JP2020060472A - Measurement method and device of total stock of liquid tank, and monitoring system - Google Patents
Measurement method and device of total stock of liquid tank, and monitoring system Download PDFInfo
- Publication number
- JP2020060472A JP2020060472A JP2018192614A JP2018192614A JP2020060472A JP 2020060472 A JP2020060472 A JP 2020060472A JP 2018192614 A JP2018192614 A JP 2018192614A JP 2018192614 A JP2018192614 A JP 2018192614A JP 2020060472 A JP2020060472 A JP 2020060472A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- liquid level
- liquid
- inventory
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Loading And Unloading Of Fuel Tanks Or Ships (AREA)
Abstract
Description
この発明は、液体を貯蔵するタンクに設けられている液面計の検出値に基づく在庫量の計測方法及び装置並びに監視システムに関するものである。
BACKGROUND OF THE
ガソリンや灯油などとして流通する石油類は、元売業者からガソリンスタンドと通称される一般給油所や大規模消費者である自家給油所に供給されている。給油所では、ガソリンや灯油を地下に埋設したタンクに貯蔵している。各タンクにはタンク内の在庫量(貯蔵量)を計測する液面計が設けられ、地上やタンクの管理室に設置したモニタによって液面計の検出値を基にして演算した在庫量を知ることができる。 Petroleum distributed as gasoline, kerosene, etc. is supplied from former vendors to general gas stations commonly known as gas stations and private gas stations that are large-scale consumers. At gas stations, gasoline and kerosene are stored in underground tanks. Each tank is equipped with a liquid level gauge that measures the inventory amount (storage amount) in the tank, and the inventory amount calculated based on the detected value of the liquid level indicator is known by a monitor installed on the ground or in the tank control room. be able to.
危険物施設として地下に埋設されたタンクや配管は、設置を終了した時点から漏洩を確認することが困難になる。タンクからの漏洩の有無は、3年又は1年に1回、法的に定められている検査によって判断している。 For tanks and pipes buried underground as dangerous goods facilities, it will be difficult to confirm leakage from the point when installation is completed. The presence or absence of leakage from the tank is judged by a legally prescribed inspection once every three years or once a year.
地下タンクの漏洩は、3年又は1年に1回の法的に定められている検査によって判断されるが、これは検査を行なった時点での漏洩の有無を判断しており、次回の検査まで漏洩がないことを保証している訳ではない。よってその間の漏洩の有無は危険物施設の所有者が日々の液面計のデータ及び給油機の液量計からの販売データを記録することで確認している。 Leaks in underground tanks are judged by legally defined inspections once every 3 years or once a year. This is because the presence or absence of leakage at the time of the inspection is judged, and the next inspection Does not guarantee that there is no leakage. Therefore, the presence or absence of leakage during that period is confirmed by the owner of the hazardous material facility by recording daily liquid level data and sales data from the fuel tank liquid level meter.
給油機に設けられている液量計は、給油機毎に予め計測しており、誤差は±0.5%以内としている。従って、液量計の計測値はほぼ正確であると推定できる。タンクの在庫量は、タンクの形状に応じて液面の位置と在庫量との関係を理論的に求め、求めた演算式で液面計の検出値から在庫量を演算している。 The liquid level meter provided in the fueling machine measures each fueling machine in advance, and the error is within ± 0.5%. Therefore, it can be estimated that the measured value of the liquid meter is almost accurate. For the stock quantity of the tank, the relationship between the position of the liquid level and the stock quantity is theoretically obtained according to the shape of the tank, and the stock quantity is calculated from the detected value of the liquid level gauge by the calculated formula.
しかし、地下タンクでは、液面計の検出値から演算した在庫量と真の在庫量との間にタンク毎のばらつきがある。地下タンクは、埋め戻した後の地盤の沈下や地下水の状況、土圧のかかり方などにより、タンクの変形や傾きが生じ、その結果、液面計の検出値と真の在庫量との関係に偏差ないし誤差が生じる。 However, in the underground tank, there is a variation between the stock quantity calculated from the detection value of the liquid level gauge and the true stock quantity for each tank. Underground tanks may be deformed or tilted due to ground subsidence after refilling, the condition of groundwater, how earth pressure is applied, etc. As a result, the relationship between the level gauge detection value and the true inventory level Deviation or error occurs.
タンクには、タンクローリーから液体が供給される。通常、タンクローリーからの石油類の入庫は、2kL(キロリットル)単位で行われるが、運搬中の蒸発もあるので一定せず、蒸発量を計測することは困難である。従って、タンクローリーからの給油量を基にして液面計の検出値と在庫量との関係式を補正することもできない。 Liquid is supplied to the tank from a tank truck. Normally, the storage of petroleum from the tank truck is carried out in units of 2 kL (kiloliter), but it is not constant because there is evaporation during transportation, and it is difficult to measure the amount of evaporation. Therefore, it is not possible to correct the relational expression between the detected value of the liquid level gauge and the stock amount based on the amount of oil supplied from the tank truck.
前述したように、タンクの漏洩の有無は、危険物施設の所有者が日々の液面計のデータ及び液量計のデータを記録することで確認している。例えば一般給油所では、地下タンク内の液体の量を毎日液面計で計測している。当日の在庫量は、前日の在庫量に入庫量(タンクローリーからの受入量)と出庫量(販売量)とを足し引きした量(以下、「計算在庫量」と言う。)となるが、実際には、液面計の計測精度及び地下タンクの変形などの影響で、個々のタンク毎に計算在庫量に固有の誤差が発生する。 As mentioned above, the owner of the hazardous material facility confirms whether or not the tank has leaked by recording daily liquid level gauge data and liquid level gauge data. For example, at general gas stations, the amount of liquid in the underground tank is measured daily with a liquid level gauge. The stock quantity on the day is the sum of the stock quantity on the previous day and the stock quantity (the quantity received from the tank truck) and the stock quantity (sales quantity), which is subtracted from the stock quantity (hereinafter referred to as the “calculated stock quantity”). In addition, due to the measurement accuracy of the liquid level gauge and the deformation of the underground tank, an error inherent in the calculated inventory quantity occurs for each tank.
そのため、液面計の検出値から求めた在庫量(以下、「検出在庫量」と言う。)と計算在庫量とを比較してもタンクの漏洩等を発見するのが困難で、各種の誤差を含んだ計測値に基づいて漏洩を検出するには相当の熟練を必要とし、微量の誤差を速やかに検出することは極めて困難であった。 Therefore, it is difficult to find a leak in the tank even if the inventory quantity obtained from the detection value of the liquid level gauge (hereinafter referred to as the "detected inventory quantity") and the calculated inventory quantity are compared, and various errors occur. It requires a considerable amount of skill to detect a leak based on a measurement value including a value, and it has been extremely difficult to quickly detect a small amount of error.
この発明は、発明者らの新たな知見に基づいて、タンクに設置されている液面計の誤差を推定することを可能にすることにより、液面計の検出値からタンクの在庫量をより正確に推定できる手段を提供するもので、タンク及び当該タンクに接続された配管からのより正確かつ速やかな漏洩検出を可能にすると共に、個々のタンクの在庫量をより正確に計測できるようにすることで、定常時及び非常時におけるタンクの稼働状態の監視をより速やかにかつ正確に行うことができるようにすることを課題としている。 The present invention makes it possible to estimate the error of the liquid level gauge installed in the tank based on the new knowledge of the inventors, so that the inventory quantity of the tank can be further improved from the detected value of the liquid level gauge. It provides a means that can be accurately estimated, enabling more accurate and speedy leak detection from tanks and piping connected to the tanks, and more accurately measuring the inventory quantity of individual tanks. Therefore, it is an object to make it possible to monitor the operating state of the tank in a steady state and in an emergency more promptly and accurately.
この発明は、地下に埋設した石油タンクに設置した液面計の誤差が短い時間間隔pで細かく変動するとともに全体としてある上限と下限との間で周期的に変動しているという新たな知見に基づいてなされたものである。この発明では、過去の液面計4と当該タンクからの出庫量を計測する液量計5の計測データに基づいて液面計が検出した在庫量から真の在庫量を近似的に求める較正関数を各タンク毎に求めて真の在庫量を推定する。
The present invention provides a new finding that the error of a liquid level gauge installed in an oil tank buried underground fluctuates finely in a short time interval p and periodically fluctuates between an upper limit and a lower limit as a whole. It was made based on. According to the present invention, a calibration function for approximating the true stock amount from the stock amount detected by the liquid level gauge based on the measurement data of the past
この発明の液体タンク内の在庫量の計測方法は、タンク2内に設置されて当該タンク内の液体の在庫量を検出する液面計4と、タンク2からの液体の出庫量を計測する液量計5とを備えた液体タンクの在庫量の計測方法である。
The method for measuring the stock quantity in the liquid tank of the present invention includes a
この発明の方法では、所定の時間間隔p毎に受信した液面計4の検出データと、当該時間間隔内の液量計5が計測した出庫量とを記憶し、記憶した所定期間のデータからタンク2内の液体の真の在庫量と液面計4が検出した検出在庫量との関係を推測し、当該推測した関係に基づいて液面計4の検出データを補正して前記タンクの在庫量とする。
In the method of the present invention, the detection data of the
この発明の方法を実施する好ましい装置は、所定の時間間隔p毎に演算手段15が演算した検出在庫量xtと偏差補正手段32によって補正された後の補正在庫量Xtとを記憶する記憶手段34と、当該記憶手段に記憶されているデータから較正関数を求めるのに用いるデータの区間を小区間sに区画する小区間設定手段38と、区画された小区間のデータから得られる較正関数を繋いで補正演算のための較正関数を得る学習手段37と、当該学習手段が求めた較正関数で新たに取得した検出在庫量を補正して補正在庫量を求める偏差補正手段32とを備えている。
A preferred apparatus for carrying out the method of the present invention is a memory for storing the detected stock quantity x t calculated by the calculation means 15 at predetermined time intervals p and the corrected stock quantity X t after being corrected by the deviation correcting means 32.
また、この発明の地下タンクの監視システムは、管理コンピュータ3と、所定の時間間隔p毎に液面計4の検出値又は演算手段15が演算した検出在庫量及び液量計5が対応する時間間隔p内に計量した出庫量とをインターネット6を介して管理コンピュータ3に送信する送信器16を備え、この発明の在庫量の計測装置と、時間軸を横軸にして前記記憶手段に記憶した複数日分の補正在庫量をグラフ表示する表示手段36とが管理コンピュータ3に設けられているというものである。
In the underground tank monitoring system of the present invention, the
小区間設定手段38に設定する小区間sの幅又は数は、記憶した所定区間のデータから液面計の検出誤差の変動周期を検出し、検出した周期と求めようとする較正関数の次数とに基づいて分割する小区間sの幅を求めて自動的に設定することができる。 The width or number of the small sections s set in the small section setting means 38 is the order of detection of the fluctuation cycle of the detection error of the liquid level gauge from the stored data of the predetermined section and the order of the calibration function to be obtained. The width of the small section s to be divided can be obtained and automatically set.
この発明により、地下タンクの本体からの漏洩のみでなく、地下タンクに接続された埋設配管からの漏洩も正確に検知ができる。また、液量計や液面計などの計測機器の誤差や不具合も速やかに検出でき、定常時及び非常時におけるタンクの稼働状態を監視することができる。 According to the present invention, not only the leak from the main body of the underground tank but also the leak from the buried pipe connected to the underground tank can be accurately detected. Further, it is possible to promptly detect an error or malfunction of a measuring instrument such as a liquid level meter or a liquid level gauge, and to monitor the operating state of the tank in a steady state and an emergency.
またこの発明は、液面計や液量計及びそれらに繋がる配線など、既存の設備を使用してデータを収集することができるので、低コストで導入でき、運用コストも安価である。 Further, since the present invention can collect data using existing equipment such as a liquid level meter, a liquid level meter, and wiring connected to them, it can be introduced at low cost and the operation cost is low.
またこの発明の監視システムによれば、複数のタンクについて、液面計の検出在庫量から求めた補正在庫量、液量計による出庫量、必要な場合にはタンクローリーからの入庫量が速やかに管理コンピュータに自動送信されて結果が表示されるから、熟練したアナリストが常時監視する体制を構築することができる。 Further, according to the monitoring system of the present invention, for a plurality of tanks, the corrected inventory amount obtained from the detected inventory amount of the liquid level gauge, the output amount by the liquid level meter, and if necessary, the storage amount from the tank truck are promptly managed. Since it is automatically sent to the computer and the results are displayed, it is possible to establish a system in which a skilled analyst constantly monitors.
以下、添付図面を参照してこの発明の実施形態を説明する。本願の発明者らが地下に埋設した石油タンクの在庫量と出庫量との変化を詳細に計測したところ、液面計が検出した在庫量の誤差が、図1に示すように、計測毎に細かく変化するとともに全体としてある上限と下限との間で周期的に変動していることを見出した。図1の横軸は時間の経過、左縦軸は在庫量(破線)、右縦軸は液面計の検出値と理論値との誤差(実線)で、5分毎に計測した3日分データを示している。 Embodiments of the present invention will be described below with reference to the accompanying drawings. When the inventors of the present application measured in detail the changes in the stock amount and the output amount of the oil tank buried underground, the error of the stock amount detected by the liquid level gauge was measured at each measurement, as shown in FIG. It has been found that it changes finely and periodically fluctuates between an upper limit and a lower limit as a whole. The horizontal axis of FIG. 1 indicates the passage of time, the left vertical axis indicates the stock amount (broken line), and the right vertical axis indicates the error between the detection value of the liquid level gauge and the theoretical value (solid line) for 3 days measured every 5 minutes. Shows the data.
この知見に基づいて、本願発明者らは、液面計が検出した在庫量(検出在庫量)と真の在庫量との関係をAIの手法で学習させて検出在庫量の誤差を補正できるのではないかという着想を得、本願発明を完成させた。 Based on this knowledge, the inventors of the present application can correct the error in the detected inventory amount by learning the relationship between the inventory amount detected by the liquid level gauge (detected inventory amount) and the true inventory amount by the method of AI. The invention of the present application was completed based on the idea that it might be.
この発明では、過去の計測値に基づいて検出在庫量から真の在庫量を求める較正関数を各地下タンク毎に求める。本実施形態では、複雑な関数形を近似する機械学習法のノンパラメトリック回帰分析の3次スプライン回帰を適用して較正関数を求めた。 According to the present invention, a calibration function for obtaining the true inventory amount from the detected inventory amount is obtained for each underground tank based on the past measurement value. In the present embodiment, the calibration function is obtained by applying the cubic spline regression of the non-parametric regression analysis of the machine learning method that approximates a complicated function form.
すなわち、xを検出在庫量、検出時点t=2,・・・,Tに対して、
f(xt=f(xt−1)+受入量at−出庫量bt
をみたす関数f(xt)に近い関数(較正関数)を3次スプライン回帰によって求めて検出在庫量と真の在庫量の偏差を補正し、補正した在庫量を監視することで、地下タンクの健全性を管理する。
That is, x is the detected stock amount, and at the detection time point t = 2, ..., T,
f (x t = f (x t−1 ) + accepted amount at−delivered amount bt
A function (calibration function) that is close to the function f (x t ) is obtained by cubic spline regression to correct the deviation between the detected inventory amount and the true inventory amount, and by monitoring the corrected inventory amount, the underground tank Manage health.
複雑な曲線構造を持つ現象に対応する較正関数を見つけるのは難しい。しかし、本願発明者らが見出した検出在庫量の変化と出庫量から演算した在庫量(計算在庫量)の変化との間の偏差の周期性を加え、較正関数を求めるのに使用する所定区間のデータ群を複数の小区間sで区切ることで複雑な構造をモデル化し、各小区間毎に実測データに当てはまる多項式を見つけ、例えば隣接する小区間の境界を移動させて各小区間毎に求めた多項式の端を繋ぐことで、複雑な構造の実測データから適切な較正関数を求めることができた。 It is difficult to find a calibration function corresponding to a phenomenon with a complicated curved structure. However, the periodicity of the deviation between the change in the detected inventory amount found by the inventors of the present application and the change in the inventory amount calculated from the output amount (calculated inventory amount) is added, and the predetermined interval used for obtaining the calibration function is added. The complex data structure is modeled by dividing the data group of 2 into a plurality of small sections s, a polynomial that applies to the measured data is found for each small section, and for example, the boundary between adjacent small sections is moved to obtain for each small section. By connecting the ends of the polynomial, an appropriate calibration function could be obtained from the measured data of the complex structure.
較正関数を求めるのに用いるデータを収集した区間をそのデータ量に応じて区切ることによりm−1個の小区間sを設定し、これらの小区間の境界となるm個の節をt1・・・tmとして、3次スプライン回帰による較正関数 By dividing the section in which the data used to obtain the calibration function is collected according to the amount of the data, m−1 small sections s are set, and the m sections that are the boundaries of these small sections are t 1 · as ·· t m, calibration function by cubic spline regression
上記の在庫量の補正演算は、液面計の検出値から真の在庫量を表示する過程のどの段階ででも行うことができる。以下、一般給油所が備える地下タンク2の健全性を管理コンピュータ3で監視する例を示した図2以下を参照して、この発明の実施例を説明する。図2は、一般給油所を模式的に示した図で、建屋1が建っている敷地の下にタンク2が埋設されている。タンク2には、石油類(例えばガソリン)が貯蔵されており、その液面の位置は、液面計4で検出されている。タンク2は、入庫口21と出庫口22とを備えている。タンク2内の石油類は、入庫口21を通してタンクローリー23から受け入れられ、出庫口22から埋設配管24を通って給油機25から消費者(通常は自動車)に供給される。給油機25には、給油ノズル26から流出した石油類の量を計量する液量計5が設けられている。図には1個のタンク2と1個の給油機25のみを示しているが、通常はタンク2及び給油機25は、複数設けられている。
The above-described stock amount correction calculation can be performed at any stage in the process of displaying the true stock amount from the detection value of the liquid level gauge. An embodiment of the present invention will be described below with reference to FIG. 2 and subsequent figures showing an example in which the
液面計4は、検出した石油類の液面の位置を電気信号に変換して信号線7により建屋1内に設置したモニタ11に送っている。図のモニタ11は、従来構造のモニタで、液面の位置からタンク内の石油類の在庫量を演算してディスプレイ12に表示する。この演算は、タンクの内法寸法と液面の位置との関係を理論的に求めた演算式による演算である。
The
給油機25に設けた液量計5は、給油が行われたときに計測した出庫量を電気信号に変換してPOS端末13に送っている。POS端末13は、受信した計量信号に基づいて価格を演算し、金銭の授受を行って販売データを図示してないPOSシステムのコンピュータに送る。POS端末13は、給油機25に内蔵されている場合と、建屋1内に設置されている場合とがある。POS端末の入力端14とモニタ11内に設けた送信器16とは、分岐信号線8で接続されており、液量計5からPOS端末13に送られた計量信号は、分岐信号線8により、送信器16に送られている。
The
なお、送信器16が液量計5の検出値をPOS端末の入力端14から取得しているのは、POS端末13で処理されたデータから取得すると、給油所の売上金額などのデータも含まれるおそれがあり、一方、液量計5から直接データを取る方法では、多数の新たな配線などが必要になるからである。
Note that the
一般的なモニタ11は、ディスプレイ12と、液面計4の検出値から在庫量を理論的に求めた演算式で演算する演算手段15と、この演算手段15の演算結果をディスプレイ12に表示する表示手段と、演算結果が所定の量以下になったときに警告を表示する警告手段とを備えている。実施例のモニタ11は、送信器16を更に備えている。
The
送信器16は、予め設定した短い時間間隔(例えば3〜30分間隔、好ましくは3〜10分)毎にモニタの演算手段15が演算した在庫量を管理会社9に設置した管理コンピュータ3に送信する。送信器16はまた、分岐信号線8から入力された計量信号を所定データ量(例えば1kバイト程度)で区切って、区切り毎のタイミングで区切り信号をインターネットを介して管理コンピュータ3に送信する。
The
管理コンピュータ3には、受信器31、偏差補正手段32、入庫量演算手段33、記憶手段34及びWebページの作成・送信手段35、表示手段36、学習手段37及び小区間設定手段38を備えている。
The
受信器31は、モニタの送信器16から所定の時間間隔pで送信されたデータを受信する。記憶手段34は、各時間毎に受信した検出在庫量xtと、偏差補正手段32によって補正された後の補正在庫量Xtとを記憶する。
The
小区間設定手段38には、求めようとする較正関数の次数に応じた小区間sが設定される。自動で小区間sを設定するときは、過去の所定区間の平準化した検出在庫量と計算在庫量との差が極値をとる周期を検出して対応する小区間sを演算する小区間演算手段39が設けられる。学習手段37は、前述した機械学習の手法により、較正関数f(xt)を求める。 A small section s corresponding to the order of the calibration function to be obtained is set in the small section setting means 38. When the small section s is automatically set, a small section calculation is performed to detect a cycle in which the difference between the leveled detected inventory quantity and the calculated inventory quantity in the past predetermined section has an extreme value and calculate the corresponding small section s. Means 39 are provided. The learning means 37 obtains the calibration function f (x t ) by the above-described machine learning method.
偏差補正手段32は、学習手段37が求めた較正関数により、新たに受信した検出在庫量xtを補正して補正在庫量Xtを求める。新たな検出在庫量及び補正在庫量及び計量データは、記憶手段34に順次記憶される。
表示手段36は、横軸を時間軸として、記憶されている補正在庫量Xtのグラフを管理コンピュータ3のモニタに表示する。Webページの作成・送信手段35は、当該グラフのWebページを作成して図示しないWebサーバーにアップロードする。給油所の担当者は、閲覧権限を与えられたブラウザ17でWebページを閲覧することができる。
The display means 36 displays a graph of the stored corrected inventory quantity X t on the monitor of the
図3(a)は、検出在庫量−計算在庫量(補正前)のグラフ、図3(b)は、検出在庫量−計算在庫量(補正後)のグラフであり、得られた較正関数を使用した補正により、実在庫量と計算在庫の差の標準偏差が54%低減している。補正前のグラフ(a)では、本来の誤差が液面計の表示ズレの誤差により紛れてしまい漏洩などのタンク異常の判断が難しい。これに対して、補正後のグラフ(b)では、液量計の検定によるタンクバックの存在などの液面誤差以外の誤差が残るが、液面計の検出在庫量の偏差が取り除かれるためそれらの誤差が明確になり、タンク異常の判断がしやすくなる。 FIG. 3A is a graph of detected inventory amount-calculated inventory amount (before correction), and FIG. 3 (b) is a graph of detected inventory amount-calculated inventory amount (after correction). The correction used reduces the standard deviation of the difference between the actual inventory and the calculated inventory by 54%. In the graph (a) before the correction, the original error is mixed due to the error in the display deviation of the liquid level gauge, and it is difficult to judge the tank abnormality such as leakage. On the other hand, in the corrected graph (b), errors other than the liquid level error such as the existence of the tank back due to the verification of the liquid level meter remain, but since the deviation of the detected stock amount of the liquid level meter is removed, Error becomes clear and it becomes easy to judge the tank abnormality.
管理会社9の監視担当者ないしアナリストは、管理会社9のディスプレイに表示されたデータに基づいて、計測器4、5の異常動作や地下タンク2や埋設配管24からの漏洩などを速やかに検出することができ、地震などに伴うタンクの変形なども数日分のデータを解析することで検出できるようになる。
Based on the data displayed on the display of the
なお、誤差の変化の周期と小区間sに分割する際の分割幅及び得られる較正関数には関連があり、周期の1.5倍の小区間で分割すると2次の較正関数が得られる。また、開始時及び終了時のデータは、短い間隔で計測したデータの平均を取ることで短い周期での誤差を補正できる。 It should be noted that there is a relation between the cycle of error change, the division width when dividing into small sections s, and the obtained calibration function, and if the division is performed in a small section of 1.5 times the period, a quadratic calibration function is obtained. In addition, for the data at the start and the end, the error in a short cycle can be corrected by averaging the data measured at short intervals.
なお、既存のモニタ11を使用しないときは、送信器16が、液面計4の検出値を直接送信し、液面計の検出値から在庫量を演算する演算手段15や演算結果が所定の量以下になったときに警告を生成する警告手段は管理コンピュータ3側に設けることができる。また、モニタ11の演算手段15にこの発明の記憶手段34、小区間設定手段38及び学習手段37を設けて検出在庫量の補正を行うこともできる。
When the existing
計測データをタンクの製造元のブラウザにも送ることにより、送られたデータを基に、タンクについての専門知識を有するアナリストが出庫状態、液漏れなどの異変のチェックを行うことができる。熟練したアナリストが数日分(例えば3日分)の計測データのチェックを行うことで、異常発生時には迅速な対応が可能になる。入出庫が行われない夜間のみのデータを切り出すことで、漏洩の監視がより容易になる。また、各タンク毎の偏差データを表示することで、個々のタンクの製造上の問題点を発見することもできる。 By sending the measurement data to the browser of the manufacturer of the tank, an analyst having expert knowledge about the tank can check the shipping status, liquid leakage, and other abnormalities based on the sent data. A skilled analyst checks the measurement data for several days (for example, three days), so that it is possible to promptly respond when an abnormality occurs. Leakage monitoring becomes easier by cutting out the data only during the night when warehousing is not performed. Further, by displaying the deviation data for each tank, it is possible to find a manufacturing problem of each tank.
図4(a)、(b)、(c)、(d)は、異なる4個の地下タンクについて、この発明の方法で検出した液面計の検出在庫量の偏差がどのように変化するかをタンク内の在庫量を横軸にして示したグラフである。 4 (a), (b), (c), and (d) show how the deviation of the detected stock quantity of the level gauge detected by the method of the present invention changes for four different underground tanks. Is a graph showing the inventory quantity in the tank on the horizontal axis.
図4(a)のタンクでは、在庫量が増加すると増減量はプラス、在庫量が減少すると増減量はマイナスの傾向があり、液面計とタンクの寸法違い(タンクの寸法のほうが小さい)があると推測される。 In the tank of FIG. 4 (a), the increase / decrease amount tends to be positive when the inventory amount increases, and the increase / decrease amount tends to be negative when the inventory amount decreases, and the difference in size between the liquid level gauge and the tank (smaller tank size) Presumed to be.
図4(b)のタンクでは、在庫量が増加すると増減量はマイナスとなり、在庫量が減少すると増減量はプラスの傾向がある。これは、液面計とタンクの寸法違い(タンクの寸法のほうが大きい)と推測される。 In the tank of FIG. 4B, the increase / decrease amount tends to be negative when the inventory amount increases, and the increase / decrease amount tends to be positive when the inventory amount decreases. This is presumed to be due to the difference in size between the liquid level gauge and the tank (the tank size is larger).
図4(c)のタンクでは、在庫量が全容量の半分あたりで増減量の傾向が反転しており、液面計の設置位置のズレが原因と推測される。 In the tank of FIG. 4 (c), the tendency of the increase / decrease amount is reversed when the stock amount is about half of the total volume, and it is presumed that the displacement of the installation position of the liquid level gauge is the cause.
図4(d)のタンクでは、誤差の反転傾向が複数個所で見られ、液面計のタンクテーブルの違いが原因と推測される。 In the tank of FIG. 4D, the tendency of error inversion is seen at a plurality of places, and it is presumed that the difference in the tank table of the liquid level gauge is the cause.
2 タンク
3 管理コンピュータ
4 液面計
5 液量計
6 インターネット
13 POS端末
14 入力端
16 送信器
32 偏差補正手段
33 入庫量演算手段
34 記憶手段
36 表示手段
37 学習手段
38 小区間設定手段
39 小区間演算手段
2
Claims (6)
所定の時間間隔(p)毎に受信した前記液面計の検出データと、当該時間間隔内の前記液量計が計測した出庫量とを記憶し、記憶した所定期間のデータから前記タンク内の液体の真の在庫量と前記液面計が検出した検出在庫量との関係を推測し、当該推測した関係に基づいて前記液面計の検出データを補正して前記タンクの在庫量を演算する、液体タンク内の在庫量の計測方法。 A liquid level meter (4) installed in the tank (2) for detecting the stock amount of the liquid in the tank, and a liquid level meter (5) for measuring the delivery amount of the liquid from the tank were provided. A method of measuring the inventory quantity of a liquid tank,
The detection data of the liquid level gauge received at each predetermined time interval (p) and the warehousing amount measured by the liquid level meter within the time interval are stored, and the data of the stored predetermined period is stored in the tank. The relationship between the true stock quantity of liquid and the detected stock quantity detected by the level gauge is estimated, and the detection data of the level gauge is corrected based on the estimated relationship to calculate the stock quantity of the tank. , How to measure inventory in liquid tanks.
所定の時間間隔(p)毎に前記演算手段が演算した検出在庫量xtと偏差補正手段(32)によって補正された後の補正在庫量Xtとを記憶する記憶手段(34)と、
当該記憶手段に記憶されているデータから較正関数を求めるのに用いるデータの区間を小区間(s)に区画する小区間設定手段(38)と、
区画された小区間(s)のデータから得られる較正関数を繋いで補正演算のための較正関数を得る学習手段(37)と、
当該学習手段が求めた較正関数で新たに取得した検出在庫量を補正して前記補正在庫量を求める偏差補正手段(32)とを備えている、
液体タンクの在庫量の計測装置。 A liquid level gauge (4) installed in the tank (2) for detecting the liquid level of the liquid in the tank, and the detected inventory quantity is calculated based on the detected liquid level and the shape and size of the tank. A device for measuring the stock quantity of a liquid tank, comprising a calculation means (15) and a liquid quantity meter (5) for measuring the quantity of the liquid discharged from the tank,
Storage means (34) for storing the correction stock amount X t corrected by the predetermined time interval detected stock amount x t and deviation correction means said calculating means is calculated for each (p) (32),
A small section setting means (38) that divides the section of the data used to obtain the calibration function from the data stored in the storage means into small sections (s),
Learning means (37) for obtaining a calibration function for correction calculation by connecting the calibration functions obtained from the data of the partitioned small section (s),
The learning means is provided with deviation correction means (32) for obtaining the corrected inventory quantity by correcting the newly obtained detected inventory quantity with the calibration function.
Liquid tank inventory quantity measuring device.
所定の時間間隔(p)毎に前記液面計の検出値又は前記演算手段が演算した在庫量及び前記液量計が対応する時間間隔(p)内に計量した出庫量とをインターネット(6)を介して管理コンピュータ(3)に送信する送信器(16)を備え、前記管理コンピュータは、請求項3又は4記載の計測装置と、時間軸を横軸にして前記記憶手段に記憶した複数日分の補正在庫量をグラフ表示する表示手段(36)とを備えている、地下タンクの監視システム。 A liquid level gauge (4) installed in the tank (2) for detecting the liquid level of the liquid in the tank, and the detected inventory quantity is calculated based on the detected liquid level and the shape and size of the tank. A monitoring system of a stock quantity of a liquid tank, which comprises a calculation means (15) and a liquid quantity meter (5) for measuring the delivery amount of the liquid from the tank,
The detection value of the liquid level gauge or the inventory amount calculated by the calculation means at every predetermined time interval (p) and the delivery amount measured within the time interval (p) corresponding to the liquid level meter via the Internet (6) A transmitter (16) for transmitting to a management computer (3) via a computer, the management computer comprising the measuring device according to claim 3 or 4, and a plurality of days stored in the storage means with a time axis as a horizontal axis. A monitoring system for an underground tank, comprising: a display means (36) for displaying the corrected inventory amount of a minute.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018192614A JP7195512B2 (en) | 2018-10-11 | 2018-10-11 | Liquid tank inventory measurement method, device, and monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018192614A JP7195512B2 (en) | 2018-10-11 | 2018-10-11 | Liquid tank inventory measurement method, device, and monitoring system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020060472A true JP2020060472A (en) | 2020-04-16 |
JP7195512B2 JP7195512B2 (en) | 2022-12-26 |
Family
ID=70218991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018192614A Active JP7195512B2 (en) | 2018-10-11 | 2018-10-11 | Liquid tank inventory measurement method, device, and monitoring system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7195512B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112461336A (en) * | 2020-11-13 | 2021-03-09 | 王刚 | Method for calibrating fuel tank volume meter of gas station |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2282182A1 (en) * | 2009-08-08 | 2011-02-09 | Scheidt & Bachmann GmbH | Method for producing a correspondence table for a liquid-level meter in a tank |
-
2018
- 2018-10-11 JP JP2018192614A patent/JP7195512B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2282182A1 (en) * | 2009-08-08 | 2011-02-09 | Scheidt & Bachmann GmbH | Method for producing a correspondence table for a liquid-level meter in a tank |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112461336A (en) * | 2020-11-13 | 2021-03-09 | 王刚 | Method for calibrating fuel tank volume meter of gas station |
CN112461336B (en) * | 2020-11-13 | 2024-04-26 | 王刚 | Method for calibrating filling station oil tank volume meter |
Also Published As
Publication number | Publication date |
---|---|
JP7195512B2 (en) | 2022-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0904526B1 (en) | Method and apparatus for monitoring operational performance of fluid storage systems | |
WO1997046855A9 (en) | Method and apparatus for monitoring operational performance of fluid storage systems | |
US6935356B2 (en) | Underground storage tank metering system in a service station environment | |
CN112050912A (en) | Method, device and system for water meter online calibration based on ultrasonic flowmeter | |
US5471867A (en) | Inventory reconciliation for above ground storage tanks | |
US7768530B2 (en) | Verification of process variable transmitter | |
US20230139144A1 (en) | Real-time determination of meter drift via loss qualification and quantification | |
CN115996881A (en) | Fuel leakage determination via predictive modeling | |
JP2020060472A (en) | Measurement method and device of total stock of liquid tank, and monitoring system | |
US11912561B2 (en) | Preventive maintenance of fuel dispensers through inventory reconciliation and identification of meter drift | |
JP6522218B1 (en) | Liquid tank monitoring system | |
US9874468B2 (en) | Systems, devices, and methods for measuring and processing fuel meter measurements | |
KR100906922B1 (en) | A flow leak detection method and system using compensated flow measuring | |
JP2006264766A (en) | Fuel control system | |
CN105137776B (en) | Metering automation terminal control accessory system | |
KR100528875B1 (en) | Method for Generating Measurement Data | |
Gorawski et al. | Liquefied petroleum storage and distribution problems and research thesis | |
JP5501025B2 (en) | Temperature compensation system | |
JP6497970B2 (en) | Abnormality detection method and abnormality detection device | |
RU2562942C1 (en) | Method of automatic monitoring of metrological characteristics of instruments measuring oil or liquid oil products weight upon their reception at fuel bases | |
JP7262095B2 (en) | Liquid supply and management device | |
Foszner et al. | Fuel pipeline thermal conductivity in automatic wet stock reconciliation systems | |
JP2022165007A (en) | Spreadsheet software for monitoring equipment abnormality in fuel service station | |
KR200461495Y1 (en) | Water intergrated leakage management apparatus | |
RU2561020C2 (en) | Automatic control and metering system for oil products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7195512 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |