JP2020064192A - Liquid crystal optical modulator, liquid crystal display device and holography device - Google Patents
Liquid crystal optical modulator, liquid crystal display device and holography device Download PDFInfo
- Publication number
- JP2020064192A JP2020064192A JP2018196241A JP2018196241A JP2020064192A JP 2020064192 A JP2020064192 A JP 2020064192A JP 2018196241 A JP2018196241 A JP 2018196241A JP 2018196241 A JP2018196241 A JP 2018196241A JP 2020064192 A JP2020064192 A JP 2020064192A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- pixel
- light modulator
- crystal light
- counter electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
本発明は、液晶光変調器、ならびにこの液晶光変調器を用いた液晶表示装置およびホログラフィ装置に関する。 The present invention relates to a liquid crystal light modulator, and a liquid crystal display device and a holography device using the liquid crystal light modulator.
空間光変調器(SLM:Spatial Light Modulator)は、画素として光学素子(光変調素子)をマトリクス状に二次元配列して光の位相や振幅等を空間的に変調するものであって、ディスプレイ技術、記録技術、レーザー加工等の分野で広く利用されている。空間光変調器は、例えば、液晶や磁気光学材料を光学素子に適用して光の偏光方向を変化させる(旋光させる)もの、あるいは、画素毎に可動式の微小なミラーを備えて光の反射方向を変化させるDMD(Digital Mirror Device)方式のものが開発されている。中でも、旋光角が大きい、すなわち光変調度が高く、また、比較的容易に製造することができる液晶が広く適用されており、高精細な液晶ディスプレイ(LCD)を得るために、画素の微細化について研究されている。 A spatial light modulator (SLM: Spatial Light Modulator) is a device that spatially modulates the phase and amplitude of light by two-dimensionally arraying optical elements (light modulators) as pixels in a matrix. Widely used in the fields of recording technology, laser processing, etc. A spatial light modulator is, for example, one that applies a liquid crystal or magneto-optical material to an optical element to change (rotate) the polarization direction of light, or a movable minute mirror is provided for each pixel to reflect light. A DMD (Digital Mirror Device) system that changes the direction has been developed. Among them, liquid crystals that have a large optical rotation angle, that is, a high degree of light modulation and that can be manufactured relatively easily are widely applied, and in order to obtain a high-definition liquid crystal display (LCD), miniaturization of pixels is performed. Is being researched about.
ここで、液晶による光学素子(液晶光学素子)について、図4を参照して簡潔に説明する。図4に模式的に示すように、液晶光学素子1は、液晶層20と、液晶層20に垂直方向の電圧を印加する一対の電極3,4と、液晶層20の上下にそれぞれ接触して設けられた配向膜21,22と、を備える。電極3,4から電圧を印加されて電界Eが液晶層20に発生すると、棒状の液晶分子2の向きが変化する。図4(a)、(b)に示す液晶光学素子1は垂直配向(VA:Vertical Alignment)方式であり、無電界状態では液晶分子2が配向膜21,22に対して垂直に起立し、垂直方向の電界E(図4(b)では、下向きの矢印で表す)によって液晶分子2が倒れる。そして、液晶分子2が垂直に起立した液晶層20を透過した光Lは変調せず、一方、液晶分子2が水平に倒れた液晶層20を透過した光Lは、偏光の向きが回転して出射する。なお、液晶分子2は長さが数nmであり、図4および後記の図34においては誇張して表される。図4においては、電極3,4を透明電極材料で形成して液晶光学素子1が光を透過する構成とし、2枚の偏光子82,81を液晶光学素子1の上下で互いにクロスニコル配置して、上方からの自然光(非偏光)LuPを、偏光子82を透過させて1つの偏光成分の光Lとして、液晶光学素子1に入射する。電圧を印加されていない液晶光学素子1から出射した光は、偏光子(検光子)81で遮られて暗(黒)表示となり、電圧を印加されている液晶光学素子1から出射した光は、偏光の向きが90°回転しているので偏光子81を透過して明(白)表示となる。なお、電界Eが弱いと液晶分子2の傾斜角が小さく、光Lの旋光角が90°未満となるので、偏光子81で一部が遮られて中間調表示となる。 Here, a liquid crystal optical element (liquid crystal optical element) will be briefly described with reference to FIG. As schematically shown in FIG. 4, the liquid crystal optical element 1 includes a liquid crystal layer 20, a pair of electrodes 3 and 4 for applying a vertical voltage to the liquid crystal layer 20, and a liquid crystal layer 20 which is in contact with the upper and lower sides of the liquid crystal layer 20, respectively. The alignment films 21 and 22 provided are provided. When a voltage is applied from the electrodes 3 and 4 and an electric field E is generated in the liquid crystal layer 20, the orientation of the rod-shaped liquid crystal molecules 2 changes. The liquid crystal optical element 1 shown in FIGS. 4A and 4B is of a vertical alignment (VA: Vertical Alignment) system, and the liquid crystal molecules 2 stand upright with respect to the alignment films 21 and 22 in a non-electric field state. The liquid crystal molecule 2 is tilted by the electric field E in the direction (indicated by a downward arrow in FIG. 4B). Then, the light L transmitted through the liquid crystal layer 20 in which the liquid crystal molecules 2 are vertically erected is not modulated, while the light L transmitted through the liquid crystal layer 20 in which the liquid crystal molecules 2 are horizontally tilted has its polarization direction rotated. Emit. The liquid crystal molecule 2 has a length of several nm and is exaggerated in FIG. 4 and FIG. 34 described later. In FIG. 4, the electrodes 3 and 4 are made of a transparent electrode material so that the liquid crystal optical element 1 transmits light, and two polarizers 82 and 81 are arranged in crossed Nicols above and below the liquid crystal optical element 1. Then, natural light (non-polarized light) LuP from above is transmitted through the polarizer 82 and is incident on the liquid crystal optical element 1 as light L having one polarization component. The light emitted from the liquid crystal optical element 1 to which the voltage is not applied is blocked by the polarizer (analyzer) 81 to be dark (black) display, and the light emitted from the liquid crystal optical element 1 to which the voltage is applied is Since the direction of the polarized light is rotated by 90 °, the light is transmitted through the polarizer 81 and bright (white) display is performed. Note that when the electric field E is weak, the tilt angle of the liquid crystal molecules 2 is small, and the optical rotation angle of the light L is less than 90 °. Therefore, a part is blocked by the polarizer 81, and halftone display is performed.
このような液晶光学素子1を光学素子とする空間光変調器(以下、液晶光変調器と称する)110は、一例として、アクティブマトリクス駆動方式の空間光変調器として図3に示す回路構成を有する。そのために、液晶光変調器110は、図34に模式的に示すように、液晶層20の上側に透明基板105を土台として全面に設けられた透明電極膜である対向電極104に対し、液晶層20の下側に画素毎に画素電極103を間に絶縁層6を挟んで設け、さらにその下側に、画素電極103に接続する駆動回路7を形成されたSi基板(図示省略)を備える。すなわち、液晶光変調器110はLCOS(Liquid Crystal On Silicon)−SLMで、上方から入射された光が、透明基板105、対向電極104、液晶層20を透過して、金属電極材料からなる画素電極103で反射して上方へ出射する反射型の空間光変調器であり、光が液晶層20を往復して透過する(例えば、特許文献1)。LCOS型の液晶光変調器は、平面視で画素電極103と重複して駆動回路7や駆動回路7に接続する配線71,72,73を配置することができ、さらに駆動回路7のトランジスタ7tがMOSFET(金属酸化膜半導体電界効果トランジスタ)で形成されるので、画素の微細化が数μmピッチにまで実現されている。 A spatial light modulator (hereinafter, referred to as a liquid crystal light modulator) 110 having such a liquid crystal optical element 1 as an optical element has, for example, a circuit configuration shown in FIG. 3 as an active matrix drive type spatial light modulator. . To this end, the liquid crystal light modulator 110, as schematically shown in FIG. 34, has a liquid crystal layer 20 with respect to the counter electrode 104 which is a transparent electrode film provided on the entire surface above the liquid crystal layer 20 with the transparent substrate 105 as a base. A pixel electrode 103 for each pixel is provided on the lower side of 20 with an insulating layer 6 interposed therebetween, and a Si substrate (not shown) having a drive circuit 7 connected to the pixel electrode 103 is further provided on the lower side thereof. That is, the liquid crystal light modulator 110 is an LCOS (Liquid Crystal On Silicon) -SLM, and light incident from above passes through the transparent substrate 105, the counter electrode 104, and the liquid crystal layer 20, and is a pixel electrode made of a metal electrode material. It is a reflection type spatial light modulator that reflects at 103 and emits upward, and light passes back and forth through the liquid crystal layer 20 (for example, Patent Document 1). In the LCOS type liquid crystal light modulator, the drive circuit 7 and the wirings 71, 72, 73 connected to the drive circuit 7 can be arranged so as to overlap the pixel electrode 103 in a plan view, and further, the transistor 7t of the drive circuit 7 can be arranged. Since it is formed of a MOSFET (metal oxide semiconductor field effect transistor), miniaturization of pixels is realized up to a pitch of several μm.
液晶光変調器110は、信号線71と走査線72によって選択された画素の画素電極103が+(正)または−(負)(図34では+)の電位となって、GND(0V)に接続された対向電極104との間に垂直方向の電界Eが発生するので、対向電極104と特定の画素電極103に挟まれた領域で液晶分子2の向きが変化する。ただし、画素電極103が間隔を空けて設けられているので、電界Eの発生しない領域が画素間の境界線に沿って存在する。このような平面視において画素電極103のない領域は、非開口部として、例えば格子状のブラックマトリクスで遮光される。なお、液晶光変調器は、一般に交流(AC)電源で駆動されるので、1フレーム毎に、発生する電界が上向きと下向きの交互に入れ替わる。 In the liquid crystal light modulator 110, the pixel electrode 103 of the pixel selected by the signal line 71 and the scanning line 72 has a potential of + (positive) or − (negative) (+ in FIG. 34), and becomes GND (0 V). Since the vertical electric field E is generated between the counter electrode 104 and the connected counter electrode 104, the orientation of the liquid crystal molecules 2 changes in the region sandwiched between the counter electrode 104 and the specific pixel electrode 103. However, since the pixel electrodes 103 are provided at intervals, a region where the electric field E is not generated exists along the boundary line between the pixels. In such a plan view, a region without the pixel electrode 103 is shielded from light by a non-opening portion, for example, a lattice-shaped black matrix. Since the liquid crystal light modulator is generally driven by an alternating current (AC) power source, the generated electric field alternates upward and downward every frame.
空間光変調器は、電子ホログラフィ装置等への適用のために、画素サイズ(ピッチ)のいっそうの微細化(狭ピッチ化)が要求され、具体的には十分な視域角が得られるように4μm未満とすることが望まれている。しかし、液晶光変調器においては、画素が微細化すると、電界のクロストークが発生し易く、表示のコントラストが低下する。詳しくは、画素毎に区画された画素電極103に対して対向電極104は広く形成されているので、図34に示すように、明表示の画素111,113の画素電極103から、ある程度外側へ広がって斜め方向に対向電極104へ向かう弱い電界ELも発生する。そして、画素ピッチが狭いと、電界ELが、非開口部を越えて隣の暗表示の画素112の開口部まで到達する。さらに、隣り合う画素電極103,103の間隙も狭くなるので、画素111,113の画素電極103から、対向電極104と同電位(0V)の画素112の画素電極103へ、面内方向に電界EIP(横電界)が漏れる。これらの漏れ電界EL,EIPによって、画素112においても液晶分子2が傾斜する。その結果、画素112は、開口部においても完全な暗表示(0%)とならない、黒浮きと呼ばれる状態となる。このような液晶光変調器110の暗表示の画素の黒浮きを防止するためには、光源の輝度を低減すればよいが、明表示の画素の輝度が低下することになって望ましくない。 The spatial light modulator requires further miniaturization (narrow pitch) of the pixel size (pitch) for application to an electronic holography device and so on. It is desired that the thickness be less than 4 μm. However, in the liquid crystal light modulator, when pixels are miniaturized, electric field crosstalk is likely to occur, and display contrast is reduced. More specifically, since the counter electrode 104 is formed to be wider than the pixel electrode 103 partitioned for each pixel, as shown in FIG. 34, the counter electrode 104 spreads out to some extent from the pixel electrodes 103 of the bright display pixels 111 and 113. A weak electric field E L is also generated diagonally toward the counter electrode 104. When the pixel pitch is narrow, the electric field E L reaches the opening of the adjacent dark-display pixel 112 beyond the non-opening. Further, the gap between the adjacent pixel electrodes 103, 103 is also narrowed, so that the electric field E in the in-plane direction from the pixel electrode 103 of the pixels 111, 113 to the pixel electrode 103 of the pixel 112 having the same potential (0 V) as the counter electrode 104. IP (lateral electric field) leaks. The leak electric fields E L and E IP cause the liquid crystal molecules 2 to tilt also in the pixel 112. As a result, the pixel 112 is in a state called black floating, which does not completely display dark (0%) even in the opening. In order to prevent such black floating of the dark display pixels of the liquid crystal light modulator 110, the brightness of the light source may be reduced, but this is not desirable because the brightness of the bright display pixels is reduced.
液晶光変調器における電界クロストークを抑制するために、隣り合う画素電極間の電位差がより小さくなるように、各画素の映像信号を逐次補正する駆動手段が開示されている(例えば、特許文献2)。特許文献2では、ある画素への印加電圧と隣接画素への電圧差を検出し、その電位差が予め定められた閾値よりも大きい場合には、予め作成した補正テーブルを用いて隣接画素への印加電圧を変更する構成が示される。 In order to suppress the electric field crosstalk in the liquid crystal light modulator, a driving unit that sequentially corrects the video signal of each pixel so that the potential difference between adjacent pixel electrodes becomes smaller is disclosed (for example, Patent Document 2). ). In Patent Document 2, a voltage difference applied to a certain pixel and a voltage difference to an adjacent pixel is detected, and when the potential difference is larger than a predetermined threshold value, application to the adjacent pixel is performed using a correction table created in advance. A configuration for changing the voltage is shown.
また、一方向に隣り合う画素の間隙に、液晶層を仕切る壁を誘電体で形成して設けた液晶光変調器が開示されている(非特許文献1)。誘電体壁を隔てた暗表示の画素の開口部への隣の画素からの漏れ電界が抑制されるので、暗表示の質を向上させる(0%により近付ける)ことができる。 Further, there is disclosed a liquid crystal light modulator in which a wall for partitioning a liquid crystal layer is formed by a dielectric in a gap between pixels adjacent in one direction (Non-Patent Document 1). Since the leakage electric field from the pixel adjacent to the opening of the dark display pixel that separates the dielectric wall is suppressed, the quality of the dark display can be improved (closer to 0%).
特許文献2に記載した液晶光変調器の駆動方法では、液晶光変調器の固有の補正データを予め用意する必要がある。例えば液晶光変調器の生産時に、テスト用信号を表示しながら最適な補正量を決定して作成することになり、また、液晶光変調器の種類毎に作成する必要がある。さらに、横電界を抑制することはできるが、対向電極へ向かって広がる斜め方向の漏れ電界を抑制することはできない。 In the method of driving the liquid crystal light modulator described in Patent Document 2, it is necessary to prepare in advance correction data specific to the liquid crystal light modulator. For example, when a liquid crystal light modulator is produced, an optimum correction amount is determined while displaying a test signal, and it is necessary to create the liquid crystal light modulator for each type of liquid crystal light modulator. Further, the lateral electric field can be suppressed, but the oblique leakage electric field spreading toward the counter electrode cannot be suppressed.
非特許文献1に記載した液晶光変調器は、誘電体壁が厚さ1〜数μmの液晶層と同じ厚さであるので、画素のピッチが数μm以下になると幅が1μm未満に狭くなって、アスペクト比が1超〜10程度となる。液晶光変調器の製造において、このような微小かつ高アスペクト比の部材を精度よく形成し、1画素ずつ仕切られた間隙に液晶を均一に封入することは困難である。したがって、液晶密度の不均一性や誘電体壁形状の寸法誤差によるコントラストのばらつきが増大する虞がある。 In the liquid crystal light modulator described in Non-Patent Document 1, since the dielectric wall has the same thickness as the liquid crystal layer having a thickness of 1 to several μm, the width becomes narrower than 1 μm when the pixel pitch becomes several μm or less. Thus, the aspect ratio becomes over 1 to about 10. In the manufacture of a liquid crystal light modulator, it is difficult to accurately form such a minute member having a high aspect ratio and uniformly fill the liquid crystal in the gap partitioned by each pixel. Therefore, there is a possibility that the unevenness of the liquid crystal density and the variation of the contrast due to the dimension error of the shape of the dielectric wall may increase.
本発明は前記問題点に鑑み創案されたものであり、画素が微細で高コントラストな表示が可能な液晶表示装置、さらに視域角が十分に広いホログラフィ装置、これらの液晶表示装置等を構成する液晶光変調器を提供することを課題とする。 The present invention has been made in view of the above problems, and constitutes a liquid crystal display device capable of high-contrast display with fine pixels, a holography device having a sufficiently wide viewing angle, these liquid crystal display devices, and the like. An object is to provide a liquid crystal light modulator.
すなわち本発明に係る液晶光変調器は、透明基板と、透明電極膜と、液晶層と、x方向とy方向とに二次元配列した画素毎に設けられた画素電極と、前記画素電極のそれぞれに接続する駆動回路を有する回路基板と、を上から順に備え、前記液晶層の厚さがx方向に隣り合う画素間中心で最小となるように、前記透明電極膜の下面に、x方向に傾斜した傾斜面を有する凸部をy方向に沿って形成されている構造とする。または、液晶光変調器は、前記液晶層の厚さが隣り合う画素間中心で最小となるように、前記透明電極膜の下面に、傾斜面を有する凸部を形成されていると共に、前記凸部に囲まれた凹部が前記画素毎に設けられていてもよい。 That is, the liquid crystal light modulator according to the present invention includes a transparent substrate, a transparent electrode film, a liquid crystal layer, a pixel electrode provided for each pixel that is two-dimensionally arranged in the x direction and the y direction, and the pixel electrode. And a circuit board having a drive circuit connected to each other in order from the top, and in the x direction on the lower surface of the transparent electrode film so that the thickness of the liquid crystal layer becomes minimum at the center between pixels adjacent in the x direction. The structure is such that a convex portion having an inclined inclined surface is formed along the y direction. Alternatively, in the liquid crystal light modulator, a convex portion having an inclined surface is formed on the lower surface of the transparent electrode film so that the thickness of the liquid crystal layer becomes the minimum at the center between adjacent pixels, and the convex portion is formed. A recess surrounded by the part may be provided for each pixel.
かかる構成により、液晶光変調器は、画素間において、対向電極である透明電極膜の凸部が電界をブロックするので、暗表示の画素の開口部への電界の漏れが抑制される。 With such a configuration, in the liquid crystal light modulator, the convex portion of the transparent electrode film, which is the counter electrode, blocks the electric field between the pixels, so that the electric field is suppressed from leaking to the opening of the dark display pixel.
本発明に係る液晶表示装置は、前記液晶光変調器と、前記液晶光変調器の上側に配置された偏光子と、を備え、上方から光を照射されて、上方に画像を表示する。あるいは本発明に係る液晶表示装置は、前記液晶光変調器と、前記液晶光変調器の上側と下側に配置された2つの偏光子と、を備え、上方または下方の一方から光を照射されて、他方に画像を表示する。かかる構成により、液晶表示装置は、明表示の画素の隣の暗表示の画素を十分に暗くすることができる。 A liquid crystal display device according to the present invention includes the liquid crystal light modulator and a polarizer arranged above the liquid crystal light modulator, and is irradiated with light from above to display an image above. Alternatively, the liquid crystal display device according to the present invention includes the liquid crystal light modulator and two polarizers arranged on the upper side and the lower side of the liquid crystal light modulator, and is irradiated with light from either the upper side or the lower side. And display the image on the other side. With this configuration, the liquid crystal display device can sufficiently darken the dark display pixel adjacent to the bright display pixel.
本発明に係るホログラフィ装置は、前記液晶表示装置と、前記液晶表示装置に光を照射する光源と、前記液晶表示装置の液晶光変調器の駆動回路および対向電極に接続する電源と、を備える。かかる構成により、ホログラフィ装置は、暗表示の画素が黒浮きすることなく表示される。 A holographic device according to the present invention includes the liquid crystal display device, a light source for irradiating the liquid crystal display device with light, and a power supply connected to a drive circuit and a counter electrode of a liquid crystal light modulator of the liquid crystal display device. With such a configuration, the holographic device can display a dark display pixel without blackening.
本発明に係る液晶光変調器および液晶表示装置によれば、画素が微細であっても高コントラストな表示が可能となる。本発明に係るホログラフィ装置によれば、視域角を広く表示することができる。 According to the liquid crystal light modulator and the liquid crystal display device of the present invention, high-contrast display is possible even if the pixels are minute. According to the holography device of the present invention, a wide viewing angle can be displayed.
本発明に係る液晶光変調器および液晶表示装置を実現するための形態について、図を参照して説明する。図面に示す液晶光変調器およびその要素は、説明を明確にするために、大きさや位置関係等を誇張していることがあり、また、形状を単純化していることがある。 A mode for realizing a liquid crystal light modulator and a liquid crystal display device according to the present invention will be described with reference to the drawings. The liquid crystal light modulator and its elements shown in the drawings may be exaggerated in size, positional relationship and the like for the sake of clarity, and may be simplified in shape.
〔第1実施形態:液晶光変調器〕
本発明の第1実施形態に係る液晶光変調器10は、画素(液晶光学素子)がX方向とY方向とに二次元配列され、図1および図2に示すように、液晶層20、液晶層20を上下から挟む、対向電極(透明電極膜)4と画素毎に設けられた画素電極3、画素電極3に接続する駆動回路7(図3参照)を形成されたSi基板(回路基板)70、ならびに最上層の透明基板5を備え、対向電極4の下面には、画素毎に凹みを有するように凹凸が形成されている。液晶光変調器10はさらに、液晶層20の上下にそれぞれ接触して設けられた配向膜21,22、Si基板70上でY方向に延設した信号線(ソース線)71ならびにX方向に延設した走査線(ゲート線)72および共通電極線(コモン線)73(適宜まとめて、配線71,72,73)、Si基板70への光を遮る遮光膜74、画素電極3および配線71,72,73の層間等を絶縁する絶縁層6を備える。すなわち、液晶光変調器10は、上から順に、透明基板5、対向電極4、配向膜21、液晶層20、配向膜22、画素電極3、絶縁層6ならびに遮光膜74および配線71,72,73、Si基板70を備える。なお、図1では、液晶層20および配向膜22は透明として、配向膜22と液晶層20との界面を破線で表す。また、図1は画素中心を含むY方向に沿った断面を示し、図2は画素中心を含むX方向に沿った断面を示す。液晶光変調器10は、上方から入射された光を反射して上方へ出射し、その際に選択された画素において光の偏光方向を変化させる反射型の空間光変調器である。
[First Embodiment: Liquid Crystal Light Modulator]
In the liquid crystal light modulator 10 according to the first embodiment of the present invention, pixels (liquid crystal optical elements) are two-dimensionally arranged in the X direction and the Y direction, and as shown in FIG. 1 and FIG. A Si substrate (circuit board) on which a counter electrode (transparent electrode film) 4 sandwiching the layer 20 from above and below, a pixel electrode 3 provided for each pixel, and a drive circuit 7 (see FIG. 3) connected to the pixel electrode 3 are formed. 70 and the uppermost transparent substrate 5 are provided, and the lower surface of the counter electrode 4 is provided with unevenness so as to have a depression for each pixel. The liquid crystal light modulator 10 further includes alignment films 21 and 22 provided in contact with the upper and lower sides of the liquid crystal layer 20, signal lines (source lines) 71 extending in the Y direction on the Si substrate 70, and extending in the X direction. The scanning lines (gate lines) 72 and the common electrode lines (common lines) 73 (wirings 71, 72, 73 collectively provided), the light shielding film 74 for blocking light to the Si substrate 70, the pixel electrodes 3 and the wirings 71, An insulating layer 6 that insulates the layers 72 and 73 is provided. That is, the liquid crystal light modulator 10 includes, in order from the top, the transparent substrate 5, the counter electrode 4, the alignment film 21, the liquid crystal layer 20, the alignment film 22, the pixel electrode 3, the insulating layer 6, the light shielding film 74, and the wirings 71, 72. 73 and a Si substrate 70. In FIG. 1, the liquid crystal layer 20 and the alignment film 22 are transparent, and the interface between the alignment film 22 and the liquid crystal layer 20 is indicated by a broken line. 1 shows a cross section along the Y direction including the pixel center, and FIG. 2 shows a cross section along the X direction including the pixel center. The liquid crystal light modulator 10 is a reflective spatial light modulator that reflects light emitted from above and emits the light upward, and changes the polarization direction of the light in the pixel selected at that time.
また、液晶光変調器10は、アクティブマトリクス駆動方式の空間光変調器であり、一例として、図3に示すように、画素毎の駆動回路7がトランジスタ7tおよび蓄積容量7cを備える。トランジスタ7tは、ソースが信号線71に、ゲートが走査線72に、ドレインが液晶光学素子1の画素電極3の側に接続する。蓄積容量7cは、端子の一方がトランジスタ7tのドレインおよび液晶光学素子1に接続し、他方が共通電極線73を経由してGNDに接続する。 The liquid crystal light modulator 10 is an active matrix drive type spatial light modulator, and as an example, as shown in FIG. 3, the drive circuit 7 for each pixel includes a transistor 7t and a storage capacitor 7c. The transistor 7t has a source connected to the signal line 71, a gate connected to the scanning line 72, and a drain connected to the pixel electrode 3 side of the liquid crystal optical element 1. The storage capacitor 7c has one terminal connected to the drain of the transistor 7t and the liquid crystal optical element 1, and the other terminal connected to the GND via the common electrode line 73.
液晶光変調器10の画素は、平面(XY面を指す)視が矩形で、本実施形態においてはY方向に長い長方形であるが、これに限られず、液晶光変調器10の用途等に応じて、アスペクト比1〜3程度に設計される。画素のサイズ(ピッチ)は、液晶光変調器10の用途等に応じて設計されるが、少なくともX方向長(短辺長)pXが4μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることがさらに好ましい。特に、液晶光変調器10が電子ホログラフィ装置に適用される場合には、視域角を大きくするために画素(pX,pY)が小さいことが好ましい。以下、本実施形態に係る液晶光変調器を構成する各要素を詳細に説明する。 A pixel of the liquid crystal light modulator 10 has a rectangular shape in a plan view (indicating an XY plane), and is a rectangle long in the Y direction in the present embodiment, but the invention is not limited to this, and may be depending on an application of the liquid crystal light modulator 10. The aspect ratio is designed to be about 1 to 3. The pixel size (pitch) is designed according to the application of the liquid crystal light modulator 10 or the like, but at least the X-direction length (short side length) p X is preferably 4 μm or less, and preferably 3 μm or less. More preferably, it is even more preferably 2 μm or less. In particular, when the liquid crystal light modulator 10 is applied to an electronic holography device, it is preferable that the pixel (p X , p Y ) is small in order to increase the viewing angle. Hereinafter, each element constituting the liquid crystal light modulator according to this embodiment will be described in detail.
(液晶層)
液晶層20は、液晶材料からなり、ねじれネマティック(TN:Twisted Nematic)方式や垂直配向(VA:Vertical Alignment)方式等の液晶ディスプレイの表示装置に適用される公知の材料が挙げられる。液晶層20は、比較的視野角が広く、暗表示に優れたVA方式が好ましく、そのために、負の誘電率異方性を有する液晶(n型液晶)が適用される。液晶層20は、図4を参照して前記したように、無電界状態(初期状態)では液晶分子2が垂直(Z方向)に起立し、垂直方向の電界Eによって液晶分子2が倒れる。このような液晶分子2の向きは、主に配向膜21,22によって制御される。液晶層20の厚さ(セル厚)dは、所望の光学特性が得られるように、液晶材料等に応じて0.5〜5μm程度の範囲で設計され、セル厚dが小さいほど、液晶光変調器10の応答速度が高速になる。一方、セル厚dが画素サイズに対して大きいと、斜め方向の漏れ電界EL(図34参照)が強くなり、対向電極4の下面の形状と併せても電界の漏れを十分に抑制することが困難になる。具体的には、セル厚dは、2μm以下であることが好ましく、1.5μm以下であることがさらに好ましく、また、X方向長(短辺長)pXの1.5倍以下であることが好ましく、1倍以下であることがさらに好ましい。本実施形態において、セル厚dは、最大となる画素中心における液晶層20の厚さとする。
(Liquid crystal layer)
The liquid crystal layer 20 is made of a liquid crystal material, and may be a known material that is applied to a display device of a liquid crystal display such as a twisted nematic (TN) type or a vertical alignment (VA) type. The liquid crystal layer 20 is preferably a VA mode, which has a relatively wide viewing angle and is excellent in dark display. Therefore, a liquid crystal having a negative dielectric anisotropy (n-type liquid crystal) is applied. As described above with reference to FIG. 4, in the liquid crystal layer 20, the liquid crystal molecules 2 stand vertically (Z direction) in the non-electric field state (initial state), and the liquid crystal molecules 2 are tilted by the electric field E in the vertical direction. The orientation of such liquid crystal molecules 2 is mainly controlled by the alignment films 21 and 22. The thickness (cell thickness) d of the liquid crystal layer 20 is designed in the range of about 0.5 to 5 μm according to the liquid crystal material or the like so that desired optical characteristics can be obtained. The response speed of the modulator 10 becomes high. On the other hand, when the cell thickness d is large with respect to the pixel size, the leakage electric field E L in the oblique direction (see FIG. 34) becomes strong, and the electric field leakage can be sufficiently suppressed even in combination with the shape of the lower surface of the counter electrode 4. Becomes difficult. Specifically, the cell thickness d is preferably 2 μm or less, more preferably 1.5 μm or less, and 1.5 times or less the X-direction length (short side length) p X. Is preferable, and it is more preferable that it is 1 time or less. In the present embodiment, the cell thickness d is the thickness of the liquid crystal layer 20 at the center of the maximum pixel.
なお、詳しくは後記液晶表示装置の動作として説明するように、液晶層20は、液晶分子2の光学的異方性により、図4(b)に示すように液晶分子2が傾斜している(非垂直である)時に、透過する光の偏光成分による位相差δが生じる。したがって、図4(b)に示す液晶層20を透過した直線偏光は、位相差δがπの整数倍の場合を除き、円偏光(位相差δがπ/2の奇数倍のとき)や楕円偏光となる。なお、図4(b)では簡潔に、90°旋光した直線偏光を示している。液晶層20は、最大駆動電圧印加により液晶分子2が完全に倒れた状態(図4(b)参照)において、位相差δがπとなることが好ましく、本実施形態に係る液晶光変調器10は反射型の空間光変調器であるので、位相差δが半分のπ/2となるセル厚dであることが好ましい。 Note that, as will be described in detail as an operation of the liquid crystal display device described later, in the liquid crystal layer 20, the liquid crystal molecules 2 are tilted as shown in FIG. 4B due to the optical anisotropy of the liquid crystal molecules 2 ( (Non-perpendicular), a phase difference δ occurs due to the polarization component of the transmitted light. Therefore, the linearly polarized light transmitted through the liquid crystal layer 20 shown in FIG. 4B is circularly polarized (when the phase difference δ is an odd multiple of π / 2) or elliptical except when the phase difference δ is an integral multiple of π. It becomes polarized light. It should be noted that FIG. 4B simply shows linearly polarized light that is rotated by 90 °. The liquid crystal layer 20 preferably has a phase difference δ of π when the liquid crystal molecules 2 are completely tilted by the application of the maximum drive voltage (see FIG. 4B), and the liquid crystal light modulator 10 according to the present embodiment. Is a reflection type spatial light modulator, it is preferable that the cell thickness d is such that the phase difference δ is ½ of half.
(画素電極)
画素電極3は、選択した画素に限定して液晶層20に垂直方向の電界を発生させるために、画素毎に設けられ、絶縁層6を貫通するコンタクト部(図示省略)でSi基板70の表層に形成された駆動回路7に接続する。画素電極3は、互いに間隙lgX,lgY(適宜まとめて、間隙lg)を空けて設けられるため、本実施形態では、平面視形状が画素よりも一回り小さな矩形に形成されている。平面視で、画素において画素電極3が設けられた領域を開口部、その外側の領域を非開口部と称する。隣り合う画素電極3,3の間隙lgが広いほど、明表示の画素とその隣の暗表示の画素の画素電極3,3間での漏れ電界(横電界)EIPが抑制され易い。一方で、間隙lgが広いと、画素電極3の平面視サイズが小さくなり、画素の開口率が低くなる。したがって、間隙lgは、セル厚dや対向電極4の下面の凸部4rの形状と併せて、画素の開口率を確保しつつ、漏れ電界EIPがより抑制されるように設計されることが好ましい。
(Pixel electrode)
The pixel electrode 3 is provided for each pixel in order to generate an electric field in the vertical direction in the liquid crystal layer 20 only in the selected pixel, and is a contact portion (not shown) penetrating the insulating layer 6 to form a surface layer of the Si substrate 70. Connected to the drive circuit 7 formed in. Since the pixel electrodes 3 are provided with gaps l gX and l gY (collectively, the gap l g ) therebetween, in the present embodiment, the shape in plan view is formed into a rectangle that is slightly smaller than the pixel. In a plan view, a region where the pixel electrode 3 is provided in the pixel is called an opening, and a region outside the region is called a non-opening. The wider the gap l g between the adjacent pixel electrodes 3 and 3, the more easily the leakage electric field (horizontal electric field) E IP between the pixel electrodes 3 and 3 of the bright display pixel and the adjacent dark display pixel is suppressed. On the other hand, if the gap l g is wide, the size of the pixel electrode 3 in plan view becomes small, and the aperture ratio of the pixel becomes low. Therefore, the gap l g is designed so that the leakage electric field E IP is further suppressed while ensuring the aperture ratio of the pixel together with the cell thickness d and the shape of the convex portion 4r on the lower surface of the counter electrode 4. Is preferred.
液晶光変調器10は反射型の空間光変調器であり、画素電極3は、光を透過しなくてよいので、Cu,Al,Au,Ag,Ta,Cr,Pt,Ru等の金属やその合金のような一般的な金属電極材料で形成され、また、前記金属や合金の2種類以上を積層してもよい。特に、最上層には、配向膜22との密着性のよい材料を適用することが好ましい。また、画素電極3は、上方から入射した光に対して反射率が高くなるように、光反射率の高い材料を十分な厚さで備えることが好ましく、その上に必要に応じて厚さ1〜10nmの密着性のよい材料を積層してもよい。金属電極材料は、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等により所望の平面視形状に加工される。 The liquid crystal light modulator 10 is a reflective spatial light modulator, and since the pixel electrode 3 does not need to transmit light, metals such as Cu, Al, Au, Ag, Ta, Cr, Pt, Ru, and the like are used. It is formed of a general metal electrode material such as an alloy, and two or more kinds of the above metals or alloys may be laminated. In particular, it is preferable to apply a material having good adhesion to the alignment film 22 to the uppermost layer. Further, the pixel electrode 3 is preferably provided with a material having a high light reflectance in a sufficient thickness so that the light incident on the pixel electrode 3 has a high reflectance. Materials with good adhesion having a thickness of 10 nm may be laminated. The metal electrode material is processed into a desired plan-view shape by a known method such as a sputtering method, film formation, photolithography, etching or a lift-off method.
(対向電極)
対向電極4は、液晶光変調器10のすべての画素で共有されている電極であり、一体に連続した膜として設けられる。また、対向電極4は、液晶層20に対面する下面が凹凸面であり、図5に下面を上に向けて示すように、四角錐の4側面の二等辺三角形を内壁面とする凹部が画素毎に形成され、画素中心に凹頂点を有する。したがって、対向電極4は、X方向、Y方向のそれぞれにおける画素間中心線(図5に一点鎖線で表す)上に凸稜線を有し、画素間中心で液晶層20の厚さが最小となる。言い換えると、対向電極4の下面の凹凸は、画素中心の凹頂点を囲むように、X方向、Y方向のそれぞれに沿った畝状の凸部4rを画素間に有する。この凸部4rは、傾斜面を有し、断面形状が、底辺を上(透明基板5の側)に向けた二等辺三角形となる。
(Counter electrode)
The counter electrode 4 is an electrode shared by all the pixels of the liquid crystal light modulator 10, and is provided as an integrally continuous film. Further, the counter electrode 4 has a concave and convex surface on the lower surface facing the liquid crystal layer 20, and as shown in FIG. 5 with the lower surface facing upward, a concave portion whose inner wall surface is an isosceles triangle of four side surfaces of a quadrangular pyramid is a pixel. It is formed every time and has a concave apex at the center of the pixel. Therefore, the counter electrode 4 has a convex ridge line on the inter-pixel center line (represented by a one-dot chain line in FIG. 5) in each of the X direction and the Y direction, and the thickness of the liquid crystal layer 20 is minimum at the inter-pixel center. . In other words, the unevenness on the lower surface of the counter electrode 4 has the ridge-shaped convex portions 4r along the X direction and the Y direction between the pixels so as to surround the concave vertex at the center of the pixel. The convex portion 4r has an inclined surface and has a cross-sectional shape of an isosceles triangle with the bottom side facing upward (the transparent substrate 5 side).
対向電極4が、画素間中心で突出するように形成されていることにより、後記するように電界の漏れが抑制される。この効果を十分に得るために、凸部4rの高さ(凹凸による高低差の最大値)hが、セル厚dの20%以上であることが好ましく、30%以上であることがより好ましく、大きいほど効果が高い。ただし、凸部4rの高さhがセル厚dの70%を超えて大きくなっても効果がそれ以上には向上し難いので、70%以下であることが好ましい。また、凸部4rの高さhが大きくなると、凸部4rのアスペクト比(凸部4rの幅wrに対する高さhの比)が高くなって、対向電極4の凹凸を形成し難くなり、さらに、対向電極4の下面の勾配(2h/wr)が急に(垂直に近く)なるので、これを被覆する配向膜21も形成し難くなる場合がある。凸部4rの幅wrとは、最大幅である断面視での二等辺三角形の底辺の長さであり、本実施形態においては画素長pX,pYと一致して、X方向における幅wrXとY方向における幅wrYとが異なる(wrX=pX、wrY=pY)。また、後記するように、液晶層20の液晶分子2は、無電界状態では、配向膜21,22の膜面に垂直に起立する。したがって、凸部4rのアスペクト比が高いと、対向電極4の下面の勾配(2h/wr)が急になるので、対向電極4(凸部4r)の近傍で液晶分子2が大きく傾斜して、暗表示が十分に暗くならない。また、凸部4rの高さhが大きいと開口部における対向電極4の高低差ha(図1参照)が大きくなり、この開口部高低差haがセル厚d比で大きい場合、画素電極3−対向電極4間距離、および液晶層20の厚さについて、画素中心と開口部周縁との相対的な差が大きくなる。そのため、電圧印加時に、光路長の短い開口部周縁で旋光角が小さくなったり、画素中心部で電界が弱くなって液晶分子2が十分な傾斜角で倒れなかったりして、明表示の画素(開口部)内で輝度のムラを生じることになる。具体的には、凸部4rのアスペクト比が1以下(h≦wr)であることが好ましく、1/2以下(2h≦wr)であることがより好ましく、1/3以下(3h≦wr)であることがさらに好ましい。なお、対向電極4は、最薄部である画素中心で、必要な導電性を確保することのできる厚さとする。 Since the counter electrode 4 is formed so as to project at the center between the pixels, leakage of an electric field is suppressed as described later. In order to sufficiently obtain this effect, the height h of the convex portion 4r (the maximum value of the height difference due to the unevenness) h is preferably 20% or more of the cell thickness d, more preferably 30% or more, The larger the value, the higher the effect. However, even if the height h of the convex portion 4r exceeds 70% of the cell thickness d and becomes large, it is difficult to further improve the effect. Therefore, it is preferably 70% or less. Further, when the height h of the convex portion 4r becomes large, the aspect ratio of the convex portion 4r (the ratio of the height h to the width w r of the convex portion 4r) becomes high, and it becomes difficult to form the concavities and convexities of the counter electrode 4, Furthermore, since the gradient (2h / w r ) of the lower surface of the counter electrode 4 becomes steep (close to vertical), it may be difficult to form the alignment film 21 that covers it. The width w r of the convex portion 4 r is the length of the base of the isosceles triangle in cross section, which is the maximum width, and in the present embodiment, matches the pixel lengths p X and p Y, and the width in the X direction. the width w rY in w rX and Y directions are different (w rX = p X, w rY = p Y). Further, as will be described later, the liquid crystal molecules 2 of the liquid crystal layer 20 stand upright on the film surfaces of the alignment films 21 and 22 in the non-electric field state. Therefore, if the aspect ratio of the convex portion 4r is high, the slope (2h / w r ) of the lower surface of the counter electrode 4 becomes steep, and the liquid crystal molecules 2 are greatly inclined near the counter electrode 4 (the convex portion 4r). , The dark display does not become dark enough. Also, the height h of the convex portion 4r is large difference in height h a of the counter electrode 4 (see FIG. 1) is increased at the opening, when the opening height difference h a is large cell thickness d ratio, the pixel electrode 3-Regarding the distance between the counter electrodes 4 and the thickness of the liquid crystal layer 20, the relative difference between the pixel center and the peripheral edge of the opening becomes large. Therefore, when a voltage is applied, the optical rotation angle becomes small at the periphery of the opening having a short optical path length, or the electric field is weakened at the center of the pixel so that the liquid crystal molecules 2 do not fall at a sufficient tilt angle. The unevenness of brightness will occur in the opening). Specifically, it is preferable that the aspect ratio of the protrusions 4r is 1 or less (h ≦ w r), more preferably from 1/2 or less (2h ≦ w r), 1 /3 or less (3h ≦ more preferably w r ). The counter electrode 4 has a thickness capable of ensuring necessary conductivity at the center of the pixel, which is the thinnest portion.
対向電極4は、液晶光変調器10の光の入射側に設けられるため、光を透過するように、透明電極材料で形成される。透明電極材料は、例えば、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、酸化スズ(SnO2)、酸化アンチモン−酸化スズ系(ATO)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO)、酸化インジウム(In2O3)等の公知の導電性酸化物からなる。これらの透明電極材料は、スパッタリング法、真空蒸着法、塗布法等の公知の方法により成膜され、後記するように、ナノインプリントリソグラフィ(NIL)とエッチングによって表面(下面)に凹凸を形成される。または、PEDOT/PSS(Poly(3,4-ethylenedioxythiophene) / poly(4-styrenesulfonate))等の導電性高分子を適用して、金型で直接に凹凸を転写して成型することもできる。 Since the counter electrode 4 is provided on the light incident side of the liquid crystal light modulator 10, it is formed of a transparent electrode material so as to transmit light. Examples of the transparent electrode material include indium zinc oxide (IZO), indium tin oxide (ITO), tin oxide (SnO 2 ), antimony oxide-tin oxide (ATO), and oxide. It is made of a known conductive oxide such as zinc (ZnO), fluorine-doped tin oxide (FTO), indium oxide (In 2 O 3 ). These transparent electrode materials are formed into a film by a known method such as a sputtering method, a vacuum evaporation method, a coating method, etc., and as will be described later, irregularities are formed on the surface (lower surface) by nanoimprint lithography (NIL) and etching. Alternatively, a conductive polymer such as PEDOT / PSS (Poly (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate)) may be applied, and the projections and depressions may be directly transferred using a mold for molding.
(配向膜)
配向膜21および配向膜22は、液晶分子2の向きを制御するために、液晶層20の上下に接触して設けられる。配向膜21,22は、ポリイミド等の有機膜やSi酸化物(SiOx)等の無機膜であり、表示方式に対応した公知の材料が適用され、数十〜100nm程度の膜厚に形成される。対向電極4を被覆して形成される配向膜21は、対向電極4の下面の凹凸に沿って一様な厚さに形成される。一方、配向膜22は、表面(液晶層20に接する面)が平坦に形成されることが好ましい。本実施形態では、VA方式として、配向膜21,22は、初期状態で液晶分子2を膜面に垂直に起立させるように、疎水基を導入したポリイミドやSiOx(x=1〜2程度)等が適用される。配向膜21,22は、さらに必要に応じて、電圧印加時に液晶分子2が所定の方向へ倒れるように、表面(液晶層20に接触する面)に配向処理を施されていてもよい。例えば、ポリイミドは、塗布法によって成膜された後にUV照射によって配向処理され、SiOxは、斜方蒸着によって成膜と同時に配向処理される。
(Alignment film)
The alignment films 21 and 22 are provided in contact with the upper and lower sides of the liquid crystal layer 20 in order to control the orientation of the liquid crystal molecules 2. The alignment films 21 and 22 are organic films such as polyimide or inorganic films such as Si oxide (SiO x ), and known materials corresponding to the display system are applied to the alignment films 21 and 22 and formed to a film thickness of several tens to 100 nm. It The alignment film 21 formed so as to cover the counter electrode 4 is formed to have a uniform thickness along the unevenness on the lower surface of the counter electrode 4. On the other hand, it is preferable that the surface of the alignment film 22 (the surface in contact with the liquid crystal layer 20) is formed flat. In the present embodiment, as the VA method, the alignment films 21 and 22 have a hydrophobic group-introduced polyimide or SiO x (x = 1 to 2) so that the liquid crystal molecules 2 are erected perpendicularly to the film surface in the initial state. Etc. apply. If necessary, the alignment films 21 and 22 may be subjected to an alignment treatment on the surface (the surface in contact with the liquid crystal layer 20) so that the liquid crystal molecules 2 tilt in a predetermined direction when a voltage is applied. For example, polyimide is subjected to orientation treatment by UV irradiation after being formed by a coating method, and SiO x is subjected to orientation treatment at the same time as film formation by oblique vapor deposition.
(透明基板)
透明基板5は、対向電極4および配向膜21を形成するための土台であり、Si基板70と共に、液晶層20を支持するための土台である。透明基板5は、液晶光変調器10の光の入射側に設けられるため、光を透過するように、公知の透明基板材料が適用される。具体的には、SiO2(酸化ケイ素、ガラス)、サファイア、ポリカーボネート(PC)等が挙げられる。
(Transparent substrate)
The transparent substrate 5 is a base for forming the counter electrode 4 and the alignment film 21, and is a base for supporting the liquid crystal layer 20 together with the Si substrate 70. Since the transparent substrate 5 is provided on the light incident side of the liquid crystal light modulator 10, a known transparent substrate material is applied so as to transmit the light. Specific examples include SiO 2 (silicon oxide, glass), sapphire, polycarbonate (PC), and the like.
(Si基板)
Si基板70は、駆動回路7や画素電極3等を形成するための土台であり、さらに駆動回路7の材料である。また、透明基板5と共に、液晶層20を支持するための土台である。本実施形態では、トランジスタ7tがMOSFET(金属酸化膜半導体電界効果トランジスタ)で形成されるため、Si基板70は、単結晶シリコン基板を材料とすることが好ましく、駆動回路7の構成等に応じて、n型Si基板やp型Si基板を適用することができる。また、蓄積容量7cは、Si基板70の表層のSiとその上に形成した絶縁膜とpoly−Si膜の3層構造とすることができる。
(Si substrate)
The Si substrate 70 is a base for forming the drive circuit 7, the pixel electrode 3 and the like, and is a material of the drive circuit 7. Further, it is a base for supporting the liquid crystal layer 20 together with the transparent substrate 5. In the present embodiment, since the transistor 7t is formed of a MOSFET (metal oxide semiconductor field effect transistor), it is preferable that the Si substrate 70 is made of a single crystal silicon substrate, depending on the configuration of the drive circuit 7 and the like. , N-type Si substrate and p-type Si substrate can be applied. The storage capacitor 7c may have a three-layer structure of Si on the surface layer of the Si substrate 70, an insulating film formed thereon, and a poly-Si film.
(配線、遮光膜)
信号線71、走査線72、および共通電極線73は、駆動回路7に入力して画素を選択するためにSi基板70上に設けられ、画素電極3と同様に一般的な金属電極材料で形成され、エッチングやダマシン法等の公知の半導体の配線形成方法で形成される。遮光膜74は、Si基板70に光が入射しないように、必要に応じて、平面視で画素電極3が設けられない領域に設けられ、ここでは、信号線71と共に金属電極材料で同じ層に形成されている。
(Wiring, light shielding film)
The signal line 71, the scanning line 72, and the common electrode line 73 are provided on the Si substrate 70 for inputting to the drive circuit 7 and selecting a pixel, and are formed of a general metal electrode material like the pixel electrode 3. And is formed by a known semiconductor wiring forming method such as etching or damascene method. The light-shielding film 74 is provided in a region where the pixel electrode 3 is not provided in plan view as necessary so that light does not enter the Si substrate 70. Here, in the same layer as the signal line 71, a metal electrode material is used. Has been formed.
(絶縁層)
絶縁層6は、Si基板70上に設けられて、配線71,72,73や画素電極3の間を絶縁する。さらに、絶縁層6は、液晶層20の下面を平坦化するように、画素電極3,3間を埋めて設けられることが好ましい。絶縁層6は、半導体素子等に設けられる公知の無機絶縁材料が適用でき、具体的には、SiO2やAl2O3等の酸化膜やSi3N4やMgF2等が挙げられ、2種類以上の材料を適用されてもよい。
(Insulating layer)
The insulating layer 6 is provided on the Si substrate 70 and insulates the wirings 71, 72, 73 and the pixel electrode 3 from each other. Further, the insulating layer 6 is preferably provided so as to fill the space between the pixel electrodes 3 and 3 so as to flatten the lower surface of the liquid crystal layer 20. A known inorganic insulating material provided in a semiconductor element or the like can be applied to the insulating layer 6, and specific examples thereof include an oxide film of SiO 2 , Al 2 O 3, or the like, Si 3 N 4 , MgF 2, or the like. More than one type of material may be applied.
(液晶光変調器の製造方法)
本実施形態に係る液晶光変調器は、公知のLCOS型の液晶光変調器と同様の製造方法において、対向電極の形成時に表面(下面)に凹凸を形成する工程を追加して製造することができる。液晶光変調器の製造方法は、透明基板5上に対向電極4および上側の配向膜21を形成する対向基板工程と、Si基板70上に駆動回路7、配線71,72,73、画素電極3および下側の配向膜22を形成する回路基板工程と、を個別に行い、その後、これらの透明基板5とSi基板70を、配向膜21,22同士が対面するように重ね合わせ、間に液晶材料を封入して液晶層20を形成するセル組立工程を行う。以下、各工程の詳細について一例を説明する。
(Method of manufacturing liquid crystal light modulator)
The liquid crystal light modulator according to the present embodiment can be manufactured by a manufacturing method similar to that of a known LCOS type liquid crystal light modulator, with an additional step of forming irregularities on the surface (lower surface) when forming the counter electrode. it can. The manufacturing method of the liquid crystal light modulator includes a counter substrate process of forming the counter electrode 4 and the upper alignment film 21 on the transparent substrate 5, a driving circuit 7, wirings 71, 72, 73, and the pixel electrode 3 on the Si substrate 70. And the circuit board step of forming the lower alignment film 22 are separately performed, and then the transparent substrate 5 and the Si substrate 70 are superposed so that the alignment films 21 and 22 face each other, and the liquid crystal is interposed therebetween. A cell assembly process of encapsulating materials to form the liquid crystal layer 20 is performed. An example of the details of each step will be described below.
対向基板工程について、図6を参照して説明する。本工程においては、図6も含め、液晶光変調器10における下側を上として説明する。透明基板5上に、ITO等の導電性酸化物を、対向電極4の凸部4rを有する部分(画素間中心)の厚さよりも厚く成膜する。この導電性酸化物膜(図中、符号「4」を付す)上に熱硬化樹脂の塗料を塗布し、形成された樹脂膜RMに、図6(a)に示すように金型(モールド)MLを押し付けて、金型MLの転写面形状を樹脂膜RMの表面に転写する。そして、金型MLを押し付けた状態で加熱して樹脂膜RMを硬化させた後、金型MLを樹脂膜RMから離型する。これにより、樹脂膜RMの表面に、対向電極4に対応した凹凸形状が形成される。なお、樹脂膜RMにUV硬化樹脂を適用して、加熱に代えてUV照射により樹脂膜RMを硬化させてもよい。そのため、石英等のUV透過率の高い材料で形成された金型MLを使用し、あるいは透明基板5および対向電極(導電性酸化物膜)4のUV透過率が十分に高い場合には、透明基板5の側からUV照射することができる。 The counter substrate process will be described with reference to FIG. In this step, the lower side of the liquid crystal light modulator 10 including FIG. 6 will be described as the upper side. A conductive oxide such as ITO is formed on the transparent substrate 5 to be thicker than the thickness of the portion (center between pixels) having the convex portion 4r of the counter electrode 4. A coating of a thermosetting resin is applied on this conductive oxide film (indicated by reference numeral "4" in the figure), and the resin film RM thus formed has a mold (mold) as shown in FIG. 6 (a). By pressing ML, the transfer surface shape of the mold ML is transferred to the surface of the resin film RM. Then, after heating the mold ML while pressing it to cure the resin film RM, the mold ML is released from the resin film RM. As a result, an uneven shape corresponding to the counter electrode 4 is formed on the surface of the resin film RM. A UV curable resin may be applied to the resin film RM and the resin film RM may be cured by UV irradiation instead of heating. Therefore, if a mold ML formed of a material having a high UV transmittance such as quartz is used, or if the UV transmittance of the transparent substrate 5 and the counter electrode (conductive oxide film) 4 is sufficiently high, it is transparent. UV irradiation can be performed from the substrate 5 side.
図6(b)、(c)に示すように、樹脂膜RMの上から異方性エッチングを行って、樹脂膜RMを完全に除去し、さらにその下の導電性酸化物膜を部分的に除去する。これにより、エッチング前の樹脂膜RMの表面の凹凸形状が導電性酸化物膜の表面に転写されて、対向電極4が形成される。必要に応じて、その次に、または樹脂膜RMを形成する前の導電性酸化物膜に、アニール処理を施してもよい。 As shown in FIGS. 6B and 6C, anisotropic etching is performed on the resin film RM to completely remove the resin film RM, and the conductive oxide film thereunder is partially removed. Remove. As a result, the uneven shape of the surface of the resin film RM before etching is transferred to the surface of the conductive oxide film, and the counter electrode 4 is formed. If necessary, the conductive oxide film may be annealed next or before forming the resin film RM.
配向膜21を対向電極4の凹凸面上に形成する。配向膜21の材料に応じて、凹凸面であっても均一な厚さで成膜することのできる方法を適用する。有機膜を適用する場合には、例えばスピンコート法で膜材料を対向電極4上に塗布し、乾燥させる。その後、必要に応じて、配向処理を施す。 The alignment film 21 is formed on the uneven surface of the counter electrode 4. Depending on the material of the alignment film 21, a method capable of forming a film with a uniform thickness even on an uneven surface is applied. When applying an organic film, a film material is applied onto the counter electrode 4 by, for example, a spin coating method and dried. Then, if necessary, an alignment treatment is performed.
回路基板工程について説明する。ここでは、Si基板70にn型Si基板(n−sub)を適用する。まず、駆動回路7のトランジスタ7tおよび蓄積容量7cを形成する領域(アクティブ領域)外のSiO2の埋込みを行い、次に、p型不純物イオンを注入して、p−wellを画素毎に形成する。蓄積容量7cを形成する領域に、n型不純物イオンを注入して表層に蓄積容量7cの下側の端子を形成し、その上に絶縁膜を形成する。一方、トランジスタ7tを形成する領域に、ゲート酸化膜を形成する。次に、poly−Si膜で、トランジスタ7tのゲートと蓄積容量7cの上側の端子を形成する。n型不純物イオンを注入して、トランジスタ7tのソースおよびドレインとしてn+拡散層を形成する。また、p型不純物イオンを注入して、p−wellをGNDに接続するためのp+拡散層を形成する。 The circuit board process will be described. Here, an n-type Si substrate (n-sub) is applied to the Si substrate 70. First, SiO 2 outside the region (active region) where the transistor 7t and the storage capacitor 7c of the drive circuit 7 are formed is buried, and then p-type impurity ions are implanted to form a p-well for each pixel. . In the region where the storage capacitor 7c is formed, n-type impurity ions are implanted to form a lower terminal of the storage capacitor 7c on the surface layer, and an insulating film is formed thereon. On the other hand, a gate oxide film is formed in the region where the transistor 7t is formed. Next, the gate of the transistor 7t and the upper terminal of the storage capacitor 7c are formed of a poly-Si film. By implanting n-type impurity ions, n + diffusion layers are formed as the source and drain of the transistor 7t. In addition, p-type impurity ions are implanted to form ap + diffusion layer for connecting the p-well to GND.
Si基板70上に層間絶縁膜(絶縁層6)を成膜して、この層間絶縁膜の、蓄積容量7cの上下の端子、トランジスタ7tのソース、ドレイン、ゲート、およびp+拡散層のそれぞれの上にホール(孔)を形成する。金属電極材料を成膜して層間絶縁膜のホールに埋め込み、さらに層間絶縁膜を成膜して、ホールやトレンチ(溝)を形成して金属電極材料を埋め込む。このように、絶縁膜の成膜および加工と金属電極材料の成膜とを繰り返して、トランジスタ7tのソースに接続する信号線71、ゲートに接続する走査線72、蓄積容量7cの下側の端子に接続する共通電極線73を形成し、また、トランジスタ7tのドレインと蓄積容量7cの上側の端子とを接続する配線(接続部)を形成する。さらにこの接続部を層間絶縁膜の表面で露出させて、画素電極3を接続するコンタクト部とする。また、信号線71等と共に遮光膜74を形成する。必要に応じて最後に、または途中で、表面を平坦化処理する。 An interlayer insulating film (insulating layer 6) is formed on the Si substrate 70, and each of the upper and lower terminals of the storage capacitor 7c, the source and drain of the transistor 7t, the gate, and the p + diffusion layer of the interlayer insulating film is formed. Form a hole on top. A metal electrode material is deposited to fill the holes in the interlayer insulating film, and an interlayer insulating film is deposited to form holes and trenches to fill the metal electrode material. In this way, by repeating the formation and processing of the insulating film and the formation of the metal electrode material, the signal line 71 connected to the source of the transistor 7t, the scanning line 72 connected to the gate, and the lower terminal of the storage capacitor 7c. A common electrode line 73 connected to the above is formed, and a wiring (connection portion) connecting the drain of the transistor 7t and the upper terminal of the storage capacitor 7c is formed. Further, this connecting portion is exposed on the surface of the interlayer insulating film to form a contact portion for connecting the pixel electrode 3. Further, the light shielding film 74 is formed together with the signal line 71 and the like. If necessary, the surface is planarized at the end or in the middle.
層間絶縁膜上にさらに絶縁膜を画素電極3の厚さに成膜し、フォトリソグラフィとエッチングで画素電極3の形状のトレンチを形成して底にコンタクト部を露出させる。この上から金属電極材料を成膜してトレンチに埋め込んで画素電極3を形成する。その上に、配向膜22を、配向膜21と同様に、材料に応じた方法で均一な厚さに形成する。 An insulating film is further formed on the interlayer insulating film to the thickness of the pixel electrode 3, and a trench in the shape of the pixel electrode 3 is formed by photolithography and etching to expose the contact portion at the bottom. A film of a metal electrode material is formed on this and the pixel electrode 3 is formed by burying it in a trench. On top of that, the alignment film 22 is formed to have a uniform thickness by a method depending on the material, similarly to the alignment film 21.
セル組立工程について説明する。液晶材料の封入方法は、液晶材料等に応じた方法が適用され、VA方式では、一般に液晶滴下充填(ODF:one drop fill)法が適用される。まず、Si基板70の配向膜22を形成した面上の周縁(画素を二次元配列した領域の外側)に、セル厚dに対応した厚さの枠状のシール材(図示せず)をUV硬化型樹脂等で形成し、シール材の枠内に液晶材料を滴下する。真空中で、Si基板70の上に、シール材および液晶材料(液晶層20)を挟んで、配向膜21を下に向けて透明基板5を貼り合わせ、シール材を硬化させて密着させ、液晶層20を封止する。 The cell assembly process will be described. As a method of enclosing the liquid crystal material, a method suitable for the liquid crystal material or the like is applied, and in the VA method, a liquid crystal drop fill (ODF) method is generally applied. First, a frame-shaped sealing material (not shown) having a thickness corresponding to the cell thickness d is UV-applied to the periphery of the surface of the Si substrate 70 on which the alignment film 22 is formed (outside the area in which the pixels are two-dimensionally arranged). It is made of a curable resin or the like, and the liquid crystal material is dropped in the frame of the sealing material. In a vacuum, the transparent substrate 5 is attached on the Si substrate 70 with the sealing material and the liquid crystal material (liquid crystal layer 20) sandwiched therebetween, with the alignment film 21 facing downward, and the sealing material is cured and brought into close contact with the liquid crystal. The layer 20 is sealed.
(液晶光変調器の動作)
本発明に係る液晶光変調器の動作について、図7、および適宜図4を参照して説明する。明表示の画素11,13においては、画素電極3が+または−(図7では+)の電位となって、GND(0V)に接続された対向電極4との間に垂直方向の電界Eが発生する。同時に、図34を参照して前記したように、画素電極3から外側(非開口部)へ広がって斜め方向に対向電極4へ向かう弱い電界ELも発生する。しかし、液晶光変調器10では、対向電極4が、画素間中心において突出して形成されているため、この対向電極4の凸部4rで斜め方向の漏れ電界ELがブロックされて、凸部4rの向こう側の暗表示の画素12にまでは到達し難い。さらに、凸部4rによって、非開口部における対向電極4、画素電極3間の距離が短く、低抵抗になるため、凸部4rが、画素11,13の画素電極3から電位0Vの画素12の画素電極3へ向かう電界EIPをトラップして、この電界EIPを弱くする。
(Operation of liquid crystal light modulator)
The operation of the liquid crystal light modulator according to the present invention will be described with reference to FIG. 7 and appropriately FIG. In the bright display pixels 11 and 13, the pixel electrode 3 has a potential of + or − (+ in FIG. 7), and an electric field E in the vertical direction is generated between the pixel electrode 3 and the counter electrode 4 connected to GND (0 V). Occur. At the same time, as described above with reference to FIG. 34, a weak electric field E L that spreads outward from the pixel electrode 3 (non-opening portion) and obliquely goes to the counter electrode 4 is also generated. However, in the liquid crystal light modulator 10, since the counter electrode 4 is formed so as to project at the center between the pixels, the leaked electric field E L in the oblique direction is blocked by the convex portion 4r of the counter electrode 4, and the convex portion 4r is formed. It is difficult to reach the dark display pixel 12 on the other side. Further, since the distance between the counter electrode 4 and the pixel electrode 3 in the non-opening portion is short and the resistance is low due to the convex portion 4r, the convex portion 4r is formed from the pixel electrode 3 of the pixels 11 and 13 to the pixel 12 of potential 0V. The electric field E IP toward the pixel electrode 3 is trapped to weaken the electric field E IP .
このように、明表示の画素11,13の隣の(間に挟まれた)暗表示の画素12の開口部への、液晶層20の液晶分子2を傾斜させる漏れ電界EL,EIPの発生が抑制される。したがって、画素12の開口部は、液晶分子2の意図しない傾斜が抑制され、クロスニコル配置の偏光子81,82によって十分な暗表示を得ることができる(図4(a)参照)。 In this way, the leakage electric fields E L and E IP that tilt the liquid crystal molecules 2 of the liquid crystal layer 20 to the opening of the dark display pixel 12 adjacent to (interposed between) the bright display pixels 11 and 13 are generated. Occurrence is suppressed. Therefore, the unintended inclination of the liquid crystal molecules 2 is suppressed in the openings of the pixels 12, and sufficient dark display can be obtained by the polarizers 81 and 82 in the crossed Nicols arrangement (see FIG. 4A).
(液晶光変調器の変形例)
本実施形態に係る液晶光変調器10において、対向電極4の下面は、X方向にのみ凹凸が形成されていてもよい。すなわち、図8に示すように、Y方向に沿った畝状の凸部4rを形成された対向電極4Aを適用することができる。Y方向においては、画素長pYが十分に長いので、対向電極4Aが平坦でも、暗状態の画素の画素中心近傍まで漏れ電界EL,EIPが到達し難い。さらに、Y方向の漏れ電界EL,EIPを抑制するために、Y方向の間隙lgYが広くなるように画素電極3の形状を設計することが好ましい。このような一方向に沿った凸部4rを有する対向電極4Aによれば、画素電極3−対向電極4間距離が画素中心の一点に偏って大きくなく、さらに開口部高低差haが小さいので、明表示の画素内のムラが抑制され、また、製造が容易である。また、凸部4rのY方向の幅wrYをX方向に合わせてもよい(pX=wrX=wrY<pY)。すなわち、図9に示すように、画素中心にY方向に沿った水平な凹稜線を有する、二等辺三角形と等脚台形を2面ずつ内壁面とする、寄棟屋根の形状の凹部を下面に有する対向電極4Bを適用することができる。このような対向電極4Bを備えることで、X,Y方向共に漏れ電界EL,EIPが抑制され、さらに、図8に示す前記変形例と同様に、開口部高低差haが小さく、明表示の画素内のムラが抑制される。
(Modification of liquid crystal light modulator)
In the liquid crystal light modulator 10 according to the present embodiment, the lower surface of the counter electrode 4 may have unevenness only in the X direction. That is, as shown in FIG. 8, it is possible to apply the counter electrode 4A in which the ridge-shaped convex portion 4r along the Y direction is formed. In the Y direction, since the pixel length p Y is sufficiently long, even if the counter electrode 4A is flat, it is difficult for the leak electric fields E L and E IP to reach the vicinity of the pixel center of the pixel in the dark state. Further, in order to suppress the leakage electric fields E L and E IP in the Y direction, it is preferable to design the shape of the pixel electrode 3 so that the gap l gY in the Y direction becomes wide. According to the counter electrode 4A having a convex portion 4r along such direction, the distance between the pixel electrode 3 counter electrode 4 is not greater biased to a point pixel center, since more small opening height difference h a The unevenness in the bright display pixels is suppressed, and the manufacturing is easy. Further, the width w rY of the convex portion 4r in the Y direction may be matched with the X direction (p X = w rX = w rY <p Y ). That is, as shown in FIG. 9, a ridged roof-shaped recess having an isosceles triangle and an isosceles trapezoid as two inner wall surfaces each having a horizontal concave ridge line along the Y direction at the pixel center is formed on the lower surface. The counter electrode 4B which has it can be applied. By providing such a counter electrode 4B, the leakage electric fields E L and E IP are suppressed in both the X and Y directions, and the opening height difference h a is small, as in the modification shown in FIG. The unevenness in the display pixel is suppressed.
〔液晶表示装置〕
本発明の第1実施形態およびその変形例に係る液晶光変調器10は、一般的な反射型の液晶光変調器と同様に液晶表示装置に使用される。図10に示すように、本発明の実施形態に係る液晶表示装置100は、液晶光変調器10、および液晶光変調器10の上側に配置された偏光板(偏光子)81を備え、偏光板81の上方から光を照射されて、同じく偏光板81の上方に画像を表示する。液晶表示装置100はさらに、液晶光変調器10と偏光板81の間に位相差板83を備えることが好ましい。また、液晶光変調器10の画素の非開口部を遮光するように、格子状のブラックマトリクスを備えてもよい(図示せず)。フルカラー表示装置とする場合には、ブラックマトリクスと共にカラーフィルタを備える(図示せず)。カラーフィルタおよびブラックマトリクスは、液晶光変調器10の透明基板5上に配置されてもよいし、対向電極4の形成前に透明基板5の下面に形成されていてもよい。液晶表示装置100に照射する光は、外光やレーザー光等、用途に応じて選択される。
[Liquid crystal display device]
The liquid crystal light modulator 10 according to the first embodiment and its modification of the present invention is used in a liquid crystal display device like a general reflection type liquid crystal light modulator. As shown in FIG. 10, a liquid crystal display device 100 according to an embodiment of the present invention includes a liquid crystal light modulator 10 and a polarizing plate (polarizer) 81 arranged on the upper side of the liquid crystal light modulator 10. Light is emitted from above 81, and an image is also displayed above the polarizing plate 81. It is preferable that the liquid crystal display device 100 further includes a retardation plate 83 between the liquid crystal light modulator 10 and the polarizing plate 81. In addition, a lattice-shaped black matrix may be provided so as to shield the non-opening portions of the pixels of the liquid crystal light modulator 10 (not shown). In the case of a full-color display device, a color filter is provided together with the black matrix (not shown). The color filter and the black matrix may be arranged on the transparent substrate 5 of the liquid crystal light modulator 10, or may be formed on the lower surface of the transparent substrate 5 before forming the counter electrode 4. The light with which the liquid crystal display device 100 is irradiated is selected according to the application, such as external light or laser light.
偏光板81は、外部から入射された自然光を1つの偏光成分の光(1つの向きの直線偏光)として液晶光変調器10に入射するとともに、液晶光変調器10から出射した光から、前記の向きの偏光を透過して表示させる。液晶表示装置100においては、偏光板81は、透過軸を90°(Y方向)(吸収軸を0°)にして配置され、振動方向90°の直線偏光を透過させる。 The polarizing plate 81 makes natural light incident from the outside enter the liquid crystal light modulator 10 as light of one polarization component (linear polarization in one direction), and at the same time, from the light emitted from the liquid crystal light modulator 10, The polarized light of the direction is transmitted and displayed. In the liquid crystal display device 100, the polarizing plate 81 is arranged with its transmission axis at 90 ° (Y direction) (absorption axis at 0 °), and transmits linearly polarized light in the vibration direction of 90 °.
位相差板83は、液晶層20による光の位相差を補償するために設けられ、λ/2位相差板(1/2波長板)やλ/4位相差板(1/4波長板)が適用される。液晶は、その液晶分子の光学的異方性のために、液晶分子の向きによって屈折率が変化する。具体的には、液晶層20は、図4(a)に示すように液晶分子2が垂直方向のときには、偏光成分による位相差δが0であるのに対し、液晶分子2が傾斜していると位相差を生じる。ここでは、図4(b)に示すように液晶分子2が水平方向のときには、位相差δをλ/4とする。本実施形態においては、液晶層20に位相差が生じている状態で明表示されるので、角度による位相差変化を生じ、視野角が狭くなる。そこで、液晶層20による位相差を位相差板83で補償することが好ましい。ここでは、位相差板83は、λ/4位相差板とし、遅相軸を45°にして配置される。 The retardation plate 83 is provided to compensate for the retardation of light due to the liquid crystal layer 20, and is a λ / 2 retardation plate (1/2 wavelength plate) or a λ / 4 retardation plate (1/4 wavelength plate). Applied. Due to the optical anisotropy of the liquid crystal molecules, the refractive index of the liquid crystal changes depending on the orientation of the liquid crystal molecules. Specifically, in the liquid crystal layer 20, as shown in FIG. 4A, when the liquid crystal molecules 2 are in the vertical direction, the phase difference δ due to the polarization component is 0, whereas the liquid crystal molecules 2 are tilted. And a phase difference occurs. Here, when the liquid crystal molecules 2 are in the horizontal direction as shown in FIG. 4B, the phase difference δ is λ / 4. In the present embodiment, since the liquid crystal layer 20 is brightly displayed with a phase difference, the phase difference changes depending on the angle and the viewing angle becomes narrow. Therefore, it is preferable that the retardation plate 83 compensates for the retardation due to the liquid crystal layer 20. Here, the retardation plate 83 is a λ / 4 retardation plate and is arranged with the slow axis at 45 °.
(液晶表示装置の動作)
本実施形態に係る液晶表示装置の動作について説明する。まず、暗状態の画素1(図4(a)参照)における動作を説明する。上方から入射した自然光は、偏光板81によってY方向の直線偏光となり、この直線偏光が位相差板83によって、左回りの円偏光に変換される。この円偏光が、透明基板5および対向電極4を透過して、液晶層20に進入する。液晶層20は液晶分子2が垂直方向であるため、左回りの円偏光はそのままの状態で透過し、画素電極3に到達する。左回りの円偏光は、画素電極3で反射する際に右回りの円偏光となって、再び液晶層20を透過し、さらに対向電極4および透明基板5を透過して、位相差板83に進入する。位相差板83は、右回りの円偏光をX方向の直線偏光に変換するため、直線偏光が偏光板81で遮光されて出射しない。
(Operation of liquid crystal display device)
The operation of the liquid crystal display device according to this embodiment will be described. First, the operation of the pixel 1 in the dark state (see FIG. 4A) will be described. Natural light incident from above becomes linearly polarized light in the Y direction by the polarizing plate 81, and this linearly polarized light is converted by the retardation plate 83 into counterclockwise circularly polarized light. The circularly polarized light passes through the transparent substrate 5 and the counter electrode 4 and enters the liquid crystal layer 20. Since the liquid crystal molecules 2 are in the vertical direction in the liquid crystal layer 20, the counterclockwise circularly polarized light is transmitted as it is and reaches the pixel electrode 3. The left-handed circularly polarized light becomes right-handed circularly polarized light when reflected by the pixel electrode 3, again passes through the liquid crystal layer 20, and further passes through the counter electrode 4 and the transparent substrate 5 to the retardation plate 83. enter in. Since the retardation plate 83 converts the clockwise circularly polarized light into the linearly polarized light in the X direction, the linearly polarized light is shielded by the polarizing plate 81 and is not emitted.
次に、明状態の画素1(図4(b)参照)における動作を説明する。暗状態の画素1と同様に、液晶層20には上方から左回りの円偏光が進入し、液晶層20は左回りの円偏光をX方向の直線偏光に変換して透過させる。直線偏光は、画素電極3で反射する際に状態が変化せず、下方から再び液晶層20に進入する。そして、液晶層20はX方向の直線偏光を左回りの円偏光に戻し、位相差板83がY方向の直線偏光に変換するため、直線偏光が偏光板81を透過して出射する。 Next, the operation of the pixel 1 in the bright state (see FIG. 4B) will be described. Similar to the pixel 1 in the dark state, counterclockwise circularly polarized light enters the liquid crystal layer 20 from above, and the liquid crystal layer 20 converts the counterclockwise circularly polarized light into linearly polarized light in the X direction and transmits the linearly polarized light. The linearly polarized light does not change its state when reflected by the pixel electrode 3, and enters the liquid crystal layer 20 again from below. Then, the liquid crystal layer 20 returns the linearly polarized light in the X direction to the counterclockwise circularly polarized light, and the phase difference plate 83 converts it into the linearly polarized light in the Y direction. Therefore, the linearly polarized light passes through the polarizing plate 81 and is emitted.
このように、反射型の液晶光変調器10を備える液晶表示装置100は、1枚の偏光板81を備えて、自然光を入射して、明表示に選択した画素から光を取り出すことができる。さらに液晶表示装置100は、位相差板83を備えることにより、視野角を広く表示することができる。 As described above, the liquid crystal display device 100 including the reflection-type liquid crystal light modulator 10 includes the single polarizing plate 81 and allows natural light to enter and extract light from the pixel selected for bright display. Further, the liquid crystal display device 100 can display a wide viewing angle by including the retardation plate 83.
〔ホログラフィ装置〕
本発明の実施形態に係る液晶表示装置100は、ホログラフィ装置に使用することができる。図11に示すように、本発明の実施形態に係るホログラフィ装置200は、液晶表示装置100と、液晶表示装置100の液晶光変調器10を駆動する駆動部91と、液晶表示装置100に光を照射する光源装置92と、液晶表示装置100からの出射光を再生像VIとする出力光学系96を備える。駆動部91は、電界Eを発生させる電源を備え、外部からの信号により信号線71および走査線72を選択する。光源装置92は、レーザー光源93およびコリメータレンズ94を備え、液晶表示装置100に平行光を照射する。出力光学系96は、液晶表示装置100の寸法や再生する像VIの寸法等に応じて、レンズやマイクロレンズを二次元配列したレンズアレイを1ないし複数備える(図11では2つのレンズを示す)。
[Holography device]
The liquid crystal display device 100 according to the embodiment of the present invention can be used in a holography device. As shown in FIG. 11, the holography device 200 according to the embodiment of the present invention includes a liquid crystal display device 100, a driving unit 91 that drives the liquid crystal light modulator 10 of the liquid crystal display device 100, and a light to the liquid crystal display device 100. A light source device 92 for irradiating and an output optical system 96 for making the emitted light from the liquid crystal display device 100 into a reproduced image VI are provided. The drive unit 91 includes a power supply that generates an electric field E, and selects the signal line 71 and the scanning line 72 by a signal from the outside. The light source device 92 includes a laser light source 93 and a collimator lens 94, and irradiates the liquid crystal display device 100 with parallel light. The output optical system 96 includes one or a plurality of lens arrays in which lenses and microlenses are two-dimensionally arranged according to the size of the liquid crystal display device 100 and the size of the image VI to be reproduced (two lenses are shown in FIG. 11). .
図11に示すホログラフィ装置200は、入射光と出射光の光路が一致しないように、液晶表示装置100に入射光が少し傾斜して入射されるように光源装置92が配置され、これに合わせて出力光学系96が配置されている。液晶表示装置100の入射面に垂直に光を照射する(入射角0°)場合には、光源装置92または出力光学系96がビームスプリッタ(ハーフミラー)を備えて、入射光または出射光を反射させる構成とする。 In the holography device 200 shown in FIG. 11, the light source device 92 is arranged so that the incident light is incident on the liquid crystal display device 100 with a slight inclination so that the optical paths of the incident light and the emitted light do not coincide with each other. An output optical system 96 is arranged. When light is emitted perpendicularly to the incident surface of the liquid crystal display device 100 (incident angle 0 °), the light source device 92 or the output optical system 96 includes a beam splitter (half mirror) to reflect incident light or emitted light. Let it be configured to.
以上のように、本発明の第1実施形態およびその変形例に係る液晶光変調器によれば、微細化した画素を備え、かつ電界クロストークが抑制されるため、暗表示の画素に黒浮きを生じず、高コントラストに表示される液晶表示装置が得られる。そして、高精細な液晶表示装置を使用したホログラフィ装置によれば、明るい再生像が広い視域角で得られる。 As described above, according to the liquid crystal light modulators of the first embodiment of the present invention and the modified examples thereof, since the pixels are miniaturized and the electric field crosstalk is suppressed, black floating is caused in the dark display pixels. It is possible to obtain a liquid crystal display device which is displayed with high contrast without causing a problem. Then, according to the holography device using the high-definition liquid crystal display device, a bright reproduced image can be obtained with a wide viewing angle.
〔第2実施形態:液晶光変調器〕
第1実施形態およびその変形例に係る液晶光変調器は、対向電極の液晶層側の面全体が傾斜面であるため、暗表示の質を向上させようと対極電極の凸部を高く形成すると、画素の中心と開口部周縁とで画素電極−対向電極間距離の差が大きくなって、明表示の画素における輝度ムラが大きくなり、実効的な開口部が縮小される。そこで、第1実施形態と同様に暗表示の画素の黒浮きを防止しつつ、明表示の画素の輝度ムラを抑制する。以下、第2実施形態に係る液晶光変調器について説明する。第1実施形態(図1〜9参照)と同一の要素については同じ符号を付し、説明を省略する。
[Second Embodiment: Liquid Crystal Light Modulator]
In the liquid crystal light modulators according to the first embodiment and the modifications thereof, since the entire surface of the counter electrode on the liquid crystal layer side is an inclined surface, when the convex portion of the counter electrode is formed high in order to improve the quality of dark display. , The difference in the distance between the pixel electrode and the counter electrode between the center of the pixel and the peripheral edge of the opening becomes large, the brightness unevenness in the bright display pixel becomes large, and the effective opening is reduced. Therefore, as in the first embodiment, it is possible to prevent the black display of the dark display pixels and suppress the uneven brightness of the bright display pixels. The liquid crystal light modulator according to the second embodiment will be described below. The same elements as those in the first embodiment (see FIGS. 1 to 9) are designated by the same reference numerals, and the description thereof will be omitted.
図12に示すように、本発明の第2実施形態に係る液晶光変調器10Aは、対向電極(透明電極膜)4Cを除いて、図1および図2に示す第1実施形態に係る液晶光変調器10と同一の構造である。さらに対向電極4Cは、下面の形状が異なる以外は、第1実施形態の対向電極4と同一の構造である。 As shown in FIG. 12, the liquid crystal light modulator 10A according to the second embodiment of the present invention is the same as the liquid crystal light modulator according to the first embodiment shown in FIGS. 1 and 2 except for the counter electrode (transparent electrode film) 4C. It has the same structure as the modulator 10. Further, the counter electrode 4C has the same structure as the counter electrode 4 of the first embodiment except that the shape of the lower surface is different.
(対向電極)
対向電極4Cは、液晶層20に対面する下面が凹凸面であり、図13に下面を上に向けて示すように、四角錐台の4側面の等脚台形を内壁面とし、上底面を底面とする凹部が画素毎に形成されている。したがって、X方向、Y方向のそれぞれにおける画素間中心線(図13に一点鎖線で表す)上に凸稜線を有し、一方、画素中心を内包する水平面を有する。言い換えると、対向電極4Cの下面の凹凸は、第1実施形態と同様に、X方向、Y方向のそれぞれに沿った畝状の凸部4rを画素間に有し、この凸部4rの断面形状は、底辺を上(透明基板5の側)に向けた二等辺三角形となる。ただし、本実施形態では、凸部4rの幅wrX,wrYが、それぞれ画素長pX,pYよりも短く(pX>wrX、pY>wrY)、また、X,Y方向で同じ長さとする(wrX=wrY=wr)。
(Counter electrode)
In the counter electrode 4C, the lower surface facing the liquid crystal layer 20 is an uneven surface, and as shown in FIG. 13 with the lower surface facing upward, the isosceles trapezoid of the four sides of the truncated pyramid is the inner wall surface, and the upper bottom surface is the bottom surface. A concave portion is formed for each pixel. Therefore, it has a convex ridge line on the inter-pixel center line (represented by the alternate long and short dash line in FIG. 13) in each of the X direction and the Y direction, while having a horizontal plane including the pixel center. In other words, the unevenness on the lower surface of the counter electrode 4C has, similarly to the first embodiment, ridge-shaped convex portions 4r along the X direction and the Y direction between pixels, and the cross-sectional shape of the convex portion 4r. Is an isosceles triangle with the bottom side facing upward (the transparent substrate 5 side). However, in the present embodiment, the widths w rX and w rY of the convex portion 4r are shorter than the pixel lengths p X and p Y , respectively (p X > w rX , p Y > w rY ), and the widths are also in the X and Y directions. To have the same length (w rX = w rY = w r ).
本実施形態においても、対向電極4Cが、画素間中心で突出するように形成されていることにより、電界の漏れが抑制される(図7参照)。一方で、凸部4rが画素全体に形成されずに、対向電極4Cの下面が画素中央部に水平面を有しているので、凸部4rの高さhが大きくても開口部高低差haが小さく、明表示の画素内のムラが抑制される。特に好ましくは、凸部4rの幅wrが画素電極3,3の間隙lg以下(wr≦lg)、すなわち、凸部4rが非開口部に限定して設けられ、対向電極4Cの下面が開口部全体において水平面で開口部高低差haが0である。このような対向電極4Cによれば、凸部4rのアスペクト比が高くても、無電界時に、開口部における対向電極4Cの近傍の液晶分子2が傾斜しない。したがって、対向電極4Cや配向膜21の形成が困難にならない範囲で、凸部4rの高さhを大きく設計することができる。すなわち、第1実施形態と同様に、凸部4rのアスペクト比が1以下(h≦wr)であることが好ましい。また、凸部4rが間隙lgを超える幅wr(wr>lg)で開口部に及んで設けられる場合には、アスペクト比1/2以下(2h≦wr)であることがより好ましく、1/3以下(3h≦wr)であることがさらに好ましい。また、凸部4rは、X方向とY方向とで幅wrX,wrYが異なっていてもよい。 Also in the present embodiment, the counter electrode 4C is formed so as to project at the center between pixels, so that the leakage of the electric field is suppressed (see FIG. 7). On the other hand, since the convex portion 4r is not formed in the entire pixel and the lower surface of the counter electrode 4C has a horizontal plane in the central portion of the pixel, even if the height h of the convex portion 4r is large, the opening height difference h a Is small, and unevenness in bright display pixels is suppressed. Particularly preferably, the width w r of the convex portion 4r is less gap l g of pixel electrodes 3,3 (w r ≦ l g) , i.e., the convex portion 4r are provided only on the non-opening portion, the counter electrode 4C The lower surface is a horizontal surface over the entire opening and the height difference h a of the opening is 0. According to such a counter electrode 4C, even if the aspect ratio of the convex portion 4r is high, the liquid crystal molecules 2 in the vicinity of the counter electrode 4C in the opening portion do not tilt when there is no electric field. Therefore, the height h of the convex portion 4r can be designed to be large within a range where it is not difficult to form the counter electrode 4C and the alignment film 21. That is, similarly to the first embodiment, it is preferable that the aspect ratio of the convex portion 4r is 1 or less (h ≦ w r ). Also, when the convex portion 4r is provided span the opening with a width greater than the gap l g w r (w r> l g) , the more it is an aspect ratio less than 1/2 (2h ≦ w r) It is more preferably ⅓ or less (3 h ≦ w r ). The widths w rX and w rY of the convex portion 4r may be different in the X direction and the Y direction.
(液晶光変調器の変形例)
本実施形態に係る液晶光変調器10Aにおいても、対向電極4Cの下面は、X方向にのみ凹凸が形成されていてもよい。すなわち、図14に示すように、Y方向に沿った畝状の凸部4rを形成された対向電極4Dを適用することができる。また、図15に示すように、凸部4rの頂部にも水平面を備えて、断面形状を等脚台形としてもよい。このような対向電極4Eの凸部4rの頂部の幅は、幅wrよりも小さいものとし、凸部4rの傾斜面(対向電極4Eの下面)の勾配が2以下となるように、(wr−h)以下であることが好ましい。また、凸部4rの頂部の幅は、画素電極3,3の間隙lgよりも小さいことが好ましい。
(Modification of liquid crystal light modulator)
Also in the liquid crystal light modulator 10A according to the present embodiment, the lower surface of the counter electrode 4C may have unevenness only in the X direction. That is, as shown in FIG. 14, a counter electrode 4D having a ridge-shaped convex portion 4r along the Y direction can be applied. Further, as shown in FIG. 15, a horizontal surface may be provided on the top of the convex portion 4r so that the cross-sectional shape is an isosceles trapezoid. The width of the top portion of the convex portion 4r of the counter electrode 4E is smaller than the width w r , and the slope of the inclined surface of the convex portion 4r (the lower surface of the counter electrode 4E) is 2 or less (w It is preferably r− h) or less. The width of the top of the convex portion 4r is preferably smaller than the gap l g between the pixel electrodes 3 and 3.
さらに別の変形例として、図16に示すように、高アスペクト比で幅(wr1X,wr1Y)の狭い凸部4r1を、比較的アスペクト比が低く画素中心まで設けられた凸部4r2に積み重ねた2段構造の凸部4rを形成された対向電極4Fを適用することができる。凸部4r1は、画素間中心上に凸稜線を有し、幅wr1X,wr1Y(適宜まとめて、幅wr1)が画素長pX,pYよりも小さく(wr1X<pX、wr1Y<pY)、好ましくは画素電極3,3の間隙lg以下(wr1≦lg)、すなわち非開口部に限定して設けられる。凸部4r2は、第1実施形態の対向電極4(図5参照)の凸部4rのように、四角錐の4側面で構成され、画素中心に凹頂点を有する。対向電極4Fは、当該対向電極4Fおよび配向膜21の形成を困難にすることなく凸部4rの高さhを大きく設計することができて、電界の漏れを抑制する効果を高くし、かつ、開口部における下面の勾配が緩いので、無電界時に対向電極4Fの近傍の液晶分子2が傾斜しない。そのために、対向電極4Fは、凸部4r1のアスペクト比が1以下であることが好ましく、凸部4r2のアスペクト比が1/2以下(下面の勾配が1以下)であることが好ましく、1/3以下(下面の勾配が2/3以下)であることがより好ましい。 As yet another modified example, as shown in FIG. 16, a convex portion 4r 1 having a high aspect ratio and a narrow width (w r1X , w r1Y ) is provided to a convex portion 4r 2 having a relatively low aspect ratio and extending to the pixel center. It is possible to apply the counter electrode 4F having the two-step structure of the convex portion 4r stacked therein. The convex portion 4r 1 has a convex ridge line on the center between pixels, and the widths w r1X and w r1Y (collectively, width w r1 ) are smaller than the pixel lengths p X and p Y (w r1X <p X , w r1Y <p Y ), preferably less than or equal to the gap l g between pixel electrodes 3 and 3 (w r1 ≦ l g ), that is, limited to the non-opening portion. Like the protrusion 4r of the counter electrode 4 (see FIG. 5) of the first embodiment, the protrusion 4r 2 is composed of four side surfaces of a quadrangular pyramid and has a concave vertex at the pixel center. In the counter electrode 4F, the height h of the convex portion 4r can be designed to be large without making the formation of the counter electrode 4F and the alignment film 21 difficult, and the effect of suppressing the electric field leakage is enhanced, and Since the lower surface of the opening has a gentle slope, the liquid crystal molecules 2 in the vicinity of the counter electrode 4F do not tilt when there is no electric field. Therefore, in the counter electrode 4F, the convex portion 4r 1 preferably has an aspect ratio of 1 or less, and the convex portion 4r 2 preferably has an aspect ratio of 1/2 or less (lower surface gradient is 1 or less). It is more preferably 1/3 or less (the slope of the lower surface is 2/3 or less).
第2実施形態およびその変形例の対向電極4C,4D,4E,4Fは、第1実施形態と同様に、透明電極材料をナノインプリントリソグラフィとエッチングによって加工して形成することができる。 The counter electrodes 4C, 4D, 4E, and 4F of the second embodiment and its modifications can be formed by processing a transparent electrode material by nanoimprint lithography and etching, as in the first embodiment.
第2実施形態およびその変形例に係る液晶光変調器10Aは、第1実施形態に係る液晶光変調器10と同様に、液晶表示装置100に使用され(図10参照)、さらにこの液晶表示装置100は、ホログラフィ装置200に使用することができる(図11参照)。 The liquid crystal light modulator 10A according to the second embodiment and its modification is used in the liquid crystal display device 100 (see FIG. 10), similarly to the liquid crystal light modulator 10 according to the first embodiment, and further this liquid crystal display device. The 100 can be used in the holography device 200 (see FIG. 11).
以上のように、本発明の第2実施形態およびその変形例に係る液晶光変調器によれば、第1実施形態と同様に、微細化した画素を備えて、暗表示の画素に黒浮きを生じず、高コントラストに表示される液晶表示装置が得られ、さらに、実効的な開口率が広くなり、明表示の画素が高輝度となる。 As described above, according to the liquid crystal light modulators of the second embodiment and the modification thereof of the present invention, as in the first embodiment, the miniaturized pixels are provided, and the black floating appears in the dark display pixels. It is possible to obtain a liquid crystal display device in which a high-contrast display is performed without occurrence, and further, an effective aperture ratio is widened, and a bright display pixel has high brightness.
〔第3実施形態:液晶光変調器〕
第1、第2実施形態およびその変形例に係る液晶光変調器は、反射型の空間光変調器であるが、透過型の空間光変調器とすることもできる。以下、第3実施形態に係る液晶光変調器について説明する。第1、第2実施形態(図1〜16参照)と同一の要素については同じ符号を付し、説明を省略する。
[Third Embodiment: Liquid Crystal Light Modulator]
The liquid crystal light modulators according to the first and second embodiments and their modifications are reflective spatial light modulators, but they may be transmissive spatial light modulators. The liquid crystal light modulator according to the third embodiment will be described below. The same elements as those in the first and second embodiments (see FIGS. 1 to 16) are designated by the same reference numerals, and the description thereof will be omitted.
本発明の第3実施形態に係る液晶光変調器10Bは、図17に示すように、液晶層20、液晶層20を上下から挟む、対向電極(透明電極膜)4Eと画素毎に設けられた画素電極3A、画素電極3Aに接続する駆動回路7(図4参照)を上に備える透明基板5B、ならびに最上層の透明基板5Aを備える。液晶光変調器10Bはさらに、液晶層20の上下にそれぞれ接触して設けられた配向膜21,22、透明基板5B上でY方向に延設した信号線71ならびにX方向に延設した走査線72および共通電極線73A(適宜まとめて、配線71,72,73A)と、画素電極3Aおよび配線71,72,73Aの層間等を絶縁する絶縁層6を備える。本実施形態に係る液晶光変調器10Bは、下方から入射された光を透過して上方へ出射し、その際に選択された画素において光の偏光方向を変化させる透過型の空間光変調器である。そのため、液晶光変調器10Bにおいては、画素電極3Aが、光を透過するように透明電極材料で形成される。そして、Si基板70に代えて透明基板5Bを備え、透明基板5B上に駆動回路7(トランジスタ7t、蓄積容量7c)が形成される。また、液晶層20は、1回(片道で)透過した光を90°旋光させる厚さdであることが好ましい。 As shown in FIG. 17, the liquid crystal light modulator 10B according to the third embodiment of the present invention is provided for each pixel with a liquid crystal layer 20, a counter electrode (transparent electrode film) 4E sandwiching the liquid crystal layer 20 from above and below. The transparent substrate 5B is provided with the pixel electrode 3A, the drive circuit 7 (see FIG. 4) connected to the pixel electrode 3A, and the uppermost transparent substrate 5A. The liquid crystal light modulator 10B further includes alignment films 21 and 22 provided in contact with the upper and lower sides of the liquid crystal layer 20, a signal line 71 extending in the Y direction and a scanning line extending in the X direction on the transparent substrate 5B. 72 and the common electrode line 73A (collectively, the wirings 71, 72, 73A), and the insulating layer 6 that insulates the pixel electrode 3A and the layers 71, 72, 73A from each other. The liquid crystal light modulator 10B according to the present embodiment is a transmissive spatial light modulator that transmits light incident from below and emits it upward, and changes the polarization direction of light in the pixel selected at that time. is there. Therefore, in the liquid crystal light modulator 10B, the pixel electrode 3A is formed of a transparent electrode material so as to transmit light. A transparent substrate 5B is provided instead of the Si substrate 70, and the drive circuit 7 (transistor 7t, storage capacitor 7c) is formed on the transparent substrate 5B. Further, the liquid crystal layer 20 preferably has a thickness d for rotating the light transmitted once (one way) by 90 °.
対向電極4Eは、第2実施形態の変形例で説明した通りの形状である(図15参照)。本実施形態においては、被成膜面に凹凸を形成された透明基板5Aに、透明電極材料を一様な厚さに成膜して対向電極4Eが形成されている。画素電極3Aは、対向電極4Eと同様に、導電性酸化物で形成され、公知の方法により成膜、フォトリソグラフィおよびエッチング等により所望の平面視形状に加工される。本実施形態において、画素電極3Aは、トランジスタ7tを形成される領域を避けて形成され、矩形の1隅を切欠いた平面視形状とする。 The counter electrode 4E has the shape described in the modification of the second embodiment (see FIG. 15). In the present embodiment, the counter electrode 4E is formed by depositing a transparent electrode material in a uniform thickness on the transparent substrate 5A having a film-forming surface having irregularities. Like the counter electrode 4E, the pixel electrode 3A is formed of a conductive oxide and is processed into a desired plan view shape by film formation, photolithography, etching, or the like by a known method. In the present embodiment, the pixel electrode 3A is formed so as to avoid the region where the transistor 7t is formed, and has a rectangular shape in plan view with one corner cut away.
透明基板5A、および下側の透明基板5Bは、第1実施形態の透明基板5と同様に公知の透明基板材料が適用される。また、透明基板5Aは、前記したように対向電極4E側の面に凹凸が形成されるため、透明な樹脂を適用してもよく、あるいはガラス基板等に樹脂を積層してもよい。一方、透明基板5Bは、駆動回路7、特にトランジスタ7tの半導体材料を形成するための耐熱性を有する材料を適用する。 As the transparent substrate 5A and the lower transparent substrate 5B, a known transparent substrate material is applied similarly to the transparent substrate 5 of the first embodiment. Further, since the transparent substrate 5A has irregularities formed on the surface on the side of the counter electrode 4E as described above, a transparent resin may be applied, or a resin may be laminated on a glass substrate or the like. On the other hand, as the transparent substrate 5B, a material having heat resistance is used for forming the semiconductor material of the driving circuit 7, especially the transistor 7t.
トランジスタ7tは、薄膜トランジスタ(TFT)からなり、TFTの半導体材料として、酸化物半導体、アモルファスシリコン(a−Si)、多結晶シリコン(poly−Si)等が挙げられる。トランジスタ7tは、微細化のために、比較的高い電子移動度を示す酸化物半導体やpoly−Siを適用することが好ましい。液晶光変調器10Bにおいて、トランジスタ7tは画素の隅に配置され、この領域には光が入射しないように構成される。蓄積容量7cは、画素電極3Aの下の層間絶縁膜(絶縁層6)を、さらにその下に形成した共通電極線73Aと画素電極3Aとで挟んだ積層構造とする。ここでは、画素の開口率を低下させないように、共通電極線73Aが透明電極材料で形成されているが、配置等によっては金属電極材料を適用されていてもよい。信号線71および走査線72は、平面視で画素間(非開口部)に配置される。 The transistor 7t is composed of a thin film transistor (TFT), and examples of the semiconductor material of the TFT include oxide semiconductors, amorphous silicon (a-Si), and polycrystalline silicon (poly-Si). For miniaturization, the transistor 7t is preferably formed using an oxide semiconductor or poly-Si exhibiting a relatively high electron mobility. In the liquid crystal light modulator 10B, the transistor 7t is arranged at the corner of the pixel and is configured so that light does not enter this region. The storage capacitor 7c has a laminated structure in which the interlayer insulating film (insulating layer 6) under the pixel electrode 3A is sandwiched by the common electrode line 73A and the pixel electrode 3A formed thereunder. Here, the common electrode line 73A is formed of a transparent electrode material so as not to reduce the aperture ratio of the pixel, but a metal electrode material may be applied depending on the arrangement and the like. The signal line 71 and the scanning line 72 are arranged between pixels (non-opening portion) in a plan view.
(液晶光変調器の製造方法)
本実施形態に係る液晶光変調器は、公知の透過型の液晶光変調器と同様の製造方法において、対向電極の成膜前に、透明基板5Aの表面(下面)に凹凸を形成する工程を追加して製造することができる。液晶光変調器の製造方法は、透明基板5A上に対向電極4Eおよび上側の配向膜21を形成する対向基板工程と、透明基板5B上に駆動回路7、配線71,72,73A、画素電極3Aおよび下側の配向膜22を形成する回路基板工程と、を個別に行い、その後、これらの透明基板5Aと透明基板5Bを、配向膜21,22同士が対面するように重ね合わせ、間に液晶材料を封入して液晶層20を形成するセル組立工程を行って完成となる。セル組立工程は、第1実施形態と同様である。以下、対向基板工程および回路基板工程の詳細について一例を説明する。
(Method of manufacturing liquid crystal light modulator)
The liquid crystal light modulator according to the present embodiment is manufactured by a method similar to that of a known transmissive liquid crystal light modulator, and includes a step of forming unevenness on the surface (lower surface) of the transparent substrate 5A before forming the counter electrode. It can be additionally manufactured. The manufacturing method of the liquid crystal light modulator includes a counter substrate process of forming the counter electrode 4E and the upper alignment film 21 on the transparent substrate 5A, a driving circuit 7, wirings 71, 72, 73A, and a pixel electrode 3A on the transparent substrate 5B. And the circuit board step of forming the lower alignment film 22 are individually performed, and then the transparent substrate 5A and the transparent substrate 5B are superposed so that the alignment films 21 and 22 face each other, and the liquid crystal is interposed therebetween. The cell is completed by encapsulating materials and forming a liquid crystal layer 20. The cell assembling process is the same as in the first embodiment. Hereinafter, an example of the details of the counter substrate process and the circuit substrate process will be described.
対向基板工程について説明する。本実施形態においては、透明基板5Aの表面(下面)を加工して凹凸形状を形成する。透明基板5Aは、第1実施形態の対向電極4の形成と同様に、ナノインプリントリソグラフィとエッチングによって加工して形成することができる(図6参照)。あるいは、樹脂材料を適用して、金型で直接に凹凸を転写して成型することもできる。透明基板5Aの形成後、その凹凸面上に導電性酸化物を成膜して対向電極4Eを形成する。対向電極4E上に、第1実施形態と同様に、配向膜21を材料に応じた方法で均一な厚さに形成する。 The counter substrate process will be described. In this embodiment, the surface (lower surface) of the transparent substrate 5A is processed to form an uneven shape. The transparent substrate 5A can be formed by processing by nanoimprint lithography and etching, similarly to the formation of the counter electrode 4 of the first embodiment (see FIG. 6). Alternatively, it is also possible to apply a resin material and directly transfer the unevenness with a mold to perform molding. After forming the transparent substrate 5A, a conductive oxide film is formed on the uneven surface to form the counter electrode 4E. Similar to the first embodiment, the alignment film 21 is formed on the counter electrode 4E with a uniform thickness by a method depending on the material.
回路基板工程について説明する。透明基板5B上に非晶質Si(a−Si)をCVD法等で成膜し、600℃程度のアニール処理でa−Si膜をpoly−Siに結晶化する。poly−Si膜を加工して、トランジスタ7tのソースとドレインを形成する。その上に絶縁膜を成膜して、トランジスタ7tのゲート絶縁膜とする。ゲート絶縁膜上に、金属電極材料を成膜、加工して、トランジスタ7tのゲートおよび走査線72を形成する。また、透明電極材料を成膜、加工して共通電極線73Aを形成する。ゲートの上からトランジスタ7tのpoly−Si膜に不純物を注入する。次に、層間絶縁膜を成膜して、コンタクトホールを形成する。層間絶縁膜上に金属電極材料を成膜、加工して、信号線71を形成する。さらに層間絶縁膜を成膜して、コンタクトホールを形成する。層間絶縁膜上に透明電極材料を成膜、加工して、画素電極3Aを形成する。その上に、配向膜22を形成する。 The circuit board process will be described. Amorphous Si (a-Si) is formed on the transparent substrate 5B by a CVD method or the like, and the a-Si film is crystallized into poly-Si by annealing at about 600 ° C. The poly-Si film is processed to form the source and drain of the transistor 7t. An insulating film is formed thereon to serve as the gate insulating film of the transistor 7t. A metal electrode material is deposited and processed on the gate insulating film to form the gate of the transistor 7t and the scanning line 72. Further, a transparent electrode material is deposited and processed to form the common electrode line 73A. Impurities are implanted into the poly-Si film of the transistor 7t from above the gate. Next, an interlayer insulating film is formed and a contact hole is formed. A signal electrode 71 is formed by depositing and processing a metal electrode material on the interlayer insulating film. Further, an interlayer insulating film is formed and a contact hole is formed. A transparent electrode material is deposited and processed on the interlayer insulating film to form the pixel electrode 3A. The alignment film 22 is formed thereon.
本実施形態に係る液晶光変調器10Bの動作は、図7を参照して説明した第1実施形態と同様である。また、対向電極4Eに代えて、対向電極4,4A〜4D,4Fを適用することができる。 The operation of the liquid crystal light modulator 10B according to this embodiment is the same as that of the first embodiment described with reference to FIG. Further, instead of the counter electrode 4E, the counter electrodes 4, 4A to 4D, 4F can be applied.
〔液晶表示装置〕
本発明の第3実施形態に係る液晶光変調器10Bは、一般的な透過型の液晶光変調器と同様に液晶表示装置に使用される。図18に示すように、本発明の実施形態に係る液晶表示装置100Aは、液晶光変調器10B、ならびに、液晶光変調器10Bの上側に配置された偏光板(偏光子)81および下側に配置された偏光板(偏光子)82を備え、偏光板82の下方から光を照射されて、偏光板81の上方に画像を表示する。あるいは、液晶表示装置100Aは、上方から光を照射されて、下方に画像を表示することもできる。液晶表示装置100Aはさらに、液晶光変調器10Bと偏光板81,82とのそれぞれの間に位相差板83,84を備えることが好ましい。また、液晶光変調器10Bの画素の非開口部を遮光するように、格子状のブラックマトリクスを備えてもよい(図示せず)。フルカラー表示装置とする場合には、ブラックマトリクスと共にカラーフィルタを備える(図示せず)。カラーフィルタおよびブラックマトリクスは、液晶光変調器10Bの表示側に配置する。液晶表示装置100Aに照射する光は、外光やレーザー光等、用途に応じて選択される。
[Liquid crystal display device]
The liquid crystal light modulator 10B according to the third embodiment of the present invention is used in a liquid crystal display device like a general transmissive liquid crystal light modulator. As shown in FIG. 18, a liquid crystal display device 100A according to an embodiment of the present invention includes a liquid crystal light modulator 10B, a polarizing plate (polarizer) 81 arranged on the upper side of the liquid crystal light modulator 10B, and a lower side. A polarizing plate (polarizer) 82 arranged is provided, and light is irradiated from below the polarizing plate 82 to display an image above the polarizing plate 81. Alternatively, the liquid crystal display device 100A can be illuminated with light from above and display an image below. The liquid crystal display device 100A preferably further includes retardation plates 83 and 84 between the liquid crystal light modulator 10B and the polarizing plates 81 and 82, respectively. Further, a black matrix in a lattice shape may be provided so as to shield the non-opening portions of the pixels of the liquid crystal light modulator 10B (not shown). In the case of a full-color display device, a color filter is provided together with the black matrix (not shown). The color filter and the black matrix are arranged on the display side of the liquid crystal light modulator 10B. The light with which the liquid crystal display device 100A is irradiated is selected according to the application such as external light or laser light.
偏光板81,82は共に、液晶表示装置100の偏光板81と同様の構造であり、液晶表示装置100Aにおいては、互いにクロスニコル配置する。上側すなわち光の出射側の偏光板81は、透過軸を90°(Y方向)(吸収軸を0°)にして配置され、振動方向90°の直線偏光を透過させる。一方、下側の偏光板82は、透過軸を0°(X方向)(吸収軸を90°)にして配置され、振動方向0°の直線偏光を透過させる。位相差板83,84は共に、液晶表示装置100の位相差板83と同様の構造であり、同じくλ/4位相差板(1/4波長板)を適用する。位相差板83は遅相軸を45°にして、位相差板84は遅相軸を135°にして、それぞれ配置される The polarizing plates 81 and 82 both have the same structure as the polarizing plate 81 of the liquid crystal display device 100, and are arranged in crossed Nicols in the liquid crystal display device 100A. The polarizing plate 81 on the upper side, that is, on the light emitting side, is arranged with its transmission axis at 90 ° (Y direction) (absorption axis at 0 °) and transmits linearly polarized light in the vibration direction of 90 °. On the other hand, the lower polarizing plate 82 is arranged with its transmission axis at 0 ° (X direction) (absorption axis at 90 °), and transmits linearly polarized light having a vibration direction of 0 °. Both the retardation plates 83 and 84 have the same structure as the retardation plate 83 of the liquid crystal display device 100, and the same λ / 4 retardation plate (1/4 wavelength plate) is applied. The retardation plate 83 has a slow axis of 45 °, and the retardation plate 84 has a slow axis of 135 °.
(液晶表示装置の動作)
本実施形態に係る液晶表示装置の動作について説明する。まず、暗状態の画素1(図4(a)参照)における動作を説明する。下方から入射した自然光は、偏光板82によってX方向の直線偏光となり、この直線偏光が位相差板84によって、右回りの円偏光に変換される。この円偏光が、透明基板5Bおよび画素電極3A等を透過して、液晶層20に進入する。液晶層20は液晶分子2が垂直方向であるため、右回りの円偏光はそのままの状態で透過し、対向電極4Eおよび透明基板5Aを透過して、位相差板83に進入する。位相差板83は、右回りの円偏光をX方向の直線偏光に変換するため、直線偏光が偏光板81で遮光されて出射しない。
(Operation of liquid crystal display device)
The operation of the liquid crystal display device according to this embodiment will be described. First, the operation of the pixel 1 in the dark state (see FIG. 4A) will be described. The natural light incident from below becomes linearly polarized light in the X direction by the polarizing plate 82, and this linearly polarized light is converted by the retardation plate 84 into clockwise circularly polarized light. This circularly polarized light passes through the transparent substrate 5B, the pixel electrode 3A, etc. and enters the liquid crystal layer 20. Since the liquid crystal molecules 2 are in the vertical direction in the liquid crystal layer 20, the clockwise circularly polarized light is transmitted as it is, transmitted through the counter electrode 4E and the transparent substrate 5A, and enters the retardation plate 83. Since the retardation plate 83 converts the clockwise circularly polarized light into the linearly polarized light in the X direction, the linearly polarized light is shielded by the polarizing plate 81 and is not emitted.
次に、明状態の画素1(図4(b)参照)における動作を説明する。暗状態の画素1と同様に、液晶層20には下方から右回りの円偏光が進入し、ここでは、液晶層20は右回りの円偏光を左回りの円偏光に変換して透過させる。そして、位相差板83が左回りの円偏光をY方向の直線偏光に変換するため、直線偏光が偏光板81を透過して出射する。 Next, the operation of the pixel 1 in the bright state (see FIG. 4B) will be described. Similarly to the pixel 1 in the dark state, clockwise circularly polarized light enters the liquid crystal layer 20 from below, and here, the liquid crystal layer 20 converts the clockwise circularly polarized light into the counterclockwise circularly polarized light and transmits the circularly polarized light. Then, since the phase difference plate 83 converts the counterclockwise circularly polarized light into the linearly polarized light in the Y direction, the linearly polarized light passes through the polarizing plate 81 and is emitted.
このように、透過型の液晶光変調器10Bを備える液晶表示装置100Aは、2枚の偏光板81,82を両側に備えて、自然光を入射して、明表示に選択した画素から光を取り出すことができる。さらに液晶表示装置100Aは、位相差板83,84を備えることにより、視野角を広く表示することができる。なお、液晶光変調器10Bは、一方の面に反射膜を設けたり、透明基板5Bを反射基板としたりして、反射型の液晶光変調器として、液晶表示装置100(図10参照)に使用されてもよい。 As described above, the liquid crystal display device 100A including the transmissive liquid crystal light modulator 10B includes the two polarizing plates 81 and 82 on both sides, and allows natural light to enter to extract light from the pixel selected for bright display. be able to. Further, the liquid crystal display device 100A can display a wide viewing angle by including the retardation plates 83 and 84. The liquid crystal light modulator 10B is used in the liquid crystal display device 100 (see FIG. 10) as a reflection type liquid crystal light modulator by providing a reflection film on one surface or using the transparent substrate 5B as a reflection substrate. May be done.
〔ホログラフィ装置〕
本発明の実施形態に係る液晶表示装置100Aは、液晶表示装置100と同様に、図11に示すホログラフィ装置200に使用することができる。本実施形態では、光源装置92と出力光学系96が、間に液晶表示装置100Aを挟んで正対して配置される。
[Holography device]
Like the liquid crystal display device 100, the liquid crystal display device 100A according to the embodiment of the present invention can be used in the holography device 200 shown in FIG. In this embodiment, the light source device 92 and the output optical system 96 are arranged to face each other with the liquid crystal display device 100A interposed therebetween.
本発明の効果を確認するために、シミュレーションにより、本発明の第1、第2実施形態に係る液晶光変調器を模擬したサンプルの光出力特性を観察した。 In order to confirm the effect of the present invention, the light output characteristics of the samples simulating the liquid crystal light modulators according to the first and second embodiments of the present invention were observed by simulation.
サンプルは、共通の仕様として、下から順に、Si基板、SiO2膜、膜厚100nmのAl(画素電極)、垂直配向膜、VA液晶(液晶層)、垂直配向膜、ITO膜(対向電極)、ガラス基板とした。対向電極(ITO膜)の厚さは、最薄部で20nmとした。また、図19で座標平面上に示すように、画素サイズ(ピッチ)は1μm×2μm(pX=1μm、pY=2μm)とし、画素電極(同図に太線枠で表す)は0.58μm×1.58μm(lg=0.42μm)とした。サンプル毎に液晶層の厚さおよび対向電極の形状を変えて、シミュレーションを実行した。シミュレーション上、膜厚100nmのAl(画素電極)の反射率は100%とみなして計算した。 The samples have the same specifications in order from the bottom, Si substrate, SiO 2 film, Al (pixel electrode) having a film thickness of 100 nm, vertical alignment film, VA liquid crystal (liquid crystal layer), vertical alignment film, ITO film (counter electrode). , A glass substrate. The thickness of the counter electrode (ITO film) was 20 nm at the thinnest part. In addition, as shown on the coordinate plane in FIG. 19, the pixel size (pitch) is 1 μm × 2 μm (p X = 1 μm, p Y = 2 μm), and the pixel electrode (represented by a bold frame in the figure) is 0.58 μm. × was 1.58μm (l g = 0.42μm). The simulation was performed by changing the thickness of the liquid crystal layer and the shape of the counter electrode for each sample. In the simulation, the reflectance of Al (pixel electrode) having a film thickness of 100 nm was regarded as 100% for calculation.
(実施例1)
図5に示す対向電極(wrX=pX=1μm、wrY=pY=2μm)を備えた液晶光変調器(図1参照)のサンプルについて観察した。表1に示すように、液晶層の厚さ(画素中心における厚さ、セル厚d)を1μmとし、対向電極の凸部の高さ(高低差)hを100nmから900nmまで100nm刻みで変化させたサンプル(No.1〜9)、セル厚dを1.5μm、対向電極の凸部の高さhを500nmとしたサンプル(No.11)、セル厚dを2μm、対向電極の凸部の高さhを500nmとしたサンプル(No.12)を設定した。なお、対向電極の下面の稜線を、図19に破線で表す。
(Example 1)
A sample of the liquid crystal light modulator (see FIG. 1) provided with the counter electrode (w rX = p X = 1 μm, w rY = p Y = 2 μm) shown in FIG. 5 was observed. As shown in Table 1, the thickness of the liquid crystal layer (thickness at the pixel center, cell thickness d) was set to 1 μm, and the height (height difference) h of the convex portion of the counter electrode was changed from 100 nm to 900 nm in 100 nm steps. Samples (No. 1 to 9), a cell thickness d of 1.5 μm, a height h of the convex portion of the counter electrode was 500 nm (No. 11), a cell thickness d of 2 μm, and a convex portion of the counter electrode. A sample (No. 12) having a height h of 500 nm was set. The ridgeline on the lower surface of the counter electrode is shown by a broken line in FIG.
また、図8に示す対向電極(wrX=pX=1μm、wrY=0)を備えた液晶光変調器のサンプルについて観察した。セル厚dを1μm、対向電極の凸部の高さhを300nmとしたサンプル(No.10)を設定した。さらに、凸部のない厚さ20nmの対向電極(h=0、wr=0)を備えた液晶光変調器のサンプル(図34参照)を比較例1〜3として、セル厚dを1μm、1.5μm、2μm(Ref.1,2,3)に設定した。 Further, a sample of the liquid crystal light modulator provided with the counter electrode (w rX = p x = 1 μm, w rY = 0) shown in FIG. 8 was observed. A sample (No. 10) in which the cell thickness d was 1 μm and the height h of the convex portion of the counter electrode was 300 nm was set. Further, a liquid crystal light modulator sample (see FIG. 34) provided with a counter electrode (h = 0, w r = 0) having a thickness of 20 nm without a convex portion was used as Comparative Examples 1 to 3, and a cell thickness d was 1 μm. It was set to 1.5 μm and 2 μm (Ref. 1, 2, 3).
図19に示すように、対角線上に2画素ずつ、ON(印加電圧5V)、OFF(0V)として、液晶シミュレータ(LCDMaster、シンテック社製)を用いて、電位分布と液晶配向を求めた。さらに、サンプルの上方にクロスニコル配置した2枚の偏光板を介在させて波長633nmのレーザー光を入射したときの反射率の平面分布を求めた。 As shown in FIG. 19, the potential distribution and the liquid crystal alignment were obtained by using a liquid crystal simulator (LCD Master, manufactured by Shintec Co.) with ON (applied voltage 5V) and OFF (0V) for every two pixels on a diagonal line. Further, the plane distribution of the reflectance when the laser light with the wavelength of 633 nm was incident with the two polarizing plates arranged in the crossed Nicols above the sample interposed was obtained.
No.3(h=300nm)および比較例1について、電位分布と液晶配向を、図20および図21に示す。また、No.3、No.10、および比較例1について、反射率の二次元分布図を図22(a)、(b)、(c)に示す。No.11および比較例2について、電位分布と液晶配向を図23および図24に、反射率の二次元分布図を図25(a)、(b)に示す。また、No.3、No.10、No.11、No.12、および比較例1〜3について、反射率の分布を図26に示す。 No. 20 and 21 show the potential distribution and the liquid crystal alignment for 3 (h = 300 nm) and Comparative Example 1. In addition, No. 3, No. 22 (a), 22 (b) and 22 (c) are two-dimensional distribution charts of the reflectance of Sample No. 10 and Comparative Example 1. No. 11 and Comparative Example 2, potential distributions and liquid crystal orientations are shown in FIGS. 23 and 24, and reflectance two-dimensional distribution diagrams are shown in FIGS. 25 (a) and 25 (b). In addition, No. 3, No. 10, No. 11, No. FIG. 26 shows the reflectance distributions for No. 12 and Comparative Examples 1 to 3.
電位分布と液晶配向は、OFFとONの画素の各中心を通るX方向に沿った(Y=1.0μm、図19の一点鎖線上)断面におけるものを示し、さらに対向電極と画素電極を点線で表す。電位分布図の等電位線は、0.5V刻みであり、一部に電位(単位:V)を付す。反射率分布は、前記一点鎖線上の分布である。 The potential distribution and the liquid crystal orientation are shown in a cross section along the X direction passing through the centers of OFF and ON pixels (Y = 1.0 μm, on the one-dot chain line in FIG. 19), and the counter electrode and the pixel electrode are shown by dotted lines. It is represented by. The equipotential lines of the potential distribution chart are in steps of 0.5 V, and a part of the potential (unit: V) is attached. The reflectance distribution is the distribution on the dashed line.
No.1〜10および比較例1(h=0)より、暗表示(OFF)と明表示(ON)の各画素の中心(X=0.5μm、1.5μm)における反射率およびコントラスト比の凸部の高さ依存性のグラフを図27に示す。なお、明表示の画素における反射率は、線形グラフでも表す。 No. From 1 to 10 and Comparative Example 1 (h = 0), the convex portion of the reflectance and the contrast ratio at the center (X = 0.5 μm, 1.5 μm) of each pixel of dark display (OFF) and bright display (ON). FIG. 27 shows a graph of the height dependence of the. In addition, the reflectance in the pixel of bright display is also represented by a linear graph.
対向電極が平坦な比較例1では、図21に示すように暗表示の画素で電界クロストークを生じ、図22(c)に示すように暗表示の画素が十分に暗くならなかった。これに対して、対向電極に凸部が形成されているNo.3およびNo.10は、図20に示すように暗表示の画素で斜め方向、横方向の双方で電界クロストークが抑制され、図22(a)、(b)に示すように暗表示の画素が暗くなった。さらに、図26に示すように、対向電極の凸部の有無による暗表示の画素における反射率の違いは明らかである。また、図27に示すように、対向電極の凸部の高さhが大きいほど、暗表示の画素が暗くなって0%に近付いた。一方で、明表示の画素も暗くなったが、コントラスト比としては向上した。なお、No.3とNo.10とで、X方向における反射率の分布にほとんど違いが見られなかった。 In Comparative Example 1 in which the counter electrode was flat, electric field crosstalk occurred in the dark display pixel as shown in FIG. 21, and the dark display pixel did not become sufficiently dark as shown in FIG. 22C. On the other hand, in No. 3 in which the convex portion is formed on the counter electrode. 3 and No. No. 10 is a dark display pixel as shown in FIG. 20, in which electric field crosstalk is suppressed in both oblique and horizontal directions, and the dark display pixel is dark as shown in FIGS. 22 (a) and 22 (b). . Further, as shown in FIG. 26, it is clear that the difference in the reflectance in the dark display pixel depending on the presence or absence of the convex portion of the counter electrode. Further, as shown in FIG. 27, as the height h of the convex portion of the counter electrode was larger, the dark display pixel became darker and approached 0%. On the other hand, the pixels for bright display were also darkened, but the contrast ratio was improved. In addition, No. 3 and No. There was almost no difference between 10 and 10 in the distribution of reflectance in the X direction.
d=1.5μmのNo.11および比較例2についても、d=1μmのNo.3および比較例1と同様の傾向が確認された。ただし、比較例2は、図24および図25(b)に示すように、比較例1よりも電界クロストークが大きく、暗表示の画素が明るかった。そのため、対向電極の凸部の高さhがセル厚比でNo.3以上のNo.11でも、図23および図25(a)に示すように、暗表示の画素の電界クロストークが十分に抑制されず、比較例2よりは十分に暗いものの、No.3には及ばなかった。さらに、d=2μmのNo.12および比較例3では、電界クロストークがいっそう大きくなり、図26に示すように、対向電極に凸部を設けることによって一定の効果があるものの、暗表示の画素が十分に暗くならなかった。 No. of d = 1.5 μm. 11 and Comparative Example 2 as well. The same tendency as 3 and Comparative Example 1 was confirmed. However, in Comparative Example 2, as shown in FIGS. 24 and 25B, the electric field crosstalk was larger than that in Comparative Example 1, and the dark display pixels were bright. Therefore, the height h of the convex portion of the counter electrode is no. No. 3 or more. 23 and 25 (a), the electric field crosstalk of the dark display pixel was not sufficiently suppressed, and although it was sufficiently darker than Comparative Example 2, No. 11 was used. It did not reach 3. Further, No. of d = 2 μm. In Comparative Example 12 and Comparative Example 3, the electric field crosstalk was further increased, and as shown in FIG. 26, the provision of the convex portion on the counter electrode had a certain effect, but the dark display pixel was not sufficiently darkened.
ここで、図26に示すように、No.3、No.10、No.11、No.12は、明表示の画素において、中心(X=1.5μm)をピークとする反射率の位置依存性が比較例1〜3よりも大きかった。これは、対向電極の形状により、液晶層の厚さすなわち光路長が画素中心で最大になるような勾配を有するので、液晶分子の状態(向き)が同じであれば反射光の旋光角が画素中心寄りほど大きくなることによると推測される。さらに、セル厚dの大きいNo.11およびNo.12は、暗表示の画素においても、中心(X=0.5μm)をピークに反射率が高かった。なお、それぞれ同じセル厚dの比較例2,3は、反射率が画素中央でほぼ最小となる平坦な分布を示した。これは、対向電極の凸部の傾斜面が急(XZ面において45°)なために、無電界状態において、対向電極近傍の液晶分子が傾斜して配向し、特に、2面または4面の傾斜面で両側から挟まれている対向電極の凹頂点や凹稜線に近い領域、すなわち画素中心寄りの液晶分子が影響を受け易いことによると考えられる。また、前記したように、液晶層の厚さが勾配を有するので反射光の旋光角が画素中心寄りほど大きい。No.11およびNo.12は、電界クロストークが十分に抑制されずに画素中心でもある程度の液晶分子が漏れ電界で傾斜したと推測される。これらが合わさり、No.11およびNo.12は、暗表示の画素においても、画素中心に近いほど反射率が高いという位置依存性を示したと推測される。 Here, as shown in FIG. 3, No. 10, No. 11, No. In No. 12, in the pixel of bright display, the position dependency of the reflectance having the peak at the center (X = 1.5 μm) was larger than in Comparative Examples 1 to 3. This is because the shape of the counter electrode has a gradient such that the thickness of the liquid crystal layer, that is, the optical path length becomes maximum at the center of the pixel. It is presumed that the larger the distance from the center, the larger. Further, in No. 1 having a large cell thickness d 11 and No. In No. 12, even in the dark display pixel, the reflectance was high with the peak at the center (X = 0.5 μm). In addition, Comparative Examples 2 and 3 having the same cell thickness d each showed a flat distribution in which the reflectance was substantially minimum at the center of the pixel. This is because the inclined surface of the convex portion of the counter electrode is steep (45 ° in the XZ plane), so that liquid crystal molecules in the vicinity of the counter electrode are tilted and aligned in a non-electric field state. It is considered that this is because the region close to the concave apex or concave ridgeline of the counter electrode sandwiched from both sides by the inclined surface, that is, the liquid crystal molecules near the pixel center are easily affected. Further, as described above, since the thickness of the liquid crystal layer has a gradient, the optical rotation angle of the reflected light is larger toward the pixel center. No. 11 and No. It is presumed that in No. 12, the electric field crosstalk was not sufficiently suppressed and the liquid crystal molecules were inclined to some extent even at the pixel center due to the leakage electric field. When these are combined, No. 11 and No. It is presumed that No. 12 exhibited the position dependency that the reflectance was higher as it was closer to the pixel center even in the dark display pixel.
(実施例2)
図13に示す対向電極を備えた液晶光変調器(図12参照)の、セル厚dを1μm、対向電極の凸部の高さhを300nmとして、幅wr(=wrX=wrY)を300nm、400nm、600nmとしたサンプル(No.13,14,15)を設定した(表1参照)。前記実施例1と同様に、電位分布と液晶配向、反射率の平面分布を求めた。No.13,14,15について、電位分布と液晶配向を図28,29,30に、反射率の二次元分布図を図31(a)、(b)、(c)に示す。
(Example 2)
In a liquid crystal light modulator having a counter electrode shown in FIG. 13 (see FIG. 12), the cell thickness d is 1 μm, the height h of the convex portion of the counter electrode is 300 nm, and the width w r (= w rX = w rY ). Samples (Nos. 13, 14, 15) having a thickness of 300 nm, 400 nm, and 600 nm were set (see Table 1). In the same manner as in Example 1, the potential distribution, the liquid crystal orientation, and the planar distribution of reflectance were obtained. No. 28, 29, and 30 show potential distributions and liquid crystal orientations, and FIGS. 31 (a), 31 (b), and 31 (c) show reflectance two-dimensional distributions.
No.13,14,15、No.3(wr=1μm)、および比較例1(wr=0)について、反射率の分布を図32(a)に示し、また、明表示の画素(X=1.0〜2.0μm)における反射率の分布を、画素中心(X=1.5μm)を1に換算して図32(b)に示す。また、前記実施例1と同様に、暗表示(OFF)と明表示(ON)の各画素の中心(X=0.5μm、1.5μm)における反射率およびコントラスト比の凸部の幅依存性のグラフを図33に示す。なお、明表示の画素における反射率は、線形グラフでも表す。 No. 13, 14, 15, No. 3 (w r = 1μm), and Comparative Example 1 (w r = 0), the distribution of the reflectance shown in FIG. 32 (a), also, the bright display of the pixel (X = 1.0 to 2.0 [mu] m) FIG. 32B shows the distribution of reflectance at the pixel center (X = 1.5 μm) converted to 1. Further, as in the first embodiment, the width dependence of the convex portion of the reflectance and the contrast ratio at the center (X = 0.5 μm, 1.5 μm) of each pixel of dark display (OFF) and bright display (ON). The graph of is shown in FIG. In addition, the reflectance in the pixel of bright display is also represented by a linear graph.
図28〜30および図20に示すように、対向電極の凸部の幅wrを狭く形成しても、電界クロストークの抑制の効果にほとんど違いがなかった。そして、No.13,14,15は、画素中央に液晶層の厚いまとまった領域を有するので、図31および図32に示すように、明表示の画素の明るい領域が、No.3,10(図22(a)、(b)参照)よりも広かった。特に、図32(b)に示すように、対向電極の凸部の幅wrが画素電極の間隙lgと同等以下のNo.13,14は、比較例1以上に明るい領域が広かった。一方で、図32(a)および図33に示すように、対向電極の凸部の幅wrが狭いほど、暗表示の画素において中心(X=0.5μm)の反射率が高くなり、コントラストが低下した。ただし、No.13,14,15は、開口部における周縁では反射率が十分に低く、画素の開口部全体としては十分に暗く表示された。これは、液晶層において、厚さ方向中心部等、画素電極や対向電極の表面の配向膜からの距離の離れた領域では、配向膜による配向規制力が弱く、液晶分子が起立した状態を維持し難く、弱い電界でも向きが変化し易いことによると推測される。対向電極の凸部のない領域は、画素電極−対向電極間距離が最大(=セル厚d)となり、厚さ方向中心部で、画素電極、対向電極のいずれの側の配向膜からも配向規制され難い。ただし、画素の開口部における周縁等は、対向電極の凸部の傾斜面上の配向膜からの距離が近いので、配向規制力が十分に働く。したがって、対向電極の凸部の幅wrが狭いほど、配向規制力の弱い領域が画素中心で広くなって、明表示の画素からの弱い漏れ電界で傾斜する液晶分子が多くなり、反射率が高くなったと考えられる。 As shown in FIGS. 28 to 30 and FIG. 20, even if the width w r of the convex portion of the counter electrode was formed to be small, there was almost no difference in the effect of suppressing the electric field crosstalk. And No. Since each of the pixels 13, 14, and 15 has a thick region of the liquid crystal layer in the center of the pixel, as shown in FIGS. 3, 10 (see FIGS. 22 (a) and 22 (b)). In particular, as shown in FIG. 32 (b), the width of the convex portion of the counter electrode w r is equal to or smaller than the gap l g of the pixel electrode. In Nos. 13 and 14, the bright region was wider than that in Comparative Example 1. On the other hand, as shown in FIGS. 32A and 33, the narrower the width w r of the convex portion of the counter electrode is, the higher the reflectance at the center (X = 0.5 μm) in the dark display pixel is, and the contrast is increased. Has dropped. However, No. Nos. 13, 14, and 15 had sufficiently low reflectance at the peripheral edge of the opening, and the entire opening of the pixel was displayed dark. In the liquid crystal layer, the alignment regulating force of the alignment film is weak and the liquid crystal molecules remain upright in areas such as the center of the thickness direction where the distance from the alignment film on the surface of the pixel electrode or counter electrode is large. It is difficult to do so, and it is presumed that the direction tends to change even in a weak electric field. The distance between the pixel electrode and the counter electrode is maximum (= cell thickness d) in the region of the counter electrode where there is no protrusion, and the alignment control is performed from the alignment film on either side of the pixel electrode and the counter electrode at the center in the thickness direction. Hard to be done. However, since the peripheral edge of the opening of the pixel is close to the alignment film on the inclined surface of the convex portion of the counter electrode, the alignment regulating force works sufficiently. Therefore, as the width w r of the convex portion of the counter electrode is narrower, the region where the alignment control force is weaker is wider at the pixel center, and the number of liquid crystal molecules tilted by the weak leakage electric field from the bright display pixel is increased and the reflectance is increased. It is considered to have become higher.
以上、本発明の液晶光変調器、液晶表示装置、およびホログラフィ装置を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。 Although the respective embodiments for implementing the liquid crystal light modulator, the liquid crystal display device, and the holography device of the present invention have been described above, the present invention is not limited to these embodiments and is shown in the claims. Various changes can be made within the range.
100,100A 液晶表示装置
10,10A,10B 液晶光変調器
1 液晶光学素子、画素
200 ホログラフィ装置
20 液晶層
2 液晶分子
21,22 配向膜
3,3A 画素電極
4,4A〜4F 対向電極(透明電極膜)
5,5A 透明基板
5B 透明基板
6 絶縁層
70 Si基板(回路基板)
7 駆動回路
81,82 偏光板(偏光子)
83,84 位相差板
100,100A Liquid crystal display device 10,10A, 10B Liquid crystal light modulator 1 Liquid crystal optical element, pixel 200 Holography device 20 Liquid crystal layer 2 Liquid crystal molecules 21,22 Alignment film 3,3A Pixel electrode 4,4A-4F Counter electrode (transparent electrode) film)
5, 5A transparent substrate 5B transparent substrate 6 insulating layer 70 Si substrate (circuit board)
7 Drive circuit 81,82 Polarizing plate (polarizer)
83,84 Retardation plate
Claims (13)
前記液晶層の厚さがx方向に隣り合う画素間中心で最小となるように、前記透明電極膜は、下面に、x方向に傾斜した傾斜面を有する凸部がy方向に沿って形成されていることを特徴とする液晶光変調器。 A transparent substrate, a transparent electrode film, a liquid crystal layer, a pixel electrode provided for each pixel two-dimensionally arranged in the x direction and the y direction, and a circuit board having a drive circuit connected to each of the pixel electrodes, A liquid crystal light modulator including in order from the top,
A protrusion having an inclined surface inclined in the x direction is formed on the lower surface of the transparent electrode film so as to minimize the thickness of the liquid crystal layer at the center between pixels adjacent to each other in the x direction. A liquid crystal light modulator characterized in that.
前記液晶層の厚さが隣り合う画素間中心で最小となるように、前記透明電極膜は、下面に、傾斜面を有する凸部が形成されていると共に、前記凸部に囲まれた凹部が前記画素毎に設けられていることを特徴とする液晶光変調器。 A transparent substrate, a transparent electrode film, a liquid crystal layer, a pixel electrode provided for each pixel two-dimensionally arranged in the x direction and the y direction, and a circuit board having a drive circuit connected to each of the pixel electrodes, A liquid crystal light modulator including in order from the top,
In order to minimize the thickness of the liquid crystal layer between adjacent pixels, the transparent electrode film has a convex portion having an inclined surface on the lower surface, and a concave portion surrounded by the convex portion is formed. A liquid crystal light modulator provided for each pixel.
前記画素電極が金属電極材料からなる請求項1ないし請求項8のいずれか一項に記載の液晶光変調器。 The circuit board includes the drive circuit formed of crystalline silicon,
9. The liquid crystal light modulator according to claim 1, wherein the pixel electrode is made of a metal electrode material.
前記画素電極が透明電極材料からなる請求項1ないし請求項8のいずれか一項に記載の液晶光変調器。 The circuit board includes a transparent substrate, and the drive circuit formed of a thin film transistor on the substrate,
9. The liquid crystal light modulator according to claim 1, wherein the pixel electrode is made of a transparent electrode material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018196241A JP7165556B2 (en) | 2018-10-17 | 2018-10-17 | Liquid crystal optical modulators, liquid crystal display devices, and holographic devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018196241A JP7165556B2 (en) | 2018-10-17 | 2018-10-17 | Liquid crystal optical modulators, liquid crystal display devices, and holographic devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020064192A true JP2020064192A (en) | 2020-04-23 |
JP7165556B2 JP7165556B2 (en) | 2022-11-04 |
Family
ID=70388281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018196241A Active JP7165556B2 (en) | 2018-10-17 | 2018-10-17 | Liquid crystal optical modulators, liquid crystal display devices, and holographic devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7165556B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023095902A1 (en) * | 2021-11-29 | 2023-06-01 | 大日本印刷株式会社 | Liquid crystal alignment member for spatial light phase modulation, spatial light modulation element and stereoscopic display device |
KR20230091371A (en) * | 2021-12-16 | 2023-06-23 | 주식회사 셀코스 | Spatial light modulator and method of fabricating the same |
WO2024114075A1 (en) * | 2022-11-30 | 2024-06-06 | 京东方科技集团股份有限公司 | Display panel and preparation method therefor, and display apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032826A (en) * | 1989-05-31 | 1991-01-09 | Toshiba Corp | Liquid crystal display element |
JPH0377921A (en) * | 1989-08-21 | 1991-04-03 | Mitsubishi Electric Corp | Tft active matrix liquid crystal panel |
JPH05113578A (en) * | 1991-10-21 | 1993-05-07 | Sharp Corp | Active matrix type display device |
JPH1048631A (en) * | 1996-07-30 | 1998-02-20 | Sharp Corp | Substrate for liquid crystal display device and its production and liquid crystal display device formed by using the same |
JP2000305105A (en) * | 1999-04-19 | 2000-11-02 | Matsushita Electric Ind Co Ltd | Liquid crystal display element |
JP2001133750A (en) * | 1999-08-20 | 2001-05-18 | Seiko Epson Corp | Electrooptical device |
US20060221287A1 (en) * | 2005-03-31 | 2006-10-05 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device and method of fabricating the same |
JP2017518539A (en) * | 2014-05-16 | 2017-07-06 | トゥー ツリーズ フォトニクス リミテッド | Imaging device for moving virtual images |
-
2018
- 2018-10-17 JP JP2018196241A patent/JP7165556B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH032826A (en) * | 1989-05-31 | 1991-01-09 | Toshiba Corp | Liquid crystal display element |
JPH0377921A (en) * | 1989-08-21 | 1991-04-03 | Mitsubishi Electric Corp | Tft active matrix liquid crystal panel |
JPH05113578A (en) * | 1991-10-21 | 1993-05-07 | Sharp Corp | Active matrix type display device |
JPH1048631A (en) * | 1996-07-30 | 1998-02-20 | Sharp Corp | Substrate for liquid crystal display device and its production and liquid crystal display device formed by using the same |
JP2000305105A (en) * | 1999-04-19 | 2000-11-02 | Matsushita Electric Ind Co Ltd | Liquid crystal display element |
JP2001133750A (en) * | 1999-08-20 | 2001-05-18 | Seiko Epson Corp | Electrooptical device |
US20060221287A1 (en) * | 2005-03-31 | 2006-10-05 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device and method of fabricating the same |
JP2017518539A (en) * | 2014-05-16 | 2017-07-06 | トゥー ツリーズ フォトニクス リミテッド | Imaging device for moving virtual images |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023095902A1 (en) * | 2021-11-29 | 2023-06-01 | 大日本印刷株式会社 | Liquid crystal alignment member for spatial light phase modulation, spatial light modulation element and stereoscopic display device |
KR20230091371A (en) * | 2021-12-16 | 2023-06-23 | 주식회사 셀코스 | Spatial light modulator and method of fabricating the same |
KR102577874B1 (en) | 2021-12-16 | 2023-09-13 | 주식회사 셀코스 | Spatial light modulator and method of fabricating the same |
WO2024114075A1 (en) * | 2022-11-30 | 2024-06-06 | 京东方科技集团股份有限公司 | Display panel and preparation method therefor, and display apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP7165556B2 (en) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110673412B (en) | Display panel and display device | |
JP3778179B2 (en) | Liquid crystal display device, method for manufacturing liquid crystal display device, electronic device | |
KR100424601B1 (en) | Reflective type liquid crystal display device | |
TWI284216B (en) | LCD device and electronic machine | |
TW200415404A (en) | LCD device and electronic machine | |
JP7165556B2 (en) | Liquid crystal optical modulators, liquid crystal display devices, and holographic devices | |
JP7528316B2 (en) | Display device | |
JP2014212191A (en) | Semiconductor device, electrooptical device, method of manufacturing semiconductor device, method of manufacturing electrooptical device, and electronic equipment | |
TW200428074A (en) | LCD device and electronic machine | |
JP5641899B2 (en) | Liquid crystal display device and manufacturing method thereof | |
CN110221499A (en) | The LCoS micro-display of low edge field crosstalk | |
US20110221990A1 (en) | Display device and method of manufacturing the same | |
KR100757789B1 (en) | Reflective type liquid crystal device | |
TW201003204A (en) | Liquid crystal display device and electronic apparatus | |
JP2018101066A (en) | Liquid crystal device, method for manufacturing liquid crystal device, and electronic apparatus | |
US11480836B2 (en) | Liquid crystal on silicon device with microlens | |
TW200530679A (en) | Liquid crystal display device and electronic equipment | |
JP2009288483A (en) | Liquid crystal device, manufacturing method thereof, and electronic apparatus | |
JP4517624B2 (en) | Liquid crystal display device, method for manufacturing liquid crystal display device, electronic device | |
JPH08160427A (en) | Liquid crystal display device and its device | |
JP2006209087A (en) | Liquid crystal display apparatus | |
JP2019144423A (en) | Liquid crystal display element and spatial optical modulator | |
JP7564729B2 (en) | Liquid crystal light modulator, liquid crystal display device, and stereoscopic image display device | |
JP4613430B2 (en) | Liquid crystal device and projection display device | |
JP2015206926A (en) | liquid crystal device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221024 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7165556 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |