JP2020062598A - Membrane element, membrane separation equipment and membrane element manufacturing method - Google Patents

Membrane element, membrane separation equipment and membrane element manufacturing method Download PDF

Info

Publication number
JP2020062598A
JP2020062598A JP2018195476A JP2018195476A JP2020062598A JP 2020062598 A JP2020062598 A JP 2020062598A JP 2018195476 A JP2018195476 A JP 2018195476A JP 2018195476 A JP2018195476 A JP 2018195476A JP 2020062598 A JP2020062598 A JP 2020062598A
Authority
JP
Japan
Prior art keywords
membrane
membrane element
melting point
yarn
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018195476A
Other languages
Japanese (ja)
Other versions
JP7228361B2 (en
Inventor
茂之 森
Shigeyuki Mori
茂之 森
好男 松崎
Yoshio Matsuzaki
好男 松崎
前田 潤
Jun Maeda
潤 前田
泰弘 大川
Yasuhiro Okawa
泰弘 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018195476A priority Critical patent/JP7228361B2/en
Publication of JP2020062598A publication Critical patent/JP2020062598A/en
Application granted granted Critical
Publication of JP7228361B2 publication Critical patent/JP7228361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide a membrane element which can easily perform sealing of an end edge part.SOLUTION: There is provided a membrane element 12 in which a filtration membrane 22 and a passage material 21 are joined and which has plural end edge parts 12a, 12b. The passage material 21 comprises a knitted fabric in which threads are knitted in a three-dimensional structure and has a gap 32 in which a permeate flows therein. The threads constituting the passage material 21 have plural low melting point threads 37 and plural high melting point threads 38 of which softening points are different. The plural melting point threads 37, which have been heated at a heating temperature, which is a softening point of the low melting point thread 37 or more, are molten, whereby the end edge parts 12a, 12b of the passage material 21 are deposited and sealed.SELECTED DRAWING: Figure 8

Description

本発明は、例えば膜分離活性汚泥法(MBR)と称される分野で汚泥と処理水との分離のために用いられる膜エレメント、膜エレメントを備えた浸漬型の膜分離機器および膜エレメントの製造方法に関するものである。   INDUSTRIAL APPLICABILITY The present invention relates to a membrane element used for separating sludge from treated water in a field called, for example, a membrane separation activated sludge method (MBR), a submerged membrane separation apparatus including the membrane element, and production of the membrane element. It is about the method.

従来、この種の膜エレメントとしては、例えば図15,図16に示すように、第一ろ過膜111と、第二ろ過膜112と、これら両ろ過膜111,112の間に設けられた排液織布113と、第一ろ過膜111と排液織布113とを接着する接着性ネット114と、第二ろ過膜112と排液織布113とを接着する接着性ネット115とを有する膜エレメント116がある。尚、排液織布113は、ループを形成するように編んだ三次元構造のスペーサ布地(スペーサーファブリック)である。   Conventionally, as this type of membrane element, as shown in, for example, FIG. 15 and FIG. 16, a first filtration membrane 111, a second filtration membrane 112, and a drainage liquid provided between both filtration membranes 111 and 112. Membrane element having woven cloth 113, adhesive net 114 for adhering first filtration membrane 111 and drainage woven cloth 113, and adhesive net 115 for adhering second filtration membrane 112 and drainage woven cloth 113 There is 116. The drainage cloth 113 is a spacer cloth having a three-dimensional structure knitted so as to form a loop.

第一ろ過膜111と第二ろ過膜112との間に排液織布113と接着性ネット114,115とを積層して、加熱ロールで圧延することにより、接着性ネット114,115が一時的に融解し、第一接着性ネット114を介して第一ろ過膜111と排液織布113とが接着されるとともに、第二接着性ネット115を介して第二ろ過膜112と排液織布113とが接着され、膜エレメント116が完成する。   The drainage woven fabric 113 and the adhesive nets 114 and 115 are laminated between the first filtration membrane 111 and the second filtration membrane 112, and the adhesive nets 114 and 115 are temporarily rolled by rolling with a heating roll. And the first filtering membrane 111 and the drainage woven cloth 113 are bonded to each other via the first adhesive net 114, and the second filtering membrane 112 and the drainage woven cloth are bonded to each other via the second adhesive net 115. 113 is adhered to complete the membrane element 116.

尚、上記のような膜エレメントは例えば下記特許文献1に記載されている。   The membrane element as described above is described, for example, in Patent Document 1 below.

特表2011−519716Special table 2011-519716

しかしながら上記の従来形式では、図15に示すように、膜エレメント116の端縁部117を密封処理する場合、端縁部117に接着剤を塗布したり、或いは、端縁部117を糸で機械縫いして端縁部117を封止している。このため、膜エレメント116の端縁部117を密封処理するのに手間を要するといった問題がある。   However, in the above conventional type, as shown in FIG. 15, when sealing the edge 117 of the membrane element 116, an adhesive is applied to the edge 117 or the edge 117 is machined with a thread. The edge 117 is sewn to seal it. For this reason, there is a problem that it takes time to seal the edge 117 of the membrane element 116.

本発明は、端縁部の密封処理を容易に行うことが可能な膜エレメント、膜分離機器および膜エレメントの製造方法を提供することを目的とする。   It is an object of the present invention to provide a membrane element, a membrane separation device, and a method of manufacturing a membrane element, which can easily perform a sealing process on an edge portion.

上記目的を達成するために、本第1発明は、ろ過膜と流路材とが接合され、複数の端縁部を有する膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
流路材を構成する糸は軟化点の異なる複数の低融点糸と複数の高融点糸とを有し、
低融点糸の軟化点以上の加熱温度で加熱された複数の低融点糸が溶融することにより、流路材の少なくともいずれかの端縁部が溶着され封止されているものである。
In order to achieve the above object, the first aspect of the present invention is a membrane element in which a filtration membrane and a flow path member are joined, and which has a plurality of edge portions,
The flow path material is made of a knitted fabric in which threads are knitted into a three-dimensional structure, and has a void inside which the permeated liquid that has permeated the filtration membrane flows,
The yarn constituting the flow path member has a plurality of low melting point yarns and a plurality of high melting point yarns having different softening points,
By melting a plurality of low-melting-point yarns heated at a heating temperature equal to or higher than the softening point of the low-melting-point yarns, at least one edge portion of the channel material is welded and sealed.

これによると、膜エレメントの端縁部を流路材の低融点糸の軟化点以上の加熱温度で加熱することにより、流路材の端縁部の低融点糸が溶融し、膜エレメントの端縁部が流路材の溶融した低融点糸の樹脂で溶着され塞がれて封止される。これにより、膜エレメントの端縁部の密封処理を容易に行うことができる。   According to this, by heating the edge portion of the membrane element at a heating temperature equal to or higher than the softening point of the low melting point yarn of the channel material, the low melting point yarn of the edge portion of the channel material melts, and the edge of the membrane element ends. The edge portion is welded and closed with the resin of the low melting point thread of the flow path material to be sealed. Thereby, the sealing process of the edge portion of the membrane element can be easily performed.

本第2発明における膜エレメントは、流路材は、ろ過膜との接合面を形成する複数のフェイス糸と、フェイス糸に結合する複数のパイル糸とを有し、
透過液が流れる空隙は複数のパイル糸間に形成され、
パイル糸は低融点糸と高融点糸とを有しているものである。
In the membrane element according to the second aspect of the present invention, the flow path member has a plurality of face yarns that form a joint surface with the filtration membrane, and a plurality of pile yarns that are bonded to the face yarns.
Voids that allow permeate to flow are formed between multiple pile threads,
The pile yarn has a low melting point yarn and a high melting point yarn.

これによると、膜エレメントの端縁部を流路材の低融点糸の軟化点以上の加熱温度で加熱することにより、流路材の端縁部におけるパイル糸の低融点糸が溶融し、膜エレメントの端縁部が流路材の溶融した低融点糸の樹脂で溶着され塞がれて封止される。   According to this, by heating the edge portion of the membrane element at a heating temperature equal to or higher than the softening point of the low melting point yarn of the channel material, the low melting point yarn of the pile yarn at the edge portion of the channel material melts, The edge portion of the element is welded and closed with the resin of the low melting point thread of the flow path material to be sealed.

また、パイル糸の高融点糸は低融点糸よりも軟化し難いため、流路材にろ過膜を熱間圧延により接合する際、流路材が潰れて流路材内の透過液が流れる空隙が無くなってしまうことはない。これにより、流路材の内部における透過液の流れが阻害されることはない。   In addition, since the high melting point yarn of the pile yarn is less likely to be softened than the low melting point yarn, when the filtration membrane is joined to the channel material by hot rolling, the channel material is crushed and the permeated liquid in the channel material flows. Does not disappear. As a result, the flow of the permeated liquid inside the flow path member is not hindered.

本第3発明における膜エレメントは、パイル糸は低融点糸と高融点糸とを撚り合わせたマルチフィラメント糸である。   In the membrane element according to the third aspect of the present invention, the pile yarn is a multifilament yarn in which a low melting point yarn and a high melting point yarn are twisted together.

本第4発明における膜エレメントは、低融点糸の少なくとも一部は、芯材と、芯材を覆う鞘材とで形成され、
鞘材は高融点糸の軟化点よりも低い軟化点を有し、
芯材は鞘材の軟化点よりも高い軟化点を有するものである。
In the membrane element according to the fourth aspect of the present invention, at least a part of the low melting point yarn is formed of a core material and a sheath material covering the core material,
The sheath material has a softening point lower than that of the high melting point yarn,
The core material has a softening point higher than that of the sheath material.

これによると、膜エレメントの端縁部を流路材の低融点糸の鞘材の軟化点以上の加熱温度で加熱することにより、流路材の端縁部における低融点糸の鞘材が溶融し、膜エレメントの端縁部が流路材の低融点糸の溶融した鞘材の樹脂で溶着され塞がれて封止される。   According to this, by heating the edge portion of the membrane element at a heating temperature equal to or higher than the softening point of the sheath material of the low melting point yarn of the channel material, the sheath material of the low melting point yarn at the edge portion of the channel material melts. Then, the edge portion of the membrane element is welded with the resin of the sheath material in which the low melting point yarn of the flow path material is melted, and is closed and sealed.

また、低融点糸の芯材は鞘材に比べて可撓性が低い(又は反発力が高い或いは弾性が高い)ため、低融点糸の腰が強くなる。   Further, since the core material of the low melting point yarn has lower flexibility (or higher repulsive force or higher elasticity) than the sheath material, the low melting point yarn becomes stronger.

本第5発明における膜エレメントは、低融点糸の材質がポリオレフィン系樹脂である。   In the membrane element according to the fifth aspect of the present invention, the material of the low melting point yarn is a polyolefin resin.

本第6発明における膜エレメントは、鞘材の材質がポリオレフィン系樹脂である。   In the membrane element according to the sixth aspect of the present invention, the sheath material is a polyolefin resin.

本第7発明における膜エレメントは、高融点糸の材質がポリエステル系樹脂である。   In the membrane element according to the seventh aspect of the present invention, the material of the high melting point yarn is polyester resin.

本第8発明における膜エレメントは、ろ過膜は多孔質の膜シートを有し、
膜シートは流路材の低融点糸の軟化点よりも高い軟化点を有しているものである。
In the membrane element according to the eighth aspect of the present invention, the filtration membrane has a porous membrane sheet,
The membrane sheet has a softening point higher than that of the low melting point yarn of the channel material.

これによると、膜エレメントの端縁部を流路材の低融点糸の軟化点以上で且つ膜シートの軟化点よりも低い加熱温度で加熱することにより、流路材の端縁部の低融点糸が溶融し、膜エレメントの端縁部が流路材の溶融した低融点糸の樹脂で溶着され塞がれて封止される。   According to this, by heating the edge portion of the membrane element at a heating temperature equal to or higher than the softening point of the low melting point yarn of the channel material and lower than the softening point of the membrane sheet, the low melting point of the edge portion of the channel material is obtained. The yarn is melted, and the edge portion of the membrane element is welded and blocked by the melted low melting point resin of the flow path material to be sealed.

また、上記のように加熱温度は膜シートの軟化点よりも低いため、膜シートが軟化して膜シートの微細孔が拡径するのを防止することができる。   Moreover, since the heating temperature is lower than the softening point of the membrane sheet as described above, it is possible to prevent the membrane sheet from softening and expanding the fine pores of the membrane sheet.

本第9発明は、第1発明から第8発明のいずれか1項に記載の膜エレメントを備えた膜分離機器であって、
複数の膜エレメントを支持する支持部材を備え、
支持部材は内部に集水空間を有し、
各膜エレメントの封止されていない端縁部が集水空間に挿入され、
ろ過膜を透過した透過液が流路材内の空隙を通って膜エレメントの封止されていない端縁部から支持部材の集水空間に流れ込むものである。
A ninth invention of the present invention is a membrane separation device comprising the membrane element according to any one of the first invention to the eighth invention,
A support member supporting a plurality of membrane elements,
The support member has a water collecting space inside,
The unsealed edge of each membrane element is inserted into the water collection space,
The permeated liquid that has passed through the filtration membrane flows into the water collecting space of the support member from the unsealed edge portion of the membrane element through the void in the flow channel material.

これによると、膜分離機器を被処理液中に浸漬させた状態で、ろ過運転を行うことにより、被処理液は、膜エレメントのろ過膜を一次側から二次側へ通過してろ過され、その後、透過液として、流路材の内部の空隙に流れ込み、流路材内の空隙を通って、膜エレメントの封止されていない端縁部から支持部材の集水空間に流出する。   According to this, in a state in which the membrane separation device is immersed in the liquid to be treated, by performing the filtration operation, the liquid to be treated is filtered by passing through the filtration membrane of the membrane element from the primary side to the secondary side, After that, the permeated liquid flows into the void inside the channel material, passes through the void inside the channel material, and flows out from the unsealed edge portion of the membrane element to the water collecting space of the support member.

本第10発明は、上記第1発明から第8発明のいずれか1項に記載の膜エレメントの製造方法であって、
長尺の流路材にろ過膜を接合して長尺の膜エレメントを形成し、
一対の加熱した切断部材で長尺の膜エレメントを挟むことにより、切断箇所における流路材を低融点糸の軟化点以上の加熱温度で加熱した状態で、長尺の膜エレメントを所定の長さに切断するものである。
A tenth invention of the present invention is the method for producing a membrane element according to any one of the first invention to the eighth invention,
A filtration membrane is joined to a long channel material to form a long membrane element,
By sandwiching the long membrane element with a pair of heated cutting members, the long membrane element is heated to a predetermined length while the flow path material at the cutting point is heated at a heating temperature equal to or higher than the softening point of the low melting point yarn. It is to cut into.

これによると、長尺の膜エレメントを所定の長さに切断する際、切断箇所における流路材が低融点糸の軟化点以上で且つ高融点糸の軟化点よりも低い加熱温度で加熱されるため、切断箇所における流路材の低融点糸が溶融し、膜エレメントの切断箇所(切断後の膜エレメントの端縁部に相当)が流路材の溶融した低融点糸の樹脂で溶着され塞がれて封止される。これにより、膜エレメントの端縁部の密封処理を容易に行うことができ、このように膜エレメントの切断と端縁部の密封処理とが同時に行えるため、膜エレメントの生産性が向上する。   According to this, when the long membrane element is cut into a predetermined length, the flow path material at the cut portion is heated at a heating temperature which is equal to or higher than the softening point of the low melting point yarn and lower than the softening point of the high melting point yarn. Therefore, the low melting point thread of the flow path material at the cutting point melts, and the cutting point of the membrane element (corresponding to the edge of the membrane element after cutting) is welded and blocked by the melted low melting point thread resin of the flow path material. It peels off and is sealed. This makes it possible to easily perform the sealing treatment of the edge portion of the membrane element, and thus the cutting of the membrane element and the sealing treatment of the edge portion can be performed at the same time, so that the productivity of the membrane element is improved.

以上のように本発明によると、膜エレメントの端縁部の密封処理を容易に行うことができる。   As described above, according to the present invention, it is possible to easily perform the sealing treatment of the edge portion of the membrane element.

本発明の第1の実施の形態における複数台の膜分離機器を用いた膜分離装置の正面図である。It is a front view of a membrane separation device using a plurality of membrane separation devices in a 1st embodiment of the present invention. 同、膜分離機器の斜視図である。FIG. 3 is a perspective view of the membrane separation device. 同、膜分離機器の断面図である。FIG. 3 is a sectional view of the membrane separation device. 同、膜分離機器の膜エレメントの構成を示す一部切欠き斜視図である。FIG. 3 is a partially cutaway perspective view showing a configuration of a membrane element of the membrane separation device. 同、膜エレメントの断面を拡大した模式図であり、封止されていない端縁部を示す。FIG. 3B is an enlarged schematic view of the cross section of the membrane element, showing an unsealed edge portion. 同、膜エレメントの流路材の断面を拡大した模式図である。FIG. 3 is an enlarged schematic view of the cross section of the channel material of the membrane element. 図6におけるX−X矢視図であり、流路材のフェイスを拡大した模式図である。It is a XX arrow line view in FIG. 6, and is the schematic diagram which expanded the face of the flow path material. 同、膜エレメントの断面を拡大した模式図であり、封止されている端縁部を示す。FIG. 3B is an enlarged schematic view of the cross section of the membrane element, showing the sealed edge portion. 同、膜エレメントの製造方法を示す側面図である。FIG. 3 is a side view showing the same method for manufacturing a membrane element. 図9におけるX−X矢視図である。It is a XX arrow line view in FIG. 同、膜エレメントの製造方法を示す側面図である。FIG. 3 is a side view showing the same method for manufacturing a membrane element. 同、膜エレメントの製造方法を示す側面図である。FIG. 3 is a side view showing the same method for manufacturing a membrane element. 本発明の第2の実施の形態における膜エレメントの流路材のパイル糸の低融点糸の断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the low melting point yarn of the pile yarn of the flow path material of the membrane element in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における膜エレメントの断面を拡大した模式図であり、封止されている端縁部を示す。It is the schematic diagram which expanded the cross section of the membrane element in the 3rd Embodiment of this invention, and shows the edge part currently sealed. 従来の膜エレメントの斜視図である。It is a perspective view of the conventional membrane element. 同、膜エレメントの構成を示す一部切欠き斜視図である。FIG. 3 is a partially cutaway perspective view showing the structure of the membrane element.

以下、本発明における実施の形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
第1の実施の形態では、図1に示すように、1は膜ろ過を行う浸漬型の膜分離装置であり、有機性排水等の被処理液2中に浸漬されて処理槽3内に設置されている。膜分離装置1は、上下方向に積み重ねられた複数台の膜分離機器5(膜ろ過モジュールとも言う)と、最下段に設けられた散気装置6とを有している。
(First embodiment)
In the first embodiment, as shown in FIG. 1, reference numeral 1 is an immersion type membrane separation device for performing membrane filtration, which is immersed in a liquid to be treated 2 such as organic waste water and installed in a treatment tank 3. Has been done. The membrane separation device 1 has a plurality of membrane separation devices 5 (also referred to as a membrane filtration module) that are vertically stacked, and an air diffuser 6 provided at the lowest stage.

図2,図3に示すように、膜分離機器5は、左右一対の集水ケース11(支持部材の一例)と、これら両集水ケース11間に支持されている複数の膜エレメント12と、前後一対の連結板13とを有している。集水ケース11は内部に集水空間15を有する中空状の部材である。また、連結板13は両集水ケース11の前端部間および後端部間にそれぞれ設けられている。   As shown in FIGS. 2 and 3, the membrane separation device 5 includes a pair of left and right water collecting cases 11 (an example of a supporting member), and a plurality of membrane elements 12 supported between the both water collecting cases 11. It has a pair of front and rear connecting plates 13. The water collection case 11 is a hollow member having a water collection space 15 inside. The connecting plate 13 is provided between the front end portions and the rear end portions of the water collecting cases 11, respectively.

尚、下位の膜分離機器5の集水ケース11内の集水空間15と上位の膜分離機器5の集水ケース11内の集水空間15とは連通口16によって連通している。   The water collection space 15 in the water collection case 11 of the lower membrane separation device 5 and the water collection space 15 in the water collection case 11 of the higher membrane separation device 5 communicate with each other through a communication port 16.

膜エレメント12は、所定の長さAと所定の幅Bを有する四角形のシート状の部材であり、上端縁部12aと下端縁部12bと左端縁部12cと右端縁部12dとを有している。尚、上端縁部12aと下端縁部12bとは封止(密封)されており、左端縁部12cと右端縁部12dとは封止されていない。   The membrane element 12 is a rectangular sheet-shaped member having a predetermined length A and a predetermined width B, and has an upper edge 12a, a lower edge 12b, a left edge 12c, and a right edge 12d. There is. The upper edge 12a and the lower edge 12b are sealed (sealed), and the left edge 12c and the right edge 12d are not sealed.

集水ケース11の内側壁17には、上下方向に細長い複数の貫通孔が形成され、各膜エレメント12の左右両端縁部12c,12d(封止されていない端縁部)が各貫通孔に挿入されて集水空間15内に突入している。   A plurality of vertically elongated through holes are formed in the inner wall 17 of the water collection case 11, and the left and right end edges 12c and 12d (the unsealed edge portions) of each membrane element 12 are formed in the through holes. It is inserted and plunges into the water collection space 15.

図4〜図8に示すように、膜エレメント12は、流路材21と、流路材21の表裏両面に接合されたろ過膜22とを有している。   As shown in FIGS. 4 to 8, the membrane element 12 has a flow channel member 21 and a filtration membrane 22 bonded to both front and back surfaces of the flow channel member 21.

流路材21は、糸を三次元構造に編んだ編物からなるスペーサーファブリックであり、表裏一対のフェイス25と、一対のフェイス25をつなぐ多数本のパイル糸27とを有している。尚、フェイス25は多数本の互いに縦横に交差するフェイス糸29を有する編物であり、パイル糸27はフェイス糸29に結合している。   The flow path member 21 is a spacer fabric made of a knitted yarn having a three-dimensional structure, and has a pair of front and back faces 25 and a large number of pile yarns 27 connecting the pair of faces 25. The face 25 is a knitted fabric having a large number of face yarns 29 crossing each other in the vertical and horizontal directions, and the pile yarns 27 are bonded to the face yarns 29.

流路材21の内部におけるパイル糸27間には、ろ過膜22を透過した透過液33が流れる微小な空隙32が形成されている。   Between the pile yarns 27 inside the flow path member 21, minute voids 32 in which the permeated liquid 33 that has permeated the filtration membrane 22 flows are formed.

パイル糸27は軟化点の異なる低融点糸37(実線で表示)と高融点糸38(二点鎖線で表示)とを有している。尚、低融点糸37と高融点糸38との割合は50%ずつである。低融点糸37としては、約80℃〜120℃の軟化点T1を有するポリエチレン(PE)製の糸が用いられている。また、高融点糸38としては、約240℃〜280℃の軟化点T2を有するポリエチレンテレフタラート(PET)製の糸が用いられている。   The pile yarn 27 has a low melting point yarn 37 (indicated by a solid line) and a high melting point yarn 38 (indicated by a two-dot chain line) having different softening points. The ratio of the low melting point yarn 37 and the high melting point yarn 38 is 50% each. As the low melting point yarn 37, a yarn made of polyethylene (PE) having a softening point T1 of about 80 ° C. to 120 ° C. is used. As the high melting point yarn 38, a yarn made of polyethylene terephthalate (PET) having a softening point T2 of about 240 ° C. to 280 ° C. is used.

また、フェイス糸29としては、約240℃〜280℃の軟化点T3を有するポリエチレンテレフタラート(PET)製の糸が用いられている。   Further, as the face yarn 29, a yarn made of polyethylene terephthalate (PET) having a softening point T3 of about 240 ° C. to 280 ° C. is used.

尚、上記のようなスペーサーファブリックからなる流路材21の糸使いは、例えば、フェイス糸29が「84T24」、パイル糸27の低融点糸37が「56T24」、パイル糸27の高融点糸38が「56T1」、パイル糸27の密度が約379本/cmである。また、膜エレメント12を製作する前の流路材21の単体での厚さCは例えば約2mm〜5mmである。 In addition, as the thread usage of the flow path member 21 made of the spacer fabric as described above, for example, the face thread 29 is "84T24", the low melting point thread 37 of the pile thread 27 is "56T24", and the high melting point thread 38 of the pile thread 27 is, for example. Is "56T1", and the density of the pile yarn 27 is about 379 filaments / cm 2 . Further, the thickness C of the flow path member 21 alone before manufacturing the membrane element 12 is, for example, about 2 mm to 5 mm.

尚、上記「84T24」とは、撚り合わせた糸の太さが84dtex、撚り糸数が24本であることを表しており、「56T24」とは、撚り合わせた糸の太さが56dtex、撚り糸数が24本であることを表しており、「56T1」とは、糸の太さが56dtex、撚り糸数が1本(すなわちモノフィラメント糸)であることを表している。   The "84T24" means that the twisted yarn has a thickness of 84 dtex and the number of twisted yarns is 24, and "56T24" means that the twisted yarn has a thickness of 56 dtex and the number of twisted yarns. "56T1" means that the yarn thickness is 56 dtex and the number of twisted yarns is 1 (that is, monofilament yarn).

図5に示すように、ろ過膜22は、多数の微細孔を有する多孔質の膜シート34を外面側に有するとともに、この膜シート34を支持する不織布35を内面側に有しており、これら膜シート34と不織布35とを積層したものである。   As shown in FIG. 5, the filtration membrane 22 has a porous membrane sheet 34 having a large number of fine pores on the outer surface side, and has a nonwoven fabric 35 supporting the membrane sheet 34 on the inner surface side. The membrane sheet 34 and the non-woven fabric 35 are laminated.

尚、不織布35は坪量が20〜500g/mである。また、不織布35は、ポリエチレン(PE)製の低融点糸とポリエチレンテレフタラート(PET)製の高融点糸とを混合したものである。 The nonwoven fabric 35 has a basis weight of 20 to 500 g / m 2 . Further, the non-woven fabric 35 is a mixture of low melting point yarn made of polyethylene (PE) and high melting point yarn made of polyethylene terephthalate (PET).

また、膜シート34の材質には、約330℃〜350℃の軟化点T4を有するポリテトラフルオロエチレン(ePTFE)が用いられている。膜シート34の軟化点T4は、パイル糸27の低融点糸37の軟化点T1および高融点糸38の軟化点T2ならびにフェイス糸29の軟化点T3のいずれの軟化点よりも高い。すなわち、各軟化点は、T1<T2,T3<T4の関係にある。   As the material of the film sheet 34, polytetrafluoroethylene (ePTFE) having a softening point T4 of about 330 ° C. to 350 ° C. is used. The softening point T4 of the film sheet 34 is higher than any of the softening point T1 of the low melting point yarn 37 of the pile yarn 27, the softening point T2 of the high melting point yarn 38, and the softening point T3 of the face yarn 29. That is, the softening points have a relationship of T1 <T2 and T3 <T4.

図8に示すように、膜エレメント12の上端縁部12aと下端縁部12bとはそれぞれ、パイル糸27の低融点糸37が溶融することによって溶着され封止されている。   As shown in FIG. 8, the upper edge portion 12a and the lower edge portion 12b of the membrane element 12 are fused and sealed by melting the low melting point yarn 37 of the pile yarn 27.

上記膜エレメント12の製造方法について以下に説明する。   A method for manufacturing the membrane element 12 will be described below.

図9,図10に示すように、長尺の流路材21の表裏両面にそれぞれ長尺のろ過膜22を接合して、所定の幅Bを有するとともに所定の長さAよりも長い長尺の膜エレメント40を形成する。   As shown in FIGS. 9 and 10, a long filtration membrane 22 is bonded to both front and back surfaces of a long flow path member 21 to have a predetermined width B and a length longer than a predetermined length A. The membrane element 40 is formed.

この際、長尺の流路材21とろ過膜22とを一対の加熱ローラ間に挟んで加熱しながら圧延(熱間圧延)することで、上記のような長尺の膜エレメント40を形成するのであるが、この時の加熱温度をろ過膜22の不織布35の低融点糸の軟化点以上で且つ流路材21のパイル糸27の高融点糸38の軟化点未満の温度にすることにより、不織布35の低融点糸が軟化して、低融点糸の樹脂が流路材21のフェイス糸29に絡み付くため、ろ過膜22が流路材21に接合される。尚、上記のような加熱温度では、パイル糸27の高融点糸38が軟化しないため、流路材21が潰れて流路材21内の微小な空隙32が無くなってしまうことはない。これにより、流路材21の内部における透過液の流れが阻害されることはない。   At this time, the long channel material 21 and the filtration membrane 22 are sandwiched between a pair of heating rollers and rolled (hot rolling) while being heated to form the long membrane element 40 as described above. However, by setting the heating temperature at this time to a temperature equal to or higher than the softening point of the low melting point yarn of the nonwoven fabric 35 of the filtration membrane 22 and lower than the softening point of the high melting point yarn 38 of the pile yarn 27 of the flow path member 21, The low melting point yarn of the non-woven fabric 35 is softened and the resin of the low melting point yarn is entangled with the face yarn 29 of the flow channel member 21, so that the filtration membrane 22 is bonded to the flow channel member 21. At the heating temperature as described above, the high melting point yarn 38 of the pile yarn 27 is not softened, so that the flow path member 21 is not crushed and the minute voids 32 in the flow path member 21 are not lost. As a result, the flow of the permeated liquid inside the flow path member 21 is not hindered.

このようにして長尺の膜エレメント40を形成した後、図11に示すように、切断装置42を用いて、長尺の膜エレメント40を所定の長さAの膜エレメント12に切断する。   After the long membrane element 40 is formed in this manner, as shown in FIG. 11, the long membrane element 40 is cut into the membrane element 12 having a predetermined length A by using the cutting device 42.

尚、切断装置42は、上下一対の開閉自在な切断刃43,44(切断部材の一例)と、切断刃43,44を加熱する加熱装置(図示省略)とを有している。   The cutting device 42 has a pair of upper and lower cutting blades 43 and 44 (an example of a cutting member) that can be opened and closed, and a heating device (not shown) that heats the cutting blades 43 and 44.

切断装置42を用いて長尺の膜エレメント40を切断する際、一対の加熱した切断刃43,44を閉じて両切断刃43,44で長尺の膜エレメント40を挟み、切断箇所における流路材21を低融点糸37の軟化点T1の温度以上の加熱温度(例えば120〜240℃)で所定時間(例えば1〜10秒間)加熱し、この状態で、長尺の膜エレメント40を所定の長さAに切断する。   When the long membrane element 40 is cut using the cutting device 42, the pair of heated cutting blades 43 and 44 are closed and the long membrane element 40 is sandwiched by both cutting blades 43 and 44, and the flow path at the cutting location The material 21 is heated at a heating temperature (for example, 120 to 240 ° C.) equal to or higher than the softening point T1 of the low melting point yarn 37 for a predetermined time (for example, 1 to 10 seconds), and in this state, the long membrane element 40 is set to a predetermined temperature. Cut to length A.

上記所定時間が経過した後、図12に示すように、両切断刃43,44を開く。これにより、所定の長さAに切断された膜エレメント12が得られる。尚、上記のように両切断刃43,44を開いた直後、膜エレメント12の切断部分に空気等の気体を吹き付けて、切断部分を強制的に冷却してもよい。   After the predetermined time has elapsed, both cutting blades 43 and 44 are opened as shown in FIG. Thereby, the membrane element 12 cut into the predetermined length A is obtained. Immediately after opening both cutting blades 43 and 44 as described above, a gas such as air may be blown to the cut portion of the membrane element 12 to forcibly cool the cut portion.

上記の製造方法によると、長尺の膜エレメント40を所定の長さAに切断する際、切断箇所における流路材21が低融点糸37の軟化点T1の温度以上の加熱温度で加熱されるため、切断箇所における流路材21のパイル糸27の低融点糸37が溶融し、図8に示すように、長尺の膜エレメント40の切断箇所(切断後の膜エレメント12の上端縁部12aと下端縁部12bとに相当)が流路材21の溶融した低融点糸37の樹脂で溶着され塞がれて封止される。これにより、切断後の膜エレメント12の上端縁部12aと下端縁部12bとの密封処理を容易に行うことができ、このように膜エレメント12の切断と端縁部の密封処理とが同時に行えるため、膜エレメント12の生産性が向上する。   According to the above-mentioned manufacturing method, when the long membrane element 40 is cut into the predetermined length A, the flow path material 21 at the cut portion is heated at a heating temperature equal to or higher than the softening point T1 of the low melting point yarn 37. Therefore, the low melting point yarn 37 of the pile yarn 27 of the flow path material 21 at the cut portion is melted, and as shown in FIG. 8, the cut portion of the long membrane element 40 (the upper end edge portion 12a of the cut membrane element 12 is cut off). (Corresponding to the lower edge portion 12b) is welded and closed by the resin of the melted low melting point yarn 37 of the flow path member 21 to be sealed. As a result, it is possible to easily perform the sealing treatment of the upper edge 12a and the lower edge 12b of the membrane element 12 after cutting, and thus the cutting of the membrane element 12 and the sealing treatment of the edge can be performed at the same time. Therefore, the productivity of the membrane element 12 is improved.

また、パイル糸27の高融点糸38は低融点糸37よりも反発力が大きい(或いは弾性が高い)ため、流路材21の切断箇所(切断後の膜エレメント12の上端縁部12aと下端縁部12bとに相当)以外の部分では、透過液33が流れる空隙32は、塞がれることなく、パイル糸27間に確保される。これにより、流路材21の内部における透過液33の流れが阻害されることはない。   Further, since the high melting point yarn 38 of the pile yarn 27 has a larger repulsive force (or higher elasticity) than the low melting point yarn 37, the cut portion of the flow path member 21 (the upper edge 12a and the lower end of the membrane element 12 after cutting). In portions other than the edge portion 12b), the gap 32 through which the permeated liquid 33 flows is secured between the pile yarns 27 without being blocked. As a result, the flow of the permeated liquid 33 inside the flow path member 21 is not hindered.

上記の製造方法によって製造された膜エレメント12を用いて膜分離機器5を製作し、膜分離機器5を用いて膜分離装置1を組み立てる。図1に示すように、膜分離装置1を被処理液2中に浸漬させた状態で、ろ過運転を行うことにより、被処理液2は、各膜分離機器5の膜エレメント12のろ過膜22を一次側から二次側へ通過してろ過され、その後、透過液33として、流路材21の内部の空隙32に流れ込み、空隙32を通って、膜エレメント12の左右両端縁部12c,12d(すなわち、封止されていない端縁部)から集水ケース11の集水空間15に流出し、連通孔16を通って最上位の膜分離機器5の集水ケース11内から処理槽3の外部へ取り出される。   The membrane separation device 5 is manufactured using the membrane element 12 manufactured by the above manufacturing method, and the membrane separation device 1 is assembled using the membrane separation device 5. As shown in FIG. 1, by performing the filtration operation in a state where the membrane separation device 1 is immersed in the liquid to be treated 2, the liquid to be treated 2 becomes the filtration membrane 22 of the membrane element 12 of each membrane separation device 5. Filtered from the primary side to the secondary side, and then flows into the void 32 inside the flow path member 21 as the permeate 33, passes through the void 32, and the left and right edge portions 12c, 12d of the membrane element 12 are filtered. (That is, the unsealed edge portion) flows out into the water collecting space 15 of the water collecting case 11, passes through the communication hole 16, and from the inside of the water collecting case 11 of the uppermost membrane separation device 5 to the treatment tank 3 It is taken out.

上記第1の実施の形態では、パイル糸27の低融点糸37の材質にポリエチレンを用いているが、これに限定されるものではなく、ポリエチレン以外のポリオレフィン系樹脂を用いてもよい。また、パイル糸27の高融点糸38の材質およびフェイス糸29の材質にそれぞれポリエチレンテレフタラートを用いているが、これに限定されるものではなく、ポリエチレンテレフタラート以外のポリエステル系樹脂を用いてもよい。   In the first embodiment, polyethylene is used as the material of the low melting point yarn 37 of the pile yarn 27, but the material is not limited to this, and a polyolefin resin other than polyethylene may be used. Further, polyethylene terephthalate is used as the material of the high melting point yarn 38 of the pile yarn 27 and the material of the face yarn 29, but the material is not limited to this, and a polyester resin other than polyethylene terephthalate may be used. Good.

上記第1の実施の形態では、低融点糸37は、複数本の撚り糸を撚り合わせたものであるが、撚り糸の全数が低融点糸であってもよいし、或いは、撚り糸の一部に高融点糸を含んでいてもよい。   In the first embodiment, the low melting point yarn 37 is formed by twisting a plurality of twisted yarns, but all the twisted yarns may be low melting point yarns, or a part of the twisted yarns may have a high melting point. A melting point thread may be included.

上記第1の実施の形態では、切断箇所における流路材21を低融点糸37の軟化点T1の温度以上の加熱温度で加熱し、この状態で、長尺の膜エレメント40を所定の長さAに切断しているが、低融点糸37の軟化点T1の温度以上で且つ高融点糸38の軟化点T2の温度よりも低い加熱温度で加熱してもよい。
(第2の実施の形態)
第2の実施の形態では、図13に示すように、パイル糸27の低融点糸37は、芯材51と、芯材51を覆う鞘材52とで形成されている。鞘材52は高融点糸38の軟化点T2よりも低い軟化点T1を有している。尚、鞘材52としては、約80℃〜120℃の軟化点T1を有するポリエチレン(PE)製の鞘材が用いられている。
In the above-described first embodiment, the flow path member 21 at the cut portion is heated at a heating temperature equal to or higher than the softening point T1 of the low melting point yarn 37, and in this state, the long membrane element 40 has a predetermined length. Although cut into A, the heating may be performed at a heating temperature which is equal to or higher than the softening point T1 of the low melting point yarn 37 and lower than the softening point T2 of the high melting point yarn 38.
(Second embodiment)
In the second embodiment, as shown in FIG. 13, the low melting point yarn 37 of the pile yarn 27 is formed of a core material 51 and a sheath material 52 that covers the core material 51. The sheath material 52 has a softening point T1 lower than the softening point T2 of the high melting point yarn 38. As the sheath material 52, a sheath material made of polyethylene (PE) having a softening point T1 of about 80 ° C. to 120 ° C. is used.

また、芯材51は鞘材52の軟化点T1よりも高い軟化点T2を有している。尚、芯材51としては、約240℃〜280℃の軟化点T2を有するポリエチレンテレフタラート(PET)製の芯材が用いられている。   Further, the core material 51 has a softening point T2 higher than the softening point T1 of the sheath material 52. As the core material 51, a core material made of polyethylene terephthalate (PET) having a softening point T2 of about 240 ° C. to 280 ° C. is used.

これによると、膜エレメント12の製造方法において、切断装置42を用いて長尺の膜エレメント40を切断する際、一対の加熱した切断刃43,44を閉じて両切断刃43,44で長尺の膜エレメント40を挟み、切断箇所における流路材21を鞘材52の軟化点T1の温度以上の加熱温度(例えば120〜240℃)で所定時間(例えば1〜10秒間)加熱し、この状態で、長尺の膜エレメント40を所定の長さAに切断する。   According to this, in the method of manufacturing the membrane element 12, when the long membrane element 40 is cut using the cutting device 42, the pair of heated cutting blades 43, 44 is closed and the long cutting blades 43, 44 are used. Sandwiching the membrane element 40, the channel material 21 at the cut point is heated at a heating temperature (for example, 120 to 240 ° C.) equal to or higher than the softening point T1 of the sheath material 52 for a predetermined time (for example, 1 to 10 seconds), and in this state Then, the long membrane element 40 is cut into a predetermined length A.

上記膜エレメント12の製造方法により、長尺の膜エレメント40を切断する際、切断箇所における流路材21が低融点糸37の鞘材52の軟化点T1の温度以上の加熱温度で加熱されるため、切断箇所における流路材21のパイル糸27の低融点糸37の鞘材52が溶融し、長尺の膜エレメント40の切断箇所が流路材21の溶融した鞘材52の樹脂で溶着され塞がれて封止される。これにより、切断後の膜エレメント12の上端縁部12aと下端縁部12bとの密封処理を容易に行うことができる。   When the long membrane element 40 is cut by the manufacturing method of the membrane element 12, the flow path material 21 at the cut portion is heated at a heating temperature equal to or higher than the softening point T1 of the sheath material 52 of the low melting point yarn 37. Therefore, the sheath material 52 of the low melting point yarn 37 of the pile yarn 27 of the flow path member 21 at the cut portion is melted, and the cut portion of the long membrane element 40 is welded with the resin of the melted sheath material 52 of the flow path member 21. Is closed and sealed. As a result, the sealing treatment of the upper edge 12a and the lower edge 12b of the membrane element 12 after cutting can be easily performed.

また、低融点糸37の芯材51は鞘材52の軟化点T1よりも高い軟化点T2を有するため、芯材51が軟化するのを防止することができる。これにより、鞘材52よりも可撓性が低い(又は反発力が高い或いは弾性が高い)樹脂を用いて芯材51を構成することにより、低融点糸37の可撓性が低く(又は反発力が高く或いは弾性が高く)なり、流路材21にろ過膜22を熱間圧延により接合する際、流路材21が潰れて流路材21内の微小な空隙32が無くなってしまうことはない。   Further, since the core material 51 of the low melting point yarn 37 has the softening point T2 higher than the softening point T1 of the sheath material 52, it is possible to prevent the core material 51 from being softened. Thus, by configuring the core material 51 using a resin having lower flexibility (or higher repulsion force or higher elasticity) than the sheath material 52, the low melting point yarn 37 has low flexibility (or repulsion). When the filter membrane 22 is joined to the channel material 21 by hot rolling, the channel material 21 is crushed and the minute voids 32 in the channel material 21 disappear. Absent.

上記第2の実施の形態では、鞘材52の材質にポリエチレンを用いているが、これに限定されるものではなく、ポリエチレン以外のポリオレフィン系樹脂を用いてもよい。また、芯材51の材質にポリエチレンテレフタラートを用いているが、これに限定されるものではなく、ポリエチレンテレフタラート以外のポリエステル系樹脂を用いてもよい。   In the second embodiment, polyethylene is used as the material of the sheath material 52, but the material is not limited to this, and a polyolefin resin other than polyethylene may be used. Further, although polyethylene terephthalate is used as the material of the core material 51, the material is not limited to this, and a polyester resin other than polyethylene terephthalate may be used.

上記第2の実施の形態では、パイル糸27の低融点糸37の全てに、芯材51と鞘材52とを有する芯鞘構造の糸を用いてもよく、或いは、低融点糸37の一部に芯鞘構造の糸を用い、残部にポリエチレン製の糸を用いてもよい。   In the second embodiment, all the low melting point yarns 37 of the pile yarn 27 may be core-sheath structure yarns having a core material 51 and a sheath material 52, or one of the low melting point yarns 37. A core-sheath structure thread may be used for the part and a polyethylene thread may be used for the rest.

上記第2の実施の形態では、切断箇所における流路材21を鞘材52の軟化点T1の温度以上の加熱温度で加熱し、この状態で、長尺の膜エレメント40を所定の長さAに切断しているが、鞘材52の軟化点T1の温度以上で且つ高融点糸38の軟化点T2の温度よりも低い加熱温度で加熱してもよい。
(第3の実施の形態)
第3の実施の形態では、図14に示すように、パイル糸27は複数の低融点糸と高融点糸とを撚り合わせたマルチフィラメント糸である。例えば、パイル糸27に「56T24」の糸を使用する場合、撚り合わせた24本の撚り糸のうち、12本を低融点糸とし、残りの12本を高融点糸とする。
In the second embodiment described above, the flow path member 21 at the cut position is heated at a heating temperature equal to or higher than the softening point T1 of the sheath material 52, and in this state, the long membrane element 40 is heated to a predetermined length A. Although cut into pieces, heating may be performed at a heating temperature that is equal to or higher than the softening point T1 of the sheath material 52 and lower than the softening point T2 of the high melting point yarn 38.
(Third Embodiment)
In the third embodiment, as shown in FIG. 14, the pile yarn 27 is a multifilament yarn in which a plurality of low melting point yarns and high melting point yarns are twisted together. For example, when using the "56T24" yarn as the pile yarn 27, out of the 24 twisted yarns twisted together, 12 yarns are low melting point yarns and the remaining 12 yarns are high melting point yarns.

これによると、長尺の膜エレメント40を所定の長さAに切断する際、切断箇所における流路材21がパイル糸27の低融点糸の軟化点T1の温度以上の加熱温度で加熱されるため、切断箇所における流路材21のパイル糸27の低融点糸が溶融し、長尺の膜エレメント40の切断箇所(切断後の膜エレメント12の上端縁部12aと下端縁部12bとに相当)が流路材21の溶融した低融点糸の樹脂で溶着され塞がれて封止される。   According to this, when the long membrane element 40 is cut into the predetermined length A, the flow path member 21 at the cut portion is heated at a heating temperature equal to or higher than the softening point T1 of the low melting point yarn of the pile yarn 27. Therefore, the low melting point yarn of the pile yarn 27 of the flow path material 21 at the cut portion is melted, and the cut portion of the long membrane element 40 (corresponding to the upper end edge 12a and the lower end edge 12b of the membrane element 12 after cutting). ) Is welded and blocked by the resin of the low melting point thread of the flow path member 21 to be sealed.

上記各実施の形態では、図4に示すように、流路材21の表裏両面にそれぞれろ過膜22を接合しているが、ろ過膜22を流路材21の表裏いずれか一面に接合し、他面側を水密にしてもよい。   In each of the above-described embodiments, as shown in FIG. 4, the filtration membranes 22 are bonded to both front and back surfaces of the flow path member 21, but the filtration membrane 22 is bonded to either one of the front and back surfaces of the flow path material 21, The other side may be watertight.

上記各実施の形態では、図5に示すように、ろ過膜22は、膜シート34と不織布35とを積層したものであるが、不織布35を設けず、膜シート34のみを有するものであってもよい。   In each of the above embodiments, as shown in FIG. 5, the filtration membrane 22 is formed by laminating the membrane sheet 34 and the non-woven fabric 35. However, the non-woven fabric 35 is not provided and only the membrane sheet 34 is provided. Good.

上記各実施の形態では、図3に示すように、膜エレメント12を四角形に形成しているが、四角形以外の多角形であってもよい。また、膜エレメント12の四辺のうちの二辺(すなわち上端縁部12aと下端縁部12b)を封止しているが、いずれか一辺のみ或いは三辺以上を封止した膜エレメントであってもよい。   In each of the above-mentioned embodiments, as shown in FIG. 3, the membrane element 12 is formed in a quadrangle, but it may be a polygon other than the quadrangle. Further, two of the four sides of the membrane element 12 (that is, the upper edge 12a and the lower edge 12b) are sealed, but a membrane element in which only one side or three or more sides are sealed is also possible. Good.

上記各実施の形態では、各軟化点T1〜T4を指標にしているが、軟化点T1〜T4の代わりに融点を指標にしてもよい。尚、融点を指標にする場合であっても、軟化点T1〜T4と同様の温度の高低関係が成立する。   In each of the above embodiments, the softening points T1 to T4 are used as indices, but the melting points may be used as indices instead of the softening points T1 to T4. Even when the melting point is used as an index, the same temperature relationship as that of the softening points T1 to T4 is established.

また、上記各実施の形態において示したポリエチレン、ポリエチレンテレフタラート、ポリテトラフルオロエチレン等の材質および数値は、一例であって、これらに限定されるものではない。   Further, the materials and numerical values of polyethylene, polyethylene terephthalate, polytetrafluoroethylene, etc. shown in each of the above embodiments are merely examples, and the present invention is not limited to these.

5 膜分離機器
11 集水ケース(支持部材)
12 膜エレメント
12a 上端縁部
12b 下端縁部
12c 左端縁部(封止されていない端縁部)
12d 右端縁部(封止されていない端縁部)
15 集水空間
21 流路材
22 ろ過膜
27 パイル糸
29 フェイス糸
32 空隙
33 透過液
34 膜シート
37 低融点糸
38 高融点糸
40 長尺の膜エレメント
43,44 切断刃(切断部材)
51 芯材
52 鞘材
A 所定の長さ
T1 低融点糸の軟化点、鞘材の軟化点
T2 高融点糸の軟化点、芯材の軟化点
T4 膜シートの軟化点
5 Membrane separation device 11 Water collection case (support member)
12 Membrane Element 12a Upper Edge 12b Lower Edge 12c Left Edge (Unsealed Edge)
12d Right edge (edge not sealed)
15 Water collecting space 21 Channel material 22 Filtration membrane 27 Pile thread 29 Face thread 32 Gap 33 Permeate 34 Membrane sheet 37 Low melting point thread 38 High melting point thread 40 Long membrane element 43, 44 Cutting blade (cutting member)
51 core material 52 sheath material A predetermined length T1 softening point of low melting point yarn, softening point of sheath material T2 softening point of high melting point yarn, softening point of core material T4 softening point of membrane sheet

Claims (10)

ろ過膜と流路材とが接合され、複数の端縁部を有する膜エレメントであって、
流路材は、糸を三次元構造に編んだ編物から成り、その内部に、ろ過膜を透過した透過液が流れる空隙を有し、
流路材を構成する糸は軟化点の異なる複数の低融点糸と複数の高融点糸とを有し、
低融点糸の軟化点以上の加熱温度で加熱された複数の低融点糸が溶融することにより、流路材の少なくともいずれかの端縁部が溶着され封止されていることを特徴とする膜エレメント。
A membrane element in which a filtration membrane and a flow path member are joined, and which has a plurality of edge portions,
The flow path material is made of a knitted fabric in which threads are knitted into a three-dimensional structure, and has a void inside which the permeated liquid that has permeated the filtration membrane flows,
The yarn constituting the flow path member has a plurality of low melting point yarns and a plurality of high melting point yarns having different softening points,
A film characterized in that at least one edge portion of a channel material is welded and sealed by melting a plurality of low-melting threads heated at a heating temperature equal to or higher than the softening point of the low-melting thread. element.
流路材は、ろ過膜との接合面を形成する複数のフェイス糸と、フェイス糸に結合する複数のパイル糸とを有し、
透過液が流れる空隙は複数のパイル糸間に形成され、
パイル糸は低融点糸と高融点糸とを有していることを特徴とする請求項1記載の膜エレメント。
The flow path member has a plurality of face threads forming a joint surface with the filtration membrane, and a plurality of pile threads bonded to the face threads,
Voids that allow permeate to flow are formed between multiple pile threads,
The membrane element according to claim 1, wherein the pile yarn has a low melting point yarn and a high melting point yarn.
パイル糸は低融点糸と高融点糸とを撚り合わせたマルチフィラメント糸であることを特徴とする請求項2記載の膜エレメント。 The membrane element according to claim 2, wherein the pile yarn is a multifilament yarn in which a low melting point yarn and a high melting point yarn are twisted together. 低融点糸の少なくとも一部は、芯材と、芯材を覆う鞘材とで形成され、
鞘材は高融点糸の軟化点よりも低い軟化点を有し、
芯材は鞘材の軟化点よりも高い軟化点を有することを特徴とする請求項1から請求項3のいずれか1項に記載の膜エレメント。
At least a part of the low melting point yarn is formed of a core material and a sheath material that covers the core material,
The sheath material has a softening point lower than that of the high melting point yarn,
The membrane element according to any one of claims 1 to 3, wherein the core material has a softening point higher than that of the sheath material.
低融点糸の材質がポリオレフィン系樹脂であることを特徴とする請求項1から請求項3のいずれか1項に記載の膜エレメント。 The membrane element according to any one of claims 1 to 3, wherein the material of the low melting point yarn is a polyolefin resin. 鞘材の材質がポリオレフィン系樹脂であることを特徴とする請求項4に記載の膜エレメント。 The membrane element according to claim 4, wherein the sheath material is a polyolefin resin. 高融点糸の材質がポリエステル系樹脂であることを特徴とする請求項1から請求項6のいずれか1項に記載の膜エレメント。 The membrane element according to any one of claims 1 to 6, wherein the material of the high melting point yarn is a polyester resin. ろ過膜は多孔質の膜シートを有し、
膜シートは流路材の低融点糸の軟化点よりも高い軟化点を有していることを特徴とする請求項1から請求項7のいずれか1項に記載の膜エレメント。
The filtration membrane has a porous membrane sheet,
The membrane element according to any one of claims 1 to 7, wherein the membrane sheet has a softening point higher than that of the low melting point yarn of the channel material.
請求項1から請求項8のいずれか1項に記載の膜エレメントを備えた膜分離機器であって、
複数の膜エレメントを支持する支持部材を備え、
支持部材は内部に集水空間を有し、
各膜エレメントの封止されていない端縁部が集水空間に挿入され、
ろ過膜を透過した透過液が流路材内の空隙を通って膜エレメントの封止されていない端縁部から支持部材の集水空間に流れ込むことを特徴とする膜分離機器。
A membrane separation device comprising the membrane element according to claim 1.
A support member supporting a plurality of membrane elements,
The support member has a water collecting space inside,
The unsealed edge of each membrane element is inserted into the water collection space,
A membrane separation device, wherein the permeated liquid that has permeated through the filtration membrane flows into the water collecting space of the support member from the unsealed edge portion of the membrane element through the void in the flow channel material.
上記請求項1から請求項8のいずれか1項に記載の膜エレメントの製造方法であって、
長尺の流路材にろ過膜を接合して長尺の膜エレメントを形成し、
一対の加熱した切断部材で長尺の膜エレメントを挟むことにより、切断箇所における流路材を低融点糸の軟化点以上の加熱温度で加熱した状態で、長尺の膜エレメントを所定の長さに切断することを特徴とする膜エレメントの製造方法。
The method for producing a membrane element according to any one of claims 1 to 8,
A filtration membrane is joined to a long channel material to form a long membrane element,
By sandwiching the long membrane element with a pair of heated cutting members, the long membrane element is heated to a predetermined length while the flow path material at the cutting point is heated at a heating temperature equal to or higher than the softening point of the low melting point yarn. A method for producing a membrane element, which comprises cutting into pieces.
JP2018195476A 2018-10-17 2018-10-17 MEMBRANE ELEMENT MANUFACTURING METHOD Active JP7228361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195476A JP7228361B2 (en) 2018-10-17 2018-10-17 MEMBRANE ELEMENT MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195476A JP7228361B2 (en) 2018-10-17 2018-10-17 MEMBRANE ELEMENT MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2020062598A true JP2020062598A (en) 2020-04-23
JP7228361B2 JP7228361B2 (en) 2023-02-24

Family

ID=70388011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195476A Active JP7228361B2 (en) 2018-10-17 2018-10-17 MEMBRANE ELEMENT MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP7228361B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225630A (en) * 1997-02-13 1998-08-25 Miki Tokushu Seishi Kk Semipermeable membrane supporting body
JPH10280242A (en) * 1997-03-31 1998-10-20 Hotta Carpet Kk Pile fabric
JPH10280243A (en) * 1997-03-31 1998-10-20 Hotta Carpet Kk Conjugated yarn and pile fabric
JP2009114613A (en) * 2007-10-19 2009-05-28 Es Fibervisions Co Ltd Hot-melt adhesive polyester conjugate fiber
JP2009136863A (en) * 2007-11-14 2009-06-25 Nitto Denko Corp Filter member, its manufacturing method and filter unit
WO2011004743A1 (en) * 2009-07-10 2011-01-13 住友電工ファインポリマー株式会社 Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
WO2014010554A1 (en) * 2012-07-10 2014-01-16 東レ株式会社 Element unit, separation membrane module, and method for connecting/disconnecting separation membrane element
WO2018147251A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225630A (en) * 1997-02-13 1998-08-25 Miki Tokushu Seishi Kk Semipermeable membrane supporting body
JPH10280242A (en) * 1997-03-31 1998-10-20 Hotta Carpet Kk Pile fabric
JPH10280243A (en) * 1997-03-31 1998-10-20 Hotta Carpet Kk Conjugated yarn and pile fabric
JP2009114613A (en) * 2007-10-19 2009-05-28 Es Fibervisions Co Ltd Hot-melt adhesive polyester conjugate fiber
JP2009136863A (en) * 2007-11-14 2009-06-25 Nitto Denko Corp Filter member, its manufacturing method and filter unit
WO2011004743A1 (en) * 2009-07-10 2011-01-13 住友電工ファインポリマー株式会社 Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
WO2014010554A1 (en) * 2012-07-10 2014-01-16 東レ株式会社 Element unit, separation membrane module, and method for connecting/disconnecting separation membrane element
WO2018147251A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Thermally adhesive sheath-core conjugate fiber and tricot fabric

Also Published As

Publication number Publication date
JP7228361B2 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
US9630148B2 (en) Filter compound material, method for the production thereof and flat filter elements made of the filter compound material
US20200122069A1 (en) Elastomeric depth filter
KR102020696B1 (en) Blended nonwoven fabric, filter filtration material, and filter unit
DE102009026276A1 (en) Composite filter media structure for filter element, comprises base substrate-containing nonwoven synthetic fabric, and nanofiber layer deposited on base substrate, and has minimum filtration efficiency in above specified range
DE102009026277A1 (en) Method for producing a composite filter medium
JP2009101254A (en) Air filter and air filter for cleaner using it
JP2018051545A (en) Air filter medium, air filter pack, and air filter unit
JP2015009182A (en) Spiral type separation membrane element and spiral type separation membrane module
WO2017131031A1 (en) Flow path material
US11413585B2 (en) Membrane element and membrane separation device
JP7228361B2 (en) MEMBRANE ELEMENT MANUFACTURING METHOD
JP2009112887A (en) Filter medium, its manufacturing method, and cartridge filter
JP7228360B2 (en) Membrane elements and membrane separation equipment
JP7158270B2 (en) Membrane separation equipment
US11471833B2 (en) Flat-plate filter for water treatment and flat-plate filter module comprising same
JP6941559B2 (en) Membrane element and membrane separation device
CN106457099B (en) A kind of filtration article comprising the filtering material containing different length fibrous layer
KR102591625B1 (en) Filter for flat type water treatment
KR102323141B1 (en) Tublar filter for water-treatment and water-treatment filter module comprising thereof
JP4064285B2 (en) Filtration media for filtration
KR102591622B1 (en) Filter for flat type water treatment
JP2000334872A (en) Air permeable laminate and production thereof
JP3195923U (en) filter
JPH11267465A (en) Filter element
JP2015167931A (en) Filter medium and filter element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150