive, its use range as a vehicle body component is limited.

次に、金属板を加工して車体の足廻り関連の部品を製造する場合、軽量化は実現できるとしても、板金の加工、成形に伴う制限から所望の部品形状に仕上げることは難しい。さらに、複数の部品を組み合わせて溶接等により接合するため、接合部位の強度低下、部品数の増加が避けられない。ゆえに、足廻り等に関連する部品を板金加工により製造することは現実的ではない。   Next, when the metal plate is processed to manufacture the parts related to the underbody of the vehicle body, even if the weight can be reduced, it is difficult to finish the desired shape of the part due to the restrictions associated with the processing and forming of the sheet metal. Furthermore, since a plurality of parts are combined and joined by welding or the like, it is inevitable that the strength of the joining part is reduced and the number of parts is increased. Therefore, it is not realistic to manufacture parts related to the underbody etc. by sheet metal working.

この点を踏まえ、現状、鋳鉄の軽量化として球状黒鉛を含有した球状黒鉛鋳鉄(ダクタイル鋳鉄)が車体の足廻り関連をはじめとする部品として広範に使用されている(特許文献1、2、3、4等参照)。   In light of this point, at present, spheroidal graphite cast iron (ductile cast iron) containing spheroidal graphite is widely used as a part for weight reduction of cast iron as parts related to underbody of a vehicle body (Patent Documents 1, 2, 3). 4)).

現状、自動車車体の足廻り等に関連する部品用の球状黒鉛鋳鉄として、JIS G 5502(2007)に準拠のFCD400材(引張強度が400MPa)、FCD450材(引張強度が450MPa)等が多用されている。さらに、球状黒鉛鋳鉄を使用した部品の軽量化を図るべく、FCD500材(引張強度が500MPa)、FCD600材(引張強度が600MPa)が使用されている。この結果、部品の断面積は縮小し軽量化は可能である。   At present, as spheroidal graphite cast iron for parts related to underbody of automobile body, FCD400 material (tensile strength 400 MPa) and FCD450 material (tensile strength 450 MPa) conforming to JIS G 5502 (2007) are widely used. There is. Furthermore, FCD500 material (tensile strength is 500 MPa) and FCD600 material (tensile strength is 600 MPa) are used in order to reduce the weight of parts using spheroidal graphite cast iron. As a result, the cross-sectional area of the component is reduced and the weight can be reduced.

しかしながら、自動車車体の足廻り等に関連する部品へ球状黒鉛鋳鉄を適用する場合、自動車の走行条件等を鑑みると、これらの部品は、−40℃等の低温環境、走行時の負荷等が加わる極めて過酷な条件に晒される。従って、軽量化の要請とともに、より強度及び延性を高めた球状黒鉛鋳鉄が求められている。   However, when spheroidal graphite cast iron is applied to parts related to the underbody of an automobile body, these parts are subject to a low temperature environment such as −40 ° C. and a load during running in view of the running conditions of the vehicle. Exposed to extremely harsh conditions. Therefore, along with the demand for weight reduction, there is a demand for spheroidal graphite cast iron having higher strength and ductility.

特開2002−194479号公報JP, 2002-194479, A 特開2004−232008号公報JP, 2004-232008, A 特開2014−181356号公報JP, 2014-181356, A 特開2015−10255号公報JP, 2005-10255, A

発明者らは、球状黒鉛鋳鉄の強度及び延性を改善するべく球状黒鉛鋳鉄の組成について鋭意検討を重ねた結果、従前の球状黒鉛鋳鉄よりも優れた強度及び延性を発揮する組成を見出すに至った。   The inventors have conducted intensive studies on the composition of spheroidal graphite cast iron in order to improve the strength and ductility of spheroidal graphite cast iron, and as a result, have found a composition that exhibits superior strength and ductility to the conventional spheroidal graphite cast iron. .

本発明は前記の点に鑑みなされたものであり、球状黒鉛鋳鉄に配合される元素組成の割合を改良することにより、既存の球状黒鉛鋳鉄よりも優れた強度及び延性を発揮する球状黒鉛鋳鉄を提供する。   The present invention has been made in view of the above points, by improving the ratio of the elemental composition to be blended in spheroidal graphite cast iron, spheroidal graphite cast iron that exhibits superior strength and ductility over existing spheroidal graphite cast iron. provide.

すなわち、本発明の第1の形態は、C:3.70〜4.10質量%、Si:1.40〜2.00質量%、Mn:0.30質量%以下、Cu:0.30〜0.51質量%、Mg:0.027〜0.045質量%、S:0.006〜0.009質量%、P:0.015〜0.021質量%、Cr:0.06質量%以下を含有し、残部がFe及び不可避的不純物からなる組成物であることを特徴とする球状黒鉛鋳鉄に係る。   That is, the 1st form of this invention is C: 3.70-4.10 mass%, Si: 1.40-2.00 mass%, Mn: 0.30 mass% or less, Cu: 0.30- 0.51% by mass, Mg: 0.027 to 0.045% by mass, S: 0.006 to 0.009% by mass, P: 0.015 to 0.021% by mass, Cr: 0.06% by mass or less The present invention relates to spheroidal graphite cast iron, characterized in that it is a composition containing Fe, and the balance being Fe and inevitable impurities.

第2の形態は、前記組成物におけるCuの含有が、Cu:0.45〜0.51質量%である第1の形態に記載の球状黒鉛鋳鉄に係る。   A second aspect relates to the spheroidal graphite cast iron according to the first aspect, in which the content of Cu in the composition is Cu: 0.45 to 0.51 mass%.

第3の形態は、前記組成物の引張強度が600MPa以上、かつ、前記組成物の伸びが5%以上である第1または2の形態に記載の球状黒鉛鋳鉄に係る。   A third aspect relates to the spheroidal graphite cast iron according to the first or second aspect, wherein the composition has a tensile strength of 600 MPa or more and the composition has an elongation of 5% or more.

第4の形態は、常温及び−40℃における前記組成物の衝撃値が6J/cm以上である第1ないし3のいずれかの形態に記載の球状黒鉛鋳鉄に係る。 A fourth aspect relates to the spheroidal graphite cast iron according to any one of the first to third aspects, wherein the impact value of the composition at room temperature and −40 ° C. is 6 J / cm 2 or more.

第5の形態は、前記組成物の−30℃におけるビッカース硬さが170kgf/mm以上である第1ないし4のいずれかの形態に記載の球状黒鉛鋳鉄に係る。 A fifth aspect relates to the spheroidal graphite cast iron according to any one of the first to fourth aspects, wherein the composition has a Vickers hardness at −30 ° C. of 170 kgf / mm 2 or more.

第6の形態は、前記組成物が車体材料に使用される第1ないし5のいずれかの形態に記載の球状黒鉛鋳鉄に係る。   A sixth aspect relates to the spheroidal graphite cast iron according to any one of the first to fifth aspects, in which the composition is used as a vehicle body material.

本発明の球状黒鉛鋳鉄によると、C:3.70〜4.10質量%、Si:1.40〜2.00質量%、Mn:0.30質量%以下、Cu:0.30〜0.51質量%、Mg:0.027〜0.045質量%、S:0.006〜0.009質量%、P:0.015〜0.021質量%、Cr:0.06質量%以下を含有し、残部がFe及び不可避的不純物からなる組成物とすることにより、既存の球状黒鉛鋳鉄よりも優れた強度及び延性を発揮する。特に低温下における物性が向上する。   According to the spheroidal graphite cast iron of the present invention, C: 3.70 to 4.10 mass%, Si: 1.40 to 2.00 mass%, Mn: 0.30 mass% or less, Cu: 0.30 to 0. 51% by mass, Mg: 0.027 to 0.045% by mass, S: 0.006 to 0.009% by mass, P: 0.015 to 0.021% by mass, Cr: 0.06% by mass or less However, by using a composition in which the balance is Fe and inevitable impurities, strength and ductility superior to those of the existing spheroidal graphite cast iron are exhibited. Physical properties are improved especially at low temperatures.

試作例3の球状黒鉛鋳鉄の断面写真である。4 is a cross-sectional photograph of spheroidal graphite cast iron of Prototype Example 3. 試作例9の球状黒鉛鋳鉄の断面写真である。9 is a photograph of a cross section of spheroidal graphite cast iron of Prototype Example 9. 試作例11の球状黒鉛鋳鉄の断面写真である。9 is a cross-sectional photograph of spheroidal graphite cast iron of Prototype Example 11. 試作例14の球状黒鉛鋳鉄の断面写真である。16 is a photograph of a cross section of spheroidal graphite cast iron of Prototype Example 14. 試作例18の球状黒鉛鋳鉄の断面写真である。20 is a photograph of a cross section of spheroidal graphite cast iron of Prototype Example 18. 試作例25の球状黒鉛鋳鉄の断面写真である。It is a photograph of a cross section of spheroidal graphite cast iron of Prototype Example 25. 硬さと引張強さ等との関係を示すグラフである。It is a graph which shows the relationship between hardness and tensile strength. 温度と衝撃値との関係を示すグラフである。It is a graph which shows the relationship between temperature and an impact value. 硬さと衝撃値との関係を示すグラフである。It is a graph which shows the relationship between hardness and an impact value.

本発明の説明、実施例において配合割合を示すパーセント(%)は「質量パーセント」である。本発明の球状黒鉛鋳鉄について、はじめに組成元素から説明する。球状黒鉛鋳鉄の好ましい組成は、C:3.70ないし4.10質量%、Si:1.40ないし2.00質量%、Mn:0.30質量%以下、S:0.006ないし0.009質量%、Cu:0.30ないし0.51質量%、Mg:0.027ないし0.045質量%、P:0.015ないし0.021質量%、Cr:0.06質量%以下を含有し、残部がFe及び不可避的不純物からなる組成物である。特に、本発明の球状黒鉛鋳鉄の特徴は、従前の球状黒鉛鋳鉄と比較して積極的にSiの量を抑制するとともにCuの量を増加させた組成である。   In the description and examples of the present invention, the percentage (%) indicating the blending ratio is “mass percentage”. The spheroidal graphite cast iron of the present invention will be described first from the composition elements. The preferred composition of spheroidal graphite cast iron is C: 3.70 to 4.10 mass%, Si: 1.40 to 2.00 mass%, Mn: 0.30 mass% or less, S: 0.006 to 0.009. % By weight, Cu: 0.30 to 0.51% by weight, Mg: 0.027 to 0.045% by weight, P: 0.015 to 0.021% by weight, Cr: 0.06% by weight or less. The balance is a composition containing Fe and inevitable impurities. In particular, the feature of the spheroidal graphite cast iron of the present invention is a composition in which the amount of Si is positively suppressed and the amount of Cu is increased as compared with the conventional spheroidal graphite cast iron.

C(炭素)は黒鉛組織を形成する元素である。Cは球状黒鉛鋳鉄の全質量において好ましくは3.7ないし4.10質量%の範囲の含有である。Cの含有量が3.7質量%よりも少ない場合、球状黒鉛鋳鉄の黒鉛粒子は相対的に減少しパーライト組織が球状黒鉛鋳鉄中に多くなる。結果、強度は向上するものの、伸び及び衝撃値は低下する。Cの含有量が4.10質量%を超える場合、黒鉛の粒子が大きくなり球状化が阻害されやすくなる。そのため、Cは3.70ないし4.10質量%の範囲の含有であり、より好ましくは、3.80ないし4.10質量%の範囲の含有である。   C (carbon) is an element that forms a graphite structure. C is preferably contained in the range of 3.7 to 4.10 mass% in the total mass of the spheroidal graphite cast iron. When the C content is less than 3.7% by mass, the graphite particles of the spheroidal graphite cast iron are relatively reduced and the pearlite structure is increased in the spheroidal graphite cast iron. As a result, the strength is improved, but the elongation and impact value are decreased. If the C content exceeds 4.10% by mass, the graphite particles become large and the spheroidization tends to be impeded. Therefore, C is contained in the range of 3.70 to 4.10% by mass, and more preferably in the range of 3.80 to 4.10% by mass.

Si(ケイ素)は黒鉛の晶出を促進する元素である。Siは球状黒鉛鋳鉄の全質量において好ましくは1.40ないし2.00質量%の範囲の含有である。Siの含有量が1.40質量%未満の場合、球状黒鉛鋳鉄の伸びは向上するものの強度低下が否めない。Siの含有量が2.00質量%を超える場合、衝撃値は低下しやすくなる。そのため、Siは1.40ないし2.00質量%の範囲の含有である。Siの当該含有量は、従前のFCD500材(JIS G 5502(2007)に準拠)等の球状黒鉛鋳鉄におけるSi量よりも相対的に少ない含有量である。   Si (silicon) is an element that promotes crystallization of graphite. Si is preferably contained in the range of 1.40 to 2.00 mass% with respect to the total mass of the spheroidal graphite cast iron. When the Si content is less than 1.40% by mass, the elongation of the spheroidal graphite cast iron is improved, but the strength is undeniably reduced. When the Si content exceeds 2.00 mass%, the impact value tends to decrease. Therefore, Si is contained in the range of 1.40 to 2.00 mass%. The content of Si is a content relatively smaller than the content of Si in conventional spheroidal graphite cast iron such as FCD500 material (based on JIS G 5502 (2007)).

Mn(マンガン)は球状黒鉛鋳鉄中のパーライト組織を安定化させる元素である。Mnは球状黒鉛鋳鉄の全質量において好ましくは0.30質量%以下の含有である。Mnの含有量が0.15質量%未満の場合、強度低下が否めない。Mnの含有量が0.30質量%を超過する場合、パーライト組織が多くなり、伸び及び衝撃値は低下する。そのため、Mnは0.30質量%以下、より好ましくは、0.25質量%以下の含有である。   Mn (manganese) is an element that stabilizes the pearlite structure in spheroidal graphite cast iron. The Mn content is preferably 0.30 mass% or less in the total mass of the spheroidal graphite cast iron. If the Mn content is less than 0.15% by mass, strength reduction cannot be denied. When the Mn content exceeds 0.30 mass%, the pearlite structure increases and the elongation and impact value decrease. Therefore, the Mn content is 0.30 mass% or less, and more preferably 0.25 mass% or less.

Cu(銅)は球状黒鉛鋳鉄中のパーライト組織を安定化させる元素である。Cuの含有量の増加に伴い球状黒鉛鋳鉄中のパーライト組織の割合も増加して強度向上に寄与する。そこで、Cuは球状黒鉛鋳鉄の全質量において好ましくは0.30ないし0.51質量%の含有である。本発明は強度及び延性の向上を目的としてCuの含有量を増やしている。そのため、Cuの含有量が0.30質量%未満の場合、所望の強度を充足しない。Cuの含有量が0.51質量%を超える場合、パーライト組織が過剰となり、伸び及び衝撃値の低下が生じやすくなる。そこで、双方の性質の均衡からCuは0.30ないし0.51質量%の含有であり、より好ましくは、0.45ないし0.51質量%、さらにより好ましくは、0.47ないし0.51質量%の含有である。Cuの当該含有量は、従前のFCD500材(JIS G 5502(2007)に準拠)等の球状黒鉛鋳鉄におけるCu量を上回る含有量である。従来の球状黒鉛鋳鉄において、硬さ(ビッカース硬さ:Hv)を向上させるためには、熱処理を行っていた。これに対し、本発明のようにCuの含有量を増加させることにより、鋳放し状態で硬さを向上させることが可能となった。   Cu (copper) is an element that stabilizes the pearlite structure in spheroidal graphite cast iron. As the Cu content increases, the proportion of the pearlite structure in the spheroidal graphite cast iron also increases and contributes to the strength improvement. Therefore, the Cu content is preferably 0.30 to 0.51% by mass based on the total mass of the spheroidal graphite cast iron. The present invention increases the Cu content for the purpose of improving strength and ductility. Therefore, if the Cu content is less than 0.30% by mass, the desired strength is not satisfied. When the content of Cu exceeds 0.51% by mass, the pearlite structure becomes excessive and the elongation and the reduction of impact value are likely to occur. Therefore, from the balance of both properties, the Cu content is 0.30 to 0.51% by mass, more preferably 0.45 to 0.51% by mass, and even more preferably 0.47 to 0.51% by mass. The content is% by mass. The Cu content is higher than the Cu content in conventional spheroidal graphite cast iron such as FCD500 material (based on JIS G 5502 (2007)). In the conventional spheroidal graphite cast iron, heat treatment is performed in order to improve the hardness (Vickers hardness: Hv). On the other hand, by increasing the Cu content as in the present invention, it became possible to improve the hardness in the as-cast state.

Mg(マクネシウム)は球状黒鉛鋳鉄中の黒鉛の球状化に寄与する元素である。Mgは球状黒鉛鋳鉄の全質量において好ましくは0.027ないし0.045質量%の範囲の含有である。Mgの含有量が0.027質量%未満の場合、黒鉛の球状化率が低下して、球状黒鉛鋳鉄の強度及び伸びが低下する。Mgの含有量が0.045質量%を超える場合、炭化物が析出しやすくなり球状黒鉛鋳鉄の伸び及び衝撃値を押し下げることになる。そのため、Mgは0.027ないし0.045質量%の範囲の含有である。   Mg (magnesium) is an element that contributes to the spheroidization of graphite in spheroidal graphite cast iron. Mg is preferably contained in the range of 0.027 to 0.045 mass% in the total mass of the spheroidal graphite cast iron. When the content of Mg is less than 0.027% by mass, the spheroidization rate of graphite decreases, and the strength and elongation of spheroidal graphite cast iron decrease. If the Mg content exceeds 0.045 mass%, carbides are likely to precipitate and the elongation and impact value of spheroidal graphite cast iron are reduced. Therefore, Mg is contained in the range of 0.027 to 0.045 mass%.

S(硫黄)は球状黒鉛鋳鉄中の黒鉛粒の数を制御する元素である。Sは球状黒鉛鋳鉄の全質量において好ましくは0.006ないし0.009質量%の範囲の含有である。Sの含有量が0.006質量%未満の場合、黒鉛粒が減少してパーライト組織が多くなる。そのため、球状黒鉛鋳鉄の伸び及び衝撃値が低下する。Sの含有量が0.009質量%を超える場合、黒鉛化が阻害されて黒鉛の球状化率も低下する。従って、球状黒鉛鋳鉄の伸び及び衝撃値が低下する。そのため、Sは0.006ないし0.009質量%の範囲の含有である。   S (sulfur) is an element that controls the number of graphite particles in spheroidal graphite cast iron. S is preferably contained in the range of 0.006 to 0.009 mass% in the total mass of the spheroidal graphite cast iron. If the S content is less than 0.006% by mass, the graphite particles are reduced and the pearlite structure is increased. Therefore, the elongation and impact value of spheroidal graphite cast iron decrease. When the content of S exceeds 0.009 mass%, graphitization is hindered and the spheroidization rate of graphite also decreases. Therefore, the elongation and impact value of spheroidal graphite cast iron decrease. Therefore, S is contained in the range of 0.006 to 0.009 mass%.

P(リン)は球状黒鉛鋳鉄の製造時に由来する元素である。Pは球状黒鉛鋳鉄の全質量において好ましくは0.015ないし0.021質量%の範囲の含有に抑制される。Pの含有量の増加に伴いステダイト(リン共晶)が生じる。ステダイトが増加すると、球状黒鉛鋳鉄の伸び及び衝撃値は低下する。よって、Pの混入を極力避けるべきであることから、不可避的な混入を除外してPは0.015ないし0.021質量%の範囲の含有である。   P (phosphorus) is an element derived during the production of spheroidal graphite cast iron. P is preferably contained in the range of 0.015 to 0.021 mass% in the total mass of the spheroidal graphite cast iron. As the P content increases, steadite (phosphorus eutectic) occurs. As steadite increases, the elongation and impact value of spheroidal graphite cast iron decrease. Therefore, since the inclusion of P should be avoided as much as possible, P is contained in the range of 0.015 to 0.021 mass% excluding unavoidable inclusion.

Cr(クロム)は主に球状黒鉛鋳鉄の製造時の原料鉄等に由来する元素である。原料鉄には、屑鉄、ステンレス鋼等の各種の原料鉄も含められる。そのため、これらの鉄製品中にCrも含有されているため、最終的に球状黒鉛鋳鉄にも包含され得る。Crの含有量が0.1質量%を超える場合、炭化物が析出しやすくなる。そのため、析出抑制の観点からCrの含有量は0.06質量%以下の含有に抑制される。   Cr (chromium) is an element mainly derived from the raw material iron and the like during the production of spheroidal graphite cast iron. The raw material iron includes various raw material iron such as scrap iron and stainless steel. Therefore, since Cr is also contained in these iron products, it can be finally included in the spheroidal graphite cast iron. If the Cr content exceeds 0.1% by mass, carbides tend to precipitate. Therefore, from the viewpoint of suppressing precipitation, the Cr content is suppressed to 0.06 mass% or less.

球状黒鉛鋳鉄における残りの成分は自明ながらFe(鉄)である。さらに、球状黒鉛鋳鉄の原料鉄の調達に際し、純鉄に加えて屑鉄、ステンレス鋼等の各種の原料鉄も含められる。従って、Fe以外の前述の元素の他に、各種の不可避的不純物の混入も生じる。不可避的不純物は、例えば、Al(アルミニウム)、Ce(セリウム)、Zn(亜鉛)、Sn(錫)等である。不可避的不純物の量は前述の各種元素よりも十分に微量であり検出限界であるため具体的な数量の規定はできない。   The remaining component in spheroidal graphite cast iron is Fe (iron), as is obvious. Furthermore, when procuring raw iron for spheroidal graphite cast iron, various raw iron such as scrap iron and stainless steel can be included in addition to pure iron. Therefore, in addition to the above-mentioned elements other than Fe, various unavoidable impurities are mixed. The unavoidable impurities are, for example, Al (aluminum), Ce (cerium), Zn (zinc), Sn (tin), and the like. Since the amount of unavoidable impurities is much smaller than the above-mentioned various elements and the detection limit, it is not possible to specify a specific amount.

球状黒鉛鋳鉄の製造は、既存の鋳造方法と同様である。公知の高周波電気炉等に原料となる原料鉄、球状化材、接種材が投入される。各種の元素がさらに追加されて均一に溶融され、成分は調整される。そして、溶融状態の溶湯が炉から取り出され含有成分の元素組成はスパーク放電発光分光分析等の方法により測定される。その後、所定の鋳型(計測用の試験片)に溶湯は流し込まれ、冷却を経て取り出される。こうして各成分に応じた球状黒鉛鋳鉄は出来上がる。   The production of spheroidal graphite cast iron is similar to existing casting methods. Raw iron, a spheroidizing material, and an inoculant, which are raw materials, are put into a known high-frequency electric furnace or the like. Various elements are further added and uniformly melted, and the components are adjusted. Then, the molten metal in the molten state is taken out of the furnace, and the elemental composition of the contained components is measured by a method such as spark discharge optical emission spectroscopy. Then, the molten metal is poured into a predetermined mold (test piece for measurement), cooled, and taken out. Thus, spheroidal graphite cast iron corresponding to each component is completed.

前述の元素組成に基づき調製された組成物、すなわち本発明の球状黒鉛鋳鉄の引張強度は600MPa以上である。同時に、当該組成物の伸び(破断伸び)は5%以上である。これらの指標は延性に関し、JIS Z 2241(2011)の規格に準拠して測定される。球状黒鉛鋳鉄は、例えば同規格の4号試験片等の形状に加工または鋳造される。   The composition prepared based on the aforementioned elemental composition, that is, the spheroidal graphite cast iron of the present invention has a tensile strength of 600 MPa or more. At the same time, the elongation (breaking elongation) of the composition is 5% or more. These indexes are measured according to the standard of JIS Z 2241 (2011) regarding ductility. The spheroidal graphite cast iron is processed or cast into, for example, a No. 4 test piece having the same standard.

引張強度が高まることにより、本発明の球状黒鉛鋳鉄の強度向上は実現する。そこで、球状黒鉛鋳鉄の引張強度は600MPa以上であり、好ましくは750MPa以上、さらに好ましくは800MPa以上である。引張強度の上昇に反して伸びは減少する。そこで、球状黒鉛鋳鉄に所望の物性を鑑み、良好な伸びの範囲として伸びは5%以上、好ましくは7%以上である。   By increasing the tensile strength, the strength of the spheroidal graphite cast iron of the present invention is improved. Therefore, the tensile strength of the spheroidal graphite cast iron is 600 MPa or more, preferably 750 MPa or more, more preferably 800 MPa or more. Elongation decreases with increasing tensile strength. Therefore, in view of the physical properties desired for spheroidal graphite cast iron, the elongation is preferably 5% or more, and more preferably 7% or more, as a range of good elongation.

当該組成物、すなわち本発明の球状黒鉛鋳鉄について、常温及び−40℃における衝撃値は6J/cm以上である。衝撃値は強度に関し、JIS Z 2242(2005)金属材料のシャルピー衝撃試験方法に準拠して測定される。同測定に際し、球状黒鉛鋳鉄はUノッチ付衝動試験片(3号試験片)の形状に加工または鋳造される。本発明の球状黒鉛鋳鉄は、低温環境下においても耐性を備えることが求められる。特に、本発明の球状黒鉛鋳鉄は自動車車体の足廻り等に関連する部品への使用を想定する。従って、自動車の走行条件を勘案すると−40℃の条件下における衝撃耐性も必要である。そこで、前掲の常温から−40℃の範囲における衝撃値を把握することにより球状黒鉛鋳鉄の品質管理が可能となる。 The impact value at room temperature and −40 ° C. of the composition, that is, the spheroidal graphite cast iron of the present invention, is 6 J / cm 2 or more. The impact value relates to strength and is measured in accordance with JIS Z 2242 (2005) Charpy impact test method for metallic materials. In the measurement, the spheroidal graphite cast iron is processed or cast into the shape of a U-notch impulse test piece (No. 3 test piece). The spheroidal graphite cast iron of the present invention is required to have resistance even in a low temperature environment. In particular, the spheroidal graphite cast iron of the present invention is assumed to be used for parts related to the underbody of an automobile body. Therefore, considering the running conditions of the automobile, impact resistance under the condition of -40 ° C is also required. Therefore, it becomes possible to control the quality of the spheroidal graphite cast iron by grasping the impact value in the range of room temperature to -40 ° C described above.

さらに、当該組成物、すなわち本発明の球状黒鉛鋳鉄は、−30℃におけるJIS Z 2244(2009)に準拠した測定のビッカース硬さは170kgf/mm以上、好ましくは200kgf/mm以上、さらには230kgf/mm以上である。前述のとおり、本発明の球状黒鉛鋳鉄は低温環境下の使用を想定する。そのため、低温下において球状黒鉛鋳鉄の硬さは必要となる。そこで、前述の範囲が好ましく規定される。 Further, the composition, that is, the spheroidal graphite cast iron of the present invention, has a Vickers hardness of 170 kgf / mm 2 or more, preferably 200 kgf / mm 2 or more, further measured at -30 ° C according to JIS Z 2244 (2009). It is 230 kgf / mm 2 or more. As described above, the spheroidal graphite cast iron of the present invention is assumed to be used in a low temperature environment. Therefore, the hardness of spheroidal graphite cast iron is required at low temperatures. Therefore, the above range is preferably defined.

ここで、球状黒鉛鋳鉄の諸物性において、硬さと衝撃値は逆相関であり、硬さと伸びも逆相関である。また、伸びと衝撃値は正相関であることが知られている。従って、本発明の球状黒鉛鋳鉄を適用する部品の目的、用途、条件等が総合的に考慮され、最適な物性値の球状黒鉛鋳鉄が選択される。後述の実施例のとおり、球状黒鉛鋳鉄は硬さを適度な水準としつつ耐性を充足する。   Here, in the physical properties of spheroidal graphite cast iron, hardness and impact value have an inverse correlation, and hardness and elongation also have an inverse correlation. It is also known that the elongation and the impact value have a direct correlation. Therefore, the spheroidal graphite cast iron having the optimum physical property value is selected in consideration of the purpose, use, conditions and the like of the parts to which the spheroidal graphite cast iron of the present invention is applied. As described in Examples below, the spheroidal graphite cast iron satisfies the resistance while maintaining the hardness at an appropriate level.

一連の説明の組成及び物性を有する当該組成物、すなわち本発明の球状黒鉛鋳鉄は自動車の車体材料に使用される。主に自動車車体の足廻り等に関連する部品であり、具体的には、ステアリングナックル、ロアアーム、アッパーアーム、サスペンション等である。   The composition having the composition and physical properties described in the series, that is, the spheroidal graphite cast iron of the present invention is used as a vehicle body material for automobiles. It is a component mainly related to the underbody of an automobile body, specifically, a steering knuckle, a lower arm, an upper arm, a suspension and the like.

[球状黒鉛鋳鉄の作製]
球状黒鉛鋳鉄の作製において200kg高周波溶解炉を用い、原料鉄のシュレッダー(破砕鉄原料)と加炭材、FeSを10g投入して溶融量を100kgの溶融物(溶湯)とし、1560±30℃により同溶融物を坩堝内に出湯した。出湯に際し、球状化材を1.6%、カバー材を0.6%、接種材を0.4%、CaSiを0.1%、接種材0.4%の重量割合とするべく予め坩堝内に配置した。併せて、後出の表に記載の試作例の元素組成割合とするべくCu等の金属を添加し成分調整を行った。この時点において球状化処理を進行させて溶融物の表面に浮かぶ不純物を除去(のろかき)した。
[Production of spheroidal graphite cast iron]
In the production of spheroidal graphite cast iron, a 200 kg high-frequency melting furnace was used, and a shredder of raw material iron (crushed iron raw material), carburizing material, and 10 g of FeS were added to obtain a molten amount of 100 kg (molten metal), and 1560 ± 30 ° C. The molten material was tapped into the crucible. Prior to tapping, the weight ratio of spheroidizing material was 1.6%, cover material was 0.6%, inoculum was 0.4%, CaSi was 0.1%, and inoculum was 0.4%. Placed in. At the same time, the components were adjusted by adding metals such as Cu so as to obtain the elemental composition ratios of the prototypes shown in the table below. At this point, the spheroidizing treatment was allowed to proceed to remove (think) impurities floating on the surface of the melt.

溶融物の球状化処理が進行した時点において適量を分取して、スパーク放電発光分光分析により当該溶融物中の含有成分の元素組成を測定した。こうして組成の異なる試作例1ないし26の溶融物を調製した。そして各種物性の測定に必要な試験片を得るため、鋳型内に各試作例の溶融物を1440±30℃により注湯した。一連の調製を通じて組成の異なる試作例に応じた球状黒鉛鋳鉄の所定長さの棒状物を鋳造により得た。そして、次の物性を測定した。   When the spheroidizing treatment of the melt proceeded, an appropriate amount was taken and the elemental composition of the components contained in the melt was measured by spark discharge emission spectroscopy. In this way, the melts of Prototype Examples 1 to 26 having different compositions were prepared. Then, in order to obtain test pieces necessary for measuring various physical properties, the melt of each prototype was poured into the mold at 1440 ± 30 ° C. Through a series of preparations, rod-shaped articles of a prescribed length of spheroidal graphite cast iron having different compositions were obtained by casting. Then, the following physical properties were measured.

[ビッカース硬さの測定]
JIS Z 2244(2009)に準拠した測定に基づき当該温度下の球状黒鉛鋳鉄の試験片のビッカース硬さを測定した。測定に際し、株式会社明石製作所製,AVK−C2を使用した。測定値は表1ないし表6のHvの項目である。以降、単に「硬さ」とは、ビッカース硬さをいう。
[Measurement of Vickers hardness]
The Vickers hardness of the test piece of spheroidal graphite cast iron under the temperature was measured based on the measurement based on JIS Z 2244 (2009). At the time of measurement, AVK-C2 manufactured by Akashi Seisakusho Co., Ltd. was used. The measured values are Hv items in Tables 1 to 6. Hereinafter, simply “hardness” refers to Vickers hardness.

[引張強度の測定]
引張強度は、JIS Z 2241(2011)の規格に準拠して測定した。併せて、同規格に準拠して伸びと0.2%耐力も測定した。各試作例の球状黒鉛鋳鉄の棒状物を旋盤によりJIS4号試験片の形状に加工した。当該試験片の測定には、株式会社島津製作所製,20tonオートグラフ(AG−X250kN)を使用した。測定時の温度は室温とし、引張速度は1mm/minとした。
[Measurement of tensile strength]
The tensile strength was measured according to the standard of JIS Z 2241 (2011). In addition, elongation and 0.2% proof stress were also measured according to the same standard. The spheroidal graphite cast iron rods of each trial example were processed into a JIS No. 4 test piece shape by a lathe. 20ton autograph (AG-X250kN) made by Shimadzu Corporation was used for the measurement of the test piece. The temperature at the time of measurement was room temperature, and the tensile speed was 1 mm / min.

[衝撃値の測定]
衝撃値は、JIS Z 2242(2005)金属材料のシャルピー衝撃試験方法に準拠して測定した。各試作例の球状黒鉛鋳鉄の棒状物を旋盤により同規格の3号試験片の形状に加工した。当該試験片を用いた衝撃値の測定には、株式会社東京試験機製,5kgfシャルピー衝撃試験機(CI−50D−SC)を使用した。測定時の温度は−30℃とした。なお、一部の試作例の試験片については、20℃、−20℃、−30℃、−40℃と複数の温度下において測定した。
[Measurement of impact value]
The impact value was measured according to the Charpy impact test method of JIS Z 2242 (2005) metal material. The spheroidal graphite cast iron rods of each prototype were processed by a lathe into the shape of No. 3 test piece of the same standard. A 5 kgf Charpy impact tester (CI-50D-SC) manufactured by Tokyo Kenki Co., Ltd. was used to measure the impact value using the test piece. The temperature at the time of measurement was -30 ° C. The test pieces of some prototypes were measured under a plurality of temperatures of 20 ° C, -20 ° C, -30 ° C, and -40 ° C.

[組織観察と結果]
試作例の球状黒鉛鋳鉄について代表的な例を6品選び、各例の断面を光学顕微鏡により倍率を100倍にて観察した。明暗を強調するべく、ナイタールエッチングの処理を施した。図1は試作例3、図2は試作例9、図3は試作例11、図4は試作例14、図5は試作例18、図6は試作例25の写真である。
[Tissue observation and results]
Six representative examples of spheroidal graphite cast iron as prototypes were selected, and the cross section of each example was observed with an optical microscope at a magnification of 100 times. In order to emphasize the lightness and darkness, a nital etching process was performed. 1 is a prototype example 3, FIG. 2 is a prototype example 9, FIG. 3 is a prototype example 11, FIG. 4 is a prototype example 14, FIG. 5 is a prototype example 18, and FIG. 6 is a prototype example 25.

試作例3ではSiが多いためSi由来の結晶性部分(白い部分)が多い。試作例9ではCuが相対的に少なく黒鉛粒の形成が未発達である。試作例11,14,18ではSiを抑えCuを増やしており良好な球状黒鉛の粒構造が見られ、しかもSi由来の結晶性部分も抑制されている。試作例25ではSiもCuも抑制しており黒鉛粒は見られるもののSi由来の結晶性部分が全体的に多くなった。   In prototype example 3, since there is a large amount of Si, there are many crystalline portions (white portions) derived from Si. In Prototype Example 9, the amount of Cu is relatively small and the formation of graphite particles is undeveloped. In Prototype Examples 11, 14 and 18, Si is suppressed and Cu is increased, so that a good grain structure of spheroidal graphite is observed, and the crystalline portion derived from Si is also suppressed. In Prototype Example 25, both Si and Cu were suppressed, and although graphite particles were seen, the crystalline portion derived from Si was increased in total.

[元素組成及び物性の結果]
表1ないし6は試作例1ないし26の球状黒鉛鋳鉄の元素組成である。表中の元素組成は、質量%(mass%)である。併せて、ビッカース硬さ(表中Hv)の測定結果を示す。一部の試作例についての引張強度(単位:MPa)、0.2%耐力(単位:MPa)、及び伸び(単位:%)の測定結果も示す。以降も同様の単位系の表記とする。各項目の測定に際し、一の試作例当たり3または5回の測定により平均値とした。
[Results of elemental composition and physical properties]
Tables 1 to 6 show the elemental compositions of the spheroidal graphite cast irons of Prototype Examples 1 to 26. The elemental composition in the table is% by mass (mass%). In addition, the measurement results of Vickers hardness (Hv in the table) are shown. The measurement results of tensile strength (unit: MPa), 0.2% proof stress (unit: MPa), and elongation (unit:%) for some prototypes are also shown. The same unit system will be used hereinafter. In measuring each item, an average value was obtained by measuring 3 or 5 times for each prototype.

Figure 2020066772
Figure 2020066772

Figure 2020066772
Figure 2020066772

Figure 2020066772
Figure 2020066772

Figure 2020066772
Figure 2020066772

Figure 2020066772
Figure 2020066772

Figure 2020066772
Figure 2020066772

[硬さと引張強さの関係、硬さと0.2%耐力の関係の考察]
次に、異なるSi量の試作例を選び、各例の硬さ(Hv)と引張強さ(MPa)の関係、各例の硬さ(Hv)と0.2%耐力(MPa)の関係は表7である。Siの含有量(概ね2.8,2.3,2.0,1.5質量%)により区分するとともに、各Si含有量における個々の硬さの試作例を提示し、その引張強さ及び0.2%耐力を示す。併せて、各例の硬さ(Hv)と引張強さ(MPa)の関係、各例の硬さ(Hv)と0.2%耐力(MPa)の関係をプロットしグラフ化した(図7のグラフ参照)。
[Consideration of relationship between hardness and tensile strength, relationship between hardness and 0.2% proof stress]
Next, the prototypes with different Si contents were selected, and the relationship between the hardness (Hv) and the tensile strength (MPa) of each example and the relationship between the hardness (Hv) and the 0.2% proof stress (MPa) of each example were It is Table 7. In addition to classifying according to the Si content (approximately 2.8, 2.3, 2.0, 1.5 mass%), we present a trial example of individual hardness at each Si content, and show its tensile strength and Shows 0.2% proof stress. In addition, the relationship between the hardness (Hv) and the tensile strength (MPa) of each example and the relationship between the hardness (Hv) and the 0.2% proof stress (MPa) of each example were plotted and graphed (see FIG. 7). See the graph).

Figure 2020066772
Figure 2020066772

表7及び図7より、硬さと引張強さ、及び硬さと0.2%耐力は正相関の関係にある。さらに、Si量を抑制しつつ、異なる硬さの球状黒鉛鋳鉄を作製することができた。すなわち、試作例「24,14,25」である。球状黒鉛鋳鉄にあっては、Siの含有量の多少よりも、その硬さに依存して引張強さと0.2%耐力が規定される。従って、Si量を抑制して作製した球状黒鉛鋳鉄についても硬さを指標として整理することができる。   From Table 7 and FIG. 7, there is a positive correlation between hardness and tensile strength, and hardness and 0.2% proof stress. Furthermore, it was possible to produce spheroidal graphite cast iron having different hardness while suppressing the amount of Si. That is, it is a prototype example “24, 14, 25”. In spheroidal graphite cast iron, the tensile strength and the 0.2% proof stress are specified depending on the hardness rather than the Si content. Therefore, the hardness of the spheroidal graphite cast iron produced by suppressing the amount of Si can be organized using the hardness as an index.

[温度と衝撃値の関係]
異なるSi含有量の試作例の球状黒鉛鋳鉄について、温度条件を変えて衝撃値を測定した。表8ないし表10のとおり、概ね共通する硬さ(Hv250,Hv230,Hv170)毎に集約し、Siの含有量が2.8,2.3,2.0,1.5質量%に相当する試作例によりまとめあげた。表中の数値は衝撃値(J/cm)である。さらに、各表における温度(℃)と衝撃値(J/cm)について図8のとおりグラフ化した。測定に際し、一の試作例当たり3回の測定により平均値とした。
[Relationship between temperature and shock value]
Impact values were measured for the spheroidal graphite cast irons of different prototypes having different Si contents under different temperature conditions. As shown in Tables 8 to 10, it is summarized for each hardness (Hv250, Hv230, Hv170) that is almost common, and the Si content corresponds to 2.8, 2.3, 2.0, and 1.5 mass%. It is summarized by a prototype example. The numerical values in the table are impact values (J / cm 2 ). Further, the temperature (° C.) and impact value (J / cm 2 ) in each table are graphed as shown in FIG. At the time of measurement, an average value was obtained by measuring three times per one prototype example.

Figure 2020066772
Figure 2020066772

Figure 2020066772
Figure 2020066772

Figure 2020066772
Figure 2020066772

[温度と衝撃値の関係についての考察]
表8ないし表10及び図8のグラフより、硬さの低い試作例の球状黒鉛鋳鉄はいずれの温度においても高い衝撃値を示した(Hv170の群参照)。さらに着目すると、より低温度域では、Siの含有量を抑制した試作例の球状黒鉛鋳鉄が高い衝撃値を示した(試作例12参照)。次に、中位及び高位の硬さの試作例の球状黒鉛鋳鉄に注目すると、温度依存的に衝撃値は低下傾向にある。ただし、Siの含有量を抑制した試作例10と14では他の試作例と比較して衝撃値の低下は少ない。
[Study on the relationship between temperature and shock value]
From the graphs of Tables 8 to 10 and FIG. 8, the spheroidal graphite cast iron of the trial example having a low hardness showed a high impact value at any temperature (see the group of Hv170). Further focusing, in the lower temperature range, the spheroidal graphite cast iron of the prototype example in which the Si content was suppressed exhibited a high impact value (see prototype example 12). Next, paying attention to the spheroidal graphite cast iron of the trial example of medium hardness and high hardness, the impact value tends to decrease in a temperature-dependent manner. However, in Prototype Examples 10 and 14 in which the Si content was suppressed, the impact value did not decrease much as compared with the other Prototype Examples.

従って、低温環境下における球状黒鉛鋳鉄の衝撃値を勘案すると、Siの含有量の抑制が極めて効果的であることが判明した。なお、部品に応じて球状黒鉛鋳鉄の硬さが求められるため、単純に硬さを下げることができない。しかしながら、Siの含有量の抑制により衝撃値の制御も可能である。そこで、目的に応じた球状黒鉛鋳鉄の提供が可能である。   Therefore, when the impact value of spheroidal graphite cast iron in a low temperature environment is taken into consideration, it has been found that the suppression of the Si content is extremely effective. Since the hardness of spheroidal graphite cast iron is required depending on the parts, the hardness cannot be simply lowered. However, the impact value can be controlled by suppressing the Si content. Therefore, it is possible to provide spheroidal graphite cast iron according to the purpose.

[硬さと衝撃値の関係]
前出異なるSi含有量の試作例の球状黒鉛鋳鉄について、硬さに応じて区分し−30℃における衝撃値(J/cm)との関係を求めた。表11のとおり、Siの含有量(1.5,2.0,2.3,2.8質量%)において、それぞれ硬さ(Hv)を概ね250,230,170により区分した。これに対応する試作例の番号と−30℃の衝撃値も付した。さらに、図9のとおりグラフ化した。
[Relationship between hardness and impact value]
The spheroidal graphite cast irons of the trial production examples having different Si contents described above were classified according to hardness and the relationship with the impact value (J / cm 2 ) at −30 ° C. was obtained. As shown in Table 11, the hardness (Hv) was roughly divided into 250, 230, and 170 depending on the Si content (1.5, 2.0, 2.3, and 2.8 mass%). The number of the prototype example corresponding to this and the impact value of -30 ° C are also given. Further, it was graphed as shown in FIG.

Figure 2020066772
Figure 2020066772

[硬さと衝撃値の関係についての考察]
表11及び図9のグラフより、いずれの硬さにおいても、Siの含有量を抑制するほど衝撃値の向上が明らかとなった。従って、球状黒鉛鋳鉄の部品により要求される硬さは相違するものの、傾向としてSiの含有量を抑制するほど衝撃値の向上に貢献し得ることを確認した。試作例から明らかであるように、適宜の硬さの球状黒鉛鋳鉄及びその部品を提供しつつ、その中においても衝撃値の向上が可能である。
[Study on the relationship between hardness and impact value]
From Table 11 and the graph of FIG. 9, it was revealed that the impact value was improved as the content of Si was suppressed in any hardness. Therefore, it was confirmed that although the hardness required for the parts of spheroidal graphite cast iron differs, the tendency is that the more the content of Si is suppressed, the more the impact value can be improved. As is clear from the prototype, it is possible to provide a spheroidal graphite cast iron of appropriate hardness and parts thereof, while improving the impact value therein.

[元素組成についての考察]
一連の検討及び考察より、球状黒鉛鋳鉄におけるSi含有量の抑制が衝撃値の向上に有効であるといえる。しかしながら、前掲の硬さと引張強さの関係(「表7と図7」)と、硬さと衝撃値(「表11と図9」)のとおり、硬さのみの指標では、所望の引張強さと衝撃値が得難くなる。従って、衝撃値と、引張強さ及び0.2%耐力を均整良く充足する必要がある。そこで、表1ないし表6の各試作例の元素組成に着目すると、Cuの量の多少により硬さの調整が可能であることがわかる。
[Study on elemental composition]
From a series of studies and discussions, it can be said that suppressing the Si content in spheroidal graphite cast iron is effective in improving the impact value. However, as indicated by the relationship between hardness and tensile strength (“Table 7 and FIG. 7”) and hardness and impact value (“Table 11 and FIG. 9”) described above, the index of hardness alone indicates the desired tensile strength. It becomes difficult to obtain a shock value. Therefore, it is necessary to uniformly satisfy the impact value, the tensile strength and the 0.2% proof stress. Therefore, focusing on the elemental composition of each prototype example in Tables 1 to 6, it can be seen that the hardness can be adjusted depending on the amount of Cu.

例えば、試作例10,11と試作例12の比較では、明らかにCuの含有量の多い球状黒鉛鋳鉄ほど硬さは向上する。試作例24,26と試作例25の比較においても同様の傾向が確認される。他に、試作例14,18も同様の傾向にある。このことから、SiとCuの含有量の調整を通じて球状黒鉛鋳鉄の硬さの制御が可能であり、最終的に衝撃値と、引張強さ及び0.2%耐力等の物性の好適に充足し得る球状黒鉛鋳鉄の作製が可能であると考えることができる。   For example, in the comparison between Prototype Examples 10 and 11 and Prototype Example 12, the hardness is improved as the spheroidal graphite cast iron having a clearer Cu content is obtained. A similar tendency is confirmed in the comparison between the prototype examples 24 and 26 and the prototype example 25. In addition, the prototype examples 14 and 18 have the same tendency. From this, it is possible to control the hardness of spheroidal graphite cast iron by adjusting the contents of Si and Cu, and finally satisfy the impact value and the physical properties such as tensile strength and 0.2% proof stress appropriately. It can be considered that the obtained spheroidal graphite cast iron can be produced.

各試作例を踏まえると、球状黒鉛鋳鉄におけるSiの好ましい含有量は、1.40ないし2.00質量%である。   Based on each prototype, the preferable Si content in the spheroidal graphite cast iron is 1.40 to 2.00 mass%.

球状黒鉛鋳鉄におけるCuの含有量については、0.30ないし0.51質量%の含有であり、より好ましくは、0.45ないし0.51質量%、さらにより好ましくは、0.47ないし0.51質量%の含有である。例えば、試作例1,3,4,7,21,23等はSiとCuの含有量を共に増加した例である。この場合、硬さが高めに発現する。また、SiとCuの両方の含有量を抑制した試作例25では硬さが低下した。試作例11と13はSi含有量をほぼ共通としながら、Cuの含有量が異なる。当該両試作例では明らかに硬さが相違する。従って、球状黒鉛鋳鉄における良好な物性を勘案すると、前掲の含有の範囲とすることができる。Si及びCuの両方が規定の範囲内に収束する例は、試作例10,11,14,18,24,26である。   The content of Cu in the spheroidal graphite cast iron is 0.30 to 0.51% by mass, more preferably 0.45 to 0.51% by mass, and even more preferably 0.47 to 0. The content is 51% by mass. For example, Prototype Examples 1, 3, 4, 7, 21, 23 and the like are examples in which the contents of Si and Cu are both increased. In this case, hardness develops higher. Further, in Prototype Example 25 in which the contents of both Si and Cu were suppressed, the hardness decreased. The prototype examples 11 and 13 have substantially the same Si content, but different Cu contents. The hardness is obviously different between the two prototypes. Therefore, considering the good physical properties of the spheroidal graphite cast iron, the content can be within the above range. Examples in which both Si and Cu converge within the specified range are prototype examples 10, 11, 14, 18, 24, and 26.

試作例の結果より、球状黒鉛鋳鉄の他の元素組成は、Cは3.70ないし4.10質量%、Mnは0.30質量%以下、Sは0.006ないし0.009質量%、Mgは0.027ないし0.045質量%、Pは0.015ないし0.021質量%、Crは0.06質量%以下として導き出される。   From the results of the prototype example, other elemental compositions of spheroidal graphite cast iron are as follows: C is 3.70 to 4.10 mass%, Mn is 0.30 mass% or less, S is 0.006 to 0.009 mass%, Mg Is 0.027 to 0.045% by mass, P is 0.015 to 0.021% by mass, and Cr is 0.06% by mass or less.

一連の試作例の測定結果から、球状黒鉛鋳鉄の引張強度は600MPa以上、780MPa以下と導き出すことができる(各表及び図7参照)。同様に、伸びは5%以上、好ましくは7%以上である。そして、常温及び−40℃における衝撃値は、Si含有量を考慮して6J/cm以上である(各表及び図7,8参照)。加えて、ビッカース硬さは170kgf/mm以上、好ましくは230kgf/mm以上である(各表参照)。 The tensile strength of spheroidal graphite cast iron can be derived from 600 MPa or more and 780 MPa or less from the measurement results of a series of prototype examples (see each table and FIG. 7). Similarly, the elongation is 5% or more, preferably 7% or more. The impact value at room temperature and −40 ° C. is 6 J / cm 2 or more in consideration of the Si content (see each table and FIGS. 7 and 8). In addition, the Vickers hardness is 170 kgf / mm 2 or more, preferably 230 kgf / mm 2 or more (see each table).

本発明の球状黒鉛鋳鉄は、その物性より理解されるとおり、衝撃値、引張強さ、0.2%耐力、伸びの指標から車体材料用途に好適であり、低温下においても耐性を備える。従って、より負荷の加わりやすい自動車車体の足廻り等に関連する部品に好適である。   As understood from the physical properties, the spheroidal graphite cast iron of the present invention is suitable for use as a vehicle body material from the indicators of impact value, tensile strength, 0.2% proof stress and elongation, and has resistance even at low temperatures. Therefore, it is suitable for parts related to the underbody of an automobile body where a load is more easily applied.

本発明の球状黒鉛鋳鉄は、良好な物性を呈して寒冷地(例えば、ロシア、北アメリカ等)の低温下においても耐性を備えることから、負荷の加わりやすい自動車車体の足廻り等に関連する部品に好適である。そのため、従前の部品用途の球状黒鉛鋳鉄の代替として有望である。   INDUSTRIAL APPLICABILITY The spheroidal graphite cast iron of the present invention exhibits good physical properties and has resistance to low temperatures in cold regions (for example, Russia and North America). Suitable for Therefore, it is a promising alternative to the conventional spheroidal graphite cast iron used for parts.

Claims (6)

C:3.70〜4.10質量%、
Si:1.40〜2.00質量%、
Mn:0.30質量%以下、
Cu:0.30〜0.51質量%、
Mg:0.027〜0.045質量%、
S:0.006〜0.009質量%、
P:0.015〜0.021質量%、
Cr:0.06質量%以下を含有し、
残部がFe及び不可避的不純物からなる組成物である
ことを特徴とする球状黒鉛鋳鉄。
C: 3.70 to 4.10 mass%,
Si: 1.40 to 2.00 mass%,
Mn: 0.30 mass% or less,
Cu: 0.30 to 0.51% by mass,
Mg: 0.027 to 0.045 mass%,
S: 0.006 to 0.009 mass%,
P: 0.015 to 0.021% by mass,
Cr: contains 0.06 mass% or less,
A spheroidal graphite cast iron characterized in that the balance is a composition comprising Fe and unavoidable impurities.
前記組成物におけるCuの含有が、Cu:0.45〜0.51質量%である請求項1に記載の球状黒鉛鋳鉄。   The spheroidal graphite cast iron according to claim 1, wherein the content of Cu in the composition is Cu: 0.45 to 0.51% by mass. 前記組成物の引張強度が600MPa以上、かつ、前記組成物の伸びが5%以上である請求項1または2に記載の球状黒鉛鋳鉄。   The spheroidal graphite cast iron according to claim 1 or 2, wherein the tensile strength of the composition is 600 MPa or more, and the elongation of the composition is 5% or more. 常温及び−40℃における前記組成物の衝撃値が6J/cm以上である請求項1ないし3のいずれか1項に記載の球状黒鉛鋳鉄。 The spheroidal graphite cast iron according to any one of claims 1 to 3, wherein an impact value of the composition at room temperature and -40 ° C is 6 J / cm 2 or more. 前記組成物の−30℃におけるビッカース硬さが170kgf/mm以上である請求項1ないし4のいずれか1項に記載の球状黒鉛鋳鉄。 The spheroidal graphite cast iron according to any one of claims 1 to 4, wherein the composition has a Vickers hardness at -30 ° C of 170 kgf / mm 2 or more. 前記組成物が車体材料に使用される請求項1ないし5のいずれか1項に記載の球状黒鉛鋳鉄。   The spheroidal graphite cast iron according to any one of claims 1 to 5, wherein the composition is used as a vehicle body material.
JP2018200109A 2018-10-24 2018-10-24 Spheroidal graphite cast iron Pending JP2020066772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200109A JP2020066772A (en) 2018-10-24 2018-10-24 Spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200109A JP2020066772A (en) 2018-10-24 2018-10-24 Spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
JP2020066772A true JP2020066772A (en) 2020-04-30

Family

ID=70389686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200109A Pending JP2020066772A (en) 2018-10-24 2018-10-24 Spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP2020066772A (en)

Similar Documents

Publication Publication Date Title
EP3121302B1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
JP5718477B2 (en) Brake disc containing murine cast iron alloy and murine cast iron alloy
Anasyida et al. Dry sliding wear behaviour of Al–12Si–4Mg alloy with cerium addition
JP6079641B2 (en) Spheroidal graphite cast iron excellent in strength and toughness and method for producing the same
CN110029267B (en) Nodular cast iron
JP2011513592A (en) Sliding bearing alloy made of tin-based white metal
ES2397636A2 (en) CASTING ALLOY OF THE AIMgSI TYPE
WO2018189869A1 (en) Aluminum alloy for die casting, and aluminum alloy die casting using same
KR20160025518A (en) Spheroidal graphite cast iron
JPH06200348A (en) Highly strong magnesium alloy
JP5797360B1 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
JP4527304B2 (en) High strength high toughness spheroidal graphite cast iron
JP2020066772A (en) Spheroidal graphite cast iron
US10844450B2 (en) Black heart malleable cast iron and manufacturing method thereof
JPS6036755A (en) Composite cylinder liner
JP3964675B2 (en) Non-austempered spheroidal graphite cast iron
JPH10317093A (en) High rigidity spheroidal graphite cast iron and its production
KR101578094B1 (en) A ductile cast iron for low temperature atmosphere and the production method thereof
KR101599520B1 (en) A grey cast iron
JP4963444B2 (en) Spheroidal graphite cast iron member
JP6267408B1 (en) Aluminum alloy and aluminum alloy castings
JP4059290B1 (en) Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JP2020002402A (en) Nodular graphite cast iron
KR102539284B1 (en) Nodular cast iron with excellent resistance to gas defects