JP2020065843A - In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system - Google Patents

In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system Download PDF

Info

Publication number
JP2020065843A
JP2020065843A JP2018201831A JP2018201831A JP2020065843A JP 2020065843 A JP2020065843 A JP 2020065843A JP 2018201831 A JP2018201831 A JP 2018201831A JP 2018201831 A JP2018201831 A JP 2018201831A JP 2020065843 A JP2020065843 A JP 2020065843A
Authority
JP
Japan
Prior art keywords
electrode
potential
insulating member
organ
vivo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018201831A
Other languages
Japanese (ja)
Other versions
JP7211002B2 (en
Inventor
友介 坂上
Yusuke Sakagami
友介 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2018201831A priority Critical patent/JP7211002B2/en
Publication of JP2020065843A publication Critical patent/JP2020065843A/en
Application granted granted Critical
Publication of JP7211002B2 publication Critical patent/JP7211002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

To provide an in vivo potential measuring instrument capable of accurately measuring a potential of a cautery site when the periphery of an inner wall surface of an organ is cauterized in an ablation treatment, etc.SOLUTION: An in vivo potential measuring instrument which is inserted into an organ of a living body for measuring a potential of a predetermined site on an inner wall surface of the organ includes: a hollow bag-like insulating member; and a hollow tubular member connected to a first electrode disposed in the hollow part of the insulating member and the insulating member. A conductive fluid is injected into the hollow part of the insulating member through the hollow tubular member, and in the state that the outer peripheral surface of the insulating member is brought into contact with the inner wall surface of the organ, a potential of the site in contact is measured by the first electrode. A second electrode electrically connected to the fluid that exists inside the hollow tubular member is disposed in the hollow tubular member, and the second electrode adjusts a potential of the fluid.SELECTED DRAWING: Figure 5

Description

本発明は、生体の器官内に挿入して、該器官の内壁面における所定部位の電位を計測する生体内電位計測器、及び、生体内電位計測方法、並びに、生体内電位計測器を備えた生体内電位計測システムに関する。   The present invention is provided with an in-vivo potential measuring instrument that is inserted into an organ of a living body and measures the potential of a predetermined site on the inner wall surface of the organ, an in-vivo potential measuring method, and an in-vivo potential measuring instrument. The present invention relates to an in-vivo potential measuring system.

血管等の器官内にカテーテルを挿入して、病変部に対して検査や治療を行うことが行われている。   BACKGROUND ART A catheter is inserted into an organ such as a blood vessel to inspect or treat a lesion.

カテーテルを用いた治療の一つに、バルーン付きのカテーテル・アブレーション治療がある。この治療は、カテーテルの先端にバルーンを取り付け、バルーン内に液体を注入することによってバルーンを膨らませた後、高周波電流によりバルーン内の液体を温めることによって、バルーンの表面と接触している器官を焼灼するもので、例えば、心房細動の治療等に適用されている。   One of the treatments using a catheter is catheter ablation treatment with a balloon. This treatment involves attaching a balloon to the tip of a catheter, inflating the balloon by injecting a liquid into the balloon, and then warming the liquid in the balloon with a high-frequency current to cauterize the organ in contact with the surface of the balloon. For example, it is applied to the treatment of atrial fibrillation.

この治療によれば、バルーンが柔軟な球形を有しているので、心房細動の治療部位である左心房と肺静脈との接合近傍の内壁面に、膨らんだバルーンの外周面をリング状に接触させることができるため、一度に肺静脈の周囲を焼灼することができる。   According to this treatment, since the balloon has a flexible spherical shape, the outer peripheral surface of the inflated balloon is formed into a ring shape on the inner wall surface in the vicinity of the junction between the left atrium and the pulmonary vein, which is the treatment site for atrial fibrillation. Because they can be contacted, they can cauterize around the pulmonary veins at once.

一方、アブレーション治療によって器官を焼灼した後、焼灼効果を確認するために、焼灼付近の器官の電位を計測することが行われている。例えば、特許文献1には、先端に電位測定用の複数の電極を備えたカテーテルを器官内に挿入して、焼灼付近の器官に各電極を接触させて、各電極が接触した部位の電位を計測する方法が記載されている。   On the other hand, after cauterizing an organ by ablation treatment, the potential of the organ in the vicinity of cautery is measured in order to confirm the cauterizing effect. For example, in Patent Document 1, a catheter having a plurality of electrodes for measuring potential at the tip is inserted into an organ, each electrode is brought into contact with an organ in the vicinity of cauterization, and the potential of a portion where each electrode is in contact is determined. The method of measurement is described.

特許第5870694号公報Japanese Patent No. 5870694

図11(a)〜(c)は、バルーン付きのカテーテルを用いて、バルーンに接触した器官を焼灼した後、従来の電位測定用の電極を用いて、焼灼付近の器官の電位を計測する方法を示した図である。なお、ここでは、焼灼する部位として、心房細動の治療部位である左心房と肺静脈との接合近傍を例に説明する。   11 (a) to 11 (c) show a method of measuring the potential of an organ in the vicinity of cauterization by using a conventional electrode for potential measurement after cauterizing the organ in contact with the balloon using a catheter with a balloon. It is the figure which showed. In addition, here, the vicinity of the junction between the left atrium and the pulmonary vein, which is a treatment site for atrial fibrillation, will be described as an example of the ablation site.

図11(a)に示すように、先端にバルーン30が取り付けられたカテーテル10を、左心房50と肺静脈51との接合近傍に挿入する。そして、バルーン30内に液体21を注入することによって、バルーン30を膨らませて、バルーン30の外周面を、器官52の内周面に、リング状に接触させる。なお、符号60は、心房細動の起源となる異常な電気信号源を示す。   As shown in FIG. 11A, the catheter 10 having the balloon 30 attached to the tip thereof is inserted near the junction between the left atrium 50 and the pulmonary vein 51. Then, by injecting the liquid 21 into the balloon 30, the balloon 30 is inflated and the outer peripheral surface of the balloon 30 is brought into contact with the inner peripheral surface of the organ 52 in a ring shape. Reference numeral 60 indicates an abnormal electrical signal source that is the origin of atrial fibrillation.

次に、図11(b)に示すように、第1の電極20に高周波電流を流して、バルーン30内の液体21を温めることによって、バルーン30の表面と接触している器官52を焼灼する。これにより、バルーン30が接触している器官の部位に、焼灼された部位(焼灼部位)61ができる。   Next, as shown in FIG. 11B, a high-frequency current is passed through the first electrode 20 to warm the liquid 21 in the balloon 30, thereby cauterizing the organ 52 in contact with the surface of the balloon 30. . As a result, a cauterized site (cauterization site) 61 is formed at the site of the organ with which the balloon 30 is in contact.

次に、図11(c)に示すように、バルーン付きカテーテル10を抜いて、先端に電位測定用の複数の電極(ラッソ電極)110を備えたカテーテル100を、焼灼部位61の近傍まで挿入して、器官52に、複数の電極110を接触させて、接触した部位の電位を計測する。   Next, as shown in FIG. 11C, the catheter 10 with a balloon is pulled out, and the catheter 100 having a plurality of electrodes (Lasso electrodes) 110 for measuring potential at the tip is inserted up to the vicinity of the ablation site 61. Then, the plurality of electrodes 110 are brought into contact with the organ 52, and the potential of the contacted portion is measured.

しかしながら、図11(c)に示すようなリング状の電極110を用いた場合、複数の電極110が接触した部位の電位を、間欠的に計測するため、電極間にある部位の電位は計測されない。   However, when the ring-shaped electrode 110 as shown in FIG. 11C is used, the potential of the site where the plurality of electrodes 110 contact is measured intermittently, so the potential of the site between the electrodes is not measured. .

一方、心房細動における異常な電気信号の伝導路は、肺静脈51の周囲に亘るため、異常な電気信号の伝導路を絶つためには、バルーン30の表面がリング状に接触した部位を全て焼灼する必要がある。そのため、もし、焼灼できなかった部位(未焼灼部位)があっても、未焼灼部位に複数の電極110が接触していなかった場合、接触していない部位の電位は計測されない。その結果、未焼灼部位の存在を見逃すおそれがあるため、焼灼効果を正確に確認することができない。   On the other hand, the conduction path of the abnormal electric signal in atrial fibrillation extends around the pulmonary vein 51. Therefore, in order to cut off the conduction path of the abnormal electric signal, all the sites where the surface of the balloon 30 contacts in a ring shape. Needs to be cauterized. Therefore, even if there is a site that cannot be cauterized (uncauterized site), if the plurality of electrodes 110 are not in contact with the uncauterized site, the potential of the site that is not in contact is not measured. As a result, there is a risk of overlooking the presence of an uncauterized region, and thus the cauterizing effect cannot be accurately confirmed.

また、リング状の電極110は、可撓性が十分でないため、もしくは可撓性がありすぎて過度に変形するため、全ての電極110を器官52に接触させることが難しい。もし、一部の電極110が器官52に接触していなかった場合、接触していない部位の電位は計測されず、未焼灼部位の存在を見逃すおそれがある。   Further, the ring-shaped electrodes 110 are not sufficiently flexible, or are too flexible and excessively deformed, so that it is difficult to bring all the electrodes 110 into contact with the organ 52. If some of the electrodes 110 are not in contact with the organ 52, the potential of the part that is not in contact is not measured, and there is a risk of missing the existence of an uncauterized part.

また、図11(c)に示すように、リング状の電極110が接触した部位は、焼灼部位61と位置がずれるおそれがある。この場合、リング状の電極110は、焼灼部位61からずれた部位の電位を計測するため、焼灼効果を正確に確認することができない。   Further, as shown in FIG. 11C, the position where the ring-shaped electrode 110 is in contact may be displaced from the ablation site 61. In this case, since the ring-shaped electrode 110 measures the potential of the portion deviated from the cauterization portion 61, the cauterization effect cannot be accurately confirmed.

また、バルーン30で焼灼した後、一旦、バルーン30付きのカテーテル10を抜いて、新たに、リング状の電極110を備えたカテーテル100を挿入する必要があるため、焼灼効果の確認に長時間を要してしまう。また、カテーテル10、110の抜き差しによって、器官内にエアが混入するリスクが高まる。   In addition, after cauterizing with the balloon 30, it is necessary to temporarily remove the catheter 10 with the balloon 30 and insert a new catheter 100 equipped with the ring-shaped electrode 110, so it takes a long time to confirm the cauterizing effect. I need it. In addition, the risk of air mixing in the organ increases due to the insertion and removal of the catheters 10 and 110.

本発明は、上記課題に鑑みなされたもので、その主な目的は、アブレーション治療等で、器官の内壁面の周囲を焼灼した際の焼灼部位の電位を、正確に計測することができる生体内電位計測器を提供することにある。   The present invention has been made in view of the above problems, and its main purpose is, for example, in ablation treatment, the potential of the cauterization site when cauterizing the periphery of the inner wall surface of the organ, and in vivo that can be accurately measured. To provide an electric potential measuring device.

本発明に係る生体内電位計測器は、生体の器官内に挿入して、該器官の内壁面における所定部位の電位を計測する生体内電位計測器であって、中空袋状の絶縁性部材と、前記絶縁性部材の中空部分の中に配置された第1の電極と、前記絶縁性部材に結合した中空管状部材と、を備え、前記中空管状部材を介して、前記絶縁性部材の中空部分に導電性の流動体が注入され、前記絶縁性部材の外周面を前記器官の内壁面に接触させた状態で、該接触した部位の電位を前記第1の電極で計測し、前記中空管状部材には当該中空管状部材の内部に存する前記流動体と電気的に接続された第2の電極が配置されており、前記第2の電極は前記流動体の電位の調整を行うことを特徴とする。   The in-vivo potential measuring device according to the present invention is an in-vivo potential measuring device which is inserted into an organ of a living body to measure the potential of a predetermined portion on the inner wall surface of the organ, and which has a hollow bag-shaped insulating member. A hollow portion of the insulating member, the first electrode being arranged in the hollow portion of the insulating member, and a hollow tubular member coupled to the insulating member. In the state where the conductive fluid is injected into the inner surface of the insulative member and the inner wall surface of the organ is contacted, the potential of the contacted portion is measured by the first electrode, and the hollow tubular member is Is arranged with a second electrode electrically connected to the fluid existing inside the hollow tubular member, and the second electrode adjusts the potential of the fluid. .

本発明によれば、アブレーション治療等で、器官の内壁面の周囲を焼灼した際の焼灼部位の電位を、正確に計測することができる生体内電位計測器を提供することができる。   According to the present invention, it is possible to provide an in-vivo potential measuring device capable of accurately measuring the potential of the ablation site when the periphery of the inner wall surface of the organ is ablated by ablation treatment or the like.

参考形態における生体内電位計測器の構成を模式的に示した図である。It is the figure which showed typically the structure of the in-vivo electric potential measuring device in a reference form. 絶縁性部材の外周面が、器官の内壁面に接触した状態を模式的に示した図である。It is the figure which showed typically the state where the outer peripheral surface of the insulating member contacted the inner wall surface of the organ. 参考形態における絶縁性部材の外周面が、器官の内壁面に接触した部位の電位を、絶縁性部材の中に配置された電極で計測する方法を示した等価回路図である。FIG. 6 is an equivalent circuit diagram showing a method of measuring the potential of a portion where the outer peripheral surface of the insulating member contacts the inner wall surface of the organ in the reference mode, using an electrode arranged in the insulating member. 参考形態において、焼灼後に増幅器で計測した電圧の波形を示したグラフである。In a reference form, it is a graph which showed the waveform of the voltage measured with the amplifier after cauterization. 実施形態に係る生体内電位計測器の構成を模式的に示した図である。It is the figure which showed typically the structure of the in-vivo electric potential measuring device which concerns on embodiment. 実施形態における絶縁性部材の外周面が、器官の内壁面に接触した部位の電位を、絶縁性部材の中に配置された電極で計測する方法を示した等価回路図である。FIG. 6 is an equivalent circuit diagram showing a method of measuring the potential of a portion where the outer peripheral surface of the insulating member contacts the inner wall surface of the organ in the embodiment, with an electrode arranged in the insulating member. 実施形態において、焼灼後に増幅器で計測した電圧の波形を示したグラフである。6 is a graph showing a waveform of a voltage measured by an amplifier after cauterization in the embodiment. (a)〜(c)は、絶縁性部材を用いて、器官の内壁面を焼灼した後、絶縁性部材の外周面を、器官の内壁面に接触させた状態で、接触した部位の電位を、絶縁性部材の中に配置した電極で計測する方法を説明した図である。(A) ~ (c), after cauterizing the inner wall surface of the organ using the insulating member, the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ, the potential of the contacted portion FIG. 5 is a diagram illustrating a method of measuring with electrodes arranged in an insulating member. 別の実施形態に係る生体内電位計測器の構成を模式的に示した図である。It is the figure which showed typically the structure of the in-vivo electric potential measuring device which concerns on another embodiment. 別の実施形態における絶縁性部材の外周面が、器官の内壁面に接触した部位の電位を、絶縁性部材の中に配置された電極で計測する方法を示した等価回路図である。FIG. 8 is an equivalent circuit diagram showing a method of measuring the potential of a portion where the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ in another embodiment, with an electrode arranged in the insulating member. (a)〜(c)は、バルーン付きのカテーテルを用いて、バルーンに接触した器官を焼灼した後、従来の電位測定用の電極を用いて、焼灼付近の器官の電位を計測する方法を示した図である。(A)-(c) shows the method of measuring the electric potential of the organ in the vicinity of cauterization using the electrode for conventional electric potential measurement after cauterizing the organ which contacted the balloon using the catheter with a balloon. It is a figure. 他の実施形態に係る生体内電位計測器の構成を模式的に示した図である。It is the figure which showed typically the structure of the in-vivo electric potential measuring device which concerns on other embodiment. さらに別の実施形態に係る生体内電位計測器の構成を模式的に示した図である。It is the figure which showed typically the structure of the in-vivo electric potential measuring device which concerns on another embodiment.

本発明についての説明を行う前に、発明者らが本発明に至った経緯について説明を行う。上述した課題を解決するための1つの手段として、図11(c)に示したような従来の電位測定用の電極の替わりに、バルーン内部に電極を配置して、バルーンが生体の器官に接触している状態でその接触している部分の電位をバルーン内部の電極によって計測することを発明者は考え出した。これにより、アブレーション治療等で、器官の内壁面の周囲を焼灼した際の焼灼部位の電位を、正確に計測することができると考えた。   Before explaining the present invention, a background of how the inventors arrived at the present invention will be described. As one means for solving the above-mentioned problem, instead of the conventional electrode for measuring potential as shown in FIG. 11 (c), an electrode is arranged inside the balloon so that the balloon comes into contact with an organ of a living body. The inventor has found out that the electric potential of the contacting portion is measured by the electrode inside the balloon in the state of being operated. Therefore, it is considered possible to accurately measure the potential of the ablation site when the periphery of the inner wall surface of the organ is ablated by ablation treatment or the like.

(参考形態)
図1は、発明者が考案した上述の生体内電位計測器の構成を模式的に示した図である。以下、参考形態の生体内電位計測器という。実施形態も含めて、以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、この生体内電位計測器は、生体の器官内に挿入して、器官の内壁面における所定部位の電位を計測するものであるが、ここでは、心房細動のカテーテル・アブレーション治療において、焼灼後の焼灼部位における電位を計測する場合を例に説明する。
(Reference form)
FIG. 1 is a diagram schematically showing the configuration of the above-mentioned in-vivo potential measuring device devised by the inventor. Hereinafter, the in-vivo potential measuring device of the reference embodiment is referred to. In the following drawings, including the embodiments, components having substantially the same functions are denoted by the same reference numerals for simplification of description. Incidentally, this in-vivo potential measuring device is to be inserted into an organ of a living body to measure the potential of a predetermined site on the inner wall surface of the organ. Here, in the catheter ablation treatment of atrial fibrillation, it is cauterized. The case of measuring the electric potential at the subsequent cauterization site will be described as an example.

図1に示すように、参考形態に係る生体内電位計測器は、外周面が変形自在又は拡張自在な絶縁性部材30と、絶縁性部材30の中に配置された第1の電極20とを備えている。絶縁性部材30として、例えば、中空袋状からなるバルーンを用いることができる。また、参考形態では絶縁性部材30に、可撓性を有し中空管状であるカテーテル10が結合したバルーン付きカテーテルを用いている。   As shown in FIG. 1, the in-vivo potential measuring device according to the reference embodiment includes an insulating member 30 whose outer peripheral surface is deformable or expandable, and a first electrode 20 arranged in the insulating member 30. I have it. As the insulating member 30, for example, a hollow bag-shaped balloon can be used. Further, in the reference embodiment, a balloon-attached catheter in which the flexible hollow catheter 10 is coupled to the insulating member 30 is used.

図1は、絶縁性部材30の中に、導電性の流動体21を注入することによって、絶縁性部材30の外周面を、心房細動の治療部位である左心房50と肺静脈51との接合近傍における器官52の内壁面に、リング状に接触させた状態を示している。ここで、導電性の流動体21は、ポンプ120を用いてカテーテル10を介して、外部から注入することができる。ポンプ120とカテーテル10との間は通液チューブ130によって連結されている。符号11で示している部分はカテーテル10の一部であって、通液チューブ連結部11である。また、導電性の流動体21は、例えば、生理食塩水等を用いることができる。   FIG. 1 shows that by injecting a conductive fluid 21 into the insulating member 30, the outer peripheral surface of the insulating member 30 is divided into the left atrium 50 and the pulmonary vein 51, which are treatment sites for atrial fibrillation. It shows a state in which the inner wall surface of the organ 52 near the junction is contacted in a ring shape. Here, the conductive fluid 21 can be injected from the outside via the catheter 10 using the pump 120. The pump 120 and the catheter 10 are connected by a liquid passage tube 130. A portion indicated by reference numeral 11 is a part of the catheter 10 and is a liquid passage tube connecting portion 11. Further, as the conductive fluid 21, for example, physiological saline or the like can be used.

参考形態に係る生体内電位計測器は、図1に示したように、絶縁性部材30の外周面を、器官52の内壁面にリング状に接触させた状態で、接触した部位の電位を、絶縁性部材30の中に配置した第1の電極20によって計測するものである。   The in-vivo potential measuring device according to the reference mode, as shown in FIG. 1, in a state where the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ 52 in a ring shape, the potential of the contacted portion is The measurement is performed by the first electrode 20 arranged in the insulating member 30.

なお、絶縁性部材30が接触した部位の電位は、図1に示すように、生体の表面72に、基準となる接地電極71を貼り付け、絶縁性部材30の中に配置された第1の電極20と、接地電極71との間の電圧を、生体の外部に配置された増幅器70で増幅することによって計測することができる。接地電極71は第3通電ライン156により増幅器70に連結されている。   As for the potential of the portion where the insulating member 30 contacts, as shown in FIG. 1, the ground electrode 71 serving as a reference is attached to the surface 72 of the living body, and the first electrode is placed inside the insulating member 30. The voltage between the electrode 20 and the ground electrode 71 can be measured by amplifying the voltage with the amplifier 70 arranged outside the living body. The ground electrode 71 is connected to the amplifier 70 by the third energization line 156.

また、絶縁性部材30は、絶縁性部材30の外周面が、器官の内壁面に接触した状態で、絶縁性部材30の中に配置した第1の電極20に連結された第1通電ライン152を介して、第1の電極20に高周波電流200を通電して、流動体21を加熱することによって、絶縁性部材が接触した部位を焼灼する機能(アブレーション機能)を兼ね備えていてもよい。ジェネレータ140が高周波電流を発生させる。ジェネレータ140からは高周波電流200が、第2通電ライン154を通って第1通電ライン152に流れる。流動体21を加熱する際には、絶縁性部材30内部で温度差が生じないように、ポンプ120を用いて流動体21を絶縁性部材30内部で流動させる(内部での対流を矢印210で示す)。これにより、絶縁性部材30内部において流動体21が攪拌されて、絶縁性部材30内部の全体が均一な温度になる。   In addition, the insulating member 30 has a first energization line 152 connected to the first electrode 20 arranged in the insulating member 30 in a state where the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ. A high-frequency current 200 may be applied to the first electrode 20 to heat the fluid 21 to thereby cauterize the portion in contact with the insulating member (ablation function). The generator 140 generates a high frequency current. The high-frequency current 200 flows from the generator 140 to the first energization line 152 through the second energization line 154. When the fluid 21 is heated, the fluid 21 is caused to flow inside the insulating member 30 by using the pump 120 so that a temperature difference is not generated inside the insulating member 30 (convection inside is indicated by an arrow 210. Shown). As a result, the fluid 21 is agitated inside the insulating member 30, and the temperature inside the insulating member 30 becomes uniform.

次に、図1に示す、参考形態に係る計測器による生体内の電位を計測する原理について、図2及び図3を参照しながら説明する。   Next, the principle of measuring the potential inside the living body by the measuring instrument according to the reference embodiment shown in FIG. 1 will be described with reference to FIGS. 2 and 3.

図2は、絶縁性部材30の外周面が、器官52の内壁面に接触した状態を模式的に示した図である。ここで、絶縁性部材30の中に注入された流動体21は、導電性を有しているため、流動体21と接触している絶縁性部材30の内周面の電位は、絶縁性部材30の中に配置された第1の電極20の電位と、実質的に同じと考えられる。従って、図2に示すように、第1の電極20と、器官52の内壁面とは、絶縁性部材30を挟んで、静電容量結合型電極80を構成していることになる。   FIG. 2 is a diagram schematically showing a state where the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ 52. Here, since the fluid 21 injected into the insulating member 30 has conductivity, the potential of the inner peripheral surface of the insulating member 30 in contact with the fluid 21 is equal to that of the insulating member 30. It is considered to be substantially the same as the potential of the first electrode 20 disposed within 30. Therefore, as shown in FIG. 2, the first electrode 20 and the inner wall surface of the organ 52 constitute the capacitive coupling type electrode 80 with the insulating member 30 sandwiched therebetween.

図3は、絶縁性部材30の外周面が、器官52の内壁面に接触した部位の電位を、絶縁性部材30の中に配置された第1の電極20で計測する方法を示した等価回路図である。ここで、Vbは、絶縁性部材30が器官52の内壁面に接触した部位で計測される電位で、Ceは、第1の電極20と器官52との間の静電容量を示す。なお、Vbは、器官52の周囲にある複数電位の重心電位が伝わって接触部位で計測されたものである。また、生体の表面72には、基準となる接地電極71が貼り付けられており、第1の電極20と接地電極71との間の電圧は、増幅器70で増幅されて、出力電圧Voutとして計測される。また、Cinは、増幅器70の入力容量で、Rinは、増幅器70の入力抵抗を示す。   FIG. 3 is an equivalent circuit showing a method of measuring the potential of a portion where the outer peripheral surface of the insulating member 30 contacts the inner wall surface of the organ 52, with the first electrode 20 arranged in the insulating member 30. It is a figure. Here, Vb is a potential measured at the site where the insulating member 30 contacts the inner wall surface of the organ 52, and Ce represents the capacitance between the first electrode 20 and the organ 52. It should be noted that Vb is measured at the contact site by transmitting the barycentric potentials of a plurality of potentials around the organ 52. Further, a ground electrode 71 serving as a reference is attached to the surface 72 of the living body, and the voltage between the first electrode 20 and the ground electrode 71 is amplified by the amplifier 70 and measured as the output voltage Vout. To be done. Cin is the input capacitance of the amplifier 70, and Rin is the input resistance of the amplifier 70.

図3に示した等価回路において、キルヒホッフの第2法則より、下記の式(1)が成り立つ。

Figure 2020065843
In the equivalent circuit shown in FIG. 3, the following equation (1) is established from Kirchhoff's second law.
Figure 2020065843

ここで、Zceは、電極−器官間の静電容量のインピーダンス、Zcinは、増幅器の入力容量のインピーダンスである。   Here, Zce is the impedance of the electrostatic capacitance between the electrode and the organ, and Zcin is the impedance of the input capacitance of the amplifier.

また、増幅器70の閉ループ回路において、キルヒホッフの第1法則により、以下の式(2)が成り立つ。

Figure 2020065843
Further, in the closed loop circuit of the amplifier 70, the following equation (2) is established according to Kirchhoff's first law.
Figure 2020065843

式(1)、(2)を用いて、iについて解くと、下記の式(3)が得られる。

Figure 2020065843
By solving for i 2 using the equations (1) and (2), the following equation (3) is obtained.
Figure 2020065843

また、オームの法則から、下記の式(4)が成り立つ。

Figure 2020065843
Further, the following equation (4) is established from Ohm's law.
Figure 2020065843

式(3)を、式(4)に代入して、以下の式(5)が得られる。

Figure 2020065843
By substituting the equation (3) into the equation (4), the following equation (5) is obtained.
Figure 2020065843

式(5)の分母の第1項と第2項はそれぞれ式(6)、(7)のように表される。

Figure 2020065843
Figure 2020065843
Figure 2020065843
The first and second terms of the denominator of equation (5) are expressed as equations (6) and (7), respectively.
Figure 2020065843
Figure 2020065843
Figure 2020065843

式(6)、(7)を、式(5)に代入すると、下記の式(8)が得られる。   By substituting the equations (6) and (7) into the equation (5), the following equation (8) is obtained.

ここで、増幅器70の入力容量Cinが十分に小さく、かつ、入力抵抗Rinが十分に大きい場合、すなわち、下記の式(9)、(10)が成り立つ場合、式(8)は、下記の式(11)のように表される。

Figure 2020065843
Figure 2020065843
Figure 2020065843
Here, when the input capacitance Cin of the amplifier 70 is sufficiently small and the input resistance Rin is sufficiently large, that is, when the following equations (9) and (10) are satisfied, the equation (8) becomes the following equation. It is expressed as (11).
Figure 2020065843
Figure 2020065843
Figure 2020065843

すなわち、増幅器70で計測した電圧Voutは、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbと一致する。これにより、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbを、増幅器70により容易に計測することができる。   That is, the voltage Vout measured by the amplifier 70 matches the potential Vb of the site where the insulating member 30 contacts the inner wall surface of the organ 52. As a result, the potential Vb at the site where the insulating member 30 contacts the inner wall surface of the organ 52 can be easily measured by the amplifier 70.

ところで、図2に示した電極−器官間の静電容量Ceは、絶縁性部材30と器官との接触面積をS、絶縁性部材30の厚みをdとすると、下記の式(12)のように表される。

Figure 2020065843
By the way, the capacitance Ce between the electrode and the organ shown in FIG. 2 is represented by the following formula (12), where S is the contact area between the insulating member 30 and the organ and d is the thickness of the insulating member 30. Represented by.
Figure 2020065843

ここで、εは、真空の誘電率(8.855×10−12 [F/m])、εは、絶縁性部材30の比誘電率である。 Here, ε 0 is the dielectric constant of vacuum (8.855 × 10 −12 [F / m]), and ε r is the relative dielectric constant of the insulating member 30.

従って、式(11)を用いて、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbを求める際、絶縁性部材30の厚みdを、式(9)が満たすように設定することが好ましい。   Therefore, when the potential Vb of the site where the insulating member 30 contacts the inner wall surface of the organ 52 is obtained using the formula (11), the thickness d of the insulating member 30 is set so that the formula (9) is satisfied. It is preferable.

例えば、増幅器70の入力容量Cinを10pF、絶縁性部材30と器官との接触面積Sを1000mm、絶縁性部材30の比誘電率εを5(例えば、ポリウレタンの場合)とすると、式(9)から、d<45μmとなる。よって、絶縁性部材30の厚みdは、典型的には、40μm以下が好ましく、10μm以下がより好ましい。 For example, assuming that the input capacitance Cin of the amplifier 70 is 10 pF, the contact area S between the insulating member 30 and the organ is 1000 mm 2 , and the relative dielectric constant ε r of the insulating member 30 is 5 (for example, in the case of polyurethane), the expression ( From 9), d <45 μm. Therefore, the thickness d of the insulating member 30 is typically 40 μm or less, and more preferably 10 μm or less.

また、式(11)を用いて、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbを求めるためには、増幅器70の入力抵抗Rinを、式(10)が満たすように設定することが好ましい。   Further, in order to obtain the potential Vb of the site where the insulating member 30 contacts the inner wall surface of the organ 52 using the equation (11), the input resistance Rin of the amplifier 70 is set so that the equation (10) is satisfied. Preferably.

例えば、増幅器70の入力容量Cinを10pF、電極−器官間の静電容量Ceを1000pF(Cin/Ce=0.01)、絶縁性部材30が器官52の内壁面に接触した部位の電位帯域f(jw=2πf)を100Hzとすると、式(10)から、Rin>0.2GΩとなる。よって、増幅器70の入力抵抗Rinは、典型的には、1GΩ以上が好ましい。   For example, the input capacitance Cin of the amplifier 70 is 10 pF, the electrostatic capacitance Ce between the electrode and the organ is 1000 pF (Cin / Ce = 0.01), and the potential band f at the site where the insulating member 30 contacts the inner wall surface of the organ 52. When (jw = 2πf) is 100 Hz, Rin> 0.2 GΩ is obtained from the equation (10). Therefore, the input resistance Rin of the amplifier 70 is typically preferably 1 GΩ or more.

次に、図8(a)〜(c)を参照しながら、本実施形態における絶縁性部材30を用いて、器官の内壁面を焼灼した後、絶縁性部材30の外周面を、器官の内壁面に接触させた状態で、接触した部位の電位を、絶縁性部材30の中に配置した第1の電極20で計測する方法を説明する。なお、ここでは、焼灼する部位として、心房細動の治療部位である左心房と肺静脈との接合近傍を例に説明する。   Next, with reference to FIGS. 8A to 8C, after cauterizing the inner wall surface of the organ using the insulating member 30 according to the present embodiment, the outer peripheral surface of the insulating member 30 is placed inside the organ. A method of measuring the potential of the contacted portion with the first electrode 20 arranged in the insulating member 30 in the state of being in contact with the wall surface will be described. In addition, here, the vicinity of the junction between the left atrium and the pulmonary vein, which is a treatment site for atrial fibrillation, will be described as an example of the ablation site.

まず、図8(a)に示すように、先端に絶縁性部材(バルーン)30が取り付けられた可撓性部材(カテーテル)10を、左心房50と肺静脈51との接合近傍に挿入する。そして、絶縁性部材30内に導電性の流動体21をポンプ120を用いて注入することによって、絶縁性部材30を膨らませて、絶縁性部材30の外周面を、器官52の内周面に、リング状に接触させる。なお、符号60は、心房細動の起源となる異常な電気信号源を示す。   First, as shown in FIG. 8A, a flexible member (catheter) 10 having an insulating member (balloon) 30 attached to its tip is inserted near the junction between the left atrium 50 and the pulmonary vein 51. Then, by injecting the conductive fluid 21 into the insulating member 30 using the pump 120, the insulating member 30 is inflated so that the outer peripheral surface of the insulating member 30 is the inner peripheral surface of the organ 52. Make a ring-shaped contact. Reference numeral 60 indicates an abnormal electrical signal source that is the origin of atrial fibrillation.

図8(b)、(c)は、第1の電極20に高周波電流を通電して、絶縁性部材30内の流動体21を加熱することによって、絶縁性部材30の表面と接触している器官52を焼灼した後の状態を示す。ここで、図8(b)は、器官52の周囲に亘って、十分な焼灼が行われず、一部に、焼灼されなかった部位(未焼灼部位)が残った状態を示す。一方、図8(c)は、器官52の周囲に亘って、十分な焼灼が行われ、焼灼された部位(焼灼部位)61ができた状態を示す。   In FIGS. 8B and 8C, a high-frequency current is passed through the first electrode 20 to heat the fluid 21 in the insulating member 30 to contact the surface of the insulating member 30. The state after cauterizing the organ 52 is shown. Here, FIG. 8B shows a state in which sufficient cauterization has not been performed over the periphery of the organ 52, and a part that has not been cauterized (an uncauterized part) remains. On the other hand, FIG. 8C shows a state in which sufficient cauterization is performed around the periphery of the organ 52, and a cauterized part (cauterizing part) 61 is formed.

図8(b)に示した状態で、絶縁性部材30の外周面が接触した部位の電位を、絶縁性部材30の中に配置した第1の電極20で計測した場合、リング状に接触した全ての部位の電位が重畳されるため、未焼灼部位における電位が重畳された電位が計測されることになる。従って、この場合、アブレーション治療による焼灼が、不十分であったことが確認できる。   In the state shown in FIG. 8B, when the potential of the portion where the outer peripheral surface of the insulating member 30 contacts is measured by the first electrode 20 arranged in the insulating member 30, it contacts in a ring shape. Since the electric potentials of all parts are superposed, the electric potentials of the uncauterized parts are measured. Therefore, in this case, it can be confirmed that the ablation by the ablation treatment was insufficient.

一方、図8(c)に示した状態で、絶縁性部材30の外周面が接触した部位の電位を、絶縁性部材30の中に配置した第1の電極20で計測した場合、未焼灼部位における電位が重畳されて計測されることはない。従って、この場合、アブレーション治療による焼灼が、十分であったことが確認できる。   On the other hand, in the state shown in FIG. 8C, when the potential of the portion where the outer peripheral surface of the insulating member 30 contacts is measured by the first electrode 20 arranged in the insulating member 30, the unburned portion The electric potential at is not measured by being superimposed. Therefore, in this case, it can be confirmed that the ablation by the ablation treatment was sufficient.

上記の原理に基づいて、図1に示す計測器を用いて計測を行ったところ、図4に示すような電位が計測された。しかしながら、詳細に調べたところ、図4のNの部分にはノイズが重畳しており、正確な電位を計測できていないことが判明した。本発明者らは、正確な電位を計測するために様々な検討を行った結果、本発明に想到するに至った。   When the measurement was performed using the measuring instrument shown in FIG. 1 based on the above principle, a potential as shown in FIG. 4 was measured. However, upon detailed examination, it was found that noise was superimposed on the portion N in FIG. 4, and an accurate potential could not be measured. The present inventors have come to the present invention as a result of various investigations in order to measure an accurate potential.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments below. Further, appropriate changes can be made without departing from the scope of the effect of the present invention.

(実施形態1)
実施形態1に係る生体内電位計測器の構成を図5に模式的に示す。本実施形態に係る生体内電位計測器は、中空管状である通液チューブ130に第2の電極73が配置されている。第2の電極73は、通液チューブ130内部に存している導電性の流動体21と電気的に接続されていて、その第2の電極73が流動体21の電位の調整を行っていることが図1に示した参考形態に係る生体内電位計測器とは異なっている点である。それ以外の点では、本実施形態は参考形態とほとんど同じ構成を有している。なお、通液チューブ130とカテーテル10とを合わせて中空管状部材という。
(Embodiment 1)
The configuration of the in-vivo potential measuring device according to the first embodiment is schematically shown in FIG. In the in-vivo potential measuring device according to the present embodiment, the second electrode 73 is arranged in the liquid-passing tube 130 that is a hollow tube. The second electrode 73 is electrically connected to the conductive fluid 21 existing inside the liquid passage tube 130, and the second electrode 73 adjusts the potential of the fluid 21. This is different from the in-vivo potential measuring device according to the reference embodiment shown in FIG. In other respects, this embodiment has almost the same configuration as the reference embodiment. The liquid passing tube 130 and the catheter 10 are collectively referred to as a hollow tubular member.

図5に示すように、本実施形態の生体内電位計測器は、中空袋状であって外周面が変形自在又は拡張自在な絶縁性部材30と、絶縁性部材30の中空部分の中に配置された第1の電極20とを備えている。また、本実施形態では絶縁性部材30に、可撓性を有し中空管状であるカテーテル10が結合したバルーン付きカテーテルを用いている。   As shown in FIG. 5, the in-vivo potential measuring device according to the present embodiment is arranged in a hollow bag-shaped insulating member 30 whose outer peripheral surface is deformable or expandable, and a hollow portion of the insulating member 30. And the first electrode 20 is formed. In addition, in the present embodiment, a catheter with a balloon in which the flexible and hollow tubular catheter 10 is coupled to the insulating member 30 is used.

図5は、絶縁性部材30の中に導電性の流動体21を注入することによって、絶縁性部材30の外周面を、心房細動の治療部位である左心房50と肺静脈51との接合近傍における器官52の内壁面にリング状に接触させた状態を示している。ここで、導電性の流動体21は、ポンプ120を用いてカテーテル10を介して、外部から注入することができる。ポンプ120とカテーテル10との間は通液チューブ130によって連結されている。また、導電性の流動体21は、例えば、生理食塩水等を用いることができる。   In FIG. 5, by injecting the conductive fluid 21 into the insulating member 30, the outer peripheral surface of the insulating member 30 is joined to the left atrium 50 and the pulmonary vein 51, which are the treatment sites for atrial fibrillation. It shows a state in which the inner wall surface of the organ 52 in the vicinity is contacted in a ring shape. Here, the conductive fluid 21 can be injected from the outside via the catheter 10 using the pump 120. The pump 120 and the catheter 10 are connected by a liquid passage tube 130. Further, as the conductive fluid 21, for example, physiological saline or the like can be used.

通液チューブ130には電極接続部材132が設けられていて、第2の電極73をそこに挿し込むことにより第2の電極が流動体21と接触することになる。なお、電極接続部材132は、第2の電極73が挿し込まれている場合であっても、第2の電極73が抜き取られている場合でも密閉状態であって、流動体21を外部に漏らすことなく通液チューブ130の一部としての役割を果たす。   The liquid passage tube 130 is provided with an electrode connection member 132, and by inserting the second electrode 73 therein, the second electrode comes into contact with the fluid 21. The electrode connecting member 132 is in a hermetically sealed state even when the second electrode 73 is inserted or when the second electrode 73 is pulled out, and leaks the fluid 21 to the outside. Without a role as a part of the liquid passage tube 130.

本実施形態でも参考形態に係る計測器と同様に、縁性部材30の外周面を器官52の内壁面にリング状に接触させた状態で、接触した部位の電位を、絶縁性部材30の中に配置した第1の電極20によって計測している。   In the present embodiment as well, as in the measuring instrument according to the reference embodiment, the potential of the contacted portion is measured in the insulating member 30 while the outer peripheral surface of the edging member 30 is in contact with the inner wall surface of the organ 52 in a ring shape. The measurement is performed by the first electrode 20 arranged at.

絶縁性部材30が接触した部位の電位は、生体の表面72に基準となる接地電極71を貼り付け、絶縁性部材30の中に配置された第1の電極20と、接地電極71との間の電圧を、生体の外部に配置された増幅器70で増幅することによって計測している。このとき、接地電極71は第3通電ライン156により増幅器70に連結されているとともに、第2の電極73も第4通電ライン158により接地電極71及び増幅器70に連結されている。このように第2の電極73は接地電極71及び増幅器70に連結されていることにより、流動体21内の電位を調整している。   The potential of the portion where the insulating member 30 comes into contact is between the first electrode 20 disposed inside the insulating member 30 and the ground electrode 71 by attaching the reference ground electrode 71 to the surface 72 of the living body. The voltage is measured by amplifying the voltage of (1) with an amplifier 70 arranged outside the living body. At this time, the ground electrode 71 is connected to the amplifier 70 by the third energization line 156, and the second electrode 73 is also connected to the ground electrode 71 and the amplifier 70 by the fourth energization line 158. As described above, the second electrode 73 is connected to the ground electrode 71 and the amplifier 70, so that the potential inside the fluid 21 is adjusted.

また、絶縁性部材30は、絶縁性部材が接触した部位を焼灼する機能(アブレーション機能)を兼ね備えている。接触部位の焼灼は、絶縁性部材30の外周面が器官の内壁面に接触した状態で、第1の電極20に高周波電流200を通電させて、流動体21を加熱することによっておこなわれる。この高周波電流200は、ジェネレータ140によって発生されて、第1通電ライン152を介して供給される。第1通電ライン152は第1の電極20に連結されており、高周波電流200は、第2通電ライン154を通って第1通電ライン152に流れ、それから第1の電極20に供給される。   The insulating member 30 also has a function of cauterizing a portion where the insulating member contacts (ablation function). The contact portion is cauterized by heating the fluid 21 by applying a high-frequency current 200 to the first electrode 20 while the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ. The high frequency current 200 is generated by the generator 140 and supplied via the first energization line 152. The first energization line 152 is connected to the first electrode 20, and the high-frequency current 200 flows through the second energization line 154 to the first energization line 152, and then is supplied to the first electrode 20.

ここで、高周波電流200を第1の電極20に供給して、第1の電極20の発熱により流動体21を加熱すると、加熱された流動体21が上方に移動するため、絶縁性部材30内部では上側の温度が高くなり、下側の温度が低くなる。このように絶縁性部材30内部で温度差が生じると、絶縁性部材30が器官52の内壁面周囲全体に同じように接触していても、高温部分では焼灼されるが低温部分では焼灼がされなかったり、全周で焼灼されても高温部分の焼灼の度合が大きすぎて必要以上に焼灼されてしまう、という不具合が生じてしまう。そのため、絶縁性部材30内部においてこのような温度差(温度分布)が生じないように、ポンプ120を用いて流動体21を絶縁性部材30内部で流動させる(内部での対流を矢印210で示す)。これにより、絶縁性部材30内部において流動体21が攪拌されて、絶縁性部材30内部において全体が均一な温度になる。   Here, when the high-frequency current 200 is supplied to the first electrode 20 and the fluid 21 is heated by the heat generation of the first electrode 20, the heated fluid 21 moves upward, so that inside the insulating member 30. In, the temperature of the upper side becomes high and the temperature of the lower side becomes low. When a temperature difference occurs inside the insulating member 30 as described above, even if the insulating member 30 is in contact with the entire inner wall surface periphery of the organ 52 in the same manner, cauterization is performed in the high temperature portion but cauterization is performed in the low temperature portion. If not, or even if it is cauterized over the entire circumference, the degree of cauterization in the high temperature portion will be too great and cauterization will occur more than necessary. Therefore, the fluid 21 is made to flow inside the insulating member 30 using the pump 120 so that such a temperature difference (temperature distribution) does not occur inside the insulating member 30 (convection inside is shown by an arrow 210). ). As a result, the fluid 21 is stirred inside the insulating member 30, and the temperature inside the insulating member 30 becomes uniform.

図6に本実施形態の絶縁性部材30の外周面が、器官52の内壁面に接触した部位の電位を、絶縁性部材30の中に配置された第1の電極20で計測する方法を示した等価回路図を示す。第2の電極73を接地電極71に接続することにより、図3に示す参考形態の等価回路図とは、電流i1A、i2A、出力電圧VoutAが異なってくる。 FIG. 6 shows a method of measuring the potential of a portion where the outer peripheral surface of the insulating member 30 of the present embodiment is in contact with the inner wall surface of the organ 52, with the first electrode 20 arranged in the insulating member 30. The equivalent circuit diagram is shown below. By connecting the second electrode 73 to the ground electrode 71, the currents i 1A and i 2A and the output voltage VoutA differ from the equivalent circuit diagram of the reference embodiment shown in FIG.

次に、本実施形態における第1の電極20により計測した生体内の電位を図7に示す。図4と比較をすると、Sの部分からノイズが除去されていることがわかる。本願発明者はこのノイズの原因を検討した結果、このノイズは、流動体21が中空管状部材内部を移動する際に流動体21と中空管状部材の内壁との摩擦によって生じる電位の変化であることをつきとめた。すなわち、絶縁性部材30内部において温度差(温度分布)が生じないように、ポンプ120を用いて流動体21の絶縁性部材30内部への流入と流出とを繰り返すことにより、絶縁性部材30内部において流動体21を攪拌しているのであるが、この流入と流出によって流動体21の電位が変化しているのがノイズとなっていたのである。   Next, FIG. 7 shows the in-vivo potential measured by the first electrode 20 in the present embodiment. It can be seen from the comparison with FIG. 4 that the noise is removed from the portion S. As a result of examining the cause of this noise, the inventor of the present application has found that the noise is a change in electric potential caused by friction between the fluid 21 and the inner wall of the hollow tubular member when the fluid 21 moves inside the hollow tubular member. I found him. That is, in order to prevent a temperature difference (temperature distribution) inside the insulating member 30, the pump 120 is used to repeat the inflow and outflow of the fluid 21 into the insulating member 30. The fluid 21 is being agitated at, and the change in the potential of the fluid 21 due to the inflow and outflow causes noise.

本実施形態では、第2の電極73を中空管状部材の一部である通液チューブ130の電極接続部材132において、流動体21と電気的に接続させている。そして、第2の電極73は接地電極71にも連結されているので、流動体21に発生する電位の変動を除去することができる。第2の電極73はこのようにして流動体21の電位を調整している。   In the present embodiment, the second electrode 73 is electrically connected to the fluid 21 in the electrode connecting member 132 of the liquid passage tube 130 which is a part of the hollow tubular member. Since the second electrode 73 is also connected to the ground electrode 71, it is possible to eliminate the fluctuation of the potential generated in the fluid 21. The second electrode 73 thus adjusts the electric potential of the fluid 21.

本実施形態によれば、アブレーション治療によって器官52を焼灼した後、焼灼付近の器官の電位を計測する際、絶縁性部材30の外周面を、器官52の内壁面にリング状に接触させた状態で、接触した部位の電位を、絶縁性部材30の中に配置した第1の電極20で計測するため、焼灼付近の器官52の電位を、周囲に亘って確実に計測することができる。これにより、未焼灼部位があった場合、未焼灼部位における電位が重畳された電位として計測することができる。その結果、未焼灼部位の存在を見逃すことがないため、焼灼効果を確実に確認することができる。   According to the present embodiment, after the organ 52 is cauterized by ablation treatment, when measuring the potential of the organ in the vicinity of the cautery, the outer peripheral surface of the insulating member 30 is brought into contact with the inner wall surface of the organ 52 in a ring shape. Then, since the potential of the contacted portion is measured by the first electrode 20 arranged in the insulating member 30, the potential of the organ 52 near the cautery can be reliably measured over the surroundings. As a result, when there is an unburned portion, it can be measured as a potential on which the potential of the unburned portion is superimposed. As a result, the presence of an uncauterized part is not overlooked, so that the cauterizing effect can be surely confirmed.

また、絶縁性部材30は、外周面が変形自在又は拡張自在な材料で構成されているため、器官52の形状に合わせて、絶縁性部材30の外周面を、容易に、器官52の内壁面にリング状に接触させることができる。これにより、焼灼付近の器官52の電位を、周囲に亘って確実に計測することができる。その結果、未焼灼部位があった場合、その存在を見逃すことなく、焼灼効果を確実に確認することができる。   In addition, since the outer peripheral surface of the insulating member 30 is made of a material that is deformable or expandable, the outer peripheral surface of the insulating member 30 can be easily formed on the inner wall surface of the organ 52 according to the shape of the organ 52. Can be contacted in a ring shape. As a result, the potential of the organ 52 near the cautery can be reliably measured over the circumference. As a result, when there is an uncauterized portion, the cauterizing effect can be surely confirmed without overlooking its existence.

また、絶縁性部材30に、第1の電極20に高周波電流を通電して、絶縁性部材30が接触した部位を焼灼する機能を持たすことによって、焼灼した部位と同じ位置で、焼灼付近の器官52の電位を計測することができるため、焼灼効果を正確に確認することができる。   In addition, the insulating member 30 has a function of cauterizing a portion where the insulating member 30 contacts by applying a high-frequency current to the first electrode 20, so that an organ in the vicinity of the cauterization at the same position as the cauterized portion. Since the potential of 52 can be measured, the cauterizing effect can be confirmed accurately.

また、焼灼付近の器官52の電位を、第1の電極20と器官52とを絶縁性部材30を挟んで構成した静電容量結合型電極で計測することによって、一度に、周囲に亘った電位を計測することができる。   In addition, the potential of the organ 52 near the cautery is measured by a capacitance coupling type electrode formed by sandwiching the insulating member 30 between the first electrode 20 and the organ 52, and thus the potential across the circumference at once. Can be measured.

また、絶縁性部材30を、中空袋状からなるバルーンで構成することによって、絶縁性部材30の膜厚が一定になるため、器官52の周囲に亘る電位を、バラツキなく計測することができる。   Moreover, since the insulating member 30 is formed of a hollow bag-shaped balloon, the film thickness of the insulating member 30 becomes constant, so that the potential around the organ 52 can be measured without variation.

また、焼灼付近の器官52の電位を計測する際、絶縁性部材30の抜き差しを行う必要がないため、焼灼効果の確認を短時間で行うことができる。また、絶縁性部材30の抜き差しに伴う、器官52内へのエアの混入のリスクも低減することができる。   Further, when measuring the potential of the organ 52 in the vicinity of cauterization, it is not necessary to insert and remove the insulating member 30, so that the cauterizing effect can be confirmed in a short time. Further, it is possible to reduce the risk of air being mixed into the organ 52 due to the insertion / removal of the insulating member 30.

そして、第2の電極73を流動体21に電気的に接続しているので、流動体21に生じる電位の変化(ノイズ)を除去することができ、生体内の電位をより正確に計測することができる。また、第2の電極73を流動体21に電気的に接続させるという簡単な構成で生体内の電位に重畳するノイズを除去することができる。   Since the second electrode 73 is electrically connected to the fluid 21, the potential change (noise) generated in the fluid 21 can be removed, and the potential in the living body can be measured more accurately. You can In addition, noise that is superimposed on the potential inside the living body can be removed with a simple configuration in which the second electrode 73 is electrically connected to the fluid 21.

第2の電極73を電極接続部材132から抜き取ると、増幅器70はノイズを計測することができる。   When the second electrode 73 is extracted from the electrode connecting member 132, the amplifier 70 can measure noise.

また、本実施形態では、器官の内壁面における所定部位の電位を計測する生体内電位計測器を、絶縁性部材の中に電極を配置する簡単な構成にすることによって、生体親和性や安全性に優れた生体内電位計測器を実現することができる。   In addition, in the present embodiment, the in-vivo potential measuring device that measures the potential at a predetermined site on the inner wall surface of the organ has a simple structure in which the electrodes are arranged in the insulating member, thereby improving biocompatibility and safety. It is possible to realize an excellent in-vivo potential measuring device.

本実施形態における生体内電位計測方法は、生体の器官の内壁面における所定部位の電位を計測する生体内電位計測方法であって、以下の工程(A)〜(C)を含み、電位の計測は、第1の電極と基準となる接地電極との間の電圧を計測することによって行われ、中空管状部材の内部に存する前記流動体と電気的に接続された第2の電極が前記接地電極と接続されている。   The in-vivo potential measuring method in the present embodiment is a in-vivo potential measuring method for measuring the potential of a predetermined site on the inner wall surface of an organ of a living body, and includes the following steps (A) to (C), and measures the potential. Is performed by measuring the voltage between the first electrode and a ground electrode serving as a reference, and the second electrode electrically connected to the fluid inside the hollow tubular member is the ground electrode. Connected with.

(A)中空袋状の絶縁性部材を、絶縁性部材に結合した中空管状部材を用いて、生体の器官内に挿入する工程
(B)絶縁性部材の中に、中空管状部材を介して、導電性の流動体を注入して、絶縁性部材の外周面を、器官の内壁面に接触させる工程
(C)接触した部位の電位を、第1の電極で計測する工程
本実施形態における生体内電位計測システムは、図5に示した生体内電位計測器と、第1の電極20で検出した電位を増幅する増幅器70とを備えている。
(A) A step of inserting a hollow bag-shaped insulating member into an organ of a living body by using a hollow tubular member bonded to the insulating member. (B) Inside the insulating member, through the hollow tubular member, Step of injecting a conductive fluid to bring the outer peripheral surface of the insulating member into contact with the inner wall surface of the organ (C) Step of measuring the potential of the contacted portion with the first electrode In vivo in the present embodiment The potential measuring system includes the in-vivo potential measuring device shown in FIG. 5 and an amplifier 70 that amplifies the potential detected by the first electrode 20.

(実施形態2)
実施形態2に係る生体内電位計測器の構成を図9に模式的に示す。実施形態2は、ノイズ除去回路であるコイル90が第2の電極73に接続されている点が実施形態1と異なっており、それ以外の点は実施形態1と同じであるので、実施形態1と異なっている点を以下に説明する。
(Embodiment 2)
The configuration of the in-vivo potential measuring device according to the second embodiment is schematically shown in FIG. The second embodiment is different from the first embodiment in that a coil 90, which is a noise removing circuit, is connected to the second electrode 73, and other points are the same as those in the first embodiment. Differences from the above will be described below.

本実施形態では、第2の電極73に連結されている第4通電ライン158にコイル90が設けられている。このコイル90により、バルーン付きカテーテルの内部や計測回路内に何らかの原因で発生するノイズや、外部起因のノイズを除去することができる。   In the present embodiment, the coil 90 is provided on the fourth energization line 158 connected to the second electrode 73. By this coil 90, noise generated for some reason inside the balloon catheter or in the measurement circuit, or noise caused by the outside can be removed.

図10は、本実施形態の絶縁性部材30の外周面が、器官52の内壁面に接触した部位の電位を、絶縁性部材30の中に配置された第1の電極20で計測する方法を示した等価回路図である。第2の電極73を接地電極71に接続することにより、図3に示す参考形態の等価回路図とは、電流i1B、i2B、出力電圧VoutBが異なってくる。 FIG. 10 shows a method of measuring the potential of a portion where the outer peripheral surface of the insulating member 30 of the present embodiment is in contact with the inner wall surface of the organ 52 with the first electrode 20 arranged in the insulating member 30. It is the equivalent circuit diagram shown. By connecting the second electrode 73 to the ground electrode 71, the currents i 1B and i 2B and the output voltage VoutB differ from the equivalent circuit diagram of the reference embodiment shown in FIG.

本実施形態では、実施形態1の効果に加えて、コイル90を配置しているので、生体内電位をより正確に計測することができる。   In the present embodiment, in addition to the effects of the first embodiment, since the coil 90 is arranged, the in-vivo electric potential can be measured more accurately.

(実施形態3)
実施形態3に係る生体内電位計測器の構成を図12に模式的に示す。実施形態3では、中空管状部材の一部である通液チューブ130の電極接続部材132において、流動体21と電気的に接続させている第2の電極として、第2A電極74と第2B電極75の2つを備えている。さらに、第2A電極74及び第2B電極75が接続されたノイズキャンセリング回路77を備えている。これらの点が実施形態1と異なっており、それ以外の点は実施形態1と同じであるので、実施形態1と異なっている点を以下に説明する。
(Embodiment 3)
The configuration of the in-vivo potential measuring device according to the third embodiment is schematically shown in FIG. In the third embodiment, in the electrode connection member 132 of the liquid passage tube 130 which is a part of the hollow tubular member, the second A electrode 74 and the second B electrode 75 are used as the second electrodes electrically connected to the fluid 21. It is equipped with two. Further, a noise canceling circuit 77 to which the second A electrode 74 and the second B electrode 75 are connected is provided. These points are different from the first embodiment, and the other points are the same as the first embodiment. Therefore, the points different from the first embodiment will be described below.

本実施形態では、第2B電極75により流動体21の電位を捉え、ノイズキャンセリング回路77によってその電位の変動を計測すると共に変動の位相を反転させた信号を作り出して第2A電極74に送り、流動体21の電位変動を打ち消す。流動体21の電位を捉える第2B電極75は、第2A電極74よりも、電位の変動を生じさせるポンプ120に近い側に位置させている。この構成により、流動体21の流動に起因する電位変動をノイズキャンセリング回路77によって打ち消すことができ、実施形態1に比較して生体器官の電位をより正確に計測することができる。   In the present embodiment, the potential of the fluid 21 is captured by the second B electrode 75, the fluctuation of the potential is measured by the noise canceling circuit 77, and a signal in which the phase of the fluctuation is inverted is generated and sent to the second A electrode 74. The potential fluctuation of the fluid 21 is canceled. The second B electrode 75 that captures the potential of the fluid 21 is located closer to the pump 120 that causes the potential fluctuation than the second A electrode 74. With this configuration, the potential fluctuation caused by the flow of the fluid 21 can be canceled by the noise canceling circuit 77, and the potential of the living organ can be measured more accurately than in the first embodiment.

(実施形態4)
実施形態4に係る生体内電位計測器の構成を図13に模式的に示す。実施形態4は、ノイズ除去回路であるコイル90,91が第2A電極74及び第2B電極75のそれぞれに接続されている点が実施形態3と異なっており、それ以外の点は実施形態3と同じであるので、実施形態3と異なっている点を以下に説明する。
(Embodiment 4)
The configuration of the in-vivo potential measuring device according to the fourth embodiment is schematically shown in FIG. The fourth embodiment is different from the third embodiment in that the coils 90 and 91 which are the noise removing circuits are connected to the second A electrode 74 and the second B electrode 75, respectively, and the other points are the same as the third embodiment. Since they are the same, the points different from the third embodiment will be described below.

本実施形態では、第2A電極74及び第2B電極75とノイズキャンセリング回路79との間にコイル90,91がそれぞれ設けられている。このコイル90,91により、バルーン付きカテーテルの内部や計測回路内に何らかの原因で発生するノイズや、外部起因のノイズを除去することができる。そのため、実施形態3よりもさらに生体器官の電位を正確に計測することができる。   In the present embodiment, coils 90 and 91 are provided between the second A electrode 74 and the second B electrode 75 and the noise canceling circuit 79, respectively. With the coils 90 and 91, noise generated for some reason inside the balloon catheter or in the measurement circuit, or noise caused by the outside can be removed. Therefore, the electric potential of the living organ can be measured more accurately than in the third embodiment.

(その他の実施形態)
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態では、絶縁性部材30として、中空袋状のバルーンを例に説明したが、これに限定されず、電位測定用の第1の電極20を、絶縁性部材30で被覆したものであってもよい。また、電位測定用の第1の電極20を、導電性の流動体21を介して絶縁性部材30で被覆したものであってもよい。
(Other embodiments)
Although the present invention has been described above with reference to the preferred embodiment, such description is not a limitation and, of course, various modifications can be made. For example, although the hollow bag-shaped balloon is described as an example of the insulating member 30 in the above-described embodiment, the insulating member 30 is not limited to this, and the first electrode 20 for potential measurement is covered with the insulating member 30. May be Alternatively, the first electrode 20 for measuring the potential may be covered with the insulating member 30 via the conductive fluid 21.

第2の電極73はポンプ120の流出口の近くに配置しているが中空管状部材いずれかの部分で配置場所はどこでも構わない。ノイズ除去回路90は、実施形態2に係る生体内電位計測器の周辺に置かれた機器の動作などによって接地電極72や第3の通電ライン156、第4の通電ライン158に生じる高周波ノイズを除去できるコイルやコンデンサであれば、その構成は特に限定されない。   The second electrode 73 is arranged near the outlet of the pump 120, but it may be arranged anywhere on any part of the hollow tubular member. The noise removal circuit 90 removes high-frequency noise generated in the ground electrode 72, the third energization line 156, and the fourth energization line 158 due to the operation of devices placed around the in-vivo potential measuring device according to the second embodiment. The structure is not particularly limited as long as it is a coil or a capacitor that can be formed.

また、上記実施形態では、アブレーション治療による器官の焼灼後に、焼灼付近の器官の電位を計測する例を説明したが、アブレーション治療をする前に、病変部の状態を診断するために、病変部付近の器官の電位を計測する場合にも適用することができおる。また、アブレーション治療による器官の焼灼を行っている途中に、焼灼の状態をモニタリングするために、焼灼付近の器官の電位を計測してもよい。この場合、第1の電極20への高周波電流の通電と、第1の電極20を用いた電位の計測とを、時間分割で交互に行ってもよい。   Further, in the above embodiment, the example of measuring the potential of the organ in the vicinity of the ablation after the ablation of the organ by the ablation treatment has been described, but before the ablation treatment, in order to diagnose the state of the lesion, the vicinity of the lesion It can also be applied when measuring the electric potential of the organ. In addition, the potential of the organ in the vicinity of the ablation may be measured in order to monitor the state of the ablation while the ablation treatment is being performed. In this case, the energization of the high-frequency current to the first electrode 20 and the measurement of the potential using the first electrode 20 may be alternately performed in a time division manner.

また、上記実施形態では、基準となる接地電極71を、生体の表面に配置した例を説明したが、接地電極71を、生体の内部に配置してもよい。これにより、生体自身がシールド効果を持つことによって、ノイズを軽減した状態で、器官の電位を計測することができる。例えば、カテーテルの先端に、接地電極71を取り付けてもよい。また、基準となる接地電極71を、体表もしくは体内に複数個配置してもよいし、複数の接地電極から仮想的な接地電極を算出してもよい。   In the above embodiment, the reference ground electrode 71 is arranged on the surface of the living body, but the ground electrode 71 may be arranged inside the living body. As a result, the potential of the organ can be measured in a state where noise is reduced due to the living body itself having a shielding effect. For example, the ground electrode 71 may be attached to the tip of the catheter. Further, a plurality of reference ground electrodes 71 may be arranged on the body surface or in the body, or a virtual ground electrode may be calculated from the plurality of ground electrodes.

また、上記実施形態では、絶縁性部材30の外周面を、器官の内壁面にリング状に接触させた状態で、当該接触した部位の電位を、絶縁性部材30の中に配置した第1の電極20で計測した例を説明したが、これに限定されず、平面部位に絶縁性部材30を押し当てて、当該接触した部位の電位を絶縁性部材30の中に配置した第1の電極20で計測するものであってもよい。例えば、器官の平面的な内壁面に絶縁性部材30を押し当てて、平面部位の表面形状に沿うように絶縁性部材30を変形させつつ、接触させた状態で、当該接触した部位の電位を第1の電極20で計測してもよい。   In addition, in the above-described embodiment, in a state where the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ in a ring shape, the potential of the contacted portion is set to the first position in the insulating member 30. Although the example measured by the electrode 20 has been described, the present invention is not limited to this, and the first electrode 20 in which the insulating member 30 is pressed against a flat surface portion and the potential of the contacted portion is arranged in the insulating member 30. It may be measured by. For example, while the insulating member 30 is pressed against the planar inner wall surface of the organ and the insulating member 30 is deformed so as to follow the surface shape of the planar portion, the potential of the contacted portion is changed in the contact state. The measurement may be performed with the first electrode 20.

また、上記実施形態では、生体内電位計測器を、アブレーション治療による器官の焼灼後に、焼灼付近の器官の電位を計測する場面に適用する例を説明したが、これに限定されず、診断、治療、または治療効果の確認のために、絶縁性部材30を、生体の器官内に挿入して、器官の内壁面における所定部位の電位を計測するあらゆる場面に適用することができる。   Further, in the above embodiment, the in-vivo potential measuring device is described as an example in which it is applied to a scene of measuring the potential of an organ in the vicinity of ablation after ablation of the organ by ablation treatment, but the invention is not limited to this, and diagnosis and treatment are possible. Alternatively, in order to confirm the therapeutic effect, the insulating member 30 may be inserted into an organ of a living body and applied to any scene in which the potential of a predetermined portion on the inner wall surface of the organ is measured.

また上記実施形態4では、コイルはどちらか一方だけでもよい。   Further, in the fourth embodiment, only one of the coils may be used.

10 カテーテル
20 第1の電極
21 導電性の流動体
30 絶縁性部材(バルーン)
52 器官
61 焼灼部位
70 増幅器
71 接地電極
73 第2の電極
74 第2A電極(第2の電極)
75 第2B電極(第2の電極)
90 ノイズ除去回路(コイル)
91 ノイズ除去回路(コイル)
120 攪拌部材(ポンプ)
10 catheter
20 First electrode
21 Conductive fluid
30 Insulating member (balloon)
52 organs
61 Cautery site
70 amplifier
71 Ground electrode
73 Second Electrode 74 Second A Electrode (Second Electrode)
75 Second B electrode (second electrode)
90 Noise removal circuit (coil)
91 Noise removal circuit (coil)
120 Stirring member (pump)

Claims (10)

生体の器官内に挿入して、該器官の内壁面における所定部位の電位を計測する生体内電位計測器であって、
中空袋状の絶縁性部材と、
前記絶縁性部材の中空部分の中に配置された第1の電極と、
前記絶縁性部材に結合した中空管状部材と、
を備え、
前記中空管状部材を介して、前記絶縁性部材の中空部分に導電性の流動体が注入され、
前記絶縁性部材の外周面を前記器官の内壁面に接触させた状態で、該接触した部位の電位を前記第1の電極で計測し、
前記中空管状部材には当該中空管状部材の内部に存する前記流動体と電気的に接続された第2の電極が配置されており、
前記第2の電極は前記流動体の電位の調整を行う、生体内電位計測器。
An in-vivo potential measuring instrument which is inserted into an organ of a living body to measure an electric potential of a predetermined site on an inner wall surface of the organ,
A hollow bag-shaped insulating member,
A first electrode disposed in the hollow portion of the insulating member,
A hollow tubular member bonded to the insulating member,
Equipped with
Through the hollow tubular member, a conductive fluid is injected into the hollow portion of the insulating member,
In a state where the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ, the potential of the contacted portion is measured with the first electrode,
A second electrode electrically connected to the fluid existing inside the hollow tubular member is arranged in the hollow tubular member,
The second electrode is an in-vivo potential measuring device that adjusts the potential of the fluid.
前記第2の電極は基準となる接地電極に接続されている、請求項1に記載の生体内電位計測器。   The in-vivo potential measuring device according to claim 1, wherein the second electrode is connected to a reference ground electrode. 前記中空管状部材を介して、前記絶縁性部材の中空部分に存する前記流動体を攪拌させる攪拌部材をさらに備えている、請求項1又は2に記載の生体内電位計測器。   The in-vivo potential measuring device according to claim 1 or 2, further comprising a stirring member that stirs the fluid existing in the hollow portion of the insulating member via the hollow tubular member. 前記絶縁性部材及び前記中空管状部材はバルーン付きカテーテルで構成されている、請求項1から3のいずれか一つに記載の生体内電位計測器。   The in-vivo potential measuring device according to claim 1, wherein the insulating member and the hollow tubular member are balloon catheters. 前記第2の電極は、前記中空管状部材にて発生した前記流動体の電位のノイズの位相を反転させる回路に接続されている、請求項1から4のいずれか一つに記載の生体内電位計測器。   5. The in-vivo potential according to claim 1, wherein the second electrode is connected to a circuit that inverts a phase of noise of potential of the fluid generated in the hollow tubular member. Measuring instrument. 前記第2の電極はさらに高周波ノイズを除去するノイズ除去回路に接続されている、請求項1から5のいずれか一つに記載の生体内電位計測器。   The in-vivo potential measuring device according to claim 1, wherein the second electrode is further connected to a noise removing circuit that removes high frequency noise. 前記絶縁性部材は、該絶縁性部材の外周面が、前記器官の内壁面に接触した状態で、前記電極に高周波電流を通電して、前記導電性の流動体を加熱することによって、前記接触した部位を焼灼する機能を兼ね備えている、請求項1から6のいずれか一つに記載の生体内電位計測器。   In the insulating member, the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ, a high-frequency current is passed through the electrode to heat the conductive fluid, thereby allowing the contact. The in-vivo potential measuring instrument according to any one of claims 1 to 6, which also has a function of cauterizing the formed portion. 生体の器官の内壁面における所定部位の電位を計測する生体内電位計測方法であって、
中空袋状の絶縁性部材を、該絶縁性部材に結合した中空管状部材を用いて、生体の器官内に挿入する工程と、
前記絶縁性部材の中に、前記中空管状部材を介して、導電性の流動体を注入して、前記絶縁性部材の外周面を、前記器官の内壁面に接触させる工程と、
前記接触した部位の電位を、前記絶縁性部材の中に配置された第1の電極で計測する計測工程と
を含み、
前記接触した部位の電位の計測は、前記第1の電極と基準となる接地電極との間の電圧を計測することによって行われ、
前記中空管状部材の内部に存する前記流動体と電気的に接続された第2の電極が前記接地電極と接続されている、生体内電位計測方法。
A method for measuring an electric potential in a living body, which measures an electric potential of a predetermined portion on an inner wall surface of an organ,
A step of inserting the hollow bag-shaped insulating member into the organ of the living body by using the hollow tubular member bonded to the insulating member;
In the insulating member, through the hollow tubular member, injecting a conductive fluid, the outer peripheral surface of the insulating member, to contact the inner wall surface of the organ,
A measuring step of measuring the potential of the contacted portion with a first electrode arranged in the insulating member,
The measurement of the potential of the contacted portion is performed by measuring the voltage between the first electrode and a reference ground electrode,
The in-vivo potential measuring method, wherein a second electrode electrically connected to the fluid existing inside the hollow tubular member is connected to the ground electrode.
前記計測工程では、攪拌部材によって、前記中空管状部材を介して、前記絶縁性部材の中の前記流動体を攪拌している、請求項8に記載の生体内電位計測方法。   The in-vivo potential measuring method according to claim 8, wherein, in the measuring step, the fluid in the insulating member is stirred by the stirring member via the hollow tubular member. 請求項1から7のいずれか一つに記載の生体内電位計測器と、
前記電極で検出した電位を増幅する増幅器と
を備えた、生体内電位計測システム。
An in-vivo potential measuring device according to any one of claims 1 to 7,
An in-vivo potential measuring system, comprising: an amplifier that amplifies a potential detected by the electrode.
JP2018201831A 2018-10-26 2018-10-26 In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system Active JP7211002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201831A JP7211002B2 (en) 2018-10-26 2018-10-26 In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201831A JP7211002B2 (en) 2018-10-26 2018-10-26 In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system

Publications (2)

Publication Number Publication Date
JP2020065843A true JP2020065843A (en) 2020-04-30
JP7211002B2 JP7211002B2 (en) 2023-01-24

Family

ID=70389032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201831A Active JP7211002B2 (en) 2018-10-26 2018-10-26 In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system

Country Status (1)

Country Link
JP (1) JP7211002B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638937A (en) * 1991-12-06 1994-02-15 Nagao Kajiwara Measuring device for electrocardiogram derived from bronchinal tube
JP2005185661A (en) * 2003-12-26 2005-07-14 Nihon Medix Heating type balloon catheter device, and elastic tube device and vibration device thereof
JP2005192725A (en) * 2004-01-06 2005-07-21 Toray Ind Inc Ablation catheter with balloon
JP2016123869A (en) * 2014-12-31 2016-07-11 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Electrocardiogram noise reduction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638937A (en) * 1991-12-06 1994-02-15 Nagao Kajiwara Measuring device for electrocardiogram derived from bronchinal tube
JP2005185661A (en) * 2003-12-26 2005-07-14 Nihon Medix Heating type balloon catheter device, and elastic tube device and vibration device thereof
JP2005192725A (en) * 2004-01-06 2005-07-21 Toray Ind Inc Ablation catheter with balloon
JP2016123869A (en) * 2014-12-31 2016-07-11 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Electrocardiogram noise reduction

Also Published As

Publication number Publication date
JP7211002B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
EP3040019B1 (en) Electrocardiogram noise reduction
JP6545524B2 (en) Microelectroded catheter tip
CN112890947A (en) Use of reversible electroporation on cardiac tissue
US11207125B2 (en) Effective parasitic capacitance minimization for micro ablation electrode
JP2021171658A (en) Catheter with stretchable irrigation tube
JP2021030086A (en) Estimation of electrode-tissue contact using stem electrode and edge electrode
JP2017086913A (en) Symmetric short contact force sensor with four coils
US20200008865A1 (en) Handle and cable assemblies for electrosurgical devices and cyst ablation techniques
JP2017109101A (en) Sheath visualization method by means of impedance localization and magnetic information
JP2022046452A (en) Flex circuit and surface mounted electrode catheter
JP2022509795A (en) Configuration of the outer peripheral portion of the balloon electrode as a placement sensor
CN114159067A (en) Flexible circuit and surface-mounted electrode catheter
JP2018501837A (en) System and method for high resolution mapping of tissue
JP6950337B2 (en) In-vivo potential measuring instrument and in-vivo potential measuring system
JP7211002B2 (en) In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system
JP7135371B2 (en) In vivo impedance measurement device
CN107049470B (en) Method and system for enhanced security for digital communications using two AC-coupled lines
JP2020534073A (en) Cables and related continuity monitoring systems and methods
JP7106926B2 (en) In vivo potential measuring instrument
JP2021194536A (en) Electroporation with cooling
CN113349921A (en) Ultrasonic electrode, discharge array assembly, electrophysiology catheter and electrophysiology system
JP2022063862A (en) Basket catheter with balloon
JP2022052757A (en) Electrode shorting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R151 Written notification of patent or utility model registration

Ref document number: 7211002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151