JP6950337B2 - In-vivo potential measuring instrument and in-vivo potential measuring system - Google Patents

In-vivo potential measuring instrument and in-vivo potential measuring system Download PDF

Info

Publication number
JP6950337B2
JP6950337B2 JP2017150003A JP2017150003A JP6950337B2 JP 6950337 B2 JP6950337 B2 JP 6950337B2 JP 2017150003 A JP2017150003 A JP 2017150003A JP 2017150003 A JP2017150003 A JP 2017150003A JP 6950337 B2 JP6950337 B2 JP 6950337B2
Authority
JP
Japan
Prior art keywords
insulating member
potential
organ
electrode
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017150003A
Other languages
Japanese (ja)
Other versions
JP2019025206A (en
Inventor
友介 坂上
友介 坂上
千草 井中
千草 井中
達弥 岡田
達弥 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017150003A priority Critical patent/JP6950337B2/en
Priority to PCT/JP2018/027104 priority patent/WO2019026637A1/en
Publication of JP2019025206A publication Critical patent/JP2019025206A/en
Application granted granted Critical
Publication of JP6950337B2 publication Critical patent/JP6950337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Description

本発明は、生体の器官内に挿入して、該器官の内壁面における所定部位の電位を計測する生体内電位計測器、及び、生体内電位計測方法、並びに、生体内電位計測器を備えた生体内電位計測システムに関する。 The present invention includes an in-vivo potential measuring device that is inserted into an organ of a living body and measures the potential of a predetermined portion on the inner wall surface of the organ, an in-vivo potential measuring method, and an in-vivo potential measuring device. In vivo potential measurement system.

血管等の器官内にカテーテルを挿入して、病変部に対して検査や治療を行うことが行われている。 A catheter is inserted into an organ such as a blood vessel to inspect and treat a lesion.

カテーテルを用いた治療の一つに、バルーン付きのカテーテル・アブレーション治療がある。この治療は、カテーテルの先端にバルーンを取り付け、バルーン内に液体を注入することによってバルーンを膨らませた後、高周波電流によりバルーン内の液体を温めることによって、バルーンの表面と接触している器官を焼灼するもので、例えば、心房細動の治療等に適用されている。 One of the treatments using a catheter is a catheter ablation treatment with a balloon. In this treatment, a balloon is attached to the tip of a catheter, the balloon is inflated by injecting liquid into the balloon, and then the liquid in the balloon is warmed by a high-frequency current to cauterize the organ in contact with the surface of the balloon. For example, it is applied to the treatment of atrial fibrillation.

この治療によれば、バルーンが柔軟な球形を有しているので、心房細動の治療部位である左心房と肺静脈との接合近傍の内壁面に、膨らんだバルーンの外周面をリング状に接触させることができるため、一度に肺静脈の周囲を焼灼することができる。 According to this treatment, since the balloon has a flexible spherical shape, the outer peripheral surface of the inflated balloon is ring-shaped on the inner wall surface near the junction between the left atrium and the pulmonary vein, which is the treatment site for atrial fibrillation. Since they can be brought into contact with each other, the area around the pulmonary veins can be cauterized at one time.

一方、アブレーション治療によって器官を焼灼した後、焼灼効果を確認するために、焼灼付近の器官の電位を計測することが行われている。例えば、特許文献1には、先端に電位測定用の複数の電極を備えたカテーテルを器官内に挿入して、焼灼付近の器官に各電極を接触させて、各電極が接触した部位の電位を計測する方法が記載されている。 On the other hand, after cauterizing an organ by ablation treatment, the potential of the organ near the cauterization is measured in order to confirm the cauterizing effect. For example, in Patent Document 1, a catheter having a plurality of electrodes for measuring potential at the tip is inserted into an organ, and each electrode is brought into contact with an organ near cauterization to obtain the potential of the portion where each electrode is in contact. The method of measurement is described.

特許第5870694号公報Japanese Patent No. 5870694

図6(a)〜(c)は、バルーン付きのカテーテルを用いて、バルーンに接触した器官を焼灼した後、従来の電位測定用の電極を用いて、焼灼付近の器官の電位を計測する方法を示した図である。なお、ここでは、焼灼する部位として、心房細動の治療部位である左心房と肺静脈との接合近傍を例に説明する。 6 (a) to 6 (c) show a method of cauterizing an organ in contact with a balloon using a catheter with a balloon and then measuring the potential of an organ near the cauterization using a conventional electrode for measuring potential. It is a figure which showed. Here, as a site to be cauterized, the vicinity of the junction between the left atrium and the pulmonary vein, which is a treatment site for atrial fibrillation, will be described as an example.

図6(a)に示すように、先端にバルーン30が取り付けられたカテーテル10を、左心房50と肺静脈51との接合近傍に挿入する。そして、バルーン30内に液体21を注入することによって、バルーン30を膨らませて、バルーン30の外周面を、器官52の内周面に、リング状に接触させる。なお、符号60は、心房細動の起源となる異常な電気信号源を示す。 As shown in FIG. 6A, a catheter 10 having a balloon 30 attached to the tip is inserted in the vicinity of the junction between the left atrium 50 and the pulmonary vein 51. Then, by injecting the liquid 21 into the balloon 30, the balloon 30 is inflated so that the outer peripheral surface of the balloon 30 is brought into contact with the inner peripheral surface of the organ 52 in a ring shape. Reference numeral 60 indicates an abnormal electrical signal source that is the origin of atrial fibrillation.

次に、図6(b)に示すように、電極20に高周波電流を流して、バルーン30内の液体21を温めることによって、バルーン30の表面と接触している器官52を焼灼する。これにより、バルーン30が接触している器官の部位に、焼灼された部位(焼灼部位)61ができる。 Next, as shown in FIG. 6B, a high-frequency current is passed through the electrode 20 to warm the liquid 21 in the balloon 30, thereby cauterizing the organ 52 in contact with the surface of the balloon 30. As a result, a cauterized site (cauterized site) 61 is formed at the site of the organ in contact with the balloon 30.

次に、図6(c)に示すように、バルーン付きカテーテル10を抜いて、先端に電位測定用の複数の電極(ラッソ電極)110を備えたカテーテル100を、焼灼部位61の近傍まで挿入して、器官52に、複数の電極110を接触させて、接触した部位の電位を計測する。 Next, as shown in FIG. 6C, the catheter with a balloon 10 is pulled out, and the catheter 100 having a plurality of electrodes (Lasso electrodes) 110 for potential measurement at the tip is inserted to the vicinity of the cauterization site 61. Then, a plurality of electrodes 110 are brought into contact with the organ 52, and the potential of the contacted portion is measured.

しかしながら、図6(c)に示すようなリング状の電極110を用いた場合、複数の電極110が接触した部位の電位を、間欠的に計測するため、電極間にある部位の電位は計測されない。 However, when the ring-shaped electrode 110 as shown in FIG. 6C is used, the potential of the portion where the plurality of electrodes 110 are in contact is intermittently measured, so that the potential of the portion between the electrodes is not measured. ..

一方、心房細動における異常な電気信号の伝導路は、肺静脈51の周囲に亘るため、異常な電気信号の伝導路を絶つためには、バルーン30の表面がリング状に接触した部位を全て焼灼する必要がある。そのため、もし、焼灼できなかった部位(未焼灼部位)があっても、未焼灼部位に複数の電極110が接触していなかった場合、接触していない部位の電位は計測されない。その結果、未焼灼部位の存在を見逃すおそれがあるため、焼灼効果を正確に確認することができない。 On the other hand, since the conduction path of the abnormal electrical signal in atrial fibrillation extends around the pulmonary vein 51, in order to cut off the conduction path of the abnormal electrical signal, all the sites where the surface of the balloon 30 contacts in a ring shape are all. Needs to be cauterized. Therefore, even if there is a part that could not be cauterized (non-cauterized part), if the plurality of electrodes 110 are not in contact with the non-cauterized part, the potential of the part that is not in contact is not measured. As a result, the existence of the uncauterized portion may be overlooked, so that the cauterizing effect cannot be confirmed accurately.

また、リング状の電極110は、可撓性が十分でないため、もくしは可撓性がありすぎて過度に変形するため、全ての電極110を器官52に接触させることが難しい。もし、一部の電極110が器官52に接触していなかった場合、接触していない部位の電位は計測されず、未焼灼部位の存在を見逃すおそれがある。 Further, since the ring-shaped electrode 110 is not sufficiently flexible, the comb is too flexible and is excessively deformed, so that it is difficult to bring all the electrodes 110 into contact with the organ 52. If some of the electrodes 110 are not in contact with the organ 52, the potential of the non-contact portion is not measured, and the existence of the uncauterized portion may be overlooked.

また、図6(c)に示すように、リング状の電極110が接触した部位は、焼灼部位61と位置がずれるおそれがある。この場合、リング状の電極110は、焼灼部位61からずれた部位の電位を計測するため、焼灼効果を正確に確認することができない。 Further, as shown in FIG. 6C, the portion in contact with the ring-shaped electrode 110 may be displaced from the ablation portion 61. In this case, since the ring-shaped electrode 110 measures the potential of the portion deviated from the cauterization portion 61, the cauterization effect cannot be confirmed accurately.

また、バルーン30で焼灼した後、一旦、バルーン30付きのカテーテル10を抜いて、新たに、リング状の電極110を備えたカテーテル100を挿入する必要があるため、焼灼効果の確認に長時間を要してしまう。また、カテーテル10、110の抜き差しによって、器官内にエアが混入するリスクが高まる。 Further, after cauterizing with the balloon 30, it is necessary to temporarily remove the catheter 10 with the balloon 30 and insert a new catheter 100 having a ring-shaped electrode 110, so that it takes a long time to confirm the cauterizing effect. It will take. In addition, the risk of air entering the organ increases due to the insertion and removal of the catheters 10 and 110.

本発明は、上記課題に鑑みなされたもので、その主な目的は、アブレーション治療等で、器官の内壁面の周囲を焼灼した際の焼灼部位の電位を、正確に計測することができる生体内電位計測器を提供することにある。 The present invention has been made in view of the above problems, and its main purpose is to accurately measure the potential of the cauterized part when the circumference of the inner wall surface of the organ is cauterized by ablation treatment or the like. The purpose is to provide a potential measuring instrument.

本発明に係る生体内電位計測器は、生体の器官内に挿入して、器官の内壁面における所定部位の電位を計測する生体内電位計測器であって、絶縁性部材と、絶縁性部材の中に配置された電極とを備え、絶縁性部材の外周面を、器官の内壁面に接触させた状態で、接触した部位の電位を、電極で計測することを特徴とする。 The in-vivo potential measuring instrument according to the present invention is an in-vivo potential measuring instrument that is inserted into an organ of a living body to measure the potential of a predetermined portion on the inner wall surface of the organ, and is an insulating member and an insulating member. It is characterized by having an electrode arranged inside, and measuring the potential of the contacted portion with the electrode in a state where the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ.

本発明によれば、アブレーション治療等で、器官の内壁面の周囲を焼灼した際の焼灼部位の電位を、正確に計測することができる生体内電位計測器を提供することができる。 According to the present invention, it is possible to provide an in-vivo potential measuring instrument capable of accurately measuring the potential of a cauterized portion when cauterizing the periphery of the inner wall surface of an organ by ablation treatment or the like.

本発明の一実施形態における生体内電位計測器の構成を模式的に示した図である。It is a figure which showed typically the structure of the in-vivo potential measuring instrument in one Embodiment of this invention. 絶縁性部材の外周面が、器官の内壁面に接触した状態を模式的に示した図である。It is a figure which showed typically the state which the outer peripheral surface of the insulating member was in contact with the inner wall surface of an organ. 絶縁性部材の外周面が、器官の内壁面に接触した部位の電位を、絶縁性部材の中に配置された電極で計測する方法を示した等価回路図である。It is an equivalent circuit diagram which showed the method of measuring the electric potential of the part where the outer peripheral surface of an insulating member came into contact with the inner wall surface of an organ by the electrode arranged in the insulating member. (a)〜(c)は、絶縁性部材を用いて、器官の内壁面を焼灼した後、絶縁性部材の外周面を、器官の内壁面に接触させた状態で、接触した部位の電位を、絶縁性部材の中に配置した電極で計測する方法を説明した図である。In (a) to (c), after cauterizing the inner wall surface of the organ using the insulating member, the potential of the contacted portion is measured in a state where the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ. , It is a figure explaining the method of measuring with the electrode arranged in the insulating member. 焼灼前と焼灼後で、それぞれ、増幅器で計測した電圧の波形を示したグラフである。It is a graph which showed the waveform of the voltage measured by the amplifier before and after cauterization, respectively. (a)〜(c)は、バルーン付きのカテーテルを用いて、バルーンに接触した器官を焼灼した後、従来の電位測定用の電極を用いて、焼灼付近の器官の電位を計測する方法を示した図である。(A) to (c) show a method of cauterizing an organ in contact with a balloon using a catheter with a balloon, and then measuring the potential of an organ near the cauterization using a conventional electrode for measuring potential. It is a figure.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments. Further, it can be appropriately changed as long as it does not deviate from the range in which the effect of the present invention is exhibited.

図1は、本発明の一実施形態における生体内電位計測器の構成を模式的に示した図である。なお、本発明における生体内電位計測器は、生体の器官内に挿入して、器官の内壁面における所定部位の電位を計測するものであるが、本実施形態では、心房細動のカテーテル・アブレーション治療において、焼灼後の焼灼部位における電位を計測する場合を例に説明する。 FIG. 1 is a diagram schematically showing a configuration of an in-vivo potential measuring instrument according to an embodiment of the present invention. The in-vivo potential measuring instrument in the present invention is inserted into an organ of a living body to measure the potential of a predetermined portion on the inner wall surface of the organ. In the present embodiment, catheter ablation for atrial fibrillation In the treatment, a case of measuring the potential at the ablation site after ablation will be described as an example.

図1に示すように、本実施形態における生体内電位計測器は、外周面が変形自在又は拡張自在な絶縁性部材30と、絶縁性部材30の中に配置された電極20とを備えている。絶縁性部材30として、例えば、中空袋状からなるバルーンを用いることができる。また、絶縁性部材30に、中空管状の可撓性部材(カテーテル)10が結合したバルーン付きカテーテルを用いてもよい。 As shown in FIG. 1, the in-vivo potential measuring instrument according to the present embodiment includes an insulating member 30 whose outer peripheral surface is deformable or expandable, and an electrode 20 arranged in the insulating member 30. .. As the insulating member 30, for example, a balloon having a hollow bag shape can be used. Further, a catheter with a balloon in which a hollow tubular flexible member (catheter) 10 is connected to the insulating member 30 may be used.

図1は、絶縁性部材30の中に、導電性の流動体21を注入することによって、絶縁性部材30の外周面を、心房細動の治療部位である左心房50と肺静脈51との接合近傍における器官52の内壁面に、リング状に接触させた状態を示している。ここで、導電性の流動体21は、例えば、中空管状の可撓性部材(カテーテル)10を介して、外部から注入することができる。また、導電性の流動体21は、例えば、生理食塩水等を用いることができる。 In FIG. 1, by injecting a conductive fluid 21 into the insulating member 30, the outer peripheral surface of the insulating member 30 is formed between the left atrium 50 and the pulmonary vein 51, which are treatment sites for atrial fibrillation. It shows a state in which the inner wall surface of the organ 52 in the vicinity of the junction is in contact with the inner wall surface in a ring shape. Here, the conductive fluid 21 can be injected from the outside via, for example, a hollow tubular flexible member (catheter) 10. Further, as the conductive fluid 21, for example, physiological saline or the like can be used.

本実施形態における生体内電位計測器は、図1に示したように、絶縁性部材30の外周面を、器官52の内壁面にリング状に接触させた状態で、接触した部位の電位を、絶縁性部材30の中に配置した電極20によって計測するものである。 In the in-vivo potential measuring instrument of the present embodiment, as shown in FIG. 1, in a state where the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ 52 in a ring shape, the potential of the contacted portion is measured. It is measured by the electrode 20 arranged in the insulating member 30.

なお、絶縁性部材30が接触した部位の電位は、図1に示すように、生体の表面72に、基準となる接地電極71を貼り付け、絶縁性部材30の中に配置された電極20と、接地電極71との間の電圧を、生体の外部に配置された増幅器70で増幅することによって計測することができる。 As shown in FIG. 1, the potential of the portion in contact with the insulating member 30 is the same as that of the electrode 20 arranged in the insulating member 30 by attaching the reference ground electrode 71 to the surface 72 of the living body. The voltage between the ground electrode 71 and the ground electrode 71 can be measured by amplifying the voltage with an amplifier 70 arranged outside the living body.

また、本実施形態における絶縁性部材30は、絶縁性部材30の外周面が、器官の内壁面に接触した状態で、絶縁性部材30の中に配置した電極20に高周波電流を通電して、流動体21を加熱することによって、絶縁性部材が接触した部位を焼灼する機能(アブレーション機能)を兼ね備えていてもよい。 Further, in the insulating member 30 of the present embodiment, a high-frequency current is applied to the electrodes 20 arranged in the insulating member 30 in a state where the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ. By heating the fluid 21, it may also have a function of cauterizing a portion in contact with the insulating member (ablation function).

次に、本実施形態において、生体内の電位を計測する原理について、図2及び図3を参照しながら説明する。 Next, in the present embodiment, the principle of measuring the electric potential in the living body will be described with reference to FIGS. 2 and 3.

図2は、絶縁性部材30の外周面が、器官52の内壁面に接触した状態を模式的に示した図である。ここで、絶縁性部材30の中に注入された流動体21は、導電性を有しているため、流動体21と接触している絶縁性部材30の内周面の電位は、絶縁性部材30の中に配置された電極20の電位と、実質的に同じと考えられる。従って、図2に示すように、電極20と、器官52の内壁面とは、絶縁性部材30を挟んで、静電容量結合型電極80を構成していることになる。 FIG. 2 is a diagram schematically showing a state in which the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ 52. Here, since the fluid 21 injected into the insulating member 30 has conductivity, the potential of the inner peripheral surface of the insulating member 30 in contact with the fluid 21 is the insulating member. It is considered to be substantially the same as the potential of the electrode 20 arranged in 30. Therefore, as shown in FIG. 2, the electrode 20 and the inner wall surface of the organ 52 form the capacitance-coupled electrode 80 with the insulating member 30 interposed therebetween.

図3は、絶縁性部材30の外周面が、器官52の内壁面に接触した部位の電位を、絶縁性部材30の中に配置された電極20で計測する方法を示した等価回路図である。ここで、Vbは、絶縁性部材30が器官52の内壁面に接触した部位で計測される電位で、Ceは、電極20と器官52との間の静電容量を示す。なお、Vbは、器官52の周囲にある複数電位の重心電位が伝わって接触部位で計測されたものである。また、生体の表面72には、基準となる接地電極71が貼り付けられており、電極20と接地電極71との間の電圧は、増幅器70で増幅されて、出力電圧Voutとして計測される。また、Cinは、増幅器70の入力容量で、Rinは、増幅器70の入力抵抗を示す。 FIG. 3 is an equivalent circuit diagram showing a method of measuring the potential of a portion where the outer peripheral surface of the insulating member 30 contacts the inner wall surface of the organ 52 with an electrode 20 arranged in the insulating member 30. .. Here, Vb is a potential measured at a portion where the insulating member 30 is in contact with the inner wall surface of the organ 52, and Ce is a capacitance between the electrode 20 and the organ 52. In addition, Vb is measured at the contact site by transmitting the center of gravity potentials of a plurality of potentials around the organ 52. Further, a reference ground electrode 71 is attached to the surface 72 of the living body, and the voltage between the electrode 20 and the ground electrode 71 is amplified by the amplifier 70 and measured as an output voltage Vout. Further, Cin is the input capacitance of the amplifier 70, and Rin is the input resistance of the amplifier 70.

図3に示した等価回路において、キルヒホッフの第2法則より、下記の式(1)が成り立つ。 In the equivalent circuit shown in FIG. 3, the following equation (1) holds from Kirchhoff's second law.

Figure 0006950337
Figure 0006950337

ここで、Zceは、電極−器官間の静電容量のインピーダンス、Zcinは、増幅器の入力容量のインピーダンスである。 Here, Zce is the impedance of the capacitance between the electrode and the organ, and Zcin is the impedance of the input capacitance of the amplifier.

また、増幅器70の閉ループ回路において、キルヒホッフの第1法則により、以下の式(2)が成り立つ。 Further, in the closed loop circuit of the amplifier 70, the following equation (2) holds according to Kirchhoff's first law.

Figure 0006950337
Figure 0006950337

式(1)、(2)を用いて、iについて解くと、下記の式(3)が得られる。 When i 2 is solved using the equations (1) and (2), the following equation (3) is obtained.

Figure 0006950337
Figure 0006950337

また、オームの法則から、下記の式(4)が成り立つ。 Further, from Ohm's law, the following equation (4) holds.

Figure 0006950337
Figure 0006950337

式(3)を、式(4)に代入して、以下の式(5)が得られる。 By substituting the equation (3) into the equation (4), the following equation (5) is obtained.

Figure 0006950337
Figure 0006950337

式(5)の分母の第1項と第2項はそれぞれ式(6)、(7)のように表される。 The first and second terms of the denominator of the equation (5) are expressed as equations (6) and (7), respectively.

Figure 0006950337
Figure 0006950337

Figure 0006950337
Figure 0006950337

式(6)、(7)を、式(5)に代入すると、下記の式(8)が得られる。 By substituting the equations (6) and (7) into the equation (5), the following equation (8) is obtained.

Figure 0006950337
Figure 0006950337

ここで、増幅器70の入力容量Cinが十分に小さく、かつ、入力抵抗Rinが十分に大きい場合、すなわち、下記の式(9)、(10)が成り立つ場合、式(8)は、下記の式(11)のように表される。 Here, when the input capacitance Cin of the amplifier 70 is sufficiently small and the input resistance Rin is sufficiently large, that is, when the following equations (9) and (10) hold, the equation (8) is expressed by the following equation. It is expressed as (11).

Figure 0006950337
Figure 0006950337

Figure 0006950337
Figure 0006950337

Figure 0006950337
Figure 0006950337

すなわち、増幅器70で計測した電圧Voutは、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbと一致する。これにより、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbを、増幅器70により容易に計測することができる。 That is, the voltage Vout measured by the amplifier 70 coincides with the potential Vb of the portion where the insulating member 30 contacts the inner wall surface of the organ 52. Thereby, the potential Vb of the portion where the insulating member 30 comes into contact with the inner wall surface of the organ 52 can be easily measured by the amplifier 70.

ところで、図2に示した電極−器官間の静電容量Ceは、絶縁性部材30と器官との接触面積をS、絶縁性部材30の厚みをdとすると、下記の式(12)のように表される。 By the way, the capacitance Ce between the electrode and the organ shown in FIG. 2 is as shown in the following equation (12), where S is the contact area between the insulating member 30 and the organ and d is the thickness of the insulating member 30. It is represented by.

Figure 0006950337
Figure 0006950337

ここで、εは、真空の誘電率(8.855×10−12 [F/m])、εは、絶縁性部材30の比誘電率である。 Here, ε 0 is the permittivity of the vacuum (8.855 × 10-12 [F / m]), and ε r is the relative permittivity of the insulating member 30.

従って、式(11)を用いて、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbを求める際、絶縁性部材30の厚みdを、式(9)が満たすように設定することが好ましい。 Therefore, when the potential Vb of the portion where the insulating member 30 contacts the inner wall surface of the organ 52 is obtained by using the formula (11), the thickness d of the insulating member 30 is set so as to be satisfied by the formula (9). Is preferable.

例えば、増幅器70の入力容量Cinを10pF、絶縁性部材30と器官との接触面積Sを1000mm、絶縁性部材30の比誘電率εを5(例えば、ポリウレタンの場合)とすると、式(9)から、d<45μmとなる。よって、絶縁性部材30の厚みdは、典型的には、40μm以下が好ましく、10μm以下がより好ましい。 For example, assuming that the input capacitance Cin of the amplifier 70 is 10 pF, the contact area S between the insulating member 30 and the organ is 1000 mm 2 , and the relative permittivity ε r of the insulating member 30 is 5 (for example, in the case of polyurethane), the equation ( From 9), d <45 μm. Therefore, the thickness d of the insulating member 30 is typically preferably 40 μm or less, and more preferably 10 μm or less.

また、式(11)を用いて、絶縁性部材30が器官52の内壁面に接触した部位の電位Vbを求めるためには、増幅器70の入力抵抗Rinを、式(10)が満たすように設定することが好ましい。 Further, in order to obtain the potential Vb of the portion where the insulating member 30 contacts the inner wall surface of the organ 52 using the equation (11), the input resistance Rin of the amplifier 70 is set so as to be satisfied by the equation (10). It is preferable to do so.

例えば、増幅器70の入力容量Cinを10pF、電極−器官間の静電容量Ceを1000pF(Cin/Ce=0.01)、絶縁性部材30が器官52の内壁面に接触した部位の電位帯域f(jw=2πf)を100Hzとすると、式(10)から、Rin>0.2GΩとなる。よって、増幅器70の入力抵抗Rinは、典型的には、1GΩ以上が好ましい。 For example, the input capacitance C of the amplifier 70 is 10 pF, the capacitance Ce between the electrode and the organ is 1000 pF (Cin / Ce = 0.01), and the potential band f of the portion where the insulating member 30 contacts the inner wall surface of the organ 52. Assuming that (jw = 2πf) is 100 Hz, Rin> 0.2 GΩ from the equation (10). Therefore, the input resistance Rin of the amplifier 70 is typically preferably 1 GΩ or more.

次に、図4(a)〜(c)を参照しながら、本実施形態における絶縁性部材30を用いて、器官の内壁面を焼灼した後、絶縁性部材30の外周面を、器官の内壁面に接触させた状態で、接触した部位の電位を、絶縁性部材30の中に配置した電極20で計測する方法を説明する。なお、ここでは、焼灼する部位として、心房細動の治療部位である左心房と肺静脈との接合近傍を例に説明する。 Next, referring to FIGS. 4A to 4C, the inner wall surface of the organ is cauterized using the insulating member 30 in the present embodiment, and then the outer peripheral surface of the insulating member 30 is formed inside the organ. A method of measuring the potential of the contacted portion with the electrode 20 arranged in the insulating member 30 in the state of being in contact with the wall surface will be described. Here, as a site to be cauterized, the vicinity of the junction between the left atrium and the pulmonary vein, which is a treatment site for atrial fibrillation, will be described as an example.

まず、図4(a)に示すように、先端に絶縁性部材(バルーン)30が取り付けられた可撓性部材(カテーテル)10を、左心房50と肺静脈51との接合近傍に挿入する。そして、絶縁性部材30内に導電性の流動体21を注入することによって、絶縁性部材30を膨らませて、絶縁性部材30の外周面を、器官52の内周面に、リング状に接触させる。なお、符号60は、心房細動の起源となる異常な電気信号源を示す。 First, as shown in FIG. 4A, a flexible member (catheter) 10 having an insulating member (balloon) 30 attached to the tip thereof is inserted in the vicinity of the junction between the left atrium 50 and the pulmonary vein 51. Then, by injecting the conductive fluid 21 into the insulating member 30, the insulating member 30 is inflated, and the outer peripheral surface of the insulating member 30 is brought into contact with the inner peripheral surface of the organ 52 in a ring shape. .. Reference numeral 60 indicates an abnormal electrical signal source that is the origin of atrial fibrillation.

図4(b)、(c)は、電極20に高周波電流を通電して、絶縁性部材30内の流動体21を加熱することによって、絶縁性部材30の表面と接触している器官52を焼灼した後の状態を示す。ここで、図4(b)は、器官52の周囲に亘って、十分な焼灼が行われず、一部に、焼灼されなかった部位(未焼灼部位)が残った状態を示す。一方、図4(c)は、器官52の周囲に亘って、十分な焼灼が行われ、焼灼された部位(焼灼部位)61ができた状態を示す。 4 (b) and 4 (c) show an organ 52 in contact with the surface of the insulating member 30 by applying a high-frequency current to the electrode 20 to heat the fluid 21 in the insulating member 30. Shows the state after cauterization. Here, FIG. 4B shows a state in which sufficient cauterization was not performed around the organ 52, and a portion that was not cauterized (non-cauterized portion) remained. On the other hand, FIG. 4C shows a state in which sufficient cauterization is performed around the organ 52 to form a cauterized portion (cauterized portion) 61.

図4(b)に示した状態で、絶縁性部材30の外周面が接触した部位の電位を、絶縁性部材30の中に配置した電極20で計測した場合、リング状に接触した全ての部位の電位が重畳されるため、未焼灼部位における電位が重畳された電位が計測されることになる。従って、この場合、アブレーション治療による焼灼が、不十分であったことが確認できる。 In the state shown in FIG. 4B, when the potential of the portion where the outer peripheral surface of the insulating member 30 is in contact is measured by the electrode 20 arranged in the insulating member 30, all the portions in contact in a ring shape are measured. Since the potential of the above is superimposed, the potential on which the potential at the uncauterized portion is superimposed is measured. Therefore, in this case, it can be confirmed that the cauterization by the ablation treatment was insufficient.

一方、図4(c)に示した状態で、絶縁性部材30の外周面が接触した部位の電位を、絶縁性部材30の中に配置した電極20で計測した場合、未焼灼部位における電位が重畳されて計測されることはない。従って、この場合、アブレーション治療による焼灼が、十分であったことが確認できる。 On the other hand, in the state shown in FIG. 4C, when the potential of the portion where the outer peripheral surface of the insulating member 30 is in contact is measured by the electrode 20 arranged in the insulating member 30, the potential at the uncauterized portion is measured. It is not superimposed and measured. Therefore, in this case, it can be confirmed that the cauterization by the ablation treatment was sufficient.

本実施形態によれば、アブレーション治療によって器官52を焼灼した後、焼灼付近の器官の電位を計測する際、絶縁性部材30の外周面を、器官52の内壁面にリング状に接触させた状態で、接触した部位の電位を、絶縁性部材30の中に配置した電極20で計測するため、焼灼付近の器官52の電位を、周囲に亘って確実に計測することができる。これにより、未焼灼部位があった場合、未焼灼部位における電位が重畳された電位として計測することができる。その結果、未焼灼部位の存在を見逃すことがないため、焼灼効果を確実に確認することができる。 According to the present embodiment, after cauterizing the organ 52 by ablation treatment, when measuring the potential of the organ near the cauterization, the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ 52 in a ring shape. Since the potential of the contacted portion is measured by the electrode 20 arranged in the insulating member 30, the potential of the organ 52 near the ablation can be reliably measured over the surroundings. As a result, when there is an uncauterized portion, the potential at the uncauterized portion can be measured as an superimposed potential. As a result, the existence of the uncauterized portion is not overlooked, so that the cauterizing effect can be surely confirmed.

また、絶縁性部材30は、外周面が変形自在又は拡張自在な材料で構成されているため、器官52の形状に合わせて、絶縁性部材30の外周面を、容易に、器官52の内壁面にリング状に接触させることができる。これにより、焼灼付近の器官52の電位を、周囲に亘って確実に計測することができる。その結果、未焼灼部位があった場合、その存在を見逃すことなく、焼灼効果を確実に確認することができる。 Further, since the outer peripheral surface of the insulating member 30 is made of a material that can be deformed or expanded, the outer peripheral surface of the insulating member 30 can be easily changed to the inner wall surface of the organ 52 according to the shape of the organ 52. Can be contacted in a ring shape. As a result, the electric potential of the organ 52 near the cauterization can be reliably measured over the surrounding area. As a result, if there is an uncauterized part, the cauterizing effect can be surely confirmed without overlooking the existence.

また、絶縁性部材30に、電極20に高周波電流を通電して、絶縁性部材30が接触した部位を焼灼する機能を持たすことによって、焼灼した部位と同じ位置で、焼灼付近の器官52の電位を計測することができるため、焼灼効果を正確に確認することができる。 Further, the insulating member 30 has a function of applying a high-frequency current to the electrode 20 to cauterize the portion in contact with the insulating member 30, so that the potential of the organ 52 near the cauterization is located at the same position as the cauterized portion. Can be measured, so the cauterization effect can be confirmed accurately.

また、焼灼付近の器官52の電位を、電極20と器官52とを絶縁性部材30を挟んで構成した静電容量結合型電極で計測することによって、一度に、周囲に亘った電位を計測することができる。 Further, by measuring the potential of the organ 52 near the cauterization with a capacitance-coupled electrode formed by sandwiching the electrode 20 and the organ 52 with the insulating member 30, the potential over the surroundings is measured at once. be able to.

また、絶縁性部材30を、中空袋状からなるバルーンで構成することによって、絶縁性部材30の膜厚が一定になるため、器官52の周囲に亘る電位を、バラツキなく計測することができる。 Further, by forming the insulating member 30 with a balloon made of a hollow bag shape, the film thickness of the insulating member 30 becomes constant, so that the electric potential around the organ 52 can be measured without variation.

また、焼灼付近の器官52の電位を計測する際、絶縁性部材30の抜き差しを行う必要がないため、焼灼効果の確認を短時間で行うことができる。また、絶縁性部材30の抜き差しに伴う、器官52内へのエアの混入のリスクも低減することができる。 Further, when measuring the potential of the organ 52 near the cauterization, it is not necessary to insert and remove the insulating member 30, so that the cauterization effect can be confirmed in a short time. In addition, the risk of air entering the organ 52 due to the insertion and removal of the insulating member 30 can be reduced.

また、本実施形態では、器官の内壁面における所定部位の電位を計測する生体内電位計測器を、絶縁性部材の中に電極を配置する簡単な構成にすることによって、生体親和性や安全性に優れた生体内電位計測器を実現することができる。 Further, in the present embodiment, the in-vivo potential measuring instrument that measures the potential of a predetermined portion on the inner wall surface of the organ has a simple configuration in which electrodes are arranged in an insulating member, thereby achieving biocompatibility and safety. It is possible to realize an excellent in-vivo potential measuring instrument.

本実施形態における生体内電位計測方法は、生体の器官の内壁面における所定部位の電位を計測する生体内電位計測方法であって、以下の工程(A)〜(C)を含む。 The in-vivo potential measuring method in the present embodiment is an in-vivo potential measuring method for measuring the potential of a predetermined portion on the inner wall surface of an organ of a living body, and includes the following steps (A) to (C).

(A)中空袋状の絶縁性部材を、絶縁性部材に結合した中空管状の可撓性部材を用いて、生体の器官内に挿入する工程
(B)絶縁性部材の中に、可撓性部材を介して、導電性の流動体を注入して、絶縁性部材の外周面を、器官の内壁面に接触させる工程
(C)接触した部位の電位を、電極で計測する工程
本実施形態における生体内電位計測システムは、図1に示した生体内電位計測器と、電極20で検出した電位を増幅する増幅器70とを備えている。
(A) A step of inserting a hollow bag-shaped insulating member into a living organ using a hollow tubular flexible member coupled to the insulating member (B) Flexibility in the insulating member. A step of injecting a conductive fluid through the member to bring the outer peripheral surface of the insulating member into contact with the inner wall surface of the organ (C) A step of measuring the potential of the contacted portion with an electrode. The in-vivo potential measuring system includes an in-vivo potential measuring device shown in FIG. 1 and an amplifier 70 that amplifies the potential detected by the electrode 20.

本実施形態における生体内電位計測器を用いて、アブレーション治療による器官の焼灼後に、焼灼付近の器官の電位を計測して、焼灼効果を確認する実証実験を行った。 Using the in-vivo potential measuring device in the present embodiment, after cauterizing the organ by ablation treatment, the potential of the organ near the cauterization was measured, and a demonstration experiment was conducted to confirm the cauterizing effect.

実証実験は、動物(豚)を用いて行い、バルーン付きカテーテルを挿入し、バルーン内に生理食塩水と造影剤の混合液を注入することによって、バルーンの外周面を、焼灼対象部位の内周面に、リング状に接触させた。なお、実証実験には、直径が20mm、厚みが0.02mmの球状で、ポリウレタン製のバルーンを用いた。 The demonstration experiment was conducted using an animal (pig), and by inserting a catheter with a balloon and injecting a mixed solution of physiological saline and contrast medium into the balloon, the outer peripheral surface of the balloon was formed around the inner circumference of the ablation target site. The surface was brought into contact with the surface in a ring shape. In the demonstration experiment, a spherical polyurethane balloon having a diameter of 20 mm and a thickness of 0.02 mm was used.

この状態で、バルーンが接触した焼灼部位の内壁面の電位を、バルーンの中に配置した電極を用いて計測した。なお、基準となる接地電極は、動物の体表に貼り付け、バルーンの中に配置した電極と、接地電極との間の電圧を、増幅器で増幅して計測した。なお、使用した増幅器の入力容量は1pFで、入力抵抗は10000GΩ(10TΩ)であった。 In this state, the potential of the inner wall surface of the ablation site with which the balloon was in contact was measured using an electrode placed inside the balloon. The reference ground electrode was attached to the body surface of the animal, and the voltage between the electrode placed in the balloon and the ground electrode was amplified by an amplifier and measured. The input capacitance of the amplifier used was 1 pF, and the input resistance was 10000 GΩ (10 TΩ).

次に、この状態を維持したまま、バルーン内の電極に高周波電流を通電して、バルーン内の生理食塩水と造影剤の混合液を、約70℃まで加熱することによって、バルーンの表面と接触している部位を焼灼した。その後、上記と同じ方法で、バルーンが接触した部位の電位を、バルーンの中に配置した電極を用いて計測した。 Next, while maintaining this state, a high-frequency current is applied to the electrodes in the balloon to heat the mixed solution of physiological saline and contrast medium in the balloon to about 70 ° C., thereby contacting the surface of the balloon. The part of the balloon was cauterized. Then, by the same method as above, the potential of the portion where the balloon was in contact was measured using the electrodes arranged in the balloon.

図5は、焼灼前と、焼灼後で、それぞれ、増幅器で計測した電圧の波形を示したグラフで、矢印Bで示した波形(点線)は、焼灼前の波形、矢印Aで示した波形(実線)は、焼灼後の波形を示す。なお、各波形は、14拍の加算平均を示す。 FIG. 5 is a graph showing the waveforms of the voltages measured by the amplifier before and after cauterization, respectively. The waveforms (dotted lines) indicated by arrow B are the waveforms before cauterization and the waveforms indicated by arrow A (dotted lines). The solid line) shows the waveform after cauterization. In addition, each waveform shows the addition average of 14 beats.

図5に示すように、焼灼前の波形において、矢印Pで示した焼灼対象とする電位波形が、焼灼後の波形では消失していることが分かる。これにより、バルーンの表面がリング状に接触した部位が、周囲に亘って、全て焼灼していることが確認できた。 As shown in FIG. 5, it can be seen that in the waveform before cauterization, the potential waveform to be cauterized indicated by the arrow P disappears in the waveform after cauterization. As a result, it was confirmed that all the parts where the surface of the balloon was in contact with each other in a ring shape were cauterized over the surrounding area.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態では、絶縁性部材30として、中空袋状のバルーンを例に説明したが、これに限定されず、電位測定用の電極20を、絶縁性部材30で被覆したものであってもよい。また、電位測定用の電極20を、導電性の流動体21を介して絶縁性部材30で被覆したものであってもよい。 Although the present invention has been described above in terms of preferred embodiments, such a description is not a limitation, and of course, various modifications can be made. For example, in the above embodiment, the hollow bag-shaped balloon has been described as an example of the insulating member 30, but the present invention is not limited to this, and the electrode 20 for potential measurement is coated with the insulating member 30. May be good. Further, the electrode 20 for measuring the potential may be coated with the insulating member 30 via the conductive fluid 21.

また、上記実施形態では、アブレーション治療による器官の焼灼後に、焼灼付近の器官の電位を計測する例を説明したが、アブレーション治療をする前に、病変部の状態を診断するために、病変部付近の器官の電位を計測する場合にも適用することができおる。また、アブレーション治療による器官の焼灼を行っている途中に、焼灼の状態をモニタリングするために、焼灼付近の器官の電位を計測してもよい。この場合、電極20への高周波電流の通電と、電極20を用いた電位の計測とを、時間分割で交互に行ってもよい。 Further, in the above embodiment, an example of measuring the potential of an organ near the ablation after cauterization of the organ by the ablation treatment has been described, but in order to diagnose the condition of the lesion before the ablation treatment, the vicinity of the lesion is used. It can also be applied when measuring the potential of the organs of. Further, during the cauterization of the organ by the ablation treatment, the potential of the organ near the cauterization may be measured in order to monitor the state of the cauterization. In this case, the energization of the high-frequency current to the electrode 20 and the measurement of the electric potential using the electrode 20 may be alternately performed in a time-divided manner.

また、上記実施形態では、基準となる接地電極71を、生体の表面に配置した例を説明したが、接地電極71を、生体の内部に配置してもよい。これにより、生体自身がシールド効果を持つことによって、ノイズを軽減した状態で、器官の電位を計測することができる。例えば、カテーテルの先端に、接地電極71を取り付けてもよい。また、基準となる接地電極71を、体表もしくは体内に複数個配置してもよいし、複数の接地電極から仮想的な接地電極を算出してもよい。 Further, in the above embodiment, the example in which the reference ground electrode 71 is arranged on the surface of the living body has been described, but the ground electrode 71 may be arranged inside the living body. As a result, the living body itself has a shielding effect, so that the electric potential of the organ can be measured in a state where noise is reduced. For example, the ground electrode 71 may be attached to the tip of the catheter. Further, a plurality of reference ground electrodes 71 may be arranged on the body surface or inside the body, or a virtual ground electrode may be calculated from the plurality of ground electrodes.

また、上記実施形態では、絶縁性部材30の外周面を、器官の内壁面にリング状に接触させた状態で、当該接触した部位の電位を、絶縁性部材30の中に配置した電極20で計測した例を説明したが、これに限定されず、平面部位に絶縁性部材30を押し当てて、当該接触した部位の電位を絶縁性部材30の中に配置した電極20で計測するものであってもよい。例えば、器官の平面的な内壁面に絶縁性部材30を押し当てて、平面部位の表面形状に沿うように絶縁性部材30を変形させつつ、接触させた状態で、当該接触した部位の電位を電極20で計測してもよい。 Further, in the above embodiment, in a state where the outer peripheral surface of the insulating member 30 is in contact with the inner wall surface of the organ in a ring shape, the potential of the contacted portion is measured by the electrode 20 arranged in the insulating member 30. An example of measurement has been described, but the present invention is not limited to this, and the insulating member 30 is pressed against a flat surface portion, and the potential of the contacted portion is measured by the electrode 20 arranged in the insulating member 30. You may. For example, the insulating member 30 is pressed against the flat inner wall surface of the organ, and the insulating member 30 is deformed so as to follow the surface shape of the flat portion, and the potential of the contacted portion is measured in the contacted state. It may be measured by the electrode 20.

また、上記実施形態では、生体内電位計測器を、アブレーション治療による器官の焼灼後に、焼灼付近の器官の電位を計測する場面に適用する例を説明したが、これに限定されず、診断、治療、または治療効果の確認のために、絶縁性部材30を、生体の器官内に挿入して、器官の内壁面における所定部位の電位を計測するあらゆる場面に適用することができる。 Further, in the above embodiment, an example of applying the in-vivo potential measuring device to a scene of measuring the potential of an organ near the ablation after ablation of the organ by ablation treatment has been described, but the present invention is not limited to this, and diagnosis and treatment are not limited to this. Or, in order to confirm the therapeutic effect, the insulating member 30 can be inserted into an organ of a living body and applied to any situation where the potential of a predetermined portion on the inner wall surface of the organ is measured.

10 中空管状の可撓性部材(カテーテル)
20 電極
21 導電性の流動体
30 絶縁性部材(バルーン)
52 器官
61 焼灼部位
70 増幅器
71 接地電極
10 Hollow tubular flexible member (catheter)
20 electrodes
21 Conductive fluid
30 Insulating member (balloon)
52 organs
61 Cauterization site
70 amplifier
71 Ground electrode

Claims (9)

生体の器官内に挿入して、該器官の内壁面における所定部位の電位を計測する生体内電位計測器であって、
中空袋状の絶縁性部材と、
前記絶縁性部材の中に注入された導電性の流動体と、
前記流動体の中に配置された電極と
を備え、
前記電極と前記器官の内壁面とは、前記流動体を介して、前記絶縁性部材を挟んで、静電容量結合型電極を構成しており、
前記絶縁性部材は、該絶縁性部材の外周面が、前記器官の内壁面に接触した状態で、前記電極に高周波電流を通電して、導電性の流動体を加熱することによって、前記接触した部位を焼灼する機能を兼ね備えており、
前記絶縁性部材の外周面を、前記器官の内壁面にリング状に接触させた状態で、該接触した部位の電位を、前記電極で計測する、生体内電位計測器。
An in-vivo potential measuring instrument that is inserted into an organ of a living body and measures the potential of a predetermined part on the inner wall surface of the organ.
Hollow bag-shaped insulating member and
The conductive fluid injected into the insulating member and
An electrode disposed in said fluid,
With
Wherein the electrode and the inner wall surface of the front Symbol organs, through the fluid, across the insulating member, constitutes a capacitive coupling electrodes,
The insulating member was brought into contact with the insulating member by applying a high-frequency current to the electrode to heat the conductive fluid in a state where the outer peripheral surface of the insulating member was in contact with the inner wall surface of the organ. It also has the function of cauterizing the part,
An in-vivo potential measuring instrument that measures the potential of the contacted portion with the electrode in a state where the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ in a ring shape.
前記絶縁性部材は、その外周面が、前記接触した部位の形状に沿って、変形自在又は拡張自在な部材で構成されている、請求項1に記載の生体内電位計測器。 The in-vivo potential measuring instrument according to claim 1, wherein the insulating member is composed of a member whose outer peripheral surface is deformable or expandable along the shape of the contacted portion. 前記絶縁性部材に結合した中空管状の可撓性部材をさらに備え、
前記絶縁性部材の中に、前記可撓性部材を介して、導電性の流体が注入される、請求項1に記載の生体内電位計測器。
A hollow tubular flexible member coupled to the insulating member is further provided.
The in-vivo potential measuring instrument according to claim 1, wherein a conductive fluid is injected into the insulating member via the flexible member.
前記接触した部位の電位の計測は、前記電極と、基準となる接地電極との間の電圧を計測することによって行われる、請求項1または2に記載の生体内電位計測器。 The in-vivo potential measuring instrument according to claim 1 or 2 , wherein the potential of the contacted portion is measured by measuring the voltage between the electrode and the reference ground electrode. 前記接触した部位の電位は、前記電極で検出した電位を、生体の外部に配置された増幅器で増幅することにより計測され、
前記絶縁性部材の前記接触した部位における静電容量をCeとし、前記増幅器の入力容量をCinとしたとき、前記絶縁性部材の厚みは、Cin/Ce<0.01を満たすように設定されている、請求項1〜の何れかに記載の生体内電位計測器。
The potential of the contacted portion is measured by amplifying the potential detected by the electrode with an amplifier arranged outside the living body.
When the capacitance of the insulating member at the contacted portion is Ce and the input capacitance of the amplifier is Cin, the thickness of the insulating member is set to satisfy Cin / Ce <0.01. The in-vivo potential measuring instrument according to any one of claims 1 to 4.
前記接触した部位の電位は、前記電極で検出した電位を、生体の外部に配置された増幅器で増幅することにより計測され、
前記絶縁性部材の前記接触した部位における静電容量をCe、前記器官の内壁面における所定部位の電位帯域をfとしたとき、前記増幅器の入力抵抗Rinは、1/(2πfCeRin)<0.01を満たすように設定されている、請求項1〜の何れかに記載の生体内電位計測器。
The potential of the contacted portion is measured by amplifying the potential detected by the electrode with an amplifier arranged outside the living body.
When the capacitance of the insulating member at the contacted portion is Ce and the potential band of the predetermined portion on the inner wall surface of the organ is f, the input resistance Rin of the amplifier is 1 / (2πfCeRin) <0.01. The in-vivo potential measuring instrument according to any one of claims 1 to 4 , which is set to satisfy the above conditions.
前記絶縁性部材及び前記可撓性部材は、バルーン付きカテーテルで構成されている、請求項に記載の生体内電位計測器。 The in-vivo potential measuring instrument according to claim 3 , wherein the insulating member and the flexible member are composed of a catheter with a balloon. 前記基準となる接地電極は、前記生体の内部に配置されている、請求項に記載の生体内電位計測器。 The in-vivo potential measuring instrument according to claim 4 , wherein the reference ground electrode is arranged inside the living body. 請求項1〜の何れかに記載の生体内電位計測器と、
前記電極で検出した電位を増幅する増幅器と
を備えた、生体内電位計測システム。
The in-vivo potential measuring instrument according to any one of claims 1 to 7.
An in vivo potential measurement system including an amplifier that amplifies the potential detected by the electrodes.
JP2017150003A 2017-08-02 2017-08-02 In-vivo potential measuring instrument and in-vivo potential measuring system Active JP6950337B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017150003A JP6950337B2 (en) 2017-08-02 2017-08-02 In-vivo potential measuring instrument and in-vivo potential measuring system
PCT/JP2018/027104 WO2019026637A1 (en) 2017-08-02 2018-07-19 Biopotential measurement device, biopotential measurement method, and biopotential measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150003A JP6950337B2 (en) 2017-08-02 2017-08-02 In-vivo potential measuring instrument and in-vivo potential measuring system

Publications (2)

Publication Number Publication Date
JP2019025206A JP2019025206A (en) 2019-02-21
JP6950337B2 true JP6950337B2 (en) 2021-10-13

Family

ID=65233833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150003A Active JP6950337B2 (en) 2017-08-02 2017-08-02 In-vivo potential measuring instrument and in-vivo potential measuring system

Country Status (2)

Country Link
JP (1) JP6950337B2 (en)
WO (1) WO2019026637A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114599804B (en) * 2019-11-13 2024-03-29 日本制铁株式会社 Steel material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855556B2 (en) * 1991-12-06 1999-02-10 長雄 梶原 Measuring device for bronchial lead ECG
US7187964B2 (en) * 2001-09-27 2007-03-06 Dirar S. Khoury Cardiac catheter imaging system
JP2005192725A (en) * 2004-01-06 2005-07-21 Toray Ind Inc Ablation catheter with balloon
JP2014158576A (en) * 2013-02-20 2014-09-04 Ritsumeikan Bioelectrode
EP2904967A1 (en) * 2014-02-07 2015-08-12 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation

Also Published As

Publication number Publication date
JP2019025206A (en) 2019-02-21
WO2019026637A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN105726022B (en) Electrocardiogram noise reduction
ES2763532T3 (en) Basket Catheter with Far Field Electrode
US5396887A (en) Apparatus and method for detecting contact pressure
ES2716101T3 (en) Catheter with means to detect the loss of contact of an ablation electrode
US11207125B2 (en) Effective parasitic capacitance minimization for micro ablation electrode
JP2020065932A (en) Electrodes on double-sided printed circuit board (pcb) to cancel far-field signal
JP2017086913A (en) Symmetric short contact force sensor with four coils
JP2018051315A (en) Basket catheter conforming to organ using strain-relief elements
US20200129086A1 (en) Sensing System for Pericardial Access
US20200008865A1 (en) Handle and cable assemblies for electrosurgical devices and cyst ablation techniques
JP2018079317A (en) Multi-electrode catheter for preventing physiological fluid flow restriction
JP6950337B2 (en) In-vivo potential measuring instrument and in-vivo potential measuring system
CN111683616A (en) Balloon catheter with inner distal end
JP7135371B2 (en) In vivo impedance measurement device
JP7211002B2 (en) In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system
JP7106926B2 (en) In vivo potential measuring instrument
WO2020196142A1 (en) Medical device
US11950840B2 (en) Basket catheter having insulated ablation electrodes
US20220087735A1 (en) Basket catheter having insulated ablation electrodes and diagnostic electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R151 Written notification of patent or utility model registration

Ref document number: 6950337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151