JP2020066682A - Lubricating base oil and lubricating oil composition and method of using lubricating oil composition - Google Patents

Lubricating base oil and lubricating oil composition and method of using lubricating oil composition Download PDF

Info

Publication number
JP2020066682A
JP2020066682A JP2018200593A JP2018200593A JP2020066682A JP 2020066682 A JP2020066682 A JP 2020066682A JP 2018200593 A JP2018200593 A JP 2018200593A JP 2018200593 A JP2018200593 A JP 2018200593A JP 2020066682 A JP2020066682 A JP 2020066682A
Authority
JP
Japan
Prior art keywords
lubricating
oil
base oil
oil composition
lubricating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200593A
Other languages
Japanese (ja)
Inventor
和志 田村
Kazushi Tamura
和志 田村
巽 浩之
Hiroyuki Tatsumi
浩之 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2018200593A priority Critical patent/JP2020066682A/en
Priority to CN201980069209.4A priority patent/CN112912481A/en
Priority to PCT/JP2019/041863 priority patent/WO2020085475A1/en
Priority to EP19875248.7A priority patent/EP3872155A4/en
Priority to US17/287,323 priority patent/US20210355404A1/en
Publication of JP2020066682A publication Critical patent/JP2020066682A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/002Traction fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/103Carboxylix acids; Neutral salts thereof used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives

Abstract

To provide a lubricating oil composition that can be suitably used for lubricating a traction drive.SOLUTION: A lubricating base oil has a distance between solid surfaces of 1.0 nm or more and a normalized peak intensity ratio of more than 0.2 and not more than 1.0 at a surface pressure of 12.4 MPa measured by using a resonance shear measurement device, and a lubricating oil composition includes the lubricating base oil.SELECTED DRAWING: None

Description

本発明は、潤滑油基油、当該潤滑油基油を含む潤滑油組成物、及び、潤滑油組成物の使用方法に関する。   The present invention relates to a lubricating base oil, a lubricating oil composition containing the lubricating base oil, and a method of using the lubricating oil composition.

近年、各産業分野で省燃費性の向上を目的とした取り組みがなされており、省燃費性の向上の手段として、動力伝達装置に無段変速機が多く採用されている。
無段変速機は、一定の入力回転に対して出力回転を連続的に変化させることができる伝達装置であり、金属ベルトやチェーンを用いて動力を伝達するフリクションドライブや、そのような要素を用いないトラクションドライブがある。
特に、トラクションドライブは、小型で大容量の動力伝達が可能であり、自動車の分野でも実用化が進展している。
In recent years, efforts have been made to improve fuel economy in various industrial fields, and a continuously variable transmission is often used as a power transmission device as a means for improving fuel economy.
A continuously variable transmission is a transmission device that can continuously change the output rotation with respect to a constant input rotation, and uses a friction drive that transmits power using a metal belt or a chain, and such elements. There is no traction drive.
In particular, the traction drive is compact and capable of transmitting a large amount of power, and is being put to practical use in the field of automobiles.

ところで、トラクションドライブに用いられる潤滑油には、動力伝達の向上の点から、トラクション係数が高いものが求められている。
例えば、特許文献1には、高温トラクション係数を損なうことなく、引火点と低温流動性が改良された潤滑油基油組成物として、180℃以下の引火点を有するナフテン系合成潤滑油基油と、該ナフテン系合成潤滑油基油より高い引火点を有するポリα−オレフィン等のパラフィン系合成潤滑油基油からなる潤滑油基油組成物が開示されている。
By the way, the lubricating oil used for the traction drive is required to have a high traction coefficient in order to improve power transmission.
For example, Patent Document 1 discloses a naphthene-based synthetic lubricating base oil having a flash point of 180 ° C. or lower as a lubricating base oil composition having improved flash point and low temperature fluidity without impairing the high temperature traction coefficient. , A lubricating base oil composition comprising a paraffin-based synthetic lubricating base oil such as poly α-olefin having a higher flash point than the naphthene-based synthetic lubricating base oil.

特開2000−204386号公報JP, 2000-204386, A

特許文献1に記載の潤滑油基油組成物についても、トラクションドライブの潤滑に好適に使用し得るが、トラクションドライブの潤滑により好適に使用し得る潤滑油組成物が求められている。   The lubricating base oil composition described in Patent Document 1 can be preferably used for lubrication of a traction drive, but a lubricating oil composition that can be preferably used for lubrication of a traction drive is required.

本発明は、共振ずり測定装置を用いて測定した、面圧12.4MPaにおける、固体表面間距離及び規格化ピーク強度比を所定の範囲となるように調整した潤滑油基油を提供する。   The present invention provides a lubricating base oil in which the distance between solid surfaces and the normalized peak strength ratio at a surface pressure of 12.4 MPa measured using a resonance shear measuring device are adjusted to fall within a predetermined range.

より具体的には本発明は、下記[1]〜[3]を提供する。
[1]共振ずり測定装置を用いて測定した、面圧12.4MPaで測定した、固体表面間距離が1.0nm以上であり、当該固体表面間距離での規格化ピーク強度比が0.2超1.0以下である、潤滑油基油。
[2]上記[1]に記載の潤滑油基油を含む、潤滑油組成物。
[3]上記[2]に記載の潤滑油組成物をトラクションドライブの潤滑に用いる、潤滑油組成物の使用方法。
More specifically, the present invention provides the following [1] to [3].
[1] The distance between solid surfaces measured using a resonance shear measuring device at a surface pressure of 12.4 MPa is 1.0 nm or more, and the normalized peak intensity ratio at the distance between solid surfaces is 0.2. Lubricating base oil having a super 1.0 or less.
[2] A lubricating oil composition containing the lubricating base oil according to the above [1].
[3] A method of using the lubricating oil composition according to the above [2], which is used for lubricating a traction drive.

本発明の潤滑油基油を用いることで、トラクションドライブの潤滑により好適に使用し得る潤滑油組成物を調製することができる。   By using the lubricating base oil of the invention, it is possible to prepare a lubricating oil composition that can be more suitably used for lubricating a traction drive.

〔潤滑油基油〕
本発明の潤滑油基油は、共振ずり測定装置を用いて測定した、面圧12.4MPaの条件下で測定した、固体表面間距離が1.0nm以上であり、当該固体表面間距離での規格化ピーク強度比が0.2超1.0以下となるように調製したものである。
[Lubricant base oil]
The lubricant base oil of the present invention has a solid-surface distance of 1.0 nm or more measured under the condition of a surface pressure of 12.4 MPa, which is measured by using a resonance shear measuring device. It was prepared so that the normalized peak intensity ratio was more than 0.2 and 1.0 or less.

「共振ずり測定装置」は、対向する二面の固体表面の間に液体を挟み込み、対向する二面の固体表面に対して垂直方向に発生する表面力(斥カ・引力)を表面間距離と同時に測定する表面力装置としての機能を有する。さらに当該装置は、共振ずり応答により、表面間に挟み込んだ液体の特性(構造化挙動、粘度、摩擦、潤滑、せん断抵抗)を評価する機能も有する。
このような「共振ずり測定装置」としては、例えば、製品名「RSM−1」(アドバンス理工株式会社製)が挙げられる。
固体表面に挟まれた液体は、表面間距離がナノメートル単位まで減少すると、閉じ込め及び界面の効果により、規則構造の形成や粘度の劇的な上昇等を引き起こし、バルクとは大きく異なる性質を示すことが知られている。
The "resonance shear measurement device" sandwiches a liquid between two facing solid surfaces and determines the surface force (repulsive force / attractive force) generated in the direction perpendicular to the facing two solid surfaces as the inter-surface distance. It has a function as a surface force device for simultaneous measurement. In addition, the device also has the function of evaluating the properties (structuring behavior, viscosity, friction, lubrication, shear resistance) of the liquid sandwiched between the surfaces by the resonance shear response.
An example of such a "resonance shear measuring device" is a product name "RSM-1" (manufactured by Advance Riko Co., Ltd.).
The liquid sandwiched between solid surfaces shows a property that is significantly different from that of the bulk when the inter-surface distance is reduced to the nanometer unit, which causes the formation of ordered structures and a dramatic increase in viscosity due to the effects of confinement and interface. It is known.

この共振ずり測定装置を用いて、様々な潤滑油基油を対抗する二面の固体表面の間に挟み込み、空気を介して対抗する二面の固体表面を分離させた状態(Separation in air;AS)から、対抗する二面の固体表面が接触した状態(Solid contact;SC)まで、固体表面間距離をナノメートル単位まで徐々に減少させて、面圧の値の変化を測定した。
その結果、AS側の付近では固体表面間距離を徐々に減少させても、しばらくの間、面圧は一定の割合で増加する程度であったが、固体表面間距離を1nmまで減少させようとする過程で、急激な増粘が引き起こされ、面圧の値の著しい上昇が見られた潤滑油基油の存在が確認された。
また、面圧が著しく上昇する際の固体表面間距離の値は、試料油である潤滑油基油を構成する構造の種類等によって異なることも分かった。
Using this resonance shear measuring device, various lubricating base oils are sandwiched between two opposing solid surfaces, and the opposing two solid surfaces are separated via air (Separation in air; AS). ) To a state in which two opposing solid surfaces are in contact (Solid contact; SC), the distance between the solid surfaces is gradually reduced to the nanometer unit, and the change in the surface pressure value is measured.
As a result, even if the distance between the solid surfaces was gradually decreased in the vicinity of the AS side, the surface pressure was increased at a constant rate for a while, but it was tried to reduce the distance between the solid surfaces to 1 nm. It was confirmed that the lubricating base oil, in which the viscosity was rapidly increased and the surface pressure value was remarkably increased in the course of the process, was observed.
It was also found that the value of the distance between the solid surfaces when the surface pressure remarkably rises varies depending on the type of structure constituting the lubricating base oil, which is the sample oil.

このように固体表面間距離を1nmまで減少させる過程で、面圧の値の著しい上昇が見られた際、潤滑油基油は急激な増粘によって、強固な油膜を形成され、且つ保持されていると考えられる。その上で、当該油膜は1nm以上の厚さを有している。
このような油膜を形成し得る潤滑油基油の性質は、各種装置の潤滑用途、特にトラクションドライブの潤滑用途に好適に使用し得る。
つまり、トラクションドライブで形成される油膜には、転がり接触する対抗する二面の固体表面の接触を防ぎ、固体表面の磨耗を抑制し得る耐摩耗性と、駆動力を向上させるために高トラクション係数であるという2つの性質が求められる。
上述の過程で形成された油膜は、1nm以上の厚さを有しているため、保持性も良好であり、優れた耐摩耗性を発現し得ると考えられる。また、面圧の値の著しい上昇が見られるほどの増粘によって形成され、保持された油膜は、強固であるため、高いトラクション係数の達成し、動力伝達の向上に寄与するものと考えられる。そのため、このような潤滑油基油を用いた潤滑油組成物は、トラクションドライブの潤滑用途に好適であるといえる。
In the process of reducing the distance between the solid surfaces to 1 nm, when the surface pressure value was remarkably increased, the lubricating base oil was rapidly thickened to form and hold a strong oil film. It is believed that Moreover, the oil film has a thickness of 1 nm or more.
The property of the lubricating base oil capable of forming such an oil film can be suitably used for lubrication of various devices, particularly for traction drive lubrication.
In other words, the oil film formed by the traction drive has a high traction coefficient in order to improve the driving force and wear resistance that can prevent the contact of two solid surfaces facing each other in rolling contact and suppress the wear of the solid surfaces. Two properties that are are required.
Since the oil film formed in the above process has a thickness of 1 nm or more, it is considered that the oil film has good retention and can exhibit excellent wear resistance. Further, since the oil film formed and retained by the thickening so that the surface pressure value is remarkably increased is strong, it is considered that the high traction coefficient is achieved and the power transmission is improved. Therefore, it can be said that the lubricating oil composition using such a lubricating base oil is suitable for the lubrication application of the traction drive.

上記の事項に鑑み、本発明の潤滑油基油は、面圧が12.4MPaにおける固体表面間距離、及び、当該固体表面間距離での規格化ピーク強度比に着目し調製したものである。
なお、「面圧が12.4MPaにおける固体表面間距離」とは、固体表面間距離を1nmまで減少させようとする過程で、潤滑油基油の急激な増粘が引き起こされ、面圧の値の著しい上昇が見られた際の固体表面間距離を規定したものである。
なお、潤滑油基油の急激な増粘が引き起こされ、面圧が12.4MPaに達した後、固体表面間距離を小さくすることが難しくなるほどの面圧がかかる状態となった。
In view of the above matters, the lubricating base oil of the present invention was prepared by focusing on the distance between solid surfaces at a surface pressure of 12.4 MPa and the normalized peak strength ratio at the distance between solid surfaces.
The term "distance between solid surfaces at a surface pressure of 12.4 MPa" means the value of the surface pressure caused by sudden thickening of the lubricating base oil in the process of decreasing the distance between solid surfaces to 1 nm. It defines the distance between the solid surfaces when a significant rise in is observed.
In addition, after the sudden increase in the viscosity of the lubricating base oil was caused and the surface pressure reached 12.4 MPa, the surface pressure was such that it became difficult to reduce the distance between the solid surfaces.

本発明の潤滑油基油は、面圧が12.4MPaにおける固体表面間距離が1nm以上に調製されている。
このような潤滑油基油を含む潤滑油組成物は、対抗する2面間距離が数nmであるナノ空間での潤滑に用いた場合、1nm以上の厚さの強固な油膜が形成され、当該油膜を保持し得、潤滑特性を良好とすることができると考えられる。特に、当該潤滑油組成物をトラクションドライブの潤滑に用いた場合、油膜の厚さが1nm以上であるため、保持性が良好であり、転がり接触する対抗する二面の固体表面の接触を防ぎ、固体表面の磨耗を抑制し得る、優れた耐摩耗性を発現し得る。
なお、面圧が12.4MPaに達する固体表面間距離が1nm未満、もしくはSC側付近まで固体表面間距離を減少させても12.4MPaの面圧に達することができない潤滑油基油は、油膜の保持性に問題を有し、上記のナノ空間での潤滑用途には使用することが難しい。
The lubricant base oil of the present invention is prepared to have a solid surface distance of 1 nm or more at a surface pressure of 12.4 MPa.
A lubricating oil composition containing such a lubricating base oil forms a strong oil film with a thickness of 1 nm or more when used for lubrication in a nano space having a facing distance between two surfaces of several nm. It is considered that the oil film can be retained and the lubricating characteristics can be improved. In particular, when the lubricating oil composition is used for the lubrication of a traction drive, the oil film has a thickness of 1 nm or more, so that the retaining property is good and contact between two opposing solid surfaces in rolling contact is prevented, It is possible to exhibit excellent wear resistance which can suppress wear of the solid surface.
In addition, the lubricant base oil, which has a surface pressure of less than 1 nm to reach a surface pressure of 12.4 MPa, or which cannot reach a surface pressure of 12.4 MPa even if the distance between the solid surfaces is reduced to near the SC side, is an oil film. However, it is difficult to use it for lubrication in the above nano space.

上記観点から、本発明の一態様の潤滑油基油の面圧12.4MPaにおける、固体表面間距離は、好ましくは1.2nm以上、より好ましくは1.5nm以上、更に好ましくは2.0nm以上、より更に好ましくは2.5nm以上であり、また、通常10nm以下であるが、好ましくは9nm以下、より好ましくは8nm以下、特に好ましくは7nm以下である。   From the above viewpoint, the distance between the solid surfaces at the surface pressure of 12.4 MPa of the lubricating base oil of one embodiment of the present invention is preferably 1.2 nm or more, more preferably 1.5 nm or more, still more preferably 2.0 nm or more. Is more preferably 2.5 nm or more, and is usually 10 nm or less, preferably 9 nm or less, more preferably 8 nm or less, and particularly preferably 7 nm or less.

また、本発明の潤滑油基油は、面圧12.4MPaにおける固体表面間距離での規格化ピーク強度比が0.2超1.0以下となるように調製している。
ここで、「規格化ピーク強度比」は、対抗する二面の固体表面が接触した状態(SC)での共振周波数のピーク強度Iscに対する、面圧12.4MPaにおける共振周波数のピーク強度Iとの比〔I/Isc〕を意味する。
Further, the lubricating base oil of the present invention is prepared so that the normalized peak intensity ratio at the solid surface distance at a surface pressure of 12.4 MPa is more than 0.2 and 1.0 or less.
Here, the “normalized peak intensity ratio” is the peak intensity I of the resonance frequency at a surface pressure of 12.4 MPa with respect to the peak intensity I sc of the resonance frequency in a state (SC) where two opposing solid surfaces are in contact with each other. The ratio [I / I sc ] of

当該規格化ピーク強度比の値は、ナノ空間で形成される油膜の硬さの指標となる。
つまり、規格化ピーク強度比が0.2超となる潤滑油基油は、ナノ空間で、強固な油膜が保持されていると考えられる。強固な油膜が保持されるという性質は、当該潤滑油基油を含む潤滑油組成物をトラクションドライブの潤滑に用いた場合、高いトラクション係数を達成し、動力伝達の向上に寄与すると考えられる。
一方で、規格化ピーク強度比が0.2以下である潤滑油基油は、油膜の固さが不十分であると考えられ、トラクションドライブの潤滑に用いた場合には、トラクション係数が低くなり、動力伝達の点で問題があるといえる。
The value of the normalized peak intensity ratio is an index of the hardness of the oil film formed in the nano space.
That is, it is considered that a lubricating base oil having a normalized peak intensity ratio of more than 0.2 has a strong oil film retained in the nano space. It is considered that the property of holding a strong oil film achieves a high traction coefficient and contributes to improvement of power transmission when a lubricating oil composition containing the lubricating base oil is used for lubrication of a traction drive.
On the other hand, a lubricating base oil having a normalized peak strength ratio of 0.2 or less is considered to have insufficient oil film hardness, and when used for traction drive lubrication, the traction coefficient becomes low. , There is a problem in terms of power transmission.

上記観点から、本発明の一態様の潤滑油基油の面圧12.4MPaにおける、規格化ピーク強度比は、好ましくは0.22〜1.00、より好ましくは0.25〜1.00、更に好ましくは0.35〜1.00、より更に好ましくは0.50〜1.00、特に好ましくは0.70〜1.00である。   From the above viewpoint, the normalized peak intensity ratio at the surface pressure of 12.4 MPa of the lubricating base oil of one embodiment of the present invention is preferably 0.22 to 1.00, more preferably 0.25 to 1.00, It is more preferably 0.35 to 1.00, still more preferably 0.50 to 1.00, and particularly preferably 0.70 to 1.00.

なお、本明細書において、潤滑油基油の面圧12.4MPaにおける、前記固体表面間距離、及び前記規格化ピーク強度比は、共振ずり測定装置(例えば、製品名「RSM−1」(アドバンス理工株式会社製)等)を用いて測定することができる。共振ずり測定装置を用いた具体的な測定の手順としては、参考文献1(A new physical model for resonance shear measurement of confined liquids between solid surfaces, REVIEW OF SCIENTIFIC INSTRUMENTS 79, 113705 2008)の記載の方法が挙げられ、より具体的には、実施例に記載の方法に基づき測定することができる。
このような特性に鑑みると、本発明の一態様の潤滑油基油は、トラクションドライブ用の潤滑油組成物に用いられることが好ましい。
In the present specification, the distance between the solid surfaces and the normalized peak intensity ratio at the surface pressure of the lubricating base oil of 12.4 MPa are the resonance shear measurement device (for example, product name “RSM-1” (advanced Riko Co., Ltd.) and the like). As a specific measurement procedure using the resonance shear measurement device, the method described in Reference 1 (A new physical model for resonance shear measurement of confined liquids between solid surfaces, REVIEW OF SCIENTIFIC INSTRUMENTS 79, 113705 2008) can be mentioned. More specifically, it can be measured based on the method described in Examples.
In view of such characteristics, the lubricating base oil of one aspect of the present invention is preferably used in a lubricating oil composition for traction drive.

本発明の一態様の潤滑油基油において、面圧12.4MPa条件下で測定した、40℃における粘度ηは、トラクションドライブの潤滑に適した潤滑油組成物に調製し得る潤滑油基油とする観点から、好ましくは10〜50mPa・s、より好ましくは12〜45mPa・s、更に好ましくは14〜40mPa・s、より更に好ましくは16〜35mPa・sである。 In the lubricating base oil of one embodiment of the present invention, the viscosity η P at 40 ° C. measured under a surface pressure of 12.4 MPa can be a lubricating base oil that can be prepared into a lubricating oil composition suitable for traction drive lubrication. From the viewpoint of the above, it is preferably 10 to 50 mPa · s, more preferably 12 to 45 mPa · s, further preferably 14 to 40 mPa · s, and still more preferably 16 to 35 mPa · s.

また、本発明の一態様の潤滑油基油において、常圧(0.10MPa)条件下で測定した、40℃における粘度ηは、トラクションドライブの潤滑に適した潤滑油組成物に調製し得る潤滑油基油とする観点から、好ましくは5〜50mPa・s、より好ましくは7〜45mPa・s、更に好ましくは9〜40mPa・sである。 Further, in the lubricating base oil of one embodiment of the present invention, the viscosity η 0 at 40 ° C. measured under normal pressure (0.10 MPa) conditions can be adjusted to a lubricating oil composition suitable for traction drive lubrication. From the viewpoint of a lubricating base oil, it is preferably 5 to 50 mPa · s, more preferably 7 to 45 mPa · s, and further preferably 9 to 40 mPa · s.

本発明の一態様の潤滑油基油において、面圧12.4MPa条件下で測定した、40℃における粘度ηと、常圧(0.10MPa)条件下で測定した、40℃における粘度ηとの比〔η/η〕は、ナノ空間で、動力伝達効率が高く、強固な油膜を形成可能な潤滑油組成物に調製し得る潤滑油基油とする観点から、好ましくは1.05〜2.0、より好ましくは1.1〜1.7、更に好ましくは1.15〜1.5である。 In the lubricating base oil of one embodiment of the present invention, the viscosity η P at 40 ° C. measured under a surface pressure of 12.4 MPa and the viscosity η 0 at 40 ° C. measured under a normal pressure (0.10 MPa) condition. The ratio [η P / η 0 ] is preferably 1. from the viewpoint of a lubricating base oil that can be prepared into a lubricating oil composition capable of forming a strong oil film with high power transmission efficiency in nano space. 05 to 2.0, more preferably 1.1 to 1.7, still more preferably 1.15 to 1.5.

なお、本明細書において、粘度ηは、下記参考文献2に記載の方法に準拠して測定することができ、粘度ηは、下記参考文献3記載の方法に準拠して、転落球式高圧粘度計を用いて測定することができる。より具体的な測定手順については、実施例に記載のとおりである。
・参考文献2:API Standard 2540 (1980) ‘Manual of Measurement Standard Chapter11.1 - Lolume Correction Factors, Volume XIV’ Appendix A
・参考文献3:トライボロジスト, vol.55, No.9 (2010), p41-52 (出光興産株式会社発行)
In this specification, the viscosity η 0 can be measured according to the method described in Reference Document 2 below, and the viscosity η P can be measured according to the method described in Reference Document 3 below in accordance with the falling ball formula. It can be measured using a high-pressure viscometer. More specific measurement procedure is as described in the examples.
・ Reference 2: API Standard 2540 (1980) 'Manual of Measurement Standard Chapter 11.1-Lolume Correction Factors, Volume XIV' Appendix A
・ Reference 3: Tribologist, vol.55, No.9 (2010), p41-52 (Idemitsu Kosan Co., Ltd.)

本発明の一態様の潤滑油基油の100℃における動粘度としては、好ましくは2.0〜10.0mm/s、より好ましくは2.2〜8.5mm/s、更に好ましくは2.5〜7.0mm/s、より更に好ましくは2.8〜6.5mm/sである。
また、本発明の一態様の潤滑油基油の粘度指数としては、通常45以上であるが、温度依存性が小さい潤滑油基油とする観点から、好ましくは70以上、より好ましくは80以上、更に好ましくは90以上である。
なお、本明細書において、潤滑油基油の動粘度及び粘度指数は、JIS K2283:2000に準拠して測定及び算出した値を意味する。
The kinematic viscosity at 100 ° C. in one embodiment the lubricating base oils of the present invention, preferably 2.0~10.0mm 2 / s, more preferably 2.2~8.5mm 2 / s, more preferably 2 0.5-7.0 mm < 2 > / s, More preferably, it is 2.8-6.5 mm < 2 > / s.
The viscosity index of the lubricating base oil of one embodiment of the present invention is usually 45 or more, but from the viewpoint of a lubricating base oil having a small temperature dependence, preferably 70 or more, more preferably 80 or more, More preferably, it is 90 or more.
In the present specification, the kinematic viscosity and viscosity index of the lubricating base oil mean values measured and calculated according to JIS K2283: 2000.

本発明の一態様の潤滑油基油は、鉱油及び合成油から選ばれる1種以上から構成することができ、前記固体表面間距離及び前記規格化ピーク強度比の値を上述の範囲となるように調製する観点から、エステル系合成油、ナフテン系合成油、及び鉱油から選ばれる1種以上を含むことが好ましく、エステル系合成油及びナフテン系合成油から選ばれる1種以上を含むことがより好ましく、エステル系合成油を含むことが更に好ましい。   The lubricating base oil of one aspect of the present invention can be composed of one or more selected from mineral oils and synthetic oils, and the values of the distance between solid surfaces and the value of the normalized peak strength ratio are in the above ranges. From the viewpoint of preparation of the above, it is preferable to contain at least one selected from ester synthetic oils, naphthene synthetic oils, and mineral oils, and it is more preferable to contain at least one selected from ester synthetic oils and naphthene synthetic oils. It is more preferable to include an ester synthetic oil.

ところで、上述のとおり、前記固体表面間距離及び前記規格化ピーク強度比の値は、潤滑油基油の分子構造によって変化し易い。そのため、例えば、エステル系合成油であっても、その分子構造の違いによって、前記固体表面間距離及び前記規格化ピーク強度比の値は変化する。また、2種以上の化合物からなる混合物である場合には、各化合物の含有割合によっても、これらの値は変化する。
本発明の潤滑油基油では、特定の分子構造を有する化合物を選択すること、及び、各化合物の含有割合を調製することで、前記固体表面間距離及び前記規格化ピーク強度比の値を上述の範囲となるようにしている。
By the way, as described above, the values of the distance between the solid surfaces and the normalized peak intensity ratio are likely to change depending on the molecular structure of the lubricating base oil. Therefore, for example, even in the case of ester synthetic oil, the values of the distance between the solid surfaces and the normalized peak intensity ratio change depending on the difference in the molecular structure. In the case of a mixture composed of two or more compounds, these values also change depending on the content ratio of each compound.
In the lubricating base oil of the present invention, by selecting a compound having a specific molecular structure, and by adjusting the content ratio of each compound, the values of the solid surface distance and the normalized peak intensity ratio are described above. The range is set to.

例えば、エステル系合成油においては、前記固体表面間距離及び前記規格化ピーク強度比の値を大きく調製する観点から、脂肪族多価アルコールのエステル化合物を含むことが好ましい。当該脂肪族多価アルコールの価数としては、好ましくは2〜6である。
また、当該エステル化合物は、炭素数6〜20のアルキル基を有する化合物を含むことが好ましく、炭素数8〜12のアルキル基を有する化合物を含むことがより好ましい。
さらに、エステル系合成油は、少なくとも1種の炭素数8〜12のアルキル基を有する化合物から構成されたものであることが好ましく、少なくとも2種又は3種の炭素数8〜12のアルキル基を有する化合物から構成された混合物であることがより好ましい。
For example, the ester synthetic oil preferably contains an ester compound of an aliphatic polyhydric alcohol from the viewpoint of adjusting the distance between the solid surfaces and the value of the normalized peak intensity ratio to be large. The valence of the aliphatic polyhydric alcohol is preferably 2-6.
The ester compound preferably contains a compound having an alkyl group having 6 to 20 carbon atoms, and more preferably contains a compound having an alkyl group having 8 to 12 carbon atoms.
Further, the ester-based synthetic oil is preferably composed of a compound having at least one type of alkyl group having 8 to 12 carbon atoms, and at least two or three types of alkyl group having 8 to 12 carbon atoms. More preferably, it is a mixture composed of the compound having.

また、ナフテン系合成油としては、前記固体表面間距離及び前記規格化ピーク強度比の値を大きく調製する観点から、炭素数10〜25のナフテン化合物を含むことが好ましく、炭素数12〜20のナフテン化合物を含むことがより好ましい。
また、当該ナフテン化合物は、ビシクロ〔2.2.1〕ヘプタン環、ビシクロ〔2.2.2〕オクタン環、及びビシクロ〔3.3.0〕オクタン環から選ばれる環を有する化合物を含むことが好ましく、これらの環を2つ有する二量体を含むことがより好ましい。
さらに、当該ナフテン化合物は、炭素数1〜3のアルキル基を有する化合物を含むことが好ましく、炭素数1〜3のアルキル基を複数有する化合物を含むことがより好ましい。
The naphthene-based synthetic oil preferably contains a naphthene compound having 10 to 25 carbon atoms and has 12 to 20 carbon atoms from the viewpoint of adjusting the distance between the solid surfaces and the value of the normalized peak intensity ratio to be large. It is more preferable to include a naphthene compound.
Further, the naphthene compound contains a compound having a ring selected from a bicyclo [2.2.1] heptane ring, a bicyclo [2.2.2] octane ring, and a bicyclo [3.3.0] octane ring. Is more preferable, and it is more preferable to include a dimer having two of these rings.
Further, the naphthene compound preferably contains a compound having an alkyl group having 1 to 3 carbon atoms, and more preferably contains a compound having a plurality of alkyl groups having 1 to 3 carbon atoms.

鉱油としては、例えば、パラフィン系原油、中間基系原油、ナフテン系原油等の原油を常圧蒸留して得られる常圧残油;これらの常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、及び水素化精製等の精製処理を1つ以上施して得られる精製油;天然ガスからフィッシャー・トロプシュ法等により製造されるワックス(GTLワックス(Gas To Liquids WAX))を異性化することで得られる鉱油(GTL)等が挙げられる。
これらの中でも、前記固体表面間距離及び前記規格化ピーク強度比の値を大きく調製する観点から、鉱油としては、炭素数12〜50の炭化水素基を有する化合物から構成された鉱油であることが好ましく、炭素数12〜50の炭化水素基を有する化合物から構成されたパラフィン系鉱油であることがより好ましい。また、当該炭化水素基の炭素数としては、好ましくは12〜50であるが、前記固体表面間距離及び前記規格化ピーク強度比の値を大きく調製する観点から、より好ましくは16〜50、更に好ましくは20〜50、より更に好ましくは22〜50である。
Examples of the mineral oil include atmospheric residual oil obtained by atmospheric distillation of crude oil such as paraffinic crude oil, intermediate base crude oil, and naphthenic crude oil; distillate oil obtained by vacuum distillation of these atmospheric residual oils. A refined oil obtained by subjecting the distillate oil to one or more purification treatments such as solvent degassing, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrorefining; natural gas to Fischer Mineral oil (GTL) obtained by isomerizing wax (GTL wax (Gas To Liquids WAX)) manufactured by the Tropsch method etc. is mentioned.
Among these, from the viewpoint of adjusting the distance between the solid surfaces and the value of the normalized peak intensity ratio to be large, the mineral oil is a mineral oil composed of a compound having a hydrocarbon group having 12 to 50 carbon atoms. A paraffinic mineral oil composed of a compound having a hydrocarbon group having 12 to 50 carbon atoms is more preferable. The number of carbon atoms of the hydrocarbon group is preferably 12 to 50, but more preferably 16 to 50, and further preferably 16 to 50, from the viewpoint of adjusting the values of the distance between the solid surfaces and the normalized peak intensity ratio to be large. It is preferably 20 to 50, more preferably 22 to 50.

本発明の一態様の潤滑油基油は、複数の種類の基油を含む混合基油であってもよい。混合基油である場合には、混合基油が、前記固体表面間距離及び前記規格化ピーク強度比の値が、上述の範囲となるように、各基油の配合割合が調製されていればよい。   The lubricating base oil of one aspect of the present invention may be a mixed base oil containing a plurality of types of base oils. In the case of a mixed base oil, if the mixed base oil has a blending ratio of each base oil such that the solid surface distance and the value of the normalized peak intensity ratio fall within the above range. Good.

なお、本発明の一態様の潤滑油基油は、前記固体表面間距離及び前記規格化ピーク強度比の値を上述の範囲となるように調整する観点から、ポリα−オレフィン等のオレフィン系合成油の含有量は極力少ないほど好ましい。
上記観点から、本発明の一態様の潤滑油基油において、オレフィン系合成油の含有量は、当該潤滑油基油の全量(100質量%)基準で、好ましくは10質量%未満、より好ましくは5質量%未満、更に好ましくは1質量%未満、より更に好ましくは0.1質量%未満、特に好ましくは0.01質量%未満である。
なお、ポリα−オレフィンの含有量も、上記範囲であることが好ましい。
In addition, the lubricating base oil of one aspect of the present invention is an olefin-based synthesis such as poly α-olefin, from the viewpoint of adjusting the distance between the solid surfaces and the value of the normalized peak intensity ratio to fall within the above range. The oil content is preferably as low as possible.
From the above viewpoint, in the lubricating base oil of one embodiment of the present invention, the content of the olefinic synthetic oil is preferably less than 10% by mass, more preferably less than 10% by mass, based on the total amount (100% by mass) of the lubricating base oil. It is less than 5% by mass, more preferably less than 1% by mass, even more preferably less than 0.1% by mass, particularly preferably less than 0.01% by mass.
The content of poly α-olefin is also preferably within the above range.

〔潤滑油組成物〕
本発明の潤滑油組成物は、上述の本発明の潤滑油基油を含むものである。
本発明の一態様の潤滑油組成物において、前記潤滑油基油の含有量は、当該潤滑油組成物の全量(100質量%)基準で、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、より更に好ましくは85質量%以上である。
[Lubricant composition]
The lubricating oil composition of the present invention contains the above-mentioned lubricating base oil of the present invention.
In the lubricating oil composition of one aspect of the present invention, the content of the lubricating base oil is preferably 60% by mass or more, more preferably 70% by mass, based on the total amount (100% by mass) of the lubricating oil composition. The amount is more preferably 80% by mass or more, further preferably 85% by mass or more.

なお、本発明の一態様の潤滑油組成物は、必要に応じて、各種添加剤を含有してもよい。
このような添加剤としては、例えば、酸化防止剤、清浄分散剤、流動点降下剤、粘度指数向上剤、耐摩耗剤、極圧剤、消泡剤、防錆剤、腐食防止剤等が挙げられる。
これらの潤滑油用添加剤は、それぞれ、単独で用いてもよく、2種以上を併用してもよい。
Note that the lubricating oil composition of one aspect of the present invention may contain various additives, if necessary.
Examples of such additives include antioxidants, detergent dispersants, pour point depressants, viscosity index improvers, antiwear agents, extreme pressure agents, defoamers, rust inhibitors, and corrosion inhibitors. To be
These lubricating oil additives may be used alone or in combination of two or more.

これらの添加剤のそれぞれの含有量は、添加剤の種類に応じて適宜調製することができるが、潤滑油組成物の全量(100質量%)基準で、それぞれの添加剤ごとに独立して、通常0.001〜15質量%、好ましくは0.005〜10質量%、より好ましくは0.01〜5質量%である。   The content of each of these additives can be appropriately adjusted depending on the type of the additive, but based on the total amount (100% by mass) of the lubricating oil composition, independently for each additive, It is usually 0.001 to 15% by mass, preferably 0.005 to 10% by mass, and more preferably 0.01 to 5% by mass.

〔潤滑油組成物の用途〕
本発明の一態様の潤滑油組成物の用途としては、トラクションドライブ流体、変速機油、油圧作動油、コンプレッサー油、電気絶縁油等が挙げられる。
ただし、上述のとおり、本発明の潤滑油基油は、ナノ空間で、強固な油膜が形成され、且つ保持し得るため、上述のとおり、耐摩耗性に優れ、動力伝達効率が高いと考えられる。そのため、当該潤滑油基油を含む本発明の潤滑油組成物も、同様の特性を発揮することができると考えられる。
したがって、本発明の一態様の潤滑油組成物は、トラクションドライブ流体として、トラクションドライブの潤滑に用いられることが好ましく、トラクションドライブの対抗する2面間距離が1.0〜10nmのナノ空間での潤滑に用いられることがより好ましい。
なお、トラクションドライブの対抗する2面間距離は、上述の共振ずり測定装置における固体表面間距離に対応する。
[Uses of lubricating oil composition]
Applications of the lubricating oil composition of one aspect of the present invention include traction drive fluids, transmission fluids, hydraulic fluids, compressor oils, electrical insulating oils and the like.
However, as described above, the lubricating base oil of the present invention is considered to have excellent wear resistance and high power transmission efficiency, as described above, because a strong oil film is formed and retained in the nano space. . Therefore, it is considered that the lubricating oil composition of the present invention containing the lubricating base oil can also exhibit similar characteristics.
Therefore, the lubricating oil composition of one embodiment of the present invention is preferably used as a traction drive fluid for lubrication of a traction drive, and the distance between two surfaces facing each other in the traction drive is 1.0 to 10 nm in a nano space. More preferably used for lubrication.
The distance between two surfaces of the traction drive that opposes corresponds to the distance between the solid surfaces in the above-mentioned resonance shear measuring device.

また、本発明の一態様の潤滑油組成物の上述の特性を考慮すると、本発明は、以下の[1]及び[2]も提供し得る。
[1]上述の本発明の一態様の潤滑油組成物を用いた、トラクションドライブ。
[2]上述の本発明の一態様の潤滑油組成物をトラクションドライブの潤滑に用いる、潤滑油組成物の使用方法。
なお、上記[1]及び[2]において、本発明の一態様の潤滑油組成物は、トラクションドライブ内の対抗する2面間距離が1.0〜10nmのナノ空間での潤滑に用いることが好ましい。
Further, considering the above-mentioned characteristics of the lubricating oil composition of one aspect of the present invention, the present invention can also provide the following [1] and [2].
[1] A traction drive using the lubricating oil composition of one aspect of the present invention described above.
[2] A method of using a lubricating oil composition, which comprises using the lubricating oil composition according to one embodiment of the present invention for lubricating a traction drive.
In addition, in the above [1] and [2], the lubricating oil composition of one embodiment of the present invention is used for lubrication in a nano space having a distance between two opposing surfaces in a traction drive of 1.0 to 10 nm. preferable.

次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、各種物性の測定法又は評価法は、下記のとおりである。   Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The methods for measuring or evaluating various physical properties are as follows.

(1)固体表面間距離、規格化ピーク強度比の測定及び算出
共振ずり測定装置(アドバンス理工株式会社、製品名「RSM−1」)を用いて、固体表面間距離の変化に伴う試料油にかかる面圧の値の変化を測定した。
具体的には、下記参考文献1に記載の方法に基づき、上記の共振ずり測定装置を用いて、室温(25℃)にて、清浄で平滑な雲母劈開面を対向させた二面間に、試料油(α1)〜(α7)のいずれかを約200μl滴下し、直行円筒形式で接触させた。固体表面間距離は、等色次数干渉縞法により算出した。そして、空気を介して対抗する二面の固体表面を分離させた状態(AS)から、対抗する二面の固体表面が接触した状態(SC)に向かい、固体表面間距離を徐々に減少させて、面圧が12.4MPaに達した際の固体表面間距離を測定した。
また、共振ずり応答については、共振ずりユニットに、電圧Uinを印加して水平方向の振動を発生させ、その振幅を静電容量計にて電圧Uoutを測定し、振動の強度〔Uout/Uin〕として評価した。得られた共振ずり応答(振動の強度〔Uout/Uin〕)を、下記参考文献1に記載の方法で解析することで、面圧が12.4MPaに達した際の共振周波数のピーク強度Iと、SCでの共振周波数のピーク強度ISCとを算出し、両者の比〔I/ISC〕を規格化ピーク強度比とした。
・参考文献1:A new physical model for resonance shear measurement of confined liquids between solid surfaces, REVIEW OF SCIENTIFIC INSTRUMENTS 79, 113705 2008
(1) Measurement and Calculation of Distance between Solid Surfaces and Normalized Peak Strength Ratio Using a resonance shear measuring device (Advance Riko Co., Ltd., product name "RSM-1"), sample oil accompanying changes in the distance between solid surfaces The change in the surface pressure value was measured.
Specifically, based on the method described in Reference Document 1 below, using the above resonance shear measuring device, at room temperature (25 ° C.), between two surfaces facing clean and smooth mica cleavage surface, About 200 μl of any one of the sample oils (α1) to (α7) was dropped, and the samples were brought into contact with each other in an orthogonal cylinder format. The distance between the solid surfaces was calculated by the colorimetric order interference fringe method. Then, the two solid surfaces facing each other are separated from each other via air (AS) to the contact state (SC) of the two solid surfaces facing each other, and the distance between the solid surfaces is gradually reduced. The distance between the solid surfaces when the surface pressure reached 12.4 MPa was measured.
Regarding the resonance shear response, a voltage Uin is applied to the resonance shear unit to generate horizontal vibration, and the amplitude of the vibration is measured by measuring the voltage Uout, and the vibration intensity [Uout / Uin] is measured. Evaluated as. By analyzing the obtained resonance shear response (vibration intensity [Uout / Uin]) by the method described in Reference Document 1 below, the peak intensity I of the resonance frequency when the surface pressure reached 12.4 MPa was obtained. calculates a peak intensity I SC of the resonance frequency in the SC, the ratio of both [I / I SC] was normalized peak intensity ratio.
・ Reference 1: A new physical model for resonance shear measurement of confined liquids between solid surfaces, REVIEW OF SCIENTIFIC INSTRUMENTS 79, 113705 2008

(2)常圧(0.10MPa)条件下での40℃における粘度η
下記参考文献2に記載の方法に準拠して算出した。
なお、粘度ηの算出の際に用いる、40℃における密度(dt)は、以下の計算式から算出することができる。
dt=d15×exp(−D×Δt×(1+0.8×D×Δt))
(上記計算式中、D=0.6278/1000×d15(ただし、d15は、JIS K2249−4:2011に準拠して測定した15℃における試料油の密度)、Δt=t−15である。)
・参考文献2:API Standard 2540 (1980) ‘Manual of Measurement Standard Chapter11.1 - Lolume Correction Factors, Volume XIV’ Appendix A
(3)面圧12.4MPa条件下での40℃における粘度η
下記参考文献3に記載の方法に準拠して、転落球式高圧粘度計を用いて、圧力12.4MPaにおける試料油の粘度ηを算出した。
・参考文献3:トライボロジスト, vol.55, No.9 (2010), p41-52 (出光興産株式会社発行)
(4)動粘度、粘度指数
JIS K2283:2000に準拠して測定及び算出した。
(2) Viscosity η 0 at 40 ° C. under normal pressure (0.10 MPa) conditions
It was calculated according to the method described in Reference Document 2 below.
The density (dt) at 40 ° C. used when calculating the viscosity η 0 can be calculated by the following calculation formula.
dt = d15 × exp (−D × Δt × (1 + 0.8 × D × Δt))
(In the above calculation formula, D = 0.6278 / 1000 × d15 (where d15 is the density of the sample oil at 15 ° C. measured according to JIS K2249-4: 2011) and Δt = t-15.)
・ Reference 2: API Standard 2540 (1980) 'Manual of Measurement Standard Chapter 11.1-Lolume Correction Factors, Volume XIV' Appendix A
(3) Viscosity η P at 40 ° C. under surface pressure of 12.4 MPa
In accordance with the method described in Reference Document 3 below, the viscosity η P of the sample oil at a pressure of 12.4 MPa was calculated using a falling ball high pressure viscometer.
・ Reference 3: Tribologist, vol.55, No.9 (2010), p41-52 (Idemitsu Kosan Co., Ltd.)
(4) Kinematic viscosity and viscosity index Measured and calculated in accordance with JIS K2283: 2000.

実施例1〜4、比較例1〜3
所定の精製法又は合成法により得られた、以下の試料油(α1)〜(α7)について、固体表面間距離及び規格化ピーク強度比を含む各種物性を測定した。測定した各種物性は表1にようになった。
・試料油(α1):エステル系合成油、炭素数8、10又は12のアルキル基を有するトリメチロールプロパントリエステルを含むエステル化合物の混合物。
・試料油(α2):ナフテン系合成油、下記式で表される脂環式多環化合物。

Figure 2020066682
・試料油(α3):100℃動粘度=6.0mm/sである、炭素数22〜50の炭化水素基を有する化合物を含むパラフィン系鉱油。
・試料油(α4):100℃動粘度=3.1mm/sである、炭素数16〜30の炭化水素基を有する化合物を含むパラフィン系鉱油。
・試料油(α5):100℃動粘度=5.9mm/sであるポリα−オレフィン。
・試料油(α6):100℃動粘度=3.9mm/sであるポリα−オレフィン。
・試料油(α7):100℃動粘度=1.8mm/sであるポリα−オレフィン。 Examples 1-4, Comparative Examples 1-3
With respect to the following sample oils (α1) to (α7) obtained by a predetermined purification method or synthetic method, various physical properties including a distance between solid surfaces and a normalized peak intensity ratio were measured. The measured physical properties are shown in Table 1.
Sample oil (α1): ester-based synthetic oil, a mixture of ester compounds containing trimethylolpropane triester having an alkyl group having 8, 10 or 12 carbon atoms.
-Sample oil (α2): naphthenic synthetic oil, an alicyclic polycyclic compound represented by the following formula.
Figure 2020066682
Sample oil (α3): 100 ° C. kinematic viscosity = 6.0 mm 2 / s, a paraffinic mineral oil containing a compound having a hydrocarbon group having 22 to 50 carbon atoms.
Sample oil (α4): 100 ° C. kinematic viscosity = 3.1 mm 2 / s, a paraffinic mineral oil containing a compound having a hydrocarbon group having 16 to 30 carbon atoms.
Sample oil (α5): polyα-olefin having a kinematic viscosity at 100 ° C. of 5.9 mm 2 / s.
Sample oil (α6): polyα-olefin having a kinematic viscosity at 100 ° C. of 3.9 mm 2 / s.
Sample oil (α7): polyα-olefin having a kinematic viscosity at 100 ° C. of 1.8 mm 2 / s.

Figure 2020066682
Figure 2020066682

実施例1〜4の試料油(α1)〜(α4)は、固体表面間距離及び規格化ピーク強度比の値から、ナノ空間で、強固な油膜が形成され、保持され得ると考えられる。そのため、これらの試料油は、トラクションドライブの潤滑に好適に使用できるといえる。
一方で、比較例1〜3の試料油(α5)〜(α7)は、いずれも規格化ピーク強度比の値が低いため、形成される油膜の固さの点で問題があると考えられ、トラクションドライブの潤滑には適さないものと推測される。また、比較例2〜3の試料油(α6)〜(α7)は、固体表面間距離の値が1.0nm未満であるため、ナノ空間では、油膜の保持性が劣ると考えられる。
It is considered that the sample oils (α1) to (α4) of Examples 1 to 4 can form and hold a strong oil film in the nano space, based on the values of the solid surface distance and the normalized peak intensity ratio. Therefore, it can be said that these sample oils can be suitably used for the lubrication of the traction drive.
On the other hand, since the sample oils (α5) to (α7) of Comparative Examples 1 to 3 have low values of the normalized peak intensity ratio, it is considered that there is a problem in the hardness of the oil film formed, It is presumed that it is not suitable for traction drive lubrication. Further, since the sample oils (α6) to (α7) of Comparative Examples 2 to 3 have a value of the distance between solid surfaces of less than 1.0 nm, it is considered that the oil film retainability is poor in the nano space.

Claims (10)

共振ずり測定装置を用いて測定した、面圧12.4MPaにおける、固体表面間距離が1.0nm以上であり、規格化ピーク強度比が0.2超1.0以下である、潤滑油基油。   Lubricating base oil having a distance between solid surfaces of 1.0 nm or more and a normalized peak intensity ratio of more than 0.2 and not more than 1.0 at a surface pressure of 12.4 MPa measured using a resonance shear measuring device. . 面圧12.4MPa条件下で測定した、40℃における粘度ηが、10〜50mPa・sである、請求項1に記載の潤滑油基油。 The lubricating base oil according to claim 1, having a viscosity η P at 40 ° C of 10 to 50 mPa · s measured under a surface pressure of 12.4 MPa. 常圧条件下で測定した、40℃における粘度ηが、5〜50mPa・sである、請求項1又は2に記載の潤滑油基油。 The lubricating base oil according to claim 1, wherein the viscosity η 0 at 40 ° C. measured under normal pressure conditions is 5 to 50 mPa · s. エステル系合成油、ナフテン系合成油、及び鉱油から選ばれる1種以上を含む、請求項1〜3のいずれか一項に記載の潤滑油基油。   The lubricating base oil according to any one of claims 1 to 3, containing at least one selected from ester synthetic oils, naphthene synthetic oils, and mineral oils. トラクションドライブ用の潤滑油組成物に用いられる、請求項1〜4のいずれか一項に記載の潤滑油基油。   The lubricating base oil according to any one of claims 1 to 4, which is used in a lubricating oil composition for a traction drive. 請求項1〜5のいずれか一項に記載の潤滑油基油を含む、潤滑油組成物。   A lubricating oil composition comprising the lubricating base oil according to any one of claims 1 to 5. トラクションドライブの潤滑に用いられる、請求項6に記載の潤滑油組成物。   The lubricating oil composition according to claim 6, which is used for lubricating a traction drive. 前記トラクションドライブの対抗する2面間距離が1.0〜10nmのナノ空間での潤滑に用いられる、請求項7に記載の潤滑油組成物。   The lubricating oil composition according to claim 7, which is used for lubrication in a nano space having a distance between two surfaces facing each other of the traction drive of 1.0 to 10 nm. 請求項6に記載の潤滑油組成物をトラクションドライブの潤滑に用いる、潤滑油組成物の使用方法。   A method of using the lubricating oil composition according to claim 6 for lubricating a traction drive. 前記トラクションドライブの対抗する2面間距離が1.0〜10nmのナノ空間での潤滑に用いる、請求項9の記載の潤滑油組成物の使用方法。
The method of using the lubricating oil composition according to claim 9, which is used for lubrication in a nano space having a distance between two surfaces facing each other of the traction drive of 1.0 to 10 nm.
JP2018200593A 2018-10-25 2018-10-25 Lubricating base oil and lubricating oil composition and method of using lubricating oil composition Pending JP2020066682A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018200593A JP2020066682A (en) 2018-10-25 2018-10-25 Lubricating base oil and lubricating oil composition and method of using lubricating oil composition
CN201980069209.4A CN112912481A (en) 2018-10-25 2019-10-25 Lubricating oil base oil, lubricating oil composition, and method for using lubricating oil composition
PCT/JP2019/041863 WO2020085475A1 (en) 2018-10-25 2019-10-25 Lubricating oil base oil, lubricating oil composition, and method for using lubricating oil composition
EP19875248.7A EP3872155A4 (en) 2018-10-25 2019-10-25 Lubricating oil base oil, lubricating oil composition, and method for using lubricating oil composition
US17/287,323 US20210355404A1 (en) 2018-10-25 2019-10-25 Lubricating oil base oil, lubricating oil composition, and method for using lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200593A JP2020066682A (en) 2018-10-25 2018-10-25 Lubricating base oil and lubricating oil composition and method of using lubricating oil composition

Publications (1)

Publication Number Publication Date
JP2020066682A true JP2020066682A (en) 2020-04-30

Family

ID=70331764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200593A Pending JP2020066682A (en) 2018-10-25 2018-10-25 Lubricating base oil and lubricating oil composition and method of using lubricating oil composition

Country Status (5)

Country Link
US (1) US20210355404A1 (en)
EP (1) EP3872155A4 (en)
JP (1) JP2020066682A (en)
CN (1) CN112912481A (en)
WO (1) WO2020085475A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395295A (en) * 1989-06-16 1991-04-19 Idemitsu Kosan Co Ltd Fluid for traction drive
JP2000204386A (en) * 1998-11-13 2000-07-25 Idemitsu Kosan Co Ltd Base oil composition for lubricating oil and its production
JP2001247492A (en) * 1999-12-27 2001-09-11 Idemitsu Kosan Co Ltd Bicyclo[2.2.1]heptane derivative and method for producing the same and fluid for traction drive
JP2005281474A (en) * 2004-03-29 2005-10-13 Idemitsu Kosan Co Ltd Lubricating oil composition for nonstep variable speed gear
JP2008056800A (en) * 2006-08-31 2008-03-13 Idemitsu Kosan Co Ltd Lubricant oil composition for compression type refrigerating machine with traction mechanism
JP2009301437A (en) * 2008-06-16 2009-12-24 Toyota Central R&D Labs Inc Simulation system and program thereof
JP2018062551A (en) * 2016-10-11 2018-04-19 出光興産株式会社 Lubricant composition
JP2018115229A (en) * 2017-01-16 2018-07-26 三井化学株式会社 Lubricant composition for automobile gears

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101278184B (en) * 2005-09-28 2012-07-04 独立行政法人科学技术振兴机构 Shear measuring method and its device
EP2876152A4 (en) * 2012-07-20 2016-03-09 Jx Nippon Oil & Energy Corp Lubricating oil composition for continuously variable transmission
EP3050945A4 (en) * 2013-09-25 2017-06-07 Idemitsu Kosan Co., Ltd Lubricating oil composition for traction drive transmission
WO2016152229A1 (en) * 2015-03-20 2016-09-29 Jxエネルギー株式会社 Lubricating oil composition for transmission
WO2017158894A1 (en) * 2016-03-16 2017-09-21 国立大学法人東北大学 Lubricant oil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395295A (en) * 1989-06-16 1991-04-19 Idemitsu Kosan Co Ltd Fluid for traction drive
JP2000204386A (en) * 1998-11-13 2000-07-25 Idemitsu Kosan Co Ltd Base oil composition for lubricating oil and its production
JP2001247492A (en) * 1999-12-27 2001-09-11 Idemitsu Kosan Co Ltd Bicyclo[2.2.1]heptane derivative and method for producing the same and fluid for traction drive
JP2005281474A (en) * 2004-03-29 2005-10-13 Idemitsu Kosan Co Ltd Lubricating oil composition for nonstep variable speed gear
JP2008056800A (en) * 2006-08-31 2008-03-13 Idemitsu Kosan Co Ltd Lubricant oil composition for compression type refrigerating machine with traction mechanism
JP2009301437A (en) * 2008-06-16 2009-12-24 Toyota Central R&D Labs Inc Simulation system and program thereof
JP2018062551A (en) * 2016-10-11 2018-04-19 出光興産株式会社 Lubricant composition
JP2018115229A (en) * 2017-01-16 2018-07-26 三井化学株式会社 Lubricant composition for automobile gears

Also Published As

Publication number Publication date
EP3872155A1 (en) 2021-09-01
CN112912481A (en) 2021-06-04
WO2020085475A1 (en) 2020-04-30
EP3872155A4 (en) 2022-07-13
US20210355404A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP5033419B2 (en) Lubricating composition for automotive gear
JP6603951B1 (en) Lubricating oil composition inspection method and lubricating oil composition manufacturing method
JP2010535275A (en) Isomerized base oil metalworking fluid compositions with improved mist prevention properties and their preparation
JP2010535276A (en) Isomerized base oil metalworking fluid compositions with improved defoaming properties and their preparation
WO2017150656A1 (en) Lubricating oil composition, lubricating method, and transmission
EP2683802B1 (en) High viscosity lubricant compositions
JP2013104032A (en) Lubricant oil composition for transmission
JP2018039943A (en) Lubricating oil composition for automatic transmission
JP5865907B2 (en) Lubricating composition
JP2019033222A (en) Magneto rheological fluid composition
WO2017150687A1 (en) Lubricating oil composition, lubricating method, and transmission
JP2011057759A (en) Engine oil composition
JP2020066682A (en) Lubricating base oil and lubricating oil composition and method of using lubricating oil composition
JP6936041B2 (en) Lubricating oil composition for internal combustion engine
JP2016199616A (en) Engine oil composition
WO2017150688A1 (en) Lubricating oil composition, lubricating method, and transmission
JP6465437B2 (en) Magnetic viscosity composition
JP6729866B2 (en) Lubricating oil composition
WO2006055811A2 (en) Fluid lubricant comprising alpha-methyl styrene and polyalphaolefin
JP7266382B2 (en) lubricating oil composition
WO2014208549A1 (en) Hydraulic oil composition
JP2020180249A (en) Lubricant composition
JP2014185289A (en) Hydraulic oil composition
JP6807813B2 (en) Ferrofluid composition
JP2008266656A (en) Lubricating oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704