JP2020060482A - Underwater wave receiving device - Google Patents

Underwater wave receiving device Download PDF

Info

Publication number
JP2020060482A
JP2020060482A JP2018192843A JP2018192843A JP2020060482A JP 2020060482 A JP2020060482 A JP 2020060482A JP 2018192843 A JP2018192843 A JP 2018192843A JP 2018192843 A JP2018192843 A JP 2018192843A JP 2020060482 A JP2020060482 A JP 2020060482A
Authority
JP
Japan
Prior art keywords
azimuth
underwater
wave
azimuth angle
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018192843A
Other languages
Japanese (ja)
Other versions
JP6954878B2 (en
Inventor
瑞稀 伊藤
Mizuki Ito
瑞稀 伊藤
定生 島津
Sadao Shimazu
定生 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Network and Sensor Systems Ltd
Original Assignee
NEC Network and Sensor Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Network and Sensor Systems Ltd filed Critical NEC Network and Sensor Systems Ltd
Priority to JP2018192843A priority Critical patent/JP6954878B2/en
Publication of JP2020060482A publication Critical patent/JP2020060482A/en
Application granted granted Critical
Publication of JP6954878B2 publication Critical patent/JP6954878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an underwater wave receiving device capable of correcting deviation of orientation resulting from rotary motion of a hanging cable.SOLUTION: An underwater wave receiving device comprises a float part, a plurality of wave receivers, an underwater part, and a hanging cable connecting them, wherein the underwater part or the wave receiver is provided with an orientation sensor. The underwater wave receiving device comprises: an azimuth angle correction value storage unit that calculates the deviation of an angular velocity and angular acceleration of the orientation sensor and the deviation of an azimuth angle of each receiver, to store them in association with an azimuth correction value; and an azimuth angle correction unit that corrects the orientation deviation of a received signal of each wave receiver using the azimuth angle correction value corresponding to the angular velocity and angular acceleration obtained from the orientation sensor.SELECTED DRAWING: Figure 1

Description

本発明は、水中受波装置に関し、特に方位測定に用いられる水中受波装置に関する。   The present invention relates to an underwater wave receiving device, and particularly to an underwater wave receiving device used for azimuth measurement.

水中受波装置は、航空機から水中に投下され、航空機が空中を飛行しながらにして、水中を潜航する水中航走体を検出する用途に有効である。   The underwater wave receiving device is effective for detecting an underwater vehicle that is dropped from an aircraft into the water and dives underwater while the aircraft is flying in the air.

複数の受波器により構成する受波器アレイを有する水中受波装置は、垂直指向性により水面や水底の方向から到来する雑音を抑制し、音源となる水中航走体の水平方位を検出することができる高性能な水中受波装置である。   An underwater wave receiving device with a wave receiver array consisting of multiple wave receivers suppresses the noise coming from the direction of the water surface and the bottom of the water by vertical directivity, and detects the horizontal direction of the underwater vehicle that is the sound source. It is a high-performance underwater wave receiving device that can perform.

特許文献1に記載の水中受波装置は、同文献第3図に示すように、漁船105から吊り下げたケーブル106に複数個の受波器102を垂直、直線状に取り付け、各受波器102の各出力を加算している。同様に、特許文献2の方位検出装置は、N個の受波器を直線配列した受波器アレイと、各受波器の出力に基づき空間周波数を分析し到来音波の方位データを形成する方位データ形成部を備えている。   In the underwater wave receiving device described in Patent Document 1, as shown in FIG. 3 of the document, a plurality of wave receivers 102 are vertically and linearly attached to a cable 106 suspended from a fishing boat 105. Each output of 102 is added. Similarly, the azimuth detecting device of Patent Document 2 is a azimuth that forms a azimuth data of an incoming sound wave by analyzing a spatial frequency based on the output of each wave receiver and a wave receiver array in which N wave receivers are linearly arranged. The data forming unit is provided.

特公昭57-019389号公報Japanese Patent Publication No. 57-019389 特許第2580855号Patent No. 2580855

吊下ケーブルは通常100mを超えるほどに長いため、吊下げない時はドラムに巻き取ってあるが、巻かれた状態では吊下ケーブルには捻じれが発生している。ドラムに巻かれた吊下ケーブルがフロート部のドラムから水中に繰り出される時、捻じれを解放しようとして吊下ケーブルが水中で回転する。吊下ケーブルが回転するのにつられて受波器アレイも回転運動するので、回転がない場合に比べて受波器の受波信号の方位にずれが生じる。そのため受波信号から計算する音源の方位にずれが生じる。しかも吊下ケーブルが捻じれるので各受波器の受波信号の方位ずれの値がそれぞれ異なる。特許文献1、2にはこのような吊下ケーブルの回転運動に起因する方位ずれとその補正について何も述べていない。   Since the hanging cable is usually longer than 100 m, it is wound on a drum when it is not hanging, but the hanging cable is twisted when wound. When the suspension cable wound on the drum is paid out from the drum of the float section into the water, the suspension cable rotates in the water in order to release the twist. Since the receiver array also rotates as the suspension cable rotates, the direction of the received signal of the receiver shifts as compared with the case where there is no rotation. Therefore, the direction of the sound source calculated from the received signal is deviated. Moreover, since the hanging cable is twisted, the values of the direction deviations of the received signals of the respective wave receivers are different. Patent Documents 1 and 2 make no mention of the misalignment caused by the rotational movement of the suspension cable and its correction.

本発明の目的は、以上述べた問題点を解決し、吊下ケーブルの回転運動に起因する方位ずれを補正できる水中受波装置を提供することである。 It is an object of the present invention to solve the above-mentioned problems and to provide an underwater wave receiving device capable of correcting the azimuth deviation caused by the rotational movement of the suspension cable.

本発明は、フロート部、複数の受波器、水中部とそれらを接続する吊下ケーブルを備え、
前記水中部または前記受波器に方位センサが設けられ、
前記方位センサの角速度と角加速度と前記各受波器の方位角のずれを算出して方位角補正値を対応させて記憶した方位角補正値記憶部を備え、
前記方位センサから得た角速度及び角加速度に対応する前記方位角補正値を用いて各受波器の受波信号の方位ずれを補正する方位角補正部を備えたことを特徴とする水中受波装置である。
また本発明は、
フロート部、複数の受波器、水中部がケーブルで接続され、前記水中部または前記受波器に方位センサが設けられた水中受波装置の方位角補正方法であって、
前記方位センサの角速度と角加速度と前記各受波器の方位角のずれを算出して方位角補正値を対応させて記憶しておき、
前記方位センサから得た角速度及び角加速度に対応する前記方位角補正値を用いて各受波器の受波信号の方位ずれを補正することを特徴とする方位角補正方法である。
The present invention comprises a float section, a plurality of wave receivers, an underwater section and a suspension cable connecting them,
An orientation sensor is provided in the underwater portion or the wave receiver,
An azimuth angle correction value storage unit that stores the angular velocities and angular accelerations of the azimuth sensors and the azimuth angles of the respective wave receivers, and stores the azimuth angle correction values in association with each other,
Underwater wave reception, comprising an azimuth angle correction unit for correcting the azimuth deviation of the received signal of each wave receiver by using the azimuth angle correction values corresponding to the angular velocity and the angular acceleration obtained from the azimuth sensor. It is a device.
The present invention also provides
A float part, a plurality of wave receivers, an underwater part is connected by a cable, an azimuth correction method for an underwater wave receiving device in which an azimuth sensor is provided in the underwater part or the wave receiver,
The angular velocity and angular acceleration of the azimuth sensor and the deviation of the azimuth angle of each of the wave receivers are calculated, and the azimuth angle correction values are stored in association with each other.
The azimuth angle correction method is characterized in that the azimuth angle correction values corresponding to the angular velocity and the angular acceleration obtained from the azimuth sensor are used to correct the azimuth deviation of the received signals of the respective wave receivers.

本発明によれば、吊下ケーブルの回転運動に起因する方位のずれを補正できる水中受波装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the underwater wave receiving apparatus which can correct | amend the misalignment of the direction resulting from the rotary motion of a suspension cable can be provided.

本発明の第1の実施形態の水中受波装置の構成を示す図である。It is a figure which shows the structure of the underwater wave receiving apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態で、吊下ケーブルにより水中に吊り下げられた受波器アレイ及び水中部が吊下ケーブルの捻じれを解消するために回転する様子を示す図である。It is a figure which shows a mode that the receiver array and the underwater part suspended in the water by the suspension cable rotate in order to eliminate the twist of the suspension cable in the first embodiment of the present invention. 本発明の第1の実施形態で、吊下ケーブルの回転運動により受波器アレイと水中部が回転する角速度の時間変化を示す。図である。In the 1st Embodiment of this invention, the time change of the angular velocity which a receiver array and an underwater part rotate by the rotational motion of a hanging cable is shown. It is a figure. 本発明の第1の実施形態で、水中部における受波器の受波信号の方位ずれを補正する計算処理の構成を示す図である。It is a figure which shows the structure of the calculation process which correct | amends the direction gap of the received signal of the wave receiver in an underwater part in the 1st Embodiment of this invention. 水中部の角速度と角加速度が所定の範囲で変動した場合の、各受波器S1〜S5の受波信号の補正すべき角度(方位角補正値)を、水槽実験で求めたテーブルである。It is a table which calculated | required the angle (azimuth | direction angle correction value) which should correct | amend the received signal of each wave receiver S1-S5 when the angular velocity and angular acceleration of the underwater part fluctuate within a predetermined range. 本発明の第2の実施形態の水中受波装置の構成を示す図である。It is a figure which shows the structure of the underwater wave receiving apparatus of the 2nd Embodiment of this invention.

(第1の実施形態)
図1〜図5を用いて本発明の第1の実施形態を説明する。
構成の説明)
図1は、左側の(a)が水中受波装置100の全体構成、中央の(b)が受波器アレイ4及び水中部5の構成、右側の(c)が受波器アレイ4を構成する受波器S1〜S5の構造を示す斜視図である。本実施形態の水中受波装置100は、水面1に浮かんでいるフロート部2、水中に沈んでいる受波器アレイ4及び水中部5並びにフロート部2と水中部5を接続する吊下ケーブル3を備える。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.
Configuration description)
In FIG. 1, (a) on the left side is the overall configuration of the underwater wave receiving device 100, (b) in the center is the configuration of the wave receiver array 4 and the underwater portion 5, and (c) on the right side is the wave receiver array 4. It is a perspective view which shows the structure of the wave receivers S1-S5 which do. The underwater wave receiving apparatus 100 of the present embodiment includes a float unit 2 floating on a water surface 1, a receiver array 4 and an underwater unit 5 submerged in water, and a suspension cable 3 connecting the float unit 2 and the underwater unit 5. Equipped with.

受波器アレイ4は図1(b)に示すように5個の受波器S1〜S5を備える。5個の受波器S1〜S5の間は一定間隔である。水中部5は最下部の受波器S5と吊下ケーブル3で接続されている。受波器アレイ4を構成する5個の受波器S1〜S5と水中部5は3本のケーブルにより同じ方向を指向する構造としている。   The wave receiver array 4 includes five wave receivers S1 to S5 as shown in FIG. There is a fixed interval between the five wave receivers S1 to S5. The underwater portion 5 is connected to the lowermost wave receiver S5 by a suspension cable 3. The five wave receivers S1 to S5 and the underwater portion 5 which form the wave receiver array 4 are structured to be directed in the same direction by three cables.

フロート部2は、吊下ケーブル3、受波器アレイ4及び水中部5の水中重量の合計よりも大きな浮力を有しており、水面1に浮かんでいる。   The float portion 2 has a buoyancy force larger than the total of the underwater weights of the suspension cable 3, the receiver array 4, and the underwater portion 5, and floats on the water surface 1.

吊下ケーブル3は、フロート部2、受波器アレイ4及び水中部5を接続する電線であるとともに、フロート部2の浮力により受波器アレイ4及び水中部5が沈下するのを防いでおり、吊下ケーブル3自身、受波器アレイ4及び水中部5の水中重量によるテンションがかかっている。受波器アレイ4から水中部5までの吊下ケーブル3は複数本、ここでは三本のケーブルで構成される。そのため水中重量によるテンションが加わっても吊下ケーブルが捻じれにくく、受波器アレイ4と水中部5が同じ水平方向を指向する構造になっている。 The suspension cable 3 is an electric wire that connects the float unit 2, the receiver array 4 and the underwater unit 5, and prevents the receiver array 4 and the underwater unit 5 from sinking due to the buoyancy of the float unit 2. The tension due to the underwater weight of the suspension cable 3 itself, the receiver array 4 and the underwater portion 5 is applied. The suspension cable 3 from the wave receiver array 4 to the underwater portion 5 is composed of a plurality of cables, here three cables. Therefore, the suspension cable is not easily twisted even if tension due to underwater weight is applied, and the receiver array 4 and the underwater portion 5 have the same horizontal direction.

受波器S1〜S5はそれぞれ、水平方向に直交するSIN(サイン)指向性とCOS(コサイン)指向性を有する。個々の受波器は、円盤状で、外周部分を占め水平方向からの水中音波を検知する音響センサである電歪振動子12と、中央部分の樹脂モールド部分13を備える。樹脂モールド部分13は中央に穴が3つ開いたリング状であり、合成樹脂でモールドされている。吊下ケーブル3を介して受波器S1〜S5の間で吊下ケーブル3を介して相互に振動が伝わりにくいようにするため、樹脂モールド部分は柔らかい材質にするとよい。この樹脂モールド部分13の外側に電歪振動子12が設けられている。   Each of the wave receivers S1 to S5 has SIN (sine) directivity and COS (cosine) directivity that are orthogonal to the horizontal direction. Each of the wave receivers has a disk shape and includes an electrostrictive vibrator 12 which is an acoustic sensor that occupies an outer peripheral portion and detects underwater sound waves from the horizontal direction, and a resin mold portion 13 at a central portion. The resin mold portion 13 has a ring shape with three holes formed in the center and is molded with synthetic resin. In order to prevent vibrations from being transmitted to each other between the wave receivers S1 to S5 via the suspension cable 3 via the suspension cable 3, it is preferable that the resin mold portion is made of a soft material. The electrostrictive oscillator 12 is provided outside the resin mold portion 13.

樹脂モールド部分13の中央部分には吊下ケーブル接続孔14が開口されている。吊下ケーブル接続孔14は正三角形の頂点の位置に設けられる。   A hanging cable connection hole 14 is opened in the central portion of the resin mold portion 13. The hanging cable connection hole 14 is provided at the apex of an equilateral triangle.

水中部5は方位センサ11と方位計算回路300を備える。本実施形態では方位センサとして地磁気センサを用いる。図4に示すように、方位計算回路300には、受波器アレイ4を構成する受波器S1〜S5から受波信号が入力され、また方位センサ11からは方位角を示す信号が入力され、それらをデジタル信号処理して対象の水中航走体の方位を計算する。方位センサ11は、地磁気に基づいて計算した水平方位角を1秒あたり20〜50回の一定間隔で出力する。   The underwater unit 5 includes an azimuth sensor 11 and an azimuth calculation circuit 300. In this embodiment, a geomagnetic sensor is used as the orientation sensor. As shown in FIG. 4, to the azimuth calculation circuit 300, the wave reception signals are input from the wave receivers S1 to S5 that form the wave receiver array 4, and the azimuth angle signal is input from the azimuth sensor 11. , Calculate the direction of the target underwater vehicle by digital signal processing them. The azimuth sensor 11 outputs the horizontal azimuth angle calculated based on the geomagnetism at a constant interval of 20 to 50 times per second.

方位計算回路300について説明する。方位計算回路300は方位角補正部に相当する。
受波器S1〜S5はそれぞれ、水平方向に直交するSIN指向性28とCOS指向性29を有する。電歪振動子12が水中の音波により振動することにより発生した電気信号を、水中部5に内蔵するプリアンプ30へ出力する。プリアンプ30は、入力した電気信号をA/D(Analog/Digital)変換部31の入力レンジに適合する電圧に増幅してA/D変換部31へ出力する。
The azimuth calculation circuit 300 will be described. The azimuth calculation circuit 300 corresponds to an azimuth angle correction unit.
Each of the wave receivers S1 to S5 has a SIN directivity 28 and a COS directivity 29 which are orthogonal to the horizontal direction. The electric signal generated by the electrostrictive vibrator 12 vibrating by the sound wave in the water is output to the preamplifier 30 incorporated in the underwater unit 5. The preamplifier 30 amplifies the input electric signal to a voltage suitable for the input range of the A / D (Analog / Digital) converter 31, and outputs the voltage to the A / D converter 31.

A/D変換部31は、入力した電気信号をデジタルデータに変換し、方位角補正計算部34へ出力する。方位センサ11は、1秒間に20〜50回の一定周期で水中部が指向する磁気方位を角速度・角加速度計算部32へ出力する。   The A / D conversion unit 31 converts the input electric signal into digital data and outputs the digital data to the azimuth correction calculation unit 34. The azimuth sensor 11 outputs the magnetic azimuth directed by the underwater portion to the angular velocity / angular acceleration calculation unit 32 at a constant cycle of 20 to 50 times per second.

角速度・角加速度計算部32は、方位センサ11から入力した水中部の方位角について、過去の一定時間分の方位角を記憶し、前回入力した方位角、今回入力した最新の方位角及び方位角を入力した時間間隔から水中部5の回転における角速度及び角加速度を計算し、方位角補正値取得部33に出力する。具体的には以下のとおりに計算する。
角速度(deg/秒)=
=(今回の方位角(deg)−前回の方位角(deg))÷時間間隔(秒)
角加速度(deg/秒2)=
=(今回の角速度(deg/秒)−前回の角速度(deg/秒))÷時間間隔(秒)
一般に方位角は北から東回りで示されるので、角速度(deg/秒)が正の値の場合は右回り(時計回り)、角速度(deg/秒)が負の値の場合は左回り(反時計回り)となる。
The angular velocity / angular acceleration calculation unit 32 stores the azimuth angle of the past fixed time for the azimuth angle of the underwater portion input from the azimuth sensor 11, and stores the azimuth angle input last time, the latest azimuth angle and azimuth angle input this time. The angular velocity and the angular acceleration in the rotation of the underwater portion 5 are calculated from the input time interval, and output to the azimuth correction value acquisition unit 33. Specifically, it is calculated as follows.
Angular velocity (deg / sec) =
= (Current azimuth (deg) -previous azimuth (deg)) / time interval (seconds)
Angular acceleration (deg / sec 2 ) =
= (Current angular velocity (deg / sec) -Previous angular velocity (deg / sec)) ÷ Time interval (sec)
Generally, the azimuth is shown from north to east, so if the angular velocity (deg / sec) is positive, it is clockwise (clockwise), and if the angular velocity (deg / sec) is negative, it is counterclockwise (counterclockwise). Clockwise).

方位角補正値取得部33は、受波器アレイと水中部5の正回転運動または逆回転運動が、図3に示す角速度時間変化17におけるどのフェーズにあるか判定し、各受波器S1〜S5の受波信号の方位角の補正値を以下の(動作の説明)の欄で述べる方法により決定して、方位角補正計算部34へ出力する。方位角補正計算部34はA/D変換部31から入力したSIN指向性28またはCOS指向性29のデジタルデータを、方位角補正値取得部33からの方位角補正値で補正する。このようにして補正後のSIN指向性35(地磁気の磁北を基準とした南北方向の水平指向性)または補正後のCOS指向性36(地磁気の磁北を基準とした東西方向の水平指向性)を計算する。これによって音波の到来方向を計算することができる。   The azimuth correction value acquisition unit 33 determines which phase of the angular velocity time change 17 shown in FIG. 3 is in which the forward rotation motion or the reverse rotation motion of the wave receiver array and the underwater unit 5 is, and each wave receiver S1 to S1. The correction value of the azimuth angle of the received signal in S5 is determined by the method described in the following section (Description of operation) and output to the azimuth angle correction calculation unit 34. The azimuth correction calculation unit 34 corrects the digital data of the SIN directivity 28 or the COS directivity 29 input from the A / D conversion unit 31 with the azimuth correction value from the azimuth correction value acquisition unit 33. In this way, the corrected SIN directivity 35 (horizontal directivity in the north-south direction based on the magnetic north of the geomagnetic field) or the corrected COS directivity 36 (horizontal directivity in the east-west direction based on the magnetic north of the geomagnetic field) calculate. This makes it possible to calculate the arrival direction of sound waves.

(動作の説明)
<吊下ケーブルの回転運動>
上述のように、ドラムに巻かれている状態での吊下ケーブル3の捻じれを解消するために、フロート部2のドラムから吊下ケーブル3を繰り出すと(展張させると)、吊下ケーブル3が回転する。つまり図2(c)に示すように、受波器アレイ4を構成する受波器及び水中部5を吊下する吊下ケーブル3を捻じる回転運動となる。図2は、吊下ケーブル3が捻じれを解消するために回転し、受波器アレイ4を構成する受波器S1〜S5及び水中部5がそれぞれ異なる方向を指向する様子を示す。
(Explanation of operation)
<Rotating motion of hanging cable>
As described above, when the suspension cable 3 is unwound (stretched) from the drum of the float part 2 in order to eliminate the twist of the suspension cable 3 when wound around the drum, the suspension cable 3 Rotates. That is, as shown in FIG. 2 (c), it becomes a rotational motion of twisting the suspension cable 3 that suspends the wave receivers and the underwater portion 5 that form the wave receiver array 4. FIG. 2 shows a state in which the suspension cable 3 rotates in order to eliminate the twist, and the wave receivers S1 to S5 and the underwater portion 5 forming the wave receiver array 4 are directed in different directions.

図2(a)は図1(b)と同じ図で、正回転運動15と逆回転運動16の方向を示してある。図2(b)は吊下ケーブル3が回転していない状態を横から見た図、(c)は吊下ケーブル3が回転している状態を横から見た図である。図2(d)は受波器S1〜S5の正回転運動による吊下ケーブルの捻じれによって、各受波器と水中部5が互いに異なる角度(θ1〜θ6)になる(捻じれる)様子を示す。図2(e)は同様に受波器S1〜S5の逆回転運動による吊下ケーブルの捻じれによって、各受波器と水中部5が互いに異なる角度(θ1’〜θ6’)になる(捻じれる)様子を示す。複数の受波器により構成する受波器アレイを有する水中受波装置は、受波器が水平方向の指向性を有するため、各受波器と水中部が同じ方向を向くことが望ましいが、捻じれによって互いに異なる方向に向く。   FIG. 2A is the same as FIG. 1B and shows the directions of the forward rotation movement 15 and the reverse rotation movement 16. FIG. 2B is a side view of the state where the suspension cable 3 is not rotating, and FIG. 2C is a side view of the state where the suspension cable 3 is rotating. FIG. 2D shows a state in which the wave receivers and the underwater portion 5 have different angles (θ1 to θ6) (twist) due to the twisting of the hanging cable due to the positive rotation motion of the wave receivers S1 to S5. Show. Similarly, in FIG. 2E, due to the twisting of the suspension cable due to the reverse rotational movement of the wave receivers S1 to S5, the respective wave receivers and the underwater portion 5 have different angles (θ1 ′ to θ6 ′) (twisting). The situation is shown. Underwater wave receiving device having a wave receiver array composed of a plurality of wave receivers, since the wave receiver has a horizontal directivity, it is desirable that each wave receiver and the underwater portion face the same direction, Twisting leads to different directions.

図3は吊下ケーブル3の展張時に吊下ケーブルがフロート部のドラムから繰り出される際に吊下ケーブルの捻じれを解消するため発生する回転運動の初期の部分を示す。図3の縦軸は水中部または受波器の角速度、横軸は展張開始からの時間経過である。正回転運動15が右回りなのか左回りなのかについては、吊下ケーブルをドラムに巻き取る際の捻じれの方向によって決まる。回転の最初の回転運動を正回転運動15(ここでは右回り)とする。   FIG. 3 shows the initial part of the rotational movement that occurs in order to eliminate the twist of the suspension cable when the suspension cable is unrolled from the drum of the float portion when the suspension cable 3 is extended. The vertical axis in FIG. 3 is the angular velocity of the underwater portion or the wave receiver, and the horizontal axis is the time elapsed from the start of the expansion. Whether the forward rotation movement 15 is clockwise or counterclockwise depends on the direction of twist when the hanging cable is wound around the drum. The first rotational movement of the rotation is defined as a forward rotational movement 15 (clockwise in this case).

最初の正回転運動は2つのフェーズに分かれる。まず吊下ケーブルが展張直後に初期の捻じれを解消するため、正回転運動の角加速度が加速する(図3の正回転運動加速フェーズ24)。吊下ケーブルの初期の捻じれが解消した後も、吊下ケーブル、受波器アレイ及び水中部の水中重量による慣性モーメントにより吊下ケーブルが正回転を続ける結果、吊下ケーブルを逆方向に捻じれる運動エネルギーが蓄積され、正回転運動の角加速度が減速する(図3の正回転運動減速フェーズ25)。 The first forward rotation movement is divided into two phases. First, since the hanging cable eliminates the initial twist immediately after the extension, the angular acceleration of the forward rotation motion is accelerated (forward rotation motion acceleration phase 24 in FIG. 3). Even after the initial twist of the suspension cable is eliminated, the suspension cable continues to rotate forward due to the moment of inertia due to the weight of the suspension cable, the receiver array, and the underwater weight of the underwater portion.As a result, the suspension cable is twisted in the opposite direction. The kinetic energy accumulated is accumulated, and the angular acceleration of the forward rotation movement is decelerated (forward rotation movement deceleration phase 25 in FIG. 3).

次に吊下ケーブル3において、初期の慣性モーメントによる正回転運動のエネルギーよりも二次的な慣性モーメントにより生じた捻じれを解消する逆回転運動のエネルギーの方が大きくなり、回転方向が反転し、逆回転運動の角加速度が加速する(図3の逆回転運動減速フェーズ26)。 Next, in the hanging cable 3, the energy of the reverse rotation motion that eliminates the twist caused by the secondary inertia moment becomes larger than the energy of the normal rotation motion due to the initial moment of inertia, and the rotation direction is reversed. The angular acceleration of the reverse rotational movement is accelerated (reverse rotational movement deceleration phase 26 in FIG. 3).

逆回転運動により二次的な吊下ケーブルの捻じれが解消後、吊下ケーブル、受波器アレイ及び水中部の水中重量による二次的な慣性モーメントにより吊下ケーブルが逆回転運動を続け、吊下ケーブルに三次的な捻じれが生じたことによる正回転運動のエネルギーが蓄積され、逆回転運動の角加速度が減速する(図3の逆回転運動減速フェーズ27)。   After the secondary twisting of the suspension cable is eliminated by the reverse rotation motion, the suspension cable continues the reverse rotation motion due to the secondary inertia moment due to the underwater weight of the suspension cable, the receiver array and the underwater part, The energy of the forward rotational motion due to the tertiary twist of the hanging cable is accumulated, and the angular acceleration of the reverse rotational motion is decelerated (reverse rotational motion deceleration phase 27 in FIG. 3).

また水中での摩擦抵抗によって時間経過とともに回転方向の変化周期が長くなり、最大角速度が小さくなる。図3でいえば最初の回転方向変化周期21が、四周期目には回転方向変化周期22と長くなり、最大回転数角速度時間変化に差(図3の23)が生じる。捻じれ解消の回転運動は数十分間継続すると考えられる。   Further, due to the frictional resistance in water, the change cycle of the rotation direction becomes longer with the passage of time, and the maximum angular velocity becomes smaller. In FIG. 3, the first rotation direction change cycle 21 becomes longer than the rotation direction change cycle 22 in the fourth cycle, and a difference (23 in FIG. 3) occurs in the maximum rotation speed angular velocity time change. It is considered that the rotational movement to eliminate the twist is continued for several tens of minutes.

また吊下ケーブル3の捻じれは、吊下ケーブル3、受波器アレイ4及び水中部5を回転させる慣性モーメント及び重力に逆らって持ち上げる位置エネルギーに変換され、それらの間隔がL1〜L5からL1’〜L5’に示すように短くなる。   In addition, the twist of the suspension cable 3 is converted into a moment of inertia for rotating the suspension cable 3, the receiver array 4, and the underwater portion 5 and potential energy for lifting against gravity, and the distance between them is from L1 to L5 to L1. It becomes shorter as shown by '~ L5'.

図2(b)、(c)においてL1〜L5は、正回転運動または逆回転運動をしていない状態の受波器S1〜S5及び水中部5の間隔を示す。また図2においてL1’〜L5’は、受波器アレイ及び水中部が正回転運動または逆回転運動を行っている状態の受波器S1〜S5及び水中部5の間隔を示す。正回転運動または逆回転運動により三本の吊下ケーブルが捻じれるため、受波器S1〜S5及び水中部5が重力に逆らって上の方向へ引っ張られて上昇する。なお図2ではL1〜L5、L1’〜L5’をそれぞれ同じ長さ(同じ間隔)に表示しているが、受波器S1〜S5及び水中部5の間の吊下ケーブル3に加わる慣性モーメントがそれぞれ異なると、間隔もそれぞれ異なる。   In FIG. 2B and FIG. 2C, L1 to L5 indicate the intervals between the wave receivers S1 to S5 and the underwater portion 5 in the state where the forward rotation motion or the reverse rotation motion is not performed. Further, in FIG. 2, L1 'to L5' indicate the intervals between the wave receivers S1 to S5 and the underwater portion 5 in the state where the wave receiver array and the underwater portion are performing the normal rotation motion or the reverse rotation motion. Since the three hanging cables are twisted by the forward rotation movement or the reverse rotation movement, the wave receivers S1 to S5 and the underwater portion 5 are pulled upward against the gravity and rise. In FIG. 2, L1 to L5 and L1 ′ to L5 ′ are displayed with the same length (same spacing), but the moment of inertia applied to the suspension cable 3 between the wave receivers S1 to S5 and the underwater portion 5 is shown. And the intervals are different.

図2(d)においてθ1〜θ6は、正回転運動を行っている状態の受波器S1〜S5及び水中部5のある瞬間の指向方向を示す。吊下ケーブルが展張した直後である初期の正回転運動は上から下へ回転運動が伝わるため、一番上位にあるθ1が最も大きく、一番下位にあるθ6が最も小さい。   In FIG. 2 (d), θ1 to θ6 indicate the pointing directions of the wave receivers S1 to S5 and the underwater portion 5 at a certain moment in the state of performing the positive rotation motion. Immediately after the suspension cable is stretched, the initial positive rotational movement is transmitted from top to bottom, so θ1 at the highest rank is the largest and θ6 at the lowest rank is the smallest.

また図2(e)においてθ1’〜θ6’は、逆回転運動を行っている状態の受波器S1〜S5及び水中部5のある瞬間の指向方向を示す。逆回転運動は下から上へ回転運動が伝わるため、一番下位にあるθ6’が最も大きく、一番上位にあるθ1’が最も小さい。   Further, in FIG. 2 (e), θ1 ′ to θ6 ′ indicate the directional directions of the wave receivers S1 to S5 and the underwater portion 5 at a certain moment while performing the reverse rotation motion. Since the rotational movement is transmitted from the bottom to the top in the reverse rotational movement, the lowest .theta.6 'is the largest and the highest .theta.1' is the smallest.

吊下ケーブル3の捻じれを解消する正回転運動15及び逆回転運動16のエネルギーは、受波器アレイ4及び水中部5を接続する三本の吊下ケーブル3を捻じる力として伝わるため、その回転エネルギーの伝搬には時間差が生じる。そのためある瞬間の各受波器と水中部は少しずつずれた方向を向く。   The energy of the forward rotation motion 15 and the reverse rotation motion 16 for eliminating the twist of the hanging cable 3 is transmitted as a force for twisting the three hanging cables 3 connecting the receiver array 4 and the underwater portion 5. There is a time difference in the propagation of the rotational energy. Therefore, each wave receiver and the underwater part at a certain moment point in a direction slightly shifted.

例えば最初の正回転運動15が右回りの場合は、図2のθ1〜θ6に示すように上から下へ順番に回転運動が伝わるため、正回転運動15により生じるθ1〜θ6の角度は、最上部に位置する受波器S1のθ1が最も大きく、θ2、θ3・・・と段々小さくなり、最下部に位置する水中部5のθ6が最も小さい。つまりθ1〜θ6はそれぞれ異なる値を取る。   For example, when the first forward rotation motion 15 is clockwise, the rotation motion is transmitted in order from top to bottom as shown by θ1 to θ6 in FIG. 2, so the angles θ1 to θ6 generated by the normal rotation motion 15 are the maximum. Θ1 of the wave receiver S1 located at the upper part is the largest, θ2, θ3 ... Are gradually smaller, and θ6 of the underwater part 5 located at the lowermost part is the smallest. That is, θ1 to θ6 have different values.

また例えば逆回転運動16が左回りの場合は、図2(e)のθ1’〜θ6’に示すように下から上へ順番に逆回転運動16が伝わるため、θ1’〜θ6’の角度は最下部に位置する水中部5のθ6’が最も大きく、θ5’、θ4’・・・と段々小さくなり、最上部に位置する受波器S1のθ1’が最も小さい。つまりθ1’〜θ6’はそれぞれ異なる値を取る。
<水槽実験による方位角補正値テーブル作成>
上述のように、吊下ケーブル3が捻じれを解消しようとして生じる回転運動によって、各受波器S1〜S5の角度(θ1〜θ5)と水中部5の角度(θ6)にはずれがある。このずれを補正するには、予め水中部の角速度及び角加速度毎の個々の受波器の受波信号の方位ずれを水槽実験で検証して、その方位ずれを補正する補正値(角度)をテーブルの形で記憶しておく。水中受波装置を実際に水中に投下したときの角速度、角加速度の測定値で補正値テーブルを参照し補正値を引き出して補正する。言い換えると、水中部の角速度と角加速度から、水中部が図3の角速度変化のカーブのどこにいるかが分かる。補正値テーブルは、水中部の角速度及び角加速度毎の、個々の受波器の受波信号の方位ずれを補正する角度を記憶してあるので、個々の受波器の補正値が分かる。
Further, for example, when the reverse rotation motion 16 is counterclockwise, the reverse rotation motion 16 is transmitted in order from bottom to top as shown in θ1 ′ to θ6 ′ of FIG. Θ6 ′ of the underwater portion 5 located at the bottom is the largest, θ5 ′, θ4 ′ ... Are gradually smaller, and θ1 ′ of the wave receiver S1 located at the top is the smallest. That is, θ1 ′ to θ6 ′ take different values.
<Azimuth correction value table creation by water tank experiment>
As described above, the angle (θ1 to θ5) of each of the wave receivers S1 to S5 and the angle (θ6) of the underwater portion 5 deviate due to the rotational movement that occurs when the suspension cable 3 tries to eliminate the twist. To correct this deviation, verify the azimuth deviation of the received signals of the individual wave receivers for each angular velocity and angular acceleration of the underwater in advance in a tank test, and obtain the correction value (angle) to correct the azimuth deviation. Remember in the form of a table. The correction value table is referred to by the measured values of the angular velocity and the angular acceleration when the underwater wave receiving device is actually dropped into the water, and the correction value is extracted and corrected. In other words, from the angular velocity and the angular acceleration of the underwater portion, it can be known where the underwater portion is on the curve of the angular velocity change in FIG. Since the correction value table stores the angle for correcting the azimuth deviation of the received signal of each wave receiver for each angular velocity and angular acceleration of the underwater portion, the correction value of each wave receiver can be known.

角速度と角加速度の両方を使う理由は次の通りである。図3に示すように、水中部(と各受波器)は減衰しながら何回も回転する。そのため水中部5の方位センサ11の示す水中部5の方位角とそこから各受波器がどれだけ捻じれたか(どれだけ角度ずれがあるか)の関係は一対一対応しない。つまり水中部5の指向方位角がある一つの値でも、それに対応する各受波器の方位角補正値は複数ある。そのため水槽実験して水中部5の指向方位角とそれに対応する各受波器の方位角補正値を得ても、複数の方位角補正値のうちどれを適用していいか分からない。しかし角速度と角加速度の両方を考慮すると同じ組み合わせのものはない(角速度が符号も含めて同じでも角加速度は異なる)ため、水中部が図3のカーブのどこにいるかを特定できる。そのため水槽実験で角速度、角加速度を両方とも測り、それらに合う方位角補正値と対応させると、正しい補正が可能になる。   The reason for using both the angular velocity and the angular acceleration is as follows. As shown in FIG. 3, the underwater portion (and each wave receiver) rotates many times while being attenuated. Therefore, there is no one-to-one correspondence between the azimuth angle of the underwater portion 5 indicated by the azimuth sensor 11 of the underwater portion 5 and how much each of the wave receivers is twisted (how much the angle is deviated). That is, even if the directivity azimuth angle of the underwater portion 5 is one value, there are a plurality of azimuth angle correction values corresponding to the respective wave receivers. Therefore, even if a directional azimuth of the underwater portion 5 and an azimuth correction value of each wave receiver corresponding to the azimuth correction value of the underwater portion 5 are obtained by a water tank experiment, it is not known which of the plurality of azimuth correction values should be applied. However, considering both the angular velocity and the angular acceleration, there is no same combination (the angular velocity is the same including the sign but the angular acceleration is different), so that it is possible to specify where the underwater portion is on the curve in FIG. 3. Therefore, if both the angular velocity and the angular acceleration are measured in the water tank experiment and they are associated with the azimuth correction values that match them, correct correction becomes possible.

図5は水中部5の角速度が0.0〜10.0deg/sec、角加速度が0〜10.0deg/sec2の範囲で変動した場合の、各受波器S1〜S5の補正すべき角度(方位角補正値)を、水槽実験で求めた方位角補正値テーブルである。 FIG. 5 shows the angles to be corrected (azimuth angle correction) of each of the wave receivers S1 to S5 when the angular velocity of the underwater portion 5 changes within the range of 0.0 to 10.0 deg / sec and the angular acceleration within the range of 0 to 10.0 deg / sec 2. Is a azimuth correction value table obtained in the water tank experiment.

方位角補正値テーブルの求め方を以下に説明する。
(1)前もって受波器S1〜S5に方向の目印となる線(マーク)を書き込む。
(2)水中受波装置を水槽に入れ、モータ等を使って水槽中で吊下ケーブルに所定の大きさの捻じれを模擬した角速度及び角加速度の回転運動を生じさせる。(角速度及び角加速度が同じであれば、捻じれを解放する回転運動でもモータ等で吊下ケーブルを回す回転運動でも、受波器S1〜S5の回転角度は同じになるので、モータによる回転で捻じれの解放による回転を模擬できる。)
(3)受波器S1〜S5が回転する様子を水中ビデオカメラで撮影し、受波器S1〜S5の目印の線の角度を所定の時間間隔で測定する。目印の線の角度とは例えば磁北からのずれの角度である。これと並行して同じ時刻の水中部5の角度を方位センサ11で測定する。目印の線の角度の測定と方位センサ11の方位角の測定とはタイミングを合わせて行うとよい。
(4)水中受波装置を巻いておくドラムの種類が複数あるなど、捻じれの大きさ(に起因する回転運動の大きさ)が複数想定される場合は、モータの回転数を変えて、(2)とは異なる大きさの捻じれを模擬した角速度と角加速度の回転運動を生じさせ、(3)の測定を行う。
How to obtain the azimuth correction value table will be described below.
(1) In advance, write a line (mark) as a direction mark on the wave receivers S1 to S5.
(2) Put an underwater wave receiving device in a water tank, and use a motor or the like to generate a rotational motion of angular velocity and angular acceleration that simulates a predetermined amount of twist in a hanging cable in the water tank. (If the angular velocity and the angular acceleration are the same, the rotational angles of the wave receivers S1 to S5 are the same whether the rotational movement to release the twist or the rotational movement to rotate the suspension cable with a motor or the like. You can simulate the rotation by releasing the twist.)
(3) The rotation of the wave receivers S1 to S5 is photographed by an underwater video camera, and the angle of the mark line of the wave receivers S1 to S5 is measured at predetermined time intervals. The angle of the mark line is, for example, the angle of deviation from magnetic north. In parallel with this, the angle of the underwater portion 5 at the same time is measured by the azimuth sensor 11. The measurement of the angle of the mark line and the measurement of the azimuth of the azimuth sensor 11 may be performed at the same timing.
(4) If there are multiple torsional magnitudes (magnitudes of rotational movement caused by them), such as multiple types of drums around which the underwater wave receiving device is wound, change the number of rotations of the motor, Rotational motion of angular velocity and angular acceleration simulating a twist of a different magnitude from (2) is generated, and the measurement of (3) is performed.

このように測定を行っておいて、水中部5の方位角、角速度(deg/秒)及び角加速度(deg/秒2)から受波器S1〜S5の指向方位角を推定する方位角補正値(deg)を決定する。 An azimuth angle correction value for estimating the pointing azimuth angles of the wave receivers S1 to S5 from the azimuth angle, the angular velocity (deg / sec) and the angular acceleration (deg / sec 2 ) of the underwater portion 5 after performing the measurement as described above. (Deg) is determined.

なお、吊下ケーブルの捻じれを解消するために発生する回転運動は、水中受波装置の型式、例えば、吊下ケーブルの長さ、装置の重さ、受波器の数や互いの間隔等のパラメータにより異なるので、型式毎に図5のような補正テーブルを作成する。この補正テーブルはテーブル保持メモリ40に記憶させておく。テーブル保持メモリ40は方位角補正値記憶部に相当するものであり、方位センサの角速度と角加速度から、と前記各受波器の受波信号の方位角のずれである方位角補正値を対応させて記憶しているものである。   In addition, the rotational movement generated to eliminate the twist of the suspension cable is the type of the underwater receiving device, for example, the length of the suspension cable, the weight of the device, the number of wave receivers, the distance between each other, etc. Since it depends on the parameter of, the correction table as shown in FIG. 5 is created for each model. This correction table is stored in the table holding memory 40. The table holding memory 40 corresponds to an azimuth angle correction value storage unit, and corresponds the azimuth angle correction value, which is the deviation of the azimuth angle of the received signal of each wave receiver, from the angular velocity and angular acceleration of the azimuth sensor. It is something I remember.

初期の水中部5の角速度(deg/秒)が正の値の場合は正回転運動15が右回り、負の値の場合は正回転運動15が左回りと判定し、逆回転運動16は正回転運動15の反対方向の回転運動と判定する。   When the initial angular velocity (deg / sec) of the underwater portion 5 is a positive value, it is determined that the positive rotational movement 15 is clockwise, and when the angular velocity is negative, the positive rotational movement 15 is counterclockwise, and the reverse rotational movement 16 is positive. It is determined that the rotational movement is in the opposite direction of the rotational movement 15.

なお図5の補正テーブルで、方位センサの角加速度(deg/秒2)が正の値の場合しか記載していない。理由は、正回転運動による方位角補正値と逆回転運動による方位角補正値は、プラスとマイナスの符号が異なるが絶対値としては近い値であるため、方位センサの角加速度が負の値の場合を省略したためである。
<方位角の計算>
受波器S1〜S5から出力される、方位誤差を含んだ補正前のSIN指向性28と補正前のCOS指向性29を、方位センサ11から得られる角速度と角加速度のデータとで補正して、補正後のSIN指向性35及び補正後のCOS指向性36を得る信号処理方法を、図4を用いて説明する。
In the correction table of FIG. 5, only the case where the angular acceleration (deg / sec 2 ) of the azimuth sensor has a positive value is described. The reason is that the azimuth angle correction value due to the forward rotation motion and the azimuth angle correction value due to the reverse rotation motion are close to each other in absolute value although the signs of plus and minus are different. This is because the case was omitted.
<Calculation of azimuth>
The uncorrected SIN directivity 28 and the uncorrected COS directivity 29 output from the wave receivers S1 to S5 are corrected by the angular velocity and angular acceleration data obtained from the azimuth sensor 11. A signal processing method for obtaining the corrected SIN directivity 35 and the corrected COS directivity 36 will be described with reference to FIG.

方位誤差を含んだ受波信号であるSIN指向性28とCOS指向性29の信号はそれぞれプリアンプ30に入力され、後段のA/D変換部31の入力レンジに適合する電圧に増幅される。A/D変換部31は、入力した電気信号をデジタルデータに変換し、方位角補正計算部34へ出力する。一方、方位センサ11は、1秒間に20〜50回の一定周期で水中部5が指向する磁気方位のデータを角速度・角加速度計算部32へ出力する。角速度・角加速度計算部32はこのデータを受け、上述の(信号処理回路)で述べたように角速度と角加速度を計算する。方位角補正値取得部33は、算出された角速度と角加速度から、受波器アレイ4と水中部5の正回転運動(または逆回転運動)が、図3に示す角速度時間変化17におけるどのフェーズにあるか(角速度時間変化のカーブのどの地点にいるか)を判定する。判定後、方位角補正値取得部33はその角速度と角加速度の組合せに対応する受波器S1〜S5の方位角補正値をテーブル保持メモリ40から呼び出す。方位角補正値は個々の受波器で異なるので、方位角補正値取得部33は各受波器S1〜S5毎の方位角補正値を方位角補正計算部34に出力する。方位角補正計算部34はA/D変換部31から入力したSIN指向性28またはCOS指向性29の受波信号レベルのデジタルデータを、方位角補正値取得部33からの方位角補正値で補正する。このようにして補正後のSIN指向性35及び補正後のCOS指向性36を計算する。具体的には以下のような計算を行う(S1のみ示す)。
受波器S1の補正後のSIN指向性=
=S1の受波信号レベルのデジタルデータ×COS(水中部方位角(deg)+S1の方位角補正値(deg))
受波器S1の補正後のCOS指向性=
S1の受波信号レベルのデジタルデータ×SIN(水中部方位角(deg)+S1の方位角補正値(deg))
上記計算式は受波器S1の場合であるが、受波器S2〜S5の場合も方位角補正値を該当する受波器に置き換えて計算する。
The signals of the SIN directivity 28 and the COS directivity 29, which are the received signals including the azimuth error, are input to the preamplifier 30 and amplified to a voltage suitable for the input range of the A / D converter 31 in the subsequent stage. The A / D conversion unit 31 converts the input electric signal into digital data and outputs the digital data to the azimuth correction calculation unit 34. On the other hand, the azimuth sensor 11 outputs the data of the magnetic azimuth directed by the underwater portion 5 to the angular velocity / angular acceleration calculation unit 32 at a constant cycle of 20 to 50 times per second. The angular velocity / angular acceleration calculation unit 32 receives this data and calculates the angular velocity and the angular acceleration as described above in (Signal processing circuit). Based on the calculated angular velocity and angular acceleration, the azimuth angle correction value acquisition unit 33 determines which phase in the angular velocity time change 17 shown in FIG. 3, the normal rotational movement (or the reverse rotational movement) of the wave receiver array 4 and the underwater portion 5. (Which point on the curve of change in angular velocity with time)? After the determination, the azimuth correction value acquisition unit 33 calls the azimuth correction values of the wave receivers S1 to S5 corresponding to the combination of the angular velocity and the angular acceleration from the table holding memory 40. Since the azimuth angle correction value differs for each wave receiver, the azimuth angle correction value acquisition unit 33 outputs the azimuth angle correction value for each of the wave receivers S1 to S5 to the azimuth angle correction calculation unit 34. The azimuth correction calculation unit 34 corrects the digital data of the received signal level of the SIN directivity 28 or the COS directivity 29 input from the A / D conversion unit 31 with the azimuth correction value from the azimuth correction value acquisition unit 33. To do. In this way, the corrected SIN directivity 35 and the corrected COS directivity 36 are calculated. Specifically, the following calculation is performed (only S1 is shown).
SIN directivity after correction of receiver S1 =
= Digital data of received signal level of S1 x COS (Underwater azimuth (deg) + S1 azimuth correction value (deg))
Corrected COS directivity of receiver S1 =
Digital data of received signal level of S1 x SIN (underwater azimuth (deg) + azimuth correction value of S1 (deg))
The above calculation formula is for the wave receiver S1, but in the case of the wave receivers S2 to S5, the azimuth correction value is replaced with the corresponding wave receiver for calculation.

補正後のSIN指向性35は、地磁気の磁北を基準とした南北方向の指向性を示すデジタルデータである。同様に、補正後のCOS指向性36は、地磁気の磁北を基準とした東西方向の指向性を示すデジタルデータである。補正後のSIN指向性35と補正後のCOS指向性36から、吊下ケーブルの捻じれの影響を除外した、音波が来る正確な方角を計算することができる。 The corrected SIN directivity 35 is digital data indicating directivity in the north-south direction with the magnetic north of the geomagnetism as a reference. Similarly, the corrected COS directivity 36 is digital data indicating the directivity in the east-west direction with reference to the magnetic north of the geomagnetism. From the corrected SIN directivity 35 and the corrected COS directivity 36, it is possible to calculate the accurate direction in which the sound wave comes, excluding the influence of the twist of the hanging cable.

(実施形態の効果)
以上説明したように、本実施形態においては、以下に記載するような効果を奏する。
(Effects of the embodiment)
As described above, the present embodiment has the following effects.

吊下ケーブルの捻じれによる回転運動のために、方位センサで計測した方位角と受波器アレイを構成する複数の受波器で計測した受波信号から計算する方位角にずれが発生するのを補正でき、水中受波装置による受信音波の到来方向の水平方位角のずれを改善できること。   Due to the rotational movement due to the twisting of the suspension cable, the azimuth angle measured by the azimuth sensor and the azimuth angle calculated from the received signals measured by the multiple wave receivers that make up the wave receiver array may deviate. Can be corrected, and the deviation of the horizontal azimuth angle in the direction of arrival of the sound waves received by the underwater receiver can be improved.

また受波器を垂直方向に配置した受波器アレイの垂直指向性について、受波器の水平方向の指向性のずれが改善することにより、複数の電歪振動子から得られる水平方位角毎に計算する垂直方向の指向性も改善できる。   Regarding the vertical directivity of the wave receiver array in which the wave receivers are arranged in the vertical direction, the deviation of the horizontal directionality of the wave receivers is improved, and The directivity in the vertical direction, which is calculated in, can also be improved.

さらに、水中部に方位センサを1個設けるだけで、方位センサと複数の受波器の方位角のずれを補正できる。
(第2の実施形態)
図6は本発明の第2の実施形態の水中受波装置600を示す図である。
Furthermore, the azimuth angle deviation between the azimuth sensor and the plurality of wave receivers can be corrected by providing only one azimuth sensor in the underwater portion.
(Second embodiment)
FIG. 6 is a diagram showing an underwater wave receiving device 600 according to a second embodiment of the present invention.

フロート部62、複数の受波器S61〜S65、水中部65は吊下ケーブル63で接続されている。方位センサ66は水中部65または受波器に設けられている。方位角補正値記憶部70は方位センサ66の方位角から得た角速度と角加速度から、各受波器S61〜S65の受波信号の方位角のずれを算出して、各受波器の方位角補正値を記憶している。方位角補正部80は、方位センサ66から得た角速度及び角加速度に対応する方位角補正値を用いて各受波器の方位角を補正する。   The float portion 62, the plurality of wave receivers S61 to S65, and the underwater portion 65 are connected by a suspension cable 63. The direction sensor 66 is provided in the underwater portion 65 or the wave receiver. The azimuth angle correction value storage unit 70 calculates the azimuth deviation of the received signals of the wave receivers S61 to S65 from the angular velocity and the angular acceleration obtained from the azimuth angle of the azimuth sensor 66, and calculates the azimuth of each wave receiver. The angle correction value is stored. The azimuth angle correction unit 80 corrects the azimuth angle of each wave receiver using the azimuth angle correction values corresponding to the angular velocity and the angular acceleration obtained from the azimuth sensor 66.

このようにすると、ケーブルの捻じれを解消しようとして発生する受波器と水中部の回転運動に起因してそれらの方位角にずれが生じても補正することができる。
(他の実施形態)
第1の実施形態では方位センサ11は水中部5に設けた。しかし水中部5でなく受波器S1〜S5のどれかに設置してもよい。
また方位センサとして第1の実施形態では地磁気センサを用いたが、ジャイロセンサ等他のタイプの方位センサでもよいことは明らかである。
By doing so, even if the azimuths of the wave receiver and the underwater portion are deviated due to the rotational movement of the wave receiver and the underwater portion, which are generated in an attempt to eliminate the twist of the cable, it is possible to correct the deviation.
(Other embodiments)
In the first embodiment, the orientation sensor 11 is provided in the underwater section 5. However, the wave receivers S1 to S5 may be installed instead of the underwater unit 5.
Although the geomagnetic sensor is used as the orientation sensor in the first embodiment, it is obvious that other types of orientation sensors such as a gyro sensor may be used.

1 水面
2、62 フロート部
3、63 吊下ケーブル
4、64 受波器アレイ
S1、S2、S3、S4、S5、S61、S62、S63、S64、S65 受波器
5 水中部
11 方位センサ
12 電歪振動子
13 樹脂モールド部分
14 吊下ケーブル接続孔
15 正回転運動
16 逆回転運動
17 角速度時間変化
21、22 回転方向変化周期
24 正回転運動加速フェーズ
25 正回転運動減速フェーズ
26 逆回転運動減速フェーズ
28 補正前のSIN指向性
29 補正前のCOS指向性
30 プリアンプ
31 A/D変換部
32 角速度・角加速度計算部
33 方位角補正値取得部
34 方位角補正計算部
35 補正後のSIN指向性
36 補正後のCOS指向性
40 テーブル保持メモリ
66 方位センサ
70 方位角補正値記憶部
80 方位角補正部
100,600 水中受波装置
300 方位計算回路
1 Water surface 2, 62 Float part 3, 63 Suspended cable 4, 64 Wave receiver array S1, S2, S3, S4, S5, S61, S62, S63, S64, S65 Wave receiver 5 Underwater part 11 Direction sensor 12 Electricity Strain oscillator 13 Resin mold part 14 Suspended cable connection hole 15 Forward rotation motion 16 Reverse rotation motion 17 Angular velocity time change 21, 22 Rotation direction change cycle 24 Forward rotation motion acceleration phase 25 Forward rotation motion deceleration phase 26 Reverse rotation motion deceleration phase 28 SIN directivity before correction 29 COS directivity before correction 30 Preamplifier 31 A / D conversion unit 32 Angular velocity / angular acceleration calculation unit 33 Azimuth correction value acquisition unit 34 Azimuth correction calculation unit 35 SIN directivity after correction 36 COS directivity after correction 40 Table holding memory 66 Azimuth sensor 70 Azimuth angle correction value storage unit 80 Azimuth angle correction unit 100, 60 Underwater reception device 300 orientation calculation circuit

Claims (9)

フロート部、複数の受波器、水中部と、それらを接続する吊下ケーブルで接続され、
前記水中部または前記受波器に方位センサが設けられ、
前記方位センサの角速度と角加速度と前記各受波器の受波信号の方位ずれを示す方位角補正値を対応させて記憶した方位角補正値記憶部を備え、
前記方位センサから得た角速度及び角加速度に対応する前記方位角補正値を用いて各受波器の受波信号の方位ずれを補正する方位角補正部を備えたことを特徴とする水中受波装置。
It is connected with a float part, multiple wave receivers, an underwater part, and a hanging cable connecting them,
An orientation sensor is provided in the underwater portion or the wave receiver,
An azimuth angle correction value storage unit that stores the angular velocity and angular acceleration of the azimuth sensor and the azimuth angle correction value indicating the azimuth angle correction value of the received signal of each of the wave receivers in association with each other,
Underwater wave reception, comprising an azimuth angle correction unit for correcting the azimuth deviation of the received signal of each wave receiver by using the azimuth angle correction values corresponding to the angular velocity and the angular acceleration obtained from the azimuth sensor. apparatus.
前記方位角補正値記憶部は、前記吊下ケーブルの捻じれによる前記方位センサの回転運動によって変化する角速度と角加速度と、前記回転運動によって生じる前記各受波器の受波信号の方位ずれを示す方位角補正値、を対応させたものである請求項1に記載の水中受波装置。   The azimuth correction value storage unit stores an angular velocity and an angular acceleration that change due to a rotational movement of the azimuth sensor due to a twist of the suspension cable, and an azimuth deviation of a received signal of each of the receivers caused by the rotational movement. The underwater wave receiving apparatus according to claim 1, wherein the azimuth correction values shown are associated with each other. 前記方位角補正値記憶部は、
水槽中で前記吊下ケーブルに捻じれを模擬した角速度及び角加速度の回転運動を生じさせて前記各受波器及び前記水中部の角度を測定して得た、角速度と角加速度に対する補正テーブルである請求項1または2に記載の水中受波装置。
The azimuth correction value storage unit,
In the correction table for the angular velocity and the angular acceleration obtained by measuring the angle of each of the wave receiver and the underwater part by causing the rotational motion of the angular velocity and the angular acceleration simulating the twist in the suspension cable in the water tank. The underwater wave receiving device according to claim 1 or 2.
前記水中部は、
前記方位センサの方位角の時間変化から前記方位センサの角速度を計算し、前記角速度の時間変化から角加速度を計算する角速度・角加速度計算部、
前記角速度・角加速度計算部から出力される前記角速度と角加速度と、それに対応する前記各受波器の方位角補正値を前記方位角補正値記憶部から得る方位角補正値取得部、
前記方位角補正値取得部から出力される方位角補正値で前記各受波器から出力される受波信号を補正する方位角補正計算部、
を備えた請求項3に記載の水中受波装置。
The underwater section is
An angular velocity / angular acceleration calculation unit that calculates the angular velocity of the azimuth sensor from the temporal change of the azimuth angle of the azimuth sensor, and calculates the angular acceleration from the temporal change of the angular velocity.
An azimuth angle correction value acquisition unit that obtains from the azimuth angle correction value storage unit the azimuth angle and angular acceleration output from the angular velocity / angular acceleration calculation unit, and the azimuth angle correction value corresponding to each of the receivers,
An azimuth angle correction calculation unit that corrects the received signal output from each of the wave receivers with the azimuth angle correction value output from the azimuth angle correction value acquisition unit,
The underwater wave receiving device according to claim 3, further comprising:
前記受波器はそれぞれ、水平方向に直交するSIN指向性とCOS指向性を有し、
前記方位角補正計算部は、前記方位ずれによる方位誤差を含んだSIN指向性とCOS指向性を、対応する前記各受波器の方位角補正値で補正する請求項4に記載の水中受波装置。
Each of the wave receivers has a SIN directivity and a COS directivity orthogonal to the horizontal direction,
The underwater receiving wave according to claim 4, wherein the azimuth correction calculation unit corrects the SIN directivity and the COS directivity including the azimuth error due to the azimuth deviation with the azimuth angle correction value of each corresponding wave receiver. apparatus.
前記複数の受波器の間及び前記受波器と前記水中部の間の吊下ケーブルは複数本のケーブルで接続されている請求項1から5のいずれか一項に記載の水中受波装置。   The underwater wave receiving device according to claim 1, wherein the suspension cables between the plurality of wave receivers and between the wave receiver and the underwater portion are connected by a plurality of cables. . 前記受波器は、円盤状であり、中央部に前記複数本のケーブルが通る穴を備え、前記中央部の外側が音響センサである請求項6に記載の水中受波装置。   The underwater wave receiving device according to claim 6, wherein the wave receiver is disk-shaped, has a hole through which the plurality of cables pass, and has an acoustic sensor outside the center portion. 前記方位センサは地磁気センサである請求項1から7のいずれか一項に記載の水中受波装置。   The underwater wave receiving device according to claim 1, wherein the direction sensor is a geomagnetic sensor. フロート部、複数の受波器、水中部がケーブルで接続され、前記水中部または前記受波器に方位センサが設けられた水中受波装置の方位角補正方法であって、
前記方位センサの角速度と角加速度と前記各受波器の方位角のずれを算出して方位角補正値を対応させて記憶しておき、
前記方位センサから得た角速度及び角加速度に対応する前記方位角補正値を用いて各受波器の受波信号の方位ずれを補正することを特徴とする方位角補正方法。
A float part, a plurality of wave receivers, an underwater part is connected by a cable, an azimuth correction method for an underwater wave receiving device in which an azimuth sensor is provided in the underwater part or the wave receiver,
The angular velocity and angular acceleration of the azimuth sensor and the deviation of the azimuth angle of each of the wave receivers are calculated, and the azimuth angle correction values are stored in association with each other.
An azimuth angle correction method characterized in that the azimuth angle correction values corresponding to the angular velocity and the angular acceleration obtained from the azimuth sensor are used to correct the azimuth deviation of the received signal of each wave receiver.
JP2018192843A 2018-10-11 2018-10-11 Underwater receiver Active JP6954878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192843A JP6954878B2 (en) 2018-10-11 2018-10-11 Underwater receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192843A JP6954878B2 (en) 2018-10-11 2018-10-11 Underwater receiver

Publications (2)

Publication Number Publication Date
JP2020060482A true JP2020060482A (en) 2020-04-16
JP6954878B2 JP6954878B2 (en) 2021-10-27

Family

ID=70220150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192843A Active JP6954878B2 (en) 2018-10-11 2018-10-11 Underwater receiver

Country Status (1)

Country Link
JP (1) JP6954878B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5166862A (en) * 1974-12-06 1976-06-09 Boeicho Gijutsu Kenkyu Honbuch HOISOKUTEIHOSHIKI
JPS5341258A (en) * 1976-09-27 1978-04-14 Nec Corp Soner bearing detector
JPS5946870A (en) * 1982-09-10 1984-03-16 Nec Corp Soner receiver
JPH02278178A (en) * 1989-04-19 1990-11-14 Nec Corp Towing type passive sonar apparatus
JPH07198844A (en) * 1993-12-28 1995-08-01 Mitsubishi Precision Co Ltd Underwater object position measuring apparatus, target position measuring apparatus and remotely dropping apparatus
JPH0882664A (en) * 1994-09-13 1996-03-26 Tech Res & Dev Inst Of Japan Def Agency Estimation method of signal arrival direction
JPH09189757A (en) * 1996-01-12 1997-07-22 Nec Eng Ltd Open umbrella extending mechanism for underwater falling body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5166862A (en) * 1974-12-06 1976-06-09 Boeicho Gijutsu Kenkyu Honbuch HOISOKUTEIHOSHIKI
JPS5341258A (en) * 1976-09-27 1978-04-14 Nec Corp Soner bearing detector
JPS5946870A (en) * 1982-09-10 1984-03-16 Nec Corp Soner receiver
JPH02278178A (en) * 1989-04-19 1990-11-14 Nec Corp Towing type passive sonar apparatus
JPH07198844A (en) * 1993-12-28 1995-08-01 Mitsubishi Precision Co Ltd Underwater object position measuring apparatus, target position measuring apparatus and remotely dropping apparatus
JPH0882664A (en) * 1994-09-13 1996-03-26 Tech Res & Dev Inst Of Japan Def Agency Estimation method of signal arrival direction
JPH09189757A (en) * 1996-01-12 1997-07-22 Nec Eng Ltd Open umbrella extending mechanism for underwater falling body

Also Published As

Publication number Publication date
JP6954878B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
KR101838053B1 (en) System and method for determining movements and oscillations of moving structures
US9322942B2 (en) Streamer for seismic prospection comprising tilt compensation of directional sensors
EP2551653B1 (en) Long-period vibration sensor and method for correcting output value of the long-period vibration sensor
JP6163192B2 (en) Environmental monitoring system and vibration detection device
KR101866690B1 (en) system for measuring underwater structure and measuring method using the same
CN101561313A (en) Trivector hydrophone based on piezoelectric velocity sensor
CN105864355A (en) Self-balancing mechanism of wave height measuring equipment
JP6954878B2 (en) Underwater receiver
KR101596297B1 (en) floating meteorological mast
JP5264497B2 (en) Shape / acceleration measuring instrument and apparatus
CN106932818B (en) Seismograph for detecting rotary earthquake motion
WO2018135715A1 (en) Underwater structure measurement system
SE1300635A1 (en) Vector sensor for measuring particle motion in a medium
US3490153A (en) Inclinometer
CN115165070A (en) Optical fiber vector hydrophone and array attitude calibration method and system thereof
CN216385635U (en) Portable full-digital single-frequency depth finder for surveying and mapping
CN103411603B (en) Electric-field sensor posture position measuring method in ship electric field protection
JP2004347550A (en) Wind condition investigation method of floating body type, and device
Shchurov Movement of Acoustic Energy in the Ocean
AU2018394280B2 (en) Measuring device intended to be immersed
JP2001021665A (en) Ground vibration measurement method and measuring system
RU2742870C1 (en) Mobile device for determining parameters of vector receivers
JP5093384B2 (en) Crest structure buoy structure
CN107688101A (en) A kind of multidirectional wind energy collector of flag pendulum-type
JP3980021B2 (en) Rotational angle measurement control method of rotating projectile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6954878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150