JP2020065378A - Rotary electric machine and vehicle having rotary electric machine - Google Patents

Rotary electric machine and vehicle having rotary electric machine Download PDF

Info

Publication number
JP2020065378A
JP2020065378A JP2018196128A JP2018196128A JP2020065378A JP 2020065378 A JP2020065378 A JP 2020065378A JP 2018196128 A JP2018196128 A JP 2018196128A JP 2018196128 A JP2018196128 A JP 2018196128A JP 2020065378 A JP2020065378 A JP 2020065378A
Authority
JP
Japan
Prior art keywords
stator
intake port
electric machine
oil passage
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018196128A
Other languages
Japanese (ja)
Inventor
アンドレイ ピディン
Pydin Andrii
アンドレイ ピディン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018196128A priority Critical patent/JP2020065378A/en
Publication of JP2020065378A publication Critical patent/JP2020065378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

To provide a rotary electric machine capable of uniformly receiving cooling oil into a stator, and a vehicle having the rotary electric machine.SOLUTION: A rotary electric machine 11 has receiving ports 30 receiving oil into a stator 12 from an outside of the stator 12, an annular circumferential direction passage 31 connected to the receiving ports 30 and extending in a circumferential direction of the stator 12, and a plurality of axial direction passages 32 connected to the circumferential direction passage 31 and extending in an axial direction of the stator 12. A cross sectional area of a connection portion 33 from the circumferential direction passage 31 to a plurality of axial direction passages 32 becomes larger as it separates from the receiving port 30 in the circumferential direction of the stator 12.SELECTED DRAWING: Figure 2

Description

本発明は、回転電機および回転電機を備える車両に関する。   The present invention relates to a rotating electric machine and a vehicle including the rotating electric machine.

ハイブリッド車両は、走行用動力源としてエンジン(内燃機関)と走行用モータとを搭載し、これらの双方あるいは一方を適宜用いることで高効率な走行を実現している。例えば、高速道路等を巡航する際には専らエンジンを用い、加速走行や登坂走行を行う際にはエンジンと走行用モータとの双方を用いることで、良好な燃費と高い走行性能とを実現している。
発電機および電動機を有するハイブリッド車両では、変速機のギヤ潤滑を兼ねるATF(Automatic Transmission Fluid:自動変速機油)等の冷媒を発電機および電動機のステータ側コイルに滴下させることにより、ステータ側コイルの冷却が行われている。
The hybrid vehicle is equipped with an engine (internal combustion engine) and a traveling motor as traveling power sources, and realizes highly efficient traveling by appropriately using both or one of them. For example, by using the engine exclusively when cruising on a highway or the like, and by using both the engine and the traveling motor when accelerating or climbing a hill, good fuel economy and high running performance are achieved. ing.
In a hybrid vehicle having a generator and an electric motor, cooling of the stator side coil is performed by dripping a refrigerant such as ATF (Automatic Transmission Fluid) that also serves as gear lubrication of the transmission onto the stator side coil of the generator and the electric motor. Is being done.

特許文献1には、磁極コア内部に形成した油路を介して油を噴出口に導くこと、該噴出口をコアのコイル内面に開口して配設する油冷式モータが記載されている。特許文献1に記載の油冷式モータは、噴出口を複数有し、前記油路を円周方向に配設して、円周方向から分岐した油を複数の前記噴出口に導く、としている。   Patent Document 1 describes an oil-cooled motor in which oil is guided to an ejection port through an oil passage formed inside the magnetic pole core, and the ejection port is opened on the inner surface of the coil of the core. The oil-cooled motor described in Patent Document 1 has a plurality of ejection ports, the oil passage is arranged in the circumferential direction, and the oil branched from the circumferential direction is guided to the plurality of ejection ports. .

特開2009−240113号公報JP, 2009-240113, A

特許文献1に記載の油冷式モータでは、モータの冷却性能を上げるためにステータに複数の冷却穴をあけている。しかしながら、一つの流入口に対して、周方向に複数の冷却穴が開口していると、各冷却穴の流入量が均一にならない。流入量が均一にならないと、流量が一番少ない、すなわち温度が最も高いところがボトルネックになる。そこの温度にモータのオペレーションを合わせることになる。   In the oil-cooled motor described in Patent Document 1, a plurality of cooling holes are formed in the stator in order to improve the cooling performance of the motor. However, if a plurality of cooling holes are opened in the circumferential direction with respect to one inflow port, the inflow amount of each cooling hole will not be uniform. If the inflow rate is not uniform, the bottleneck will be where the flow rate is the lowest, that is, where the temperature is the highest. The operation of the motor will be adjusted to the temperature there.

本発明は、このような背景に鑑みてなされたもので、ステータ内に冷却油を均一に入れることが可能な回転電機および回転電機を備える車両を提供することを目的とする。   The present invention has been made in view of such a background, and an object of the present invention is to provide a rotating electric machine and a vehicle including the rotating electric machine that can uniformly insert the cooling oil into the stator.

前記課題を解決すべく、請求項1に記載の回転電機は、ロータおよびステータを備え、前記ステータは、前記ステータ外部から前記ステータ内部に油を取り入れるための取り入れ口と、前記取り入れ口に連接し、前記ステータの周方向に延びた円環状の第一の油路と、前記第一の油路に連接し、前記ステータの軸方向に延びた複数の第二の油路と、が形成された回転電機において、前記第一の油路から複数の前記第二の油路への接続部は、前記取り入れ口から前記ステータの周方向に離れるに従って、その断面積が大きくなることを特徴とする。   In order to solve the above problems, the rotating electric machine according to claim 1 includes a rotor and a stator, and the stator is connected to an intake port for taking oil from the outside of the stator into the inside of the stator, and the intake port. An annular first oil passage extending in the circumferential direction of the stator and a plurality of second oil passages connected to the first oil passage and extending in the axial direction of the stator are formed. In the rotating electrical machine, the connecting portion from the first oil passage to the plurality of second oil passages has a cross-sectional area that increases as the distance from the intake port in the circumferential direction of the stator increases.

本発明によれば、ステータ内に冷却油を均一に入れることが可能な回転電機および回転電機を備える車両を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the vehicle provided with the rotary electric machine and the rotary electric machine which can put cooling oil uniformly in a stator can be provided.

本発明の一実施形態に係る回転電機の斜視図である。It is a perspective view of the rotary electric machine which concerns on one Embodiment of this invention. 上記実施形態に係る回転電機の中央部の輪切り断面図である。It is a cross-sectional view of a central portion of the rotary electric machine according to the above embodiment. 図2に示す回転電機の右側の輪切り断面図である。FIG. 3 is a right-side cross-sectional view of the rotary electric machine shown in FIG. 2. 上記実施形態に係る回転電機をハウジングに収めた斜視図である。It is a perspective view which stored the rotary electric machine concerning the above-mentioned embodiment in the housing. 上記実施形態に係る回転電機のハウジングを取り去りステータの巻線を露出して表す側面図である。It is a side view which removes the housing of the rotary electric machine which concerns on the said embodiment, and exposes the winding of a stator. 上記実施形態に係る回転電機のステータの接続部の断面積を説明する図であり、(a)は図2に示す回転電機に備わるステータの周辺を拡大して表す図、(b)は接続部の拡大図、(c)は接続部の油路の断面積を順次拡大する説明図である。It is a figure explaining the cross-sectional area of the connection part of the stator of the rotary electric machine which concerns on the said embodiment, (a) is a figure which expands and represents the periphery of the stator with which the rotary electric machine shown in FIG. 2 is shown, (b) is a connection part. And (c) is an explanatory view for sequentially enlarging the cross-sectional area of the oil passage of the connection portion.

以下、本発明の実施形態に係る回転電機および回転電機を備える車両について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。また、部材のサイズおよび形状は、説明の便宜のため、変形または誇張して模式的に表す場合がある。
(実施形態)
図1は、本発明の一実施形態に係る回転電機の斜視図である。図2は、図1に示す回転電機11の中央部の輪切り断面図である。図3は、図2に示す回転電機11の右側の輪切り断面図である。図4は、図1に示す回転電機11をハウジング40(ケース)に収めた斜視図である。図5は、図4に示す回転電機11のハウジングを取り去りステータの巻線を露出して表す側面図である。
本実施形態に係る回転電機11は、例えば、ハイブリッド車(車両)に搭載される薄型のモータである。
Hereinafter, a rotary electric machine according to an embodiment of the present invention and a vehicle including the rotary electric machine will be described in detail with reference to the drawings as appropriate. In each drawing, common parts are denoted by the same reference numerals, and redundant description will be omitted. Further, the size and shape of the members may be schematically or modified or exaggerated for convenience of description.
(Embodiment)
FIG. 1 is a perspective view of a rotary electric machine according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the central portion of the rotary electric machine 11 shown in FIG. FIG. 3 is a right-hand cross-sectional view of the rotary electric machine 11 shown in FIG. FIG. 4 is a perspective view of the rotary electric machine 11 shown in FIG. 1 housed in a housing 40 (case). FIG. 5 is a side view showing the winding of the stator by removing the housing of the rotary electric machine 11 shown in FIG.
The rotary electric machine 11 according to the present embodiment is, for example, a thin motor mounted on a hybrid vehicle (vehicle).

図1に示すように、本実施形態に係る回転電機11は、ステータコア21および当該ステータコア21に設けられる巻線を有する円環状のステータ12と、ステータ12の内周面と空隙を介して対向配置される円環状のロータ(図示省略)と、を備える。
ステータ12は、図4および図5に示すように、ハウジング40の内周面40aの内壁に固定(圧嵌)される。ハウジング40には、図5に示すように、図示しないポンプから冷媒供給管(図示省略)を経て、冷却油が供給される流入孔41が形成されている。
As shown in FIG. 1, a rotary electric machine 11 according to the present embodiment is arranged such that an annular stator 12 having a stator core 21 and windings provided on the stator core 21, and an inner peripheral surface of the stator 12 face each other with a gap therebetween. And an annular rotor (not shown).
As shown in FIGS. 4 and 5, the stator 12 is fixed (press fitted) to the inner wall of the inner peripheral surface 40 a of the housing 40. As shown in FIG. 5, the housing 40 is provided with an inflow hole 41 to which cooling oil is supplied from a pump (not shown) through a refrigerant supply pipe (not shown).

図1に示すように、ステータ12は、全体として円筒状に形成されたステータコア21と、ステータコア21外周部から所定ピッチで半径方向内方へ歯状に突出延在する複数の磁極コア部22と、磁極コア部22の形成に伴い画成された複数のスロット23と、磁極コア部22に巻回され、複数のスロット22に収容されるステータコイル24(巻線)と、ステータコイル24の空間部に挿入されステータコイル24から熱をハウジング40に逃がす伝熱部材25と、ステータコイル24の軸方向の端部とその渡り部を覆う円環状のコイルカバー26と、伝熱部材25を回転電機11の径方向に押圧するスナップリング27(図4参照)と、を備える。
ステータコア21は、例えば、円環状に形成された複数枚の電磁鋼板を軸方向に積層して構成する。
As shown in FIG. 1, the stator 12 includes a stator core 21 formed in a cylindrical shape as a whole, and a plurality of magnetic pole core portions 22 extending radially inward from the outer peripheral portion of the stator core 21 in a toothed manner. A plurality of slots 23 defined by the formation of the magnetic pole core portion 22, a stator coil 24 (winding) wound around the magnetic pole core portion 22 and accommodated in the plurality of slots 22, and a space of the stator coil 24. The heat transfer member 25 that is inserted into the housing 40 to release heat from the stator coil 24 to the housing 40, the annular coil cover 26 that covers the axial end of the stator coil 24 and its crossing portion, and the heat transfer member 25. 11, a snap ring 27 (see FIG. 4) that is pressed in the radial direction.
The stator core 21 is configured, for example, by stacking a plurality of annular electromagnetic steel plates in the axial direction.

図4に示すように、伝熱部材25は、第1面部251と、第1面部251と対向する第2面部252と、第1面部251と第2面部252とを半円状に繋ぐ曲面部253と、曲面部253の長さ方向の一端に設けられ第1面部251と第2面部252の端部から突出する突出部254と、を有する。   As shown in FIG. 4, the heat transfer member 25 includes a first surface portion 251, a second surface portion 252 facing the first surface portion 251, and a curved surface portion that connects the first surface portion 251 and the second surface portion 252 in a semicircular shape. 253, and a protruding portion 254 provided at one end of the curved surface portion 253 in the length direction and protruding from the end portions of the first surface portion 251 and the second surface portion 252.

〈油路〉
図1および図2に示すように、ステータ12の外周には、ハウジング40の流入孔41を通して、ステータ12外部から内部に冷却油を取り入れるための第一の取り入れ口30aおよび第二の取り入れ口30b(本実施形態では、ステータ12の上部と下部の2箇所)が開口している。
なお、第一の取り入れ口30aおよび第二の取り入れ口30bを総称する場合には、取り入れ口30と呼ぶ。取り入れ口30は、図1および図2に示すように、ステータ12の外周部において周方向に延在する溝部で形成されている。
<Oil passage>
As shown in FIGS. 1 and 2, a first intake port 30a and a second intake port 30b for taking cooling oil from the outside of the stator 12 into the inside of the stator 12 through the inflow hole 41 of the housing 40 are provided on the outer periphery of the stator 12. (In this embodiment, the stator 12 has two openings, an upper portion and a lower portion).
The first intake port 30a and the second intake port 30b are collectively referred to as the intake port 30. As shown in FIGS. 1 and 2, the intake port 30 is formed by a groove portion that extends in the circumferential direction on the outer peripheral portion of the stator 12.

ステータ12内には、図5に示すように、取り入れ口30に連接し、ステータ12の周方向に延在する円環状の周方向油路31(第一の油路)と、周方向油路31に連接し、ステータ12の軸方向に延在する複数の軸方向油路32(第二の油路)と、周方向油路31から複数の軸方向油路32に接続される油路開口となる接続部33と、を有する。複数の軸方向油路32は、取り入れ口30からステータ12の周方向に離れるに従って、周方向油路31から軸方向油路32に接続される接続部33(開口)の断面積が大きくなる(詳細は後記する)。
周方向油路31は、ステータ12外周に形成した溝から構成される。しかし、これ以外の油路の形成方法も可能である。例えば、ハウジング40の円筒状部40aの内壁面に形成した溝で構成してもよい。
As shown in FIG. 5, in the stator 12, an annular circumferential oil passage 31 (first oil passage), which is connected to the intake port 30 and extends in the circumferential direction of the stator 12, and a circumferential oil passage. 31 and a plurality of axial oil passages 32 (second oil passages) that extend in the axial direction of the stator 12 and oil passage openings connected from the circumferential oil passage 31 to the plurality of axial oil passages 32. And a connection portion 33 that becomes In the plurality of axial oil passages 32, the cross-sectional area of the connection portion 33 (opening) connected from the circumferential oil passage 31 to the axial oil passage 32 increases as the distance from the intake 30 in the circumferential direction of the stator 12 increases ( Details will be given later).
The circumferential oil passage 31 is composed of a groove formed on the outer circumference of the stator 12. However, other oil passage forming methods are possible. For example, the groove may be formed in the inner wall surface of the cylindrical portion 40a of the housing 40.

なお、複数の軸方向油路32へ送られた冷却油は、軸方向油路32から半径方向内方へ分岐して磁極コア部22内へ延在する半径方向油路(図示省略)、さらにそこから左右(両方)に分岐して噴出口油路(図示省略)に至る。噴出口油路は、それぞれ磁極コア部22の側壁に開口して噴出口(図示省略)となる。
各磁極コア部22には、ステータコイル24が巻回されており、ステータコイル24と噴出口油路の開口(噴出口)の間には、所定の間隙があり、冷却油は各噴出口から流出して、ステータコイル24と磁極コア部22の間の間隙から流出する。
It should be noted that the cooling oil sent to the plurality of axial oil passages 32 branches radially inward from the axial oil passages 32 and extends into the magnetic pole core portion 22 in a radial oil passage (not shown). From there, it branches to the left and right (both) and reaches the jet oil passage (not shown). Each of the jet oil passages opens on a side wall of the magnetic pole core portion 22 and serves as a jet port (not shown).
A stator coil 24 is wound around each magnetic pole core portion 22, and there is a predetermined gap between the stator coil 24 and the opening (jet port) of the jet oil passage, and the cooling oil flows from each jet port. It flows out and out of the gap between the stator coil 24 and the magnetic pole core portion 22.

[ステータ12の構成]
〈接続部33の配置〉
ステータ12の構成についてより詳細に説明する。
図1および図5に示すように、回転電機11は、ステータ12内部に油を取り入れるための取り入れ口30と、取り入れ口30に連接し、ステータ12の周方向に延在する円環状の周方向流路31(第一の油路)と、周方向流路31に連接し、ステータ12の軸方向に延在する複数の軸方向流路32(第二の油路)と、周方向油路31から複数の軸方向油路32に接続される油路(軸方向流路32への開口)となる接続部33(以下、「接続部33」という)と、を備える。
図2および図3に示すように、複数ある接続部33は、取り入れ口30からステータ12の周方向に離れるに従って、その断面積Sを大きくするよう構成する。
[Structure of stator 12]
<Arrangement of connection part 33>
The configuration of the stator 12 will be described in more detail.
As shown in FIGS. 1 and 5, the rotary electric machine 11 has an intake port 30 for introducing oil into the stator 12, and an annular circumferential direction that is connected to the intake port 30 and extends in the circumferential direction of the stator 12. A channel 31 (first oil passage), a plurality of axial passages 32 (second oil passages) connected to the circumferential passage 31 and extending in the axial direction of the stator 12, and a circumferential oil passage. A connecting portion 33 (hereinafter, referred to as a “connecting portion 33”) that serves as an oil passage (opening to the axial passage 32) connected from 31 to the plurality of axial oil passages 32.
As shown in FIGS. 2 and 3, the plurality of connecting portions 33 are configured such that the cross-sectional area S thereof increases as the distance from the intake 30 increases in the circumferential direction of the stator 12.

より詳細には、図3に示すように、第一の取り入れ口30aに最も近い接続部33,次に近い接続部33,…,第一の取り入れ口30aから最も離れた接続部33(n)を配置するとともに、接続部33,33,…,33(n)の油路の断面積Sを、S(1),S(2),…,S(n)と、取り入れ口30からステータ12の周方向に離れるに従って、順次大きくする。ただし、上記nは、油の入り口間にある出口の個数である。 More specifically, as shown in FIG. 3, the connection part 33 1 closest to the first intake port 30a, the connection part 33 2 closest to the first intake port 30a, ..., The connection part 33 (further away from the first intake port 30a ). n) is arranged, and the cross-sectional area S of the oil passage of the connection portions 33 1 , 33 2 , ..., 33 (n) is changed to S (1) , S (2) , ..., S (n) and the intake port. The larger the distance from 30 in the circumferential direction of the stator 12, the larger. However, n is the number of outlets between the oil inlets.

同様に、第二の取り入れ口30bに最も近い接続部33,次に近い接続部33,…,第二の取り入れ口30aから最も離れた接続部33(n)を配置するとともに、接続部33,33,…,33(n)の油路の断面積Sを、S(1),S(2),…,S(n)と、取り入れ口30からステータ12の周方向に離れるに従って、順次大きくする。 Similarly, the connection part 33 1 closest to the second intake port 30 b, the connection part 33 2 next closest to the second intake port 30 b, the connection part 33 (n) farthest from the second intake port 30 a are arranged, and the connection part 33 1, 33 2, ..., the cross-sectional area S of the oil passage 33 (n), S (1 ), S (2), ..., and S (n), away from the inlet 30 in the circumferential direction of the stator 12 In accordance with the above, it is gradually increased.

第一の取り入れ口30aから第二の取り入れ口30bとの間の周方向流路31状の中間地点に境界部が設けられ、境界部上、または境界部から最も近い接続部33の断面積が最も大きい。   A boundary is provided at an intermediate point of the circumferential flow path 31 between the first intake port 30a and the second intake port 30b, and the cross-sectional area of the connection part 33 on the boundary part or closest to the boundary part is The largest.

〈接続部33の断面積S〉
接続部33は、接続部33,33,…,33(n−1),33(n)の順に、油路(軸方向流路32への開口)の断面積S(1),S(2),…,S(n−1),S(n)が大きくなるよう構成する。図2および図3の例では、2つの取り入れ口30、すなわち第一の取り入れ口30aおよび第二の取り入れ口30b間にある出口の個数をnとすると、断面積Sは、次式(1)で表される。
<Cross-sectional area S of connecting portion 33>
Connecting portion 33, connecting portions 33 1, 33 2, ..., 33 (n-1), 33 in the order of (n), the cross-sectional area of the oil passage (opening into the axial channels 32) S (1), S (2) , ..., S (n-1) , S (n) are configured to be large. 2 and 3, assuming that the number of outlets between the two inlets 30, that is, the first inlet 30a and the second inlet 30b is n, the cross-sectional area S is expressed by the following equation (1). It is represented by.

(1)≦S(2),…,≦S(n/2) …(1) S (1) ≤ S (2) , ..., ≤ S (n / 2) ... (1)

次に、断面積Sを順次拡大する具体的手法について述べる。
図6は、接続部33の断面積Sを説明する図であり、図6(a)は図2に示す回転電機11に備わるステータ12の周辺を拡大して表す図、図6(b)は接続部33の拡大図、図6(c)は接続部33の油路の断面積Sを順次拡大する説明図である。
Next, a specific method of sequentially increasing the cross-sectional area S will be described.
FIG. 6 is a diagram for explaining the cross-sectional area S of the connecting portion 33, FIG. 6 (a) is an enlarged view showing the periphery of the stator 12 provided in the rotating electric machine 11 shown in FIG. 2, and FIG. 6 (b) is FIG. 6C is an enlarged view of the connecting portion 33, and FIG. 6C is an explanatory view in which the cross-sectional area S of the oil passage of the connecting portion 33 is sequentially enlarged.

前記図5に示すように、周方向油路31(第一の油路)は、ステータ12の周方向に配置され、軸方向流路32(第二の油路)は、ステータ12の軸方向油路32に配置されている。また、軸方向油路32は、磁極コア部22(図1参照)内へ延在する半径方向油路(図示省略)、さらにそこから左右(両方)に分岐して噴出口油路(図示省略)に至る。このため、周方向油路31から複数の軸方向油路32に接続される油路となる接続部33は、ステータコイル24の配置位置とその個数に対応することになる。つまり、各接続部33は、ステータコイル24の上方(外周側)で、かつ、ステータコイル24の基部の幅によって限定される。この条件により、図6(b)に示すように、接続部33の油路の断面積Sを拡大する場合、接続部33の油路の幅固定し、高さを増やしていく方法を採る。このように、幅固定し、高さのみを増やしていく方法は、作製工程が増えず加工が容易である利点がある。   As shown in FIG. 5, the circumferential oil passage 31 (first oil passage) is arranged in the circumferential direction of the stator 12, and the axial passage 32 (second oil passage) is in the axial direction of the stator 12. It is arranged in the oil passage 32. In addition, the axial oil passage 32 is a radial oil passage (not shown) extending into the magnetic pole core portion 22 (see FIG. 1), and further branched left and right (both) from there to a jet outlet oil passage (not shown). ). Therefore, the connecting portion 33, which is an oil passage connected from the circumferential oil passage 31 to the plurality of axial oil passages 32, corresponds to the arrangement position and the number of the stator coils 24. That is, each connecting portion 33 is limited above the stator coil 24 (on the outer peripheral side) and by the width of the base portion of the stator coil 24. Under this condition, as shown in FIG. 6B, when enlarging the cross-sectional area S of the oil passage of the connecting portion 33, the width of the oil passage of the connecting portion 33 is fixed and the height is increased. As described above, the method of fixing the width and increasing only the height has an advantage that the number of manufacturing steps does not increase and the processing is easy.

ただし、上記式(1)に従って、断面積Sを変えるものであればどのような構成でもよい。例えば、(1)「高さ」に加えて「幅」も変化させる、(2)断面積Sを変えるための矩形状またはドーム形状の溝部を接続部33に付加する、(3)接続部33の上部(外周側)をドーム形状とし、そのRを変える方法がある。   However, any configuration may be used as long as the cross-sectional area S is changed according to the above equation (1). For example, (1) changing the "width" in addition to the "height", (2) adding a rectangular or dome-shaped groove for changing the cross-sectional area S to the connecting portion 33, (3) connecting portion 33 There is a method in which the upper part (outer peripheral side) of the is formed into a dome shape and its R is changed.

以下、上述のように構成された回転電機11のステータ12の冷却方法について説明する。
図5に示すように、図示しないポンプから冷媒供給管(図示省略)を経て、ハウジング40の流入孔41に冷却油が供給される。
ハウジング40の流入孔41から流入した冷却油は、図5の矢印aに示すように、ステータ12の外周に設けられた第一の取り入れ口30aおよび第二の取り入れ口30bから内部に流入する。
Hereinafter, a method of cooling the stator 12 of the rotary electric machine 11 configured as described above will be described.
As shown in FIG. 5, the cooling oil is supplied from the pump (not shown) to the inflow hole 41 of the housing 40 through the refrigerant supply pipe (not shown).
The cooling oil that has flowed in from the inflow hole 41 of the housing 40 flows inward from the first intake port 30a and the second intake port 30b provided on the outer periphery of the stator 12, as shown by the arrow a in FIG.

第一の取り入れ口30aおよび第二の取り入れ口30bは、ステータ12の周方向に延在する円環状の周方向油路31(第一の油路)に連接している。第一の取り入れ口30aおよび第二の取り入れ口30bに流入した冷却油は、図5の矢印bに示すように、周方向油路31によって、ステータ12の周方向に、第一の取り入れ口30aおよび第二の取り入れ口30bから最も遠い位置まで送られる。周方向油路31には、各接続部33を通して、軸方向に延出する軸方向油路32に連接されている。図4および図5の矢印cに示すように、周方向油路31を通った冷却油は、接続部33を通して、軸方向に油路が分配される。   The first intake port 30a and the second intake port 30b are connected to an annular circumferential oil passage 31 (first oil passage) extending in the circumferential direction of the stator 12. The cooling oil that has flowed into the first intake port 30a and the second intake port 30b flows in the first intake port 30a in the circumferential direction of the stator 12 by the circumferential oil passage 31, as shown by the arrow b in FIG. And it is sent to the position farthest from the second intake port 30b. The circumferential oil passage 31 is connected to the axial oil passage 32 extending in the axial direction through each connection portion 33. As shown by the arrow c in FIGS. 4 and 5, the cooling oil that has passed through the circumferential oil passage 31 is axially distributed through the connection portion 33.

上述したように、接続部33は、取り入れ口30からステータ12の周方向に離れるに従って断面積Sが大きくなるように構成されている。この構成により、取り入れ口30に近い接続部33を通して軸方向油路32に流入する冷却油の流入量と、取り入れ口30から離れた接続部33を通して軸方向油路32に流入する冷却油の流入量は、ほぼ均一となる。各軸方向油路32へ流入する冷却油の流量がほぼ均一となるので、各軸方向油路32と相対する各ステータコイル24の冷却油の温度も均一となる。このため、従来、流量が一番少ない、すなわち温度が最も高いところがボトルネックになることを回避することができ、回転電機11全体の冷却性能を向上させることができる。   As described above, the connecting portion 33 is configured such that the cross-sectional area S increases as the distance from the intake 30 in the circumferential direction of the stator 12 increases. With this configuration, the inflow amount of the cooling oil flowing into the axial oil passage 32 through the connection portion 33 close to the intake port 30 and the inflow of the cooling oil flowing into the axial oil passage 32 through the connection portion 33 separated from the intake port 30. The amount is almost uniform. Since the flow rate of the cooling oil flowing into each axial oil passage 32 is substantially uniform, the temperature of the cooling oil of each stator coil 24 facing each axial oil passage 32 is also uniform. Therefore, conventionally, it is possible to avoid a bottleneck where the flow rate is the smallest, that is, where the temperature is the highest, and it is possible to improve the cooling performance of the entire rotary electric machine 11.

各軸方向油路32へ送られた冷却油は、軸方向油路32から半径方向内方へ分岐して磁極コア部22内へ延在する半径方向油路(図示省略)、さらにそこから左右(両方)に分岐して噴出口油路(図示省略)に至る。噴出口油路は、それぞれ磁極コア部22の側壁に開口して噴出口(図示省略)となる。噴出口油路は、それぞれ磁極コア部22の側壁に開口して噴出口となる。冷却油は、各噴出口から流出して、ステータコイル24と磁極コア部22の間の間隙から流出し、ステータ12およびステータ12を備える回転電機11を冷却することができる。   The cooling oil sent to each axial oil passage 32 branches radially inward from the axial oil passage 32 and extends into the magnetic pole core portion 22 in a radial oil passage (not shown). It branches to (both) and reaches the jet oil passage (not shown). Each of the jet oil passages opens on a side wall of the magnetic pole core portion 22 and serves as a jet port (not shown). The ejection port oil passages are opened to the side walls of the magnetic pole core portion 22 to serve as ejection ports. The cooling oil flows out from each of the ejection ports, flows out from the gap between the stator coil 24 and the magnetic pole core portion 22, and can cool the stator 12 and the rotary electric machine 11 including the stator 12.

以上説明したように、本実施形態に係る回転電機11は、ステータ12外部からステータ12内部に油を取り入れるための取り入れ口30と、取り入れ口30に連接し、ステータ12の周方向に延在する円環状の周方向流路31と、周方向流路31に連接し、ステータ12の軸方向に延在する複数の軸方向流路32と、を備え、周方向流路31から複数の軸方向流路32への接続部33は、取り入れ口30からステータ12の周方向に離れるに従って、その断面積が大きくなる構成を採る。   As described above, the rotary electric machine 11 according to the present embodiment is connected to the intake port 30 for introducing oil from the outside of the stator 12 into the stator 12, and is connected to the intake port 30 and extends in the circumferential direction of the stator 12. An annular circumferential flow passage 31 and a plurality of axial flow passages 32 that are connected to the circumferential flow passage 31 and extend in the axial direction of the stator 12 are provided. The connecting portion 33 to the flow path 32 has a cross-sectional area that increases as the distance from the inlet 30 increases in the circumferential direction of the stator 12.

この構成により、ステータ12の外周面のどの孔からも、ステータ12内に冷却油を均一に入れることができる。従来、流量が一番少ない、ボトルネックになる部分を回避することができ、回転電機11全体の冷却性能を向上させることができる。   With this configuration, the cooling oil can be uniformly introduced into the stator 12 from any hole on the outer peripheral surface of the stator 12. Conventionally, it is possible to avoid the bottleneck portion where the flow rate is the smallest, and it is possible to improve the cooling performance of the entire rotary electric machine 11.

また、本実施形態では、接続部33は、取り入れ口30からステータ12の周方向に離れるに従って、高さを増加させることで、断面積を増加させる。これにより、ステータ12の外周面のどの孔からも、ステータ12内に冷却油を均一に入れることができ、回転電機11全体の冷却性能を向上させることができる。   Further, in the present embodiment, the connecting portion 33 increases the cross-sectional area by increasing the height with increasing distance from the intake port 30 in the circumferential direction of the stator 12. Thereby, the cooling oil can be uniformly introduced into the stator 12 through any of the holes on the outer peripheral surface of the stator 12, and the cooling performance of the entire rotary electric machine 11 can be improved.

また、本実施形態では、取り入れ口30は、第一の取り入れ口30aと第二の取り入れ口30bとを有し、第二の取り入れ口30bは、第一の取り入れ口30aに対してステータ12の径方向反対側に配置されている。これにより、ステータ12の外周面のどの孔からも、ステータ12内に冷却油を均一に入れることができ、回転電機11全体の冷却性能を向上させることができる。   In addition, in the present embodiment, the intake port 30 has a first intake port 30a and a second intake port 30b, and the second intake port 30b is of the stator 12 with respect to the first intake port 30a. It is arranged on the opposite side in the radial direction. Thereby, the cooling oil can be uniformly introduced into the stator 12 through any of the holes on the outer peripheral surface of the stator 12, and the cooling performance of the entire rotary electric machine 11 can be improved.

また、本実施形態では、第一の取り入れ口30aから第二の取り入れ口30bとの間の周方向流路31状の中間地点に境界部が設けられ、境界部上、または境界部から最も近い接続部33の断面積が最も大きい。これにより、ステータ12の外周面のどの孔からも、ステータ12内に冷却油を均一に入れることができ、回転電機11全体の冷却性能を向上させることができる。   Further, in the present embodiment, a boundary portion is provided at an intermediate point of the circumferential flow path 31 between the first intake port 30a and the second intake port 30b, and is located on the boundary part or closest to the boundary part. The cross-sectional area of the connecting portion 33 is the largest. Thereby, the cooling oil can be uniformly introduced into the stator 12 through any of the holes on the outer peripheral surface of the stator 12, and the cooling performance of the entire rotary electric machine 11 can be improved.

なお、本発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。
また、本発明に係る回転電機11は、ハイブリッド車両や、エンジンを有さずモータのみを駆動源とする電気自動車または燃料電池車両であってもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted based on the contents of this specification.
Further, the rotary electric machine 11 according to the present invention may be a hybrid vehicle, an electric vehicle that does not have an engine and uses only a motor as a drive source, or a fuel cell vehicle.

11 回転電機
12 ステータ
21 ステータコア
22 磁極コア部
23 スロット
24 ステータコイル(巻線)
25 伝熱部材
26 コイルカバー
27 スナップリング
30 取り入れ口
30a 第一の取り入れ口
30b 第二の取り入れ口
31 周方向油路(第一の油路)
32 軸方向油路(第二の油路)
33,33,33,…,33(n−1),33(n) 接続部
40 ハウジング(ケース)
41 流入孔
11 rotating electric machine 12 stator 21 stator core 22 magnetic pole core part 23 slot 24 stator coil (winding)
25 heat transfer member 26 coil cover 27 snap ring 30 intake port 30a first intake port 30b second intake port 31 circumferential oil passage (first oil passage)
32 axial oil passage (second oil passage)
33,33 1, 33 2, ..., 33 (n-1), 33 (n) connecting portion 40 housing (case)
41 Inflow hole

Claims (5)

ロータおよびステータを備え、
前記ステータは、前記ステータ外部から前記ステータ内部に油を取り入れるための取り入れ口と、
前記取り入れ口に連接し、前記ステータの周方向に延びた円環状の第一の油路と、
前記第一の油路に連接し、前記ステータの軸方向に延びた複数の第二の油路と、が形成された回転電機において、
前記第一の油路から複数の前記第二の油路への接続部は、前記取り入れ口から前記ステータの周方向に離れるに従って、その断面積が大きくなることを特徴とする回転電機。
With rotor and stator,
The stator has an intake port for taking oil from the outside of the stator into the inside of the stator,
An annular first oil passage connected to the intake port and extending in the circumferential direction of the stator,
A plurality of second oil passages connected to the first oil passage and extending in the axial direction of the stator are formed,
The rotating electrical machine according to claim 1, wherein the connecting portion from the first oil passage to the plurality of second oil passages has a cross-sectional area that increases with increasing distance from the intake port in the circumferential direction of the stator.
前記接続部は、前記取り入れ口から前記ステータの周方向に離れるに従って、高さを増加させることで、前記断面積を増加させることを特徴とする請求項1に記載の回転電機。   The rotating electrical machine according to claim 1, wherein the connecting portion increases the height as the distance from the inlet increases in the circumferential direction of the stator, thereby increasing the cross-sectional area. 前記取り入れ口は、第一の取り入れ口と第二の取り入れ口とを有し、前記第二の取り入れ口は、前記第一の取り入れ口に対して前記ステータの径方向反対側に配置されていることを特徴とする請求項1または請求項2に記載の回転電機。   The intake port has a first intake port and a second intake port, and the second intake port is arranged on the opposite side of the stator in the radial direction with respect to the first intake port. The rotating electrical machine according to claim 1 or 2, wherein: 前記第一の取り入れ口から前記第二の取り入れ口との間の前記第一の油路状の中間地点に境界部が設けられ、前記境界部上、または前記境界部から最も近い接続部の断面積が最も大きいことを特徴とする請求項1に記載の回転電機。   A boundary part is provided at the intermediate point of the first oil passage between the first intake port and the second intake port, and a disconnection of the connection part on the boundary part or closest to the boundary part. The rotary electric machine according to claim 1, which has the largest area. 請求項1ないし請求項4のいずれか一項に記載の回転電機を駆動源として搭載してなる
ことを特徴とする回転電機を備える車両。
A vehicle equipped with a rotating electric machine comprising the rotating electric machine according to any one of claims 1 to 4 as a drive source.
JP2018196128A 2018-10-17 2018-10-17 Rotary electric machine and vehicle having rotary electric machine Pending JP2020065378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196128A JP2020065378A (en) 2018-10-17 2018-10-17 Rotary electric machine and vehicle having rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196128A JP2020065378A (en) 2018-10-17 2018-10-17 Rotary electric machine and vehicle having rotary electric machine

Publications (1)

Publication Number Publication Date
JP2020065378A true JP2020065378A (en) 2020-04-23

Family

ID=70387685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196128A Pending JP2020065378A (en) 2018-10-17 2018-10-17 Rotary electric machine and vehicle having rotary electric machine

Country Status (1)

Country Link
JP (1) JP2020065378A (en)

Similar Documents

Publication Publication Date Title
EP2058926B1 (en) Enhanced motor cooling system
JP5261052B2 (en) Rotating electric machine and rotating electric machine cooling system
JP2019515642A (en) Electric machine flange
US8373316B2 (en) Coolant flow enhancing device for stator coil end turns of fluid cooled electric motor
CN110784036A (en) End plate for a rotor arrangement of an electric machine, rotor arrangement for an electric machine and vehicle
CN104953767A (en) Electric machine having rotor cooling assembly
CN114337012B (en) Stator, motor and electric automobile
CN114503408A (en) Electrical machine with integrated cooling system
US11056952B2 (en) Electric machine with internal cooling passageways
US20230283148A1 (en) Electric motor for vehicle, and vehicle
US20230283123A1 (en) Electric motor for vehicle, and vehicle
CN110868022B (en) Oil-cooled motor structure, main drive motor and motor cooling system
JP2020065378A (en) Rotary electric machine and vehicle having rotary electric machine
CN112104116A (en) Stator assembly, motor and electric drive axle system
JP6942881B2 (en) Cooling structure of rotary electric machine
EP4024679B1 (en) Motor cooling structure, drive assembly, and vehicle
US20220094223A1 (en) Electrical machine with cooling
JP2020065377A (en) Rotary electric machine and vehicle having rotary electric machine
CN112436654A (en) Motor casing and motor with cooling function
CN114268178A (en) Stator core and oil-cooled motor
JP6130940B1 (en) motor
CN113498572B (en) Electric machine with internal cooling passage
CN220732450U (en) Motor and power system for vehicle
JP2019134573A (en) Stator of rotary electric machine
CN220401503U (en) Stator assembly, motor and vehicle