JP2020059636A - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP2020059636A
JP2020059636A JP2018193595A JP2018193595A JP2020059636A JP 2020059636 A JP2020059636 A JP 2020059636A JP 2018193595 A JP2018193595 A JP 2018193595A JP 2018193595 A JP2018193595 A JP 2018193595A JP 2020059636 A JP2020059636 A JP 2020059636A
Authority
JP
Japan
Prior art keywords
exhaust gas
cell
honeycomb structure
cells
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018193595A
Other languages
Japanese (ja)
Other versions
JP7154931B2 (en
Inventor
孝浩 伊藤
Takahiro Ito
孝浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2018193595A priority Critical patent/JP7154931B2/en
Priority to PCT/JP2019/039038 priority patent/WO2020075603A1/en
Publication of JP2020059636A publication Critical patent/JP2020059636A/en
Application granted granted Critical
Publication of JP7154931B2 publication Critical patent/JP7154931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous

Abstract

To provide a honeycomb structure which is hardly broken.SOLUTION: There is provided a honeycomb structure which comprises a plurality of cells serving as flow passages of exhaust gas and a porous cell partition wall for partitioning and forming cells, wherein the cells include a cell into which exhaust gas is introduced and a cell from which exhaust gas is discharged, an exhaust gas introduction cell has a cell opening part at an end face on an exhaust gas inlet side and a cell sealing part at an end face on an exhaust gas outlet side, an exhaust gas discharge cell has a cell sealing part at an end face at the exhaust gas inlet side and a cell opening part at an end face at the exhaust gas outlet side, the cells have an internal region in which the shape of the cells is constant and an end region in which the exhaust gas introduction cell is reduced and the exhaust gas discharge cell is enlarged as approaching the end face on the exhaust gas outlet side in the cross section perpendicular to the longitudinal direction, the exhaust gas introduction cell sealing part is a cell partition wall for forming a profile of the exhaust gas discharge cell opening part and in an end face on an exhaust gas outlet side, the thickness standard deviation of the central part of a cell partition wall for forming a profile of one exhaust gas discharge cell opening part is 0.01 or more.SELECTED DRAWING: Figure 1

Description

本発明は、ハニカム構造体に関する。 The present invention relates to a honeycomb structure.

ガソリンエンジンやディーゼルエンジン等の内燃機関から排出される排ガス中には、スス等のパティキュレート(以下、PMともいう)が含まれており、近年、このPMが環境または人体に害を及ぼすことが問題となっている。また、排ガス中には、CO、HCまたはNOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境または人体に及ぼす影響についても懸念されている。 The exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine contains particulates such as soot (hereinafter, also referred to as PM), and in recent years, this PM may be harmful to the environment or the human body. It's a problem. Moreover, since harmful gas components such as CO, HC or NOx are also contained in the exhaust gas, there is concern about the effect of these harmful gas components on the environment or the human body.

そこで、内燃機関と連結されることにより排ガス中のPMを捕集したり、排ガスに含まれるCO、HCまたはNOx等の排ガス中の有害なガス成分を浄化したりする排ガス浄化装置として、チタン酸アルミニウム、コージェライト、炭化ケイ素等の多孔質セラミックからなるハニカム構造体が種々提案されている。 Therefore, titanic acid is used as an exhaust gas purifying apparatus for collecting PM in exhaust gas by connecting with an internal combustion engine and purifying harmful gas components such as CO, HC or NOx contained in the exhaust gas. Various honeycomb structures made of porous ceramics such as aluminum, cordierite, and silicon carbide have been proposed.

また、これらのハニカムフィルタでは、内燃機関の燃費を改善し、圧力損失の上昇に起因する運転時のトラブル等をなくすために、圧力損失の低いハニカム構造体からなるフィルタが種々提案されている。 Further, in these honeycomb filters, in order to improve fuel efficiency of an internal combustion engine and eliminate troubles during operation due to an increase in pressure loss, various filters having a honeycomb structure with low pressure loss have been proposed.

特許文献1には、一端面で開放されて他端面で閉じられた複数の第1流路、及び、前記一端面で閉じられて前記他端面で開放された複数の第2流路を有し、各前記第1流路及び各前記第2流路の断面積がそれぞれ軸方向に一定である中央隔壁と、前記中央隔壁から前記他端面に向かって、各前記第1流路の断面積が縮小され、かつ、各前記第2流路の断面積が拡大される、他端側傾斜隔壁と、を備えるハニカム構造体であって、前記他端側傾斜隔壁の軸方向長さは4mm以上であるハニカム構造体が開示されている。 Patent Document 1 has a plurality of first flow paths that are open at one end surface and closed at the other end surface, and a plurality of second flow paths that are closed at the one end surface and open at the other end surface. A central partition wall in which the cross-sectional area of each of the first flow paths and the second flow path is constant in the axial direction, and a cross-sectional area of each of the first flow paths from the central partition wall toward the other end surface. A honeycomb structure including: the other end side inclined partition wall, which is reduced and has a larger cross-sectional area of each of the second flow paths, wherein the other end side inclined partition wall has an axial length of 4 mm or more. A honeycomb structure is disclosed.

再公表2016−098835号Republished 2016-098835

特許文献1では、他端側傾斜隔壁の他端面における壁厚が均一である。そのため、他端面側の第1流路にPMが均一に捕集されることになる。また、捕集されたPMは燃焼されることになる。特許文献1に記載のハニカム構造体では、PMは均一に捕集されているので、捕集された位置によらず、全てのPMはほぼ同時に燃焼されることになる。この際、他端面はPMの燃焼に伴い急激に加熱されることになる。他端面が急激に加熱されると、加熱に伴い発生した応力を分散することができず、ハニカム構造体が破損するという問題が生じることがあった。 In Patent Document 1, the wall thickness on the other end surface of the other end side inclined partition wall is uniform. Therefore, PM is evenly collected in the first flow path on the other end surface side. Further, the collected PM will be burned. In the honeycomb structure described in Patent Document 1, since PM is evenly collected, all PM is burned almost at the same time regardless of where it is collected. At this time, the other end surface is rapidly heated as PM is burned. When the other end surface is rapidly heated, the stress generated due to the heating cannot be dispersed, and the honeycomb structure may be damaged.

本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、破損が生じにくい構造のハニカム構造体を提供することである。 The present invention has been made in view of such problems, and an object of the present invention is to provide a honeycomb structure having a structure in which breakage hardly occurs.

本発明のハニカム構造体は、排ガスの流路となる複数のセルと、上記複数のセルを区画形成する多孔質のセル隔壁とを備えたハニカム構造体であって、
上記複数のセルは、排ガスが導入される複数の排ガス導入セルと排ガスが排出される複数の排ガス排出セルを含み、
上記排ガス導入セルは、排ガス入口側の端面に排ガス導入セル開口部を有し、且つ、排ガス出口側の端面に排ガス導入セル封止部を有し、
上記排ガス排出セルは、排ガス入口側の端面に排ガス排出セル封止部を有し、且つ、排ガス出口側の端面に排ガス排出セル開口部を有し、
上記ハニカム構造体は、上記ハニカム構造体の長手方向に垂直な断面において、上記排ガス導入セルの形状及び上記排ガス排出セルの形状が一定である内部領域と、排ガス出口側の端面に近づくに従って排ガス導入セルが縮小され且つ排ガス排出セルが拡大される端部領域とを有し、
上記排ガス導入セル封止部は、上記排ガス排出セル開口部の輪郭を形成するセル隔壁であり、
排ガス出口側の端面において、1つの上記排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さを厚さαとすると、上記複数の排ガス排出セル開口部における複数の厚さαの標準偏差は、0.01以上であることを特徴とする。
The honeycomb structure of the present invention is a honeycomb structure including a plurality of cells that are channels of exhaust gas, and porous cell partition walls that partitionly form the plurality of cells,
The plurality of cells includes a plurality of exhaust gas introduction cells into which exhaust gas is introduced and a plurality of exhaust gas discharge cells from which exhaust gas is discharged,
The exhaust gas introduction cell has an exhaust gas introduction cell opening on the end surface on the exhaust gas inlet side, and, and has an exhaust gas introduction cell sealing portion on the end surface on the exhaust gas outlet side,
The exhaust gas discharge cell has an exhaust gas discharge cell sealing portion on the end surface on the exhaust gas inlet side, and has an exhaust gas discharge cell opening portion on the end surface on the exhaust gas outlet side,
The honeycomb structure, in a cross section perpendicular to the longitudinal direction of the honeycomb structure, the internal area where the shape of the exhaust gas introduction cell and the shape of the exhaust gas discharge cell are constant, and the exhaust gas is introduced toward the end surface on the exhaust gas outlet side. An end region where the cell is reduced and the exhaust gas discharge cell is enlarged,
The exhaust gas introduction cell sealing portion is a cell partition wall forming the contour of the exhaust gas discharge cell opening,
Assuming that the thickness of the central portion of the cell partition wall that forms the contour of one of the exhaust gas discharge cell openings on the end face on the exhaust gas outlet side is the thickness α, The standard deviation is 0.01 or more.

本発明のハニカム構造体では、複数の排ガス排出セル開口部における複数の厚さαの標準偏差が、0.01以上である。すなわち、排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さにバラつきがある。
そのため、端部領域における各排ガス導入セルには容量の差がある。従って、各排ガス導入セルに捕集されるPMの量にはバラつきが生じる。
捕集されたPMの量に差があると、PMを燃焼する際に、燃焼時期に差が生じる。
PMの燃焼時期に差が生じると、排ガス出口側の端面が急激に加熱されることを防ぐことができ、応力が集中することを抑制することができる。
従って、本発明のハニカム構造体では破損が生じにくい。
In the honeycomb structure of the present invention, the standard deviation of the plurality of thicknesses α in the plurality of exhaust gas discharge cell openings is 0.01 or more. That is, there are variations in the thickness of the cell partition wall forming the contour of the exhaust gas discharge cell opening.
Therefore, there is a difference in capacity between the exhaust gas introducing cells in the end region. Therefore, the amount of PM collected in each exhaust gas introduction cell varies.
When there is a difference in the amount of collected PM, there is a difference in the combustion timing when burning the PM.
If there is a difference in the PM combustion timing, it is possible to prevent the end face on the exhaust gas outlet side from being rapidly heated, and to suppress the concentration of stress.
Therefore, the honeycomb structure of the present invention is less likely to be damaged.

本発明のハニカム構造体では、上記複数の厚さαの標準偏差は、0.035以下であることが望ましい。
複数の厚さαの標準偏差が0.035以下であると、上記のハニカム構造体では破損を好適に防ぐことができる。
一方、複数の厚さαの標準偏差が0.035を超えると、各排ガス導入セルの容量の差が大きくなり、圧力損失が増加しやすくなる。
In the honeycomb structure of the present invention, the standard deviation of the thicknesses α is preferably 0.035 or less.
When the standard deviation of the plurality of thicknesses α is 0.035 or less, it is possible to preferably prevent breakage in the above honeycomb structure.
On the other hand, when the standard deviation of the plurality of thicknesses α exceeds 0.035, the difference in capacity between the exhaust gas introducing cells becomes large and the pressure loss tends to increase.

本発明のハニカム構造体では、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さは、1〜10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さが、1〜10mmであると、排ガス出口側において、排ガスがセル内部より排出される抵抗をより小さくできるため、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, it is desirable that the exhaust gas introduction cell and the exhaust gas discharge cell in the end region have a longitudinal length of 1 to 10 mm.
In the honeycomb structure of the present invention, when the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is 1 to 10 mm, the exhaust gas is discharged from the inside of the cell at the exhaust gas outlet side. Since it can be made smaller, the pressure loss can be further reduced.

本発明のハニカム構造体において、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さが、1mm未満であると、排ガス出口側において、排ガスが排出される際の抵抗が大きくなるため、圧力損失を充分に低減できなくなり、一方、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さが、10mmを超えると、そのような構造のハニカム構造体の製造が難しくなる。 In the honeycomb structure of the present invention, when the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is less than 1 mm, the resistance at the time of discharging the exhaust gas increases on the exhaust gas outlet side. Therefore, the pressure loss cannot be sufficiently reduced, and when the length of the exhaust gas introducing cell and the exhaust gas discharging cell in the end region in the longitudinal direction exceeds 10 mm, it is difficult to manufacture a honeycomb structure having such a structure. Become.

本発明のハニカム構造体では、上記厚さαの平均値は、0.1〜0.5mmであることが望ましい。
本発明のハニカム構造体において、上記厚さαの平均値が、0.1〜0.5mmであると、圧縮強度を低下させることなく、排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さを充分に薄くすることができるので、圧力損失を充分に低減させることができる。
In the honeycomb structure of the present invention, the average value of the thickness α is preferably 0.1 to 0.5 mm.
In the honeycomb structure of the present invention, when the average value of the thickness α is 0.1 to 0.5 mm, the thickness of the cell partition wall forming the contour of the exhaust gas discharge cell opening without reducing the compressive strength. Since the thickness can be made sufficiently thin, the pressure loss can be sufficiently reduced.

本発明のハニカム構造体において、厚さαの平均値が、0.1mm未満であると、排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さが薄すぎることとなり、圧縮強度を低下させてしまう。一方、厚さαの平均値が0.5mmを超えると、排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さが厚すぎるため、圧力損失を充分に低減させることが難しくなる。 In the honeycomb structure of the present invention, if the average value of the thickness α is less than 0.1 mm, the cell partition wall forming the contour of the exhaust gas discharge cell opening is too thin, which reduces the compressive strength. Will end up. On the other hand, when the average value of the thickness α exceeds 0.5 mm, the thickness of the cell partition wall forming the contour of the exhaust gas discharge cell opening is too thick, and it becomes difficult to sufficiently reduce the pressure loss.

本発明のハニカム構造体において、上記内部領域における排ガス導入セル及び排ガス排出セルの長手方向に垂直な断面形状は、四角形であることが望ましい。
本発明のハニカム構造体において、上記内部領域における排ガス導入セル及び排ガス排出セルの長手方向に垂直な断面形状が四角形であると、ハニカム構造体を製造する際、上記端部領域において、セルの長手方向に垂直な断面形状を、端面に近づくに従って拡大又は縮小させ易く、圧力損失が充分に低いハニカム構造体の実現が可能となる。
In the honeycomb structure of the present invention, it is desirable that the exhaust gas introduction cells and the exhaust gas discharge cells in the above-mentioned internal region have a rectangular cross-sectional shape in the longitudinal direction.
In the honeycomb structure of the present invention, the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell in the internal region is a quadrangle, when manufacturing the honeycomb structure, in the end region, the length of the cell A cross-sectional shape perpendicular to the direction can be easily expanded or reduced as it approaches the end face, and a honeycomb structure with sufficiently low pressure loss can be realized.

本発明のハニカム構造体では、上記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。
本発明のハニカム構造体においては、接着剤を用いて多数のハニカムセグメントを組み合わせたハニカム構造体に比べて、接着層がない分、端面における開口率を高くできるため、圧力損失の低減効果がより発揮できる。
In the honeycomb structure of the present invention, it is desirable that the honeycomb structure is made of one honeycomb fired body having an outer peripheral wall on the outer periphery.
In the honeycomb structure of the present invention, as compared with the honeycomb structure in which a large number of honeycomb segments are combined by using an adhesive, the opening ratio at the end face can be increased due to the absence of the adhesive layer, so that the pressure loss reducing effect is further improved. Can be demonstrated.

本発明のハニカム構造体では、上記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなることが望ましい。
本発明のハニカム構造体において、上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となる。
In the honeycomb structure of the present invention, the honeycomb fired body is preferably made of cordierite or aluminum titanate.
In the honeycomb structure of the present invention, when the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, when large thermal stress occurs during regeneration or the like. Even in this case, the honeycomb structure is resistant to cracks.

本発明のハニカム構造体では、上記セル隔壁の気孔率は、35〜65%であることが望ましい。
本発明のハニカム構造体において、上記セル隔壁の気孔率が、35〜65%であると、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁に起因する圧力損失の上昇を抑制することができる。従って、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, it is desirable that the cell partition walls have a porosity of 35 to 65%.
In the honeycomb structure of the present invention, when the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall. It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.

セル隔壁の気孔率が35%未満では、セル隔壁の気孔の割合が小さすぎるため、排ガスがセル隔壁を通過しにくくなり、排ガスがセル隔壁を通過する際の圧力損失が大きくなる。一方、セル隔壁の気孔率が65%を超えると、セル隔壁の機械的特性が低く、再生時等において、クラックが発生し易くなる。 When the porosity of the cell partition walls is less than 35%, the proportion of the pores of the cell partition walls is too small, so that the exhaust gas hardly passes through the cell partition walls, and the pressure loss when the exhaust gas passes through the cell partition walls increases. On the other hand, when the porosity of the cell partition walls exceeds 65%, the mechanical properties of the cell partition walls are low, and cracks are likely to occur during reproduction or the like.

本発明のハニカム構造体では、上記セル隔壁に含まれる気孔の平均気孔径は、5〜30μmであることが望ましい。 In the honeycomb structure of the present invention, the average pore diameter of the pores included in the cell partition wall is preferably 5 to 30 μm.

本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径が、5〜30μmであると、圧力損失の増加を抑制しながら、高い捕集効率でPMを捕集することができる。 In the honeycomb structure of the present invention, when the average pore diameter of the pores included in the cell partition walls is 5 to 30 μm, PM can be collected with high collection efficiency while suppressing an increase in pressure loss. .

セル隔壁に含まれる気孔の平均気孔径が5μm未満であると、気孔が小さすぎるため、排ガスがセル隔壁を透過する際の圧力損失が大きくなる。一方、セル隔壁に含まれる気孔の平均気孔径が30μmを超えると、気孔径が大きくなりすぎるので、PMの捕集効率が低下してしまう。 If the average pore diameter of the pores contained in the cell partition walls is less than 5 μm, the pores are too small, and the pressure loss when exhaust gas permeates the cell partition walls increases. On the other hand, if the average pore diameter of the pores contained in the cell partition wall exceeds 30 μm, the pore diameter becomes too large, and the PM trapping efficiency decreases.

図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA−A線断面図であり、図1(c)は、一方の端面側から見た端面図である。1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention, and FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a). c) is an end view as seen from one end surface side. 図2は、図1に示したハニカム構造体の排ガス出口側の端面の近傍を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the vicinity of the end face on the exhaust gas outlet side of the honeycomb structure shown in FIG. 図3(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図3(b)は、図3(a)に示した未封止ハニカム成形体のB−B線断面図である。FIG. 3A is a perspective view schematically showing the unsealed honeycomb molded body produced by the molding step, and FIG. 3B is the unsealed honeycomb molded body shown in FIG. 3A. FIG. 6 is a sectional view taken along line BB of FIG. 図4は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing a state of a remolding step of the unsealed honeycomb molded body. 図5は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a state of a remolding step of the unsealed honeycomb molded body. 図6は、PM燃焼試験におけるPMの捕集方法を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a method of collecting PM in the PM combustion test.

(発明の詳細な説明)
[ハニカム構造体]
まず、本発明のハニカム構造体について説明する。
(Detailed Description of the Invention)
[Honeycomb structure]
First, the honeycomb structure of the present invention will be described.

本発明のハニカム構造体は、排ガスの流路となる複数のセルと、上記複数のセルを区画形成する多孔質のセル隔壁とを備えたハニカム構造体であって、上記複数のセルは、排ガスが導入される複数の排ガス導入セルと排ガスが排出される複数の排ガス排出セルを含み、
上記排ガス導入セルは、排ガス入口側の端面に排ガス導入セル開口部を有し、且つ、排ガス出口側の端面に排ガス導入セル封止部を有し、上記排ガス排出セルは、排ガス入口側の端面に排ガス排出セル封止部を有し、且つ、排ガス出口側の端面に排ガス排出セル開口部を有し、上記ハニカム構造体は、上記ハニカム構造体の長手方向に垂直な断面において、上記排ガス導入セルの形状及び上記排ガス排出セルの形状が一定である内部領域と、排ガス出口側の端面に近づくに従って排ガス導入セルが縮小され且つ排ガス排出セルが拡大される端部領域とを有し、上記排ガス導入セル封止部は、上記排ガス排出セル開口部の輪郭を形成するセル隔壁であり、排ガス出口側の端面において、1つの上記排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さを厚さαとすると、上記複数の排ガス排出セル開口部における複数の厚さαの標準偏差は、0.01以上であることを特徴とする。
The honeycomb structure of the present invention is a honeycomb structure including a plurality of cells that are channels of exhaust gas, and porous cell partition walls that partition and form the plurality of cells, and the plurality of cells are exhaust gases. Including a plurality of exhaust gas introduction cells and a plurality of exhaust gas exhaust cells that exhaust gas is discharged,
The exhaust gas introduction cell has an exhaust gas introduction cell opening portion on the end surface on the exhaust gas inlet side, and has an exhaust gas introduction cell sealing portion on the end surface on the exhaust gas outlet side, the exhaust gas discharge cell, the exhaust gas inlet side end surface In the exhaust gas discharge cell sealing portion, and has an exhaust gas discharge cell opening on the end face on the exhaust gas outlet side, the honeycomb structure, in the cross section perpendicular to the longitudinal direction of the honeycomb structure, the exhaust gas introduction The inner shape of the cell and the shape of the exhaust gas discharge cell is constant, and has an end area where the exhaust gas introduction cell is reduced and the exhaust gas discharge cell is enlarged as it approaches the end surface on the exhaust gas outlet side, the exhaust gas The introduction cell sealing portion is a cell partition wall that forms the contour of the exhaust gas discharge cell opening, and a cell partition that forms the contour of one exhaust gas discharge cell opening on the end surface on the exhaust gas outlet side. When the thickness of the thickness of the center α of the standard deviation of the plurality of thickness α in the plurality of exhaust gas discharge cell opening, characterized in that at least 0.01.

図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA−A線断面図であり、図1(c)は、一方の端面側から見た端面図である。
図1(a)及び図1(b)に示すハニカム構造体10は、排ガスの流路となる複数のセル12、13を区画形成する多孔質のセル隔壁11と、排ガス入口側の端面10aが開口され且つ排ガス出口側の端面10bが封じられている排ガス導入セル12と、排ガス出口側の端面10bが開口され且つ排ガス入口側の端面10aが封じられている排ガス排出セル13とを備え、排ガス導入セル12及び排ガス排出セル13は、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が一定である内部領域10Bと、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられている端部領域10A、10Cとからなる。
図1(a)及び図1(b)に示すように、ハニカム構造体10が単一のハニカム焼成体からなる場合、ハニカム焼成体はハニカム構造体でもある。
1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention, and FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a). c) is an end view as seen from one end surface side.
The honeycomb structure 10 shown in FIGS. 1 (a) and 1 (b) has a porous cell partition wall 11 for partitioning and forming a plurality of cells 12 and 13 serving as exhaust gas flow paths, and an end face 10a on the exhaust gas inlet side. An exhaust gas introduction cell 12 that is opened and has an end face 10b on the exhaust gas outlet side sealed, and an exhaust gas discharge cell 13 that has an end face 10b on the exhaust gas outlet side opened and the end face 10a on the exhaust gas inlet side are sealed, The introduction cell 12 and the exhaust gas discharge cell 13 are perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 and the internal region 10B having a constant sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13. The cross-sectional shape is enlarged or reduced as it approaches the end face, and the end regions 10A and 10C are sealed.
As shown in FIGS. 1A and 1B, when the honeycomb structure 10 is made of a single honeycomb fired body, the honeycomb fired body is also a honeycomb structure.

本発明のハニカム構造体では、排ガス出口側の端面において、1つの排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さを厚さαとすると、複数の排ガス排出セル開口部における複数の厚さαの標準偏差は、0.01以上である。
このことについて、図2及び図1(c)を参照して説明する。
In the honeycomb structure of the present invention, in the end face on the exhaust gas outlet side, when the thickness of the central portion of the cell partition wall forming the contour of one exhaust gas discharge cell opening is defined as the thickness α, the plurality of exhaust gas discharge cell openings are formed. The standard deviation of the plurality of thicknesses α is 0.01 or more.
This will be described with reference to FIGS. 2 and 1C.

図2は、図1に示したハニカム構造体の排ガス出口側の端面の近傍を模式的に示す断面図である。
図2には、ハニカム構造体10の端面10bにおけるセル隔壁の中心部の厚さα1、α2、α3を示しているが、これらのα1、α2、α3が異なっていることは、排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さにバラつきがあることを意味している。
図2から、排ガス出口側の端部領域10Cにおける各排ガス導入セルには容量の差があることがわかる。
また、図2には、ハニカム構造体10の内部領域におけるセル隔壁11の厚さdも示している。
FIG. 2 is a cross-sectional view schematically showing the vicinity of the end face on the exhaust gas outlet side of the honeycomb structure shown in FIG.
FIG. 2 shows the thicknesses α1, α2, and α3 of the central portions of the cell partition walls on the end face 10b of the honeycomb structure 10, but the fact that these α1, α2, and α3 are different means that the exhaust gas discharge cell openings are different. This means that there is variation in the thickness of the central portion of the cell partition wall that forms the contour of the portion.
From FIG. 2, it can be seen that there is a difference in capacity between the exhaust gas introducing cells in the end region 10C on the exhaust gas outlet side.
Further, FIG. 2 also shows the thickness d 2 of the cell partition walls 11 in the internal region of the honeycomb structure 10.

セル隔壁の中心部の厚さαについて、図1(c)を参照してさらに説明する。
図1(c)に示す排ガス出口側の端面において、1つの排ガス排出セル開口部の輪郭を形成するセル隔壁は四角形の1辺であり、セル隔壁の中心部とは、この1辺の中心にあたり、この部分の厚さがセル隔壁の中心部の厚さαとなる。
図1(c)には、セル隔壁の中心部の厚さαが薄い場合の厚さα1、厚い場合の厚さα3、中程度の場合の厚さα2を示している。
セル隔壁の中心部の厚さαは、排ガス排出セル開口部の輪郭を形成する四角形の一辺の長さの中心で測定すればよい。
これらの厚さα1、α2、α3は、図2に示す厚さα1、α2、α3と対応している。
The thickness α of the central portion of the cell partition will be further described with reference to FIG.
In the end face on the exhaust gas outlet side shown in FIG. 1C, the cell partition wall forming the outline of one exhaust gas discharge cell opening is one side of a quadrangle, and the central part of the cell partition wall corresponds to the center of this one side. The thickness of this portion is the thickness α of the central portion of the cell partition wall.
FIG. 1C shows the thickness α1 when the thickness α of the central portion of the cell partition wall is thin, the thickness α3 when it is thick, and the thickness α2 when it is medium.
The thickness α of the central portion of the cell partition wall may be measured at the center of the length of one side of a quadrangle forming the contour of the exhaust gas discharge cell opening.
These thicknesses α1, α2, α3 correspond to the thicknesses α1, α2, α3 shown in FIG.

本発明では、セル隔壁の中心部の厚さαについて、複数の厚さαの標準偏差を求める。複数の厚さαとしては30カ所のセル隔壁でそれぞれ測定した厚さαを使用し、統計処理を行って標準偏差を求める。本発明のハニカム構造体では、このようにして求めた標準偏差が0.01以上となる。
このことは、排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さにバラつきがあることを意味している。
このようであると、各排ガス導入セルに捕集されるPMの量にはバラツキが生じる。
捕集されたPMの量に差があると、PMを燃焼する際に、燃焼時期に差が生じる。
PMの燃焼時期に差が生じると、排ガス出口側の端面が急激に加熱されることを防ぐことができ、応力が集中することを抑制することができる。
従って、本発明のハニカム構造体では破損が生じにくい。
In the present invention, the standard deviation of the plurality of thicknesses α is obtained for the thickness α of the central portion of the cell partition wall. As the plurality of thicknesses α, the thicknesses α measured at the 30 cell partition walls are used, and the standard deviation is obtained by statistical processing. In the honeycomb structure of the present invention, the standard deviation thus obtained is 0.01 or more.
This means that the thickness of the central portion of the cell partition forming the outline of the exhaust gas discharge cell opening varies.
In such a case, the amount of PM collected in each exhaust gas introduction cell varies.
When there is a difference in the amount of collected PM, there is a difference in the combustion timing when burning the PM.
If there is a difference in the PM combustion timing, it is possible to prevent the end face on the exhaust gas outlet side from being rapidly heated, and to suppress the concentration of stress.
Therefore, the honeycomb structure of the present invention is less likely to be damaged.

また、複数の厚さαの標準偏差は、0.035以下であることが望ましい。
複数の厚さαの標準偏差が0.035以下であると、ハニカム構造体の破損を好適に防ぐことができる。
一方、複数の厚さαの標準偏差が0.035を超えると、各排ガス導入セルの容量の差が大きくなり、圧力損失が増加しやすくなる。
The standard deviation of the thicknesses α is preferably 0.035 or less.
When the standard deviation of the plurality of thicknesses α is 0.035 or less, it is possible to preferably prevent the honeycomb structure from being damaged.
On the other hand, when the standard deviation of the plurality of thicknesses α exceeds 0.035, the difference in capacity between the exhaust gas introducing cells becomes large and the pressure loss tends to increase.

また、厚さαの平均値は、0.1〜0.5mmであることが好ましい。
厚さαの平均値の算出には、厚さαの標準偏差を求めたときに得た数値を使用すればよい。
本発明のハニカム構造体において、厚さαの平均値が0.1〜0.5mmであると、圧縮強度を低下させることなく、セル隔壁の厚さを充分に薄くすることができるので、圧力損失を充分に低減させることができる。
また、内部領域におけるセル隔壁の厚さは、0.12〜0.4mmであることが望ましい。
The average value of the thickness α is preferably 0.1 to 0.5 mm.
To calculate the average value of the thickness α, the numerical value obtained when the standard deviation of the thickness α is obtained may be used.
In the honeycomb structure of the present invention, when the average value of the thickness α is 0.1 to 0.5 mm, the thickness of the cell partition wall can be sufficiently reduced without lowering the compressive strength. The loss can be sufficiently reduced.
Further, the thickness of the cell partition wall in the inner region is preferably 0.12 to 0.4 mm.

本発明のハニカム構造体では、上記端部領域のセルの長手方向の長さは、1〜10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さが、1〜10mmであると、排ガス入口側において、排ガスがセル内部に導入される抵抗、及び、排ガス出口側において、排ガスがセル内部より排出される抵抗をより小さくできるため、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, the length in the longitudinal direction of the cells in the end region is preferably 1 to 10 mm.
In the honeycomb structure of the present invention, when the length of the cells in the end region in the longitudinal direction is 1 to 10 mm, the resistance at which the exhaust gas is introduced into the cells on the exhaust gas inlet side, and the exhaust gas outlet side Since the resistance of the exhaust gas discharged from the inside of the cell can be further reduced, the pressure loss can be further reduced.

また、本発明のハニカム構造体では、上記端部領域において、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されており、排ガス入口側及び出口側の端面で開口率が高くなっているので、排ガスがハニカム構造体に流入する際及び排ガス構造体から流出する際の抵抗が小さくなり、圧力損失を充分に低減させることができる。 Further, in the honeycomb structure of the present invention, in the end region, the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end surface, the exhaust gas inlet side and the outlet Since the opening ratio is high on the side end face, the resistance when exhaust gas flows into and out of the honeycomb structure becomes small, and the pressure loss can be sufficiently reduced.

本発明のハニカム構造体において、内部領域におけるセルの長手方向に垂直な断面形状は、四角形に限定されず、三角形、六角形、八角形であってもよいが、四角形であることが望ましく、正方形であることがより望ましい。 In the honeycomb structure of the present invention, the cross-sectional shape perpendicular to the longitudinal direction of the cells in the inner region is not limited to a quadrangle, and may be a triangle, a hexagon, an octagon, but is preferably a quadrangle, and a square. Is more desirable.

本発明のハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。 The shape of the honeycomb structure of the present invention is not limited to a columnar shape, and examples thereof include a prismatic shape, an elliptic cylindrical shape, an oblong cylindrical shape, and a round chamfered prismatic shape (for example, a round chamfered triangular pillar). .

本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面のセルの密度は、31〜155個/cm(200〜1000個/inch)であることが望ましい。 In the honeycomb structure of the present invention, the density of cells in a cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 cells / cm 2 (200 to 1000 cells / inch 2 ).

本発明のハニカム構造体において、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1〜2.0mmであることが望ましい。 In the honeycomb structure of the present invention, when the outer peripheral coat layer is formed on the outer peripheral surface of the honeycomb fired body, the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.

本発明のハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤により結合されていてもよいが、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。 The honeycomb structure of the present invention may be composed of one honeycomb fired body having an outer peripheral wall on the outer periphery, or may be provided with a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are adhesive. However, it is preferable that the honeycomb fired body has one outer peripheral wall having an outer peripheral wall.

本発明のハニカム構造体を構成する材料は、特に限定されず、例えば、炭化ケイ素、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック、ケイ素含有炭化ケイ素等が挙げられるが、ハニカム構造体が外周に外周壁を有する一のハニカム焼成体により構成されている場合には、コージェライト、又は、チタン酸アルミニウムが望ましい。 The material constituting the honeycomb structure of the present invention is not particularly limited, and examples thereof include carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, and nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride. Examples include ceramics, alumina, zirconia, cordierite, mullite, oxide ceramics such as aluminum titanate, silicon-containing silicon carbide, etc., but the honeycomb structure is composed of one honeycomb fired body having an outer peripheral wall on the outer periphery. In this case, cordierite or aluminum titanate is desirable.

上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となるからである。 When the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, even when a large thermal stress occurs during regeneration, cracks and the like This is because the honeycomb structure does not easily occur.

本発明のハニカム構造体では、上記セル隔壁の気孔率は、35〜65%であることが望ましい。
本発明のハニカム構造体において、上記セル隔壁の気孔率が、35〜65%であると、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁に起因する圧力損失の上昇を抑制することができる。従って、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, it is desirable that the cell partition walls have a porosity of 35 to 65%.
In the honeycomb structure of the present invention, when the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall. It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.

本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径は、5〜30μmであることが望ましい。 In the honeycomb structure of the present invention, the average pore diameter of the pores included in the cell partition wall is preferably 5 to 30 μm.

本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径が、5〜30μmであると、圧力損失の増加を抑制しながら、高い捕集効率でPMを捕集することができる。
本発明のハニカム構造体において、気孔径および平均気孔径は、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定する。
In the honeycomb structure of the present invention, when the average pore diameter of the pores included in the cell partition walls is 5 to 30 μm, PM can be collected with high collection efficiency while suppressing an increase in pressure loss. .
In the honeycomb structure of the present invention, the pore diameter and the average pore diameter are measured by a mercury penetration method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.

次に、本発明のハニカム構造体の製造方法について説明する。
以下においては、チタン酸アルミニウムからなるハニカム構造体の製造方法を例にとって説明するが、本発明の製造対象は、チタン酸アルミニウムに限定されるものではない。
(混合工程)
まず、アルミナ粉末及びチタニア粉末にマグネシア粉末、シリカ粉末等の添加剤を添加し、混合することにより混合粉末を得る。
Next, a method for manufacturing the honeycomb structure of the present invention will be described.
In the following, a method for manufacturing a honeycomb structure made of aluminum titanate will be described as an example, but the manufacturing target of the present invention is not limited to aluminum titanate.
(Mixing process)
First, additives such as magnesia powder and silica powder are added to alumina powder and titania powder and mixed to obtain a mixed powder.

上記混合粉末において、シリカとマグネシアは、焼成助剤としての役割もあるが、焼成助剤としては、シリカとマグネシアの他に、Y、La、Na、K、Ca、Sr、Baの酸化物が用いられていてもよい。これらの混合粉末に以下の添加剤を必要により添加して原料組成物を得る。成形助剤としては、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコールが挙げられる。有機バインダとしては、カルボキシメチルセルロース、ポリビニルアルコール、メチルセルロース、エチルセルロース等の親水性有機高分子が挙げられる。分散媒としては、水のみからなる分散媒、又は、50体積%以上の水と有機溶剤とからなる分散媒が挙げられる。有機溶剤としては、ベンゼン、メタノール等のアルコールが挙げられる。造孔剤としては、微小中空球体であるバルーン、球状アクリル粒子、グラファイト、デンプンが挙げられる。バルーンとしては、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュ(FA)バルーン、ムライトバルーンが挙げられる。 In the above-mentioned mixed powder, silica and magnesia also have a role as a firing aid, but as the firing aid, in addition to silica and magnesia, oxides of Y, La, Na, K, Ca, Sr, and Ba are used. It may be used. If necessary, the following additives are added to these mixed powders to obtain a raw material composition. Examples of the molding aid include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol. Examples of the organic binder include hydrophilic organic polymers such as carboxymethyl cellulose, polyvinyl alcohol, methyl cellulose and ethyl cellulose. Examples of the dispersion medium include a dispersion medium composed of only water or a dispersion medium composed of 50% by volume or more of water and an organic solvent. Examples of the organic solvent include alcohols such as benzene and methanol. Examples of the pore-forming agent include balloons, which are minute hollow spheres, spherical acrylic particles, graphite, and starch. Examples of balloons include alumina balloons, glass micro balloons, shirasu balloons, fly ash (FA) balloons, and mullite balloons.

また、原料組成物中には、その他の成分が更に含有されていてもよい。その他の成分としては、たとえば、可塑剤、分散剤、潤滑剤が挙げられる。可塑剤としては、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物が挙げられる。分散剤としては、たとえば、ソルビタン脂肪酸エステルが挙げられる。潤滑剤としては、たとえば、グリセリンが挙げられる。 Further, the raw material composition may further contain other components. Examples of other components include plasticizers, dispersants, and lubricants. Examples of the plasticizer include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Examples of the dispersant include sorbitan fatty acid ester. Examples of the lubricant include glycerin.

(成形工程)
成形工程は、混合工程により得られた原料組成物を成形して未封止ハニカム成形体を作製する工程である。未封止ハニカム成形体は、たとえば、原料組成物を押出金型を用いて押出成形することにより作製することができる。すなわち、未封止ハニカム成形体は、ハニカム構造体の筒状の外周壁と隔壁となる部分を構成する壁部を一度に押出成形することにより作製する。また、押出成形では、ハニカム構造体の一部の形状に対応する成形体を成形してもよい。すなわち、ハニカム構造体の一部の形状に対応する成形体を成形し、それら成形体を組み合わせることによってハニカム構造体と同一形状を有するハニカム成形体を作製してもよい。
(Molding process)
The molding step is a step of molding the raw material composition obtained in the mixing step to produce an unsealed honeycomb molded body. The unsealed honeycomb molded body can be produced by, for example, extruding the raw material composition using an extrusion die. That is, the unsealed honeycomb molded body is manufactured by extruding the tubular outer peripheral wall of the honeycomb structure and the wall portion constituting the partition wall at one time. Further, in the extrusion molding, a molded body corresponding to the shape of a part of the honeycomb structure may be molded. That is, a honeycomb molded body having the same shape as the honeycomb structure may be manufactured by molding a molded body corresponding to a part of the shape of the honeycomb structure and combining the molded bodies.

図3(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図3(b)は、図3(a)に示した未封止ハニカム成形体のB−B線断面図である。 FIG. 3A is a perspective view schematically showing the unsealed honeycomb molded body produced by the molding step, and FIG. 3B is the unsealed honeycomb molded body shown in FIG. 3A. FIG. 6 is a sectional view taken along line BB of FIG.

図3(a)及び図3(b)に示すように、上記成形工程により、セル22、23の長手方向に垂直な断面形状が四角で、端面20a′、20b′におけるセル22、23の形状も全く同じ四角形状で、セル22、23を隔てるセル隔壁21を有し、全体が円柱形状の未封止ハニカム成形体20′が作製される。 As shown in FIGS. 3 (a) and 3 (b), the shape of the cells 22 and 23 on the end faces 20a 'and 20b' is square due to the above-mentioned molding process, and the sectional shape perpendicular to the longitudinal direction of the cells 22 and 23 is square. Also, an unsealed honeycomb molded body 20 'having exactly the same quadrangular shape and having cell partition walls 21 separating cells 22 and 23 and having a cylindrical shape as a whole is manufactured.

(再成形工程)
この後、テーパー冶具を用い、未封止ハニカム成形体20′に対し、ハニカム構造体の端部領域に相当する部分を形成するための再成形を行い、排ガス導入セル及び排ガス排出セルとなるセル22、23の長手方向に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられた形状の封止ハニカム成形体とする。
(Reforming process)
Thereafter, a taper jig is used to re-form the unsealed honeycomb molded body 20 ′ to form a portion corresponding to an end region of the honeycomb structure, thereby forming an exhaust gas introduction cell and an exhaust gas discharge cell. The cross-sectional shape of 22 and 23 perpendicular to the longitudinal direction is enlarged or reduced as it approaches the end face, and the sealed honeycomb molded body has a closed shape.

図4は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図であり、図5は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。
図4及び図5に示すように、支持部33と支持部33上に固定された基台部31と基台部31上に形成された多数の四角錐形状の先端部32とを備えたテーパー冶具30を用い、先端部32の四角錐を構成する4つの平面32bの境界部である角部32cが未封止ハニカム成形体20′の端面20b′におけるセル隔壁21の四角を構成する一の辺21bの真ん中に当接するように配置し、未封止ハニカム成形体20′の中央部分に向かってテーパー冶具30を押し込む。
FIG. 4 is an explanatory view schematically showing a state of the remolding step of the unsealed honeycomb molded body, and FIG. 5 is a sectional view schematically showing a state of the remolding step of the unsealed honeycomb molded body. is there.
As shown in FIGS. 4 and 5, a taper including a support portion 33, a base portion 31 fixed on the support portion 33, and a large number of quadrangular pyramid-shaped tip portions 32 formed on the base portion 31. Using the jig 30, the corner portion 32c which is the boundary portion of the four flat surfaces 32b forming the quadrangular pyramid of the tip portion 32 forms the square of the cell partition wall 21 on the end surface 20b 'of the unsealed honeycomb molded body 20'. The taper jig 30 is arranged so as to come into contact with the center of the side 21b, and the taper jig 30 is pushed toward the central portion of the unsealed honeycomb molded body 20 '.

このとき、先端部32が押し込まれたセル22の端部領域に相当する部分は、セルの長手方向に垂直な断面形状が端面に近づくに従って拡大された形状となり、先端部32が押し込まれたセル22の上下左右に存在していたセル23の端部領域に相当する部分は、セル23の長手方向に垂直な断面形状が端面に近づくに従って縮小され、封じられた形状となる。また、端面から見た封止ハニカム成形体の形状は、図1(c)に示すハニカム構造体10と同じく、端面10bにおけるセル13の四角が内部領域10Bのセル13の四角を45°回転した形状となる。
テーパー治具の先端部32の角度及び隣り合う先端部32同士の幅を調整することにより、端面におけるセル隔壁の厚さ及び排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さを調整することができる。
図5には、隣り合う先端部32同士の幅が異なるようにした例を示している。隣り合う先端部32同士の幅β1、β2、β3はそれぞれ異なっており、それぞれの幅が得られるハニカム構造体のセル隔壁の中心部の厚さα1、α2、α3と対応することとなる。
このようにすることで、排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さをばらつかせることができる。
At this time, the portion corresponding to the end region of the cell 22 into which the tip 32 is pushed has a shape in which the cross-sectional shape perpendicular to the longitudinal direction of the cell is enlarged as it approaches the end face, and the cell into which the tip 32 is pushed The portions corresponding to the end regions of the cells 23 existing on the upper, lower, left, and right sides of the cell 22 are reduced in shape as the cross-sectional shape perpendicular to the longitudinal direction of the cells 23 approaches the end surface, and become a sealed shape. Further, the shape of the sealed honeycomb formed body viewed from the end face is the same as the honeycomb structure 10 shown in FIG. 1C, and the square of the cell 13 on the end face 10b is rotated by 45 ° from the square of the cell 13 of the internal region 10B. It becomes the shape.
By adjusting the angle of the tip portion 32 of the taper jig and the width of the tip portions 32 adjacent to each other, the thickness of the cell partition wall on the end face and the thickness of the cell partition wall forming the contour of the exhaust gas discharge cell opening are adjusted. be able to.
FIG. 5 shows an example in which the widths of the adjacent tip portions 32 are different. The widths β1, β2, and β3 of the tip portions 32 adjacent to each other are different, and correspond to the thicknesses α1, α2, and α3 of the central portions of the cell partition walls of the honeycomb structure that can obtain the respective widths.
By doing so, the thickness of the cell partition wall forming the outline of the exhaust gas discharge cell opening can be varied.

再成形工程の際に、テーパー治具によって押し込まれて変形する端部領域の粘度や強度を調整することがある。そのための手法として、未封止ハニカム成形体の端部に水をつけたり、溶媒をつけたりすることがある。未封止ハニカム成形体の端部に水や溶媒をつけると、
テーパー冶具を押し込んだ際のセル隔壁の変形の具合が変化する。
そこで、未封止ハニカム成形体の端部に水や溶媒をつける量をばらつかせることで、排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さをばらつかせることができる。
During the reshaping process, the viscosity and strength of the end region that is pressed and deformed by the taper jig may be adjusted. As a method therefor, there is a case where water or a solvent is applied to the end portion of the unsealed honeycomb molded body. When water or solvent is applied to the end of the unsealed honeycomb molded body,
The degree of deformation of the cell partition when the taper jig is pushed in changes.
Therefore, the thickness of the cell partition wall forming the outline of the exhaust gas discharge cell opening can be varied by varying the amount of water or solvent applied to the end of the unsealed honeycomb molded body.

この再成形工程により得られた封止ハニカム成形体は、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用い、100〜150℃、大気雰囲気下で乾燥され、250〜400℃、酸素濃度5容積%〜大気雰囲気下で脱脂される。
この乾燥工程における乾燥の具合に差をつけることで、セル隔壁の乾燥収縮にムラを生じさせて、排ガス排出セル開口部の輪郭を形成するセル隔壁の厚さをばらつかせることができる。
The sealed honeycomb molded body obtained by this remolding step uses a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, and a freeze dryer at 100 to 150 ° C. Then, it is dried in an air atmosphere and degreased in an atmosphere of 250 to 400 ° C. and an oxygen concentration of 5% by volume.
By making the degree of drying different in this drying step, it is possible to cause unevenness in the drying shrinkage of the cell partition walls, and to vary the thickness of the cell partition walls forming the contour of the exhaust gas discharge cell opening.

(焼成工程)
焼成工程は、再成形工程により得られた封止ハニカム成形体を1400〜1600℃で焼成する工程である。この焼成工程では、アルミナの表面からチタニアとの反応が進行して、チタン酸アルミニウムの相が形成される。焼成は、公知の単独炉、いわゆるバッチ炉や、連続炉を用いて行うことができる。焼成温度は、1450〜1550℃の範囲であることが望ましい。焼成時間は特に限定されないが、上記の焼成温度において1〜20時間保持することが望ましく、1〜10時間保持することがより望ましい。また、焼成工程は大気雰囲気下で行うことが望ましい。大気雰囲気に窒素ガスやアルゴンガス等の不活性ガスを混合することにより、酸素濃度を調整してもよい。
(Firing process)
The firing step is a step of firing the sealed honeycomb formed body obtained in the re-forming step at 1400 to 1600 ° C. In this firing step, the reaction with titania proceeds from the surface of alumina to form an aluminum titanate phase. The firing can be performed using a known single furnace, so-called batch furnace, or continuous furnace. The firing temperature is preferably in the range of 1450 to 1550 ° C. Although the firing time is not particularly limited, it is desirable to hold the firing temperature for 1 to 20 hours, and more desirably 1 to 10 hours. In addition, it is desirable that the firing process be performed in the atmosphere. The oxygen concentration may be adjusted by mixing an inert gas such as nitrogen gas or argon gas into the air atmosphere.

上記した混合工程、成形工程、再成形工程、及び、焼成工程を経ることにより、本発明のハニカム構造体を製造することができる。 The honeycomb structure of the present invention can be manufactured through the above-mentioned mixing step, forming step, re-forming step, and firing step.

以下、上記実施形態をさらに具体化した実施例について説明する。
(実施例1)
まず、下記組成の原料組成物を調製した。
D50が0.6μmのチタニア微粉末:11.1重量%、D50が13.0μmのチタニア粗粉末:11.1重量%、D50が15.9μmのアルミナ粉末:30.4重量%、D50が1.1μmのシリカ粉末:2.8重量%、D50が3.8μmのマグネシア粉末:1.4重量%、D50が31.9μmのアクリル樹脂(造孔材):18.5重量%、メチルセルロース(有機バインダ):7.1重量%、成形助剤(エステル型ノニオン):4.7重量%、及び、イオン交換水(分散媒):12.9重量%からなる組成のものを混合機で混合し、原料組成物を調製した。
Hereinafter, examples in which the above embodiment is further embodied will be described.
(Example 1)
First, a raw material composition having the following composition was prepared.
Fine titania powder having D50 of 0.6 μm: 11.1% by weight, coarse titania powder having D50 of 13.0 μm: 11.1% by weight, alumina powder having D50 of 15.9 μm: 30.4% by weight, D50 of 1 .1 μm silica powder: 2.8% by weight, D50 3.8 μm magnesia powder: 1.4% by weight, D50 31.9 μm acrylic resin (pore forming material): 18.5% by weight, methylcellulose (organic A binder having a composition of 7.1% by weight, a molding aid (ester type nonion): 4.7% by weight, and ion-exchanged water (dispersion medium): 12.9% by weight are mixed with a mixer. A raw material composition was prepared.

調製した原料組成物を押出成形機に投入して押出成形を行うことによりセルが封止されていない未封止ハニカム成形体20′を作製した。 The prepared raw material composition was put into an extrusion molding machine and extrusion-molded to prepare an unsealed honeycomb molded body 20 'in which cells were not sealed.

未封止ハニカム成形体20′を作製した後、未封止ハニカム成形体20′の排ガス出口側となる端面につき、図5に示すような、隣り合う先端部32同士の幅が異なるようにしたアルミ製のテーパー冶具30を用いて、再成形を行い、封止ハニカム成形体を作製した。
なお、未封止ハニカム成形体20´の排ガス入口側となる端面については、隣り合う先端部32同士の幅が均一となっているアルミ製のテーパー冶具を用いて、再成形を行い、封止ハニカム成形体を作製した。
After the unsealed honeycomb molded body 20 'was manufactured, the end faces of the unsealed honeycomb molded body 20' on the exhaust gas outlet side had different widths between the adjacent tip portions 32 as shown in FIG. Re-molding was performed using the taper jig 30 made of aluminum to manufacture a sealed honeycomb molded body.
The end surface of the unsealed honeycomb molded body 20 ′ on the exhaust gas inlet side is remolded by using an aluminum taper jig in which the widths of the adjacent tip portions 32 are uniform and sealed. A honeycomb formed body was produced.

この後、再成形工程を経て得られた封止ハニカム成形体を大気雰囲気下、1450℃で15時間保持して焼成することにより、ハニカム構造体を製造した。得られたハニカム構造体は、気孔率が57%、平均気孔径が17μm、大きさが34mm×34mm×100mm、外周壁の厚さ0.3mm、内部領域におけるセル隔壁の厚さ0.25mm、セルの数(セル密度)が300個/inchで、四角柱形状であった。なお、気孔率及び平均気孔径の測定は、下記する方法により行った。 After that, the honeycomb structure was manufactured by holding and firing the sealed honeycomb molded body obtained through the remolding step at 1450 ° C. for 15 hours in the air atmosphere. The obtained honeycomb structure had a porosity of 57%, an average pore diameter of 17 μm, a size of 34 mm × 34 mm × 100 mm, a peripheral wall thickness of 0.3 mm, and a cell partition wall thickness of 0.25 mm in the internal region. The number of cells (cell density) was 300 cells / inch 2 , and it was a quadrangular prism shape. The porosity and the average pore diameter were measured by the methods described below.

そして、排ガス出口側の端面において、1つの排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さαの標準偏差を求めたところ、標準偏差は0.0224であった。
また、厚さαの平均値は0.35mmであった。
Then, when the standard deviation of the thickness α of the central portion of the cell partition wall forming the contour of one exhaust gas discharge cell opening on the end face on the exhaust gas outlet side was determined, the standard deviation was 0.0224.
The average value of the thickness α was 0.35 mm.

(実施例2、3)
実施例1において、再成形工程の際に、未封止ハニカム成形体20′の排ガス出口側となる端面につき、隣り合う先端部32同士の幅と角度をそれぞれ変えたアルミ製のテーパー冶具を用いて、再成形を行い、封止ハニカム成形体を作製した。その他は実施例1と同様にしてハニカム構造体を製造した。
そして、排ガス出口側の端面において、1つの排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さαの標準偏差を求めたところ、標準偏差は0.0114(実施例2)と0.0342(実施例3)であった。
また、厚さαの平均値はどちらも0.35mmであった。
また、ハニカム構造体における気孔率、平均気孔径、大きさ、外周壁の厚さ、内部領域におけるセル隔壁の厚さ、セルの数(セル密度)はいずれも実施例1と同様であった。
(Examples 2 and 3)
In Example 1, at the time of the re-molding step, an aluminum taper jig in which the widths and angles of the adjacent tip portions 32 were respectively changed was used for the end surface of the unsealed honeycomb molded body 20 'on the exhaust gas outlet side. Then, remolding was performed to manufacture a sealed honeycomb molded body. A honeycomb structure was manufactured in the same manner as in Example 1 except for the above.
Then, when the standard deviation of the thickness α of the central portion of the cell partition wall forming the outline of one exhaust gas discharge cell opening on the end face on the exhaust gas outlet side was determined, the standard deviation was 0.0114 (Example 2). It was 0.0342 (Example 3).
The average value of the thickness α was 0.35 mm in both cases.
The porosity, average pore diameter, size, outer peripheral wall thickness, cell partition wall thickness in the inner region, and number of cells (cell density) in the honeycomb structure were all the same as in Example 1.

(比較例1)
実施例1において、再成形工程の際に、未封止ハニカム成形体20′の排ガス出口側となる端面についても隣り合う先端部32同士の幅が均一となっているアルミ製のテーパー冶具を用いて、再成形を行い、封止ハニカム成形体を作製した。その他は実施例1と同様にしてハニカム構造体を製造した。
そして、排ガス出口側の端面において、1つの排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さαの標準偏差を求めたところ、標準偏差は0.0079であった。
また、厚さαの平均値は0.34mmであった。
また、ハニカム構造体における気孔率、平均気孔径、大きさ、外周壁の厚さ、内部領域におけるセル隔壁の厚さ、セルの数(セル密度)は実施例1と同様であった。
(Comparative Example 1)
In the first embodiment, an aluminum taper jig is used in which the widths of the adjacent tip portions 32 of the unsealed honeycomb molded body 20 'on the exhaust gas outlet side are uniform during the remolding process. Then, remolding was performed to manufacture a sealed honeycomb molded body. A honeycomb structure was manufactured in the same manner as in Example 1 except for the above.
Then, when the standard deviation of the thickness α of the central portion of the cell partition wall forming the outline of one exhaust gas discharge cell opening on the end face on the exhaust gas outlet side was determined, the standard deviation was 0.0079.
The average value of the thickness α was 0.34 mm.
In addition, the porosity, average pore diameter, size, outer peripheral wall thickness, cell partition wall thickness, and number of cells (cell density) in the honeycomb structure were the same as in Example 1.

(評価試験)
各実施例及び比較例のハニカム構造体の気孔率、平均気孔径、及び、再生限界値を測定した。
[気孔率及び平均気孔径]
各実施例及び比較例で得られたハニカム構造体を10mm×10mm×10mmに切り出して、気孔測定用サンプルを準備した。気孔測定用サンプルを用いて、水銀圧入法によるポロシメーター(島津製作所社製、オートポアIII 9420)により気孔率及び平均気孔径を測定した。水銀圧入法にて接触角を130°、表面張力を485mN/mの条件とした。
(Evaluation test)
The porosity, average pore diameter, and regeneration limit value of the honeycomb structures of each of the examples and comparative examples were measured.
[Porosity and average pore size]
The honeycomb structure obtained in each of the examples and comparative examples was cut into a size of 10 mm × 10 mm × 10 mm to prepare a sample for pore measurement. The porosity and the average pore diameter were measured using a porosimeter (manufactured by Shimadzu Corporation, Autopore III 9420) by a mercury porosimetry using the sample for pore measurement. The contact angle was 130 ° and the surface tension was 485 mN / m under the mercury intrusion method.

[PM燃焼試験]
図6は、PM燃焼試験におけるPMの捕集方法を模式的に示す断面図である。
PM捕集装置210は、排気量1.6リットルのディーゼルエンジン211の排ガス管214から分岐された配管212に、実施例1〜3及び比較例1で得られたハニカム構造体10を金属ケーシング213内に固定して配置した。
ハニカム構造体10は、排ガス入口側の端面がディーゼルエンジン211の配管212に近い側に配置される。
ディーゼルエンジン211を回転数3100rpm、トルク50Nmで運転して、ディーゼルエンジン211からの排ガスの一部をハニカム構造体10に流通させてPMをハニカムフィルタに捕集させた。
[PM combustion test]
FIG. 6 is a cross-sectional view schematically showing a method of collecting PM in the PM combustion test.
The PM collecting apparatus 210 includes a metal casing 213 in which the honeycomb structures 10 obtained in Examples 1 to 3 and Comparative Example 1 are placed in a pipe 212 branched from an exhaust gas pipe 214 of a diesel engine 211 having a displacement of 1.6 liters. It was fixed inside and placed.
The honeycomb structure 10 is arranged such that the end face on the exhaust gas inlet side is closer to the pipe 212 of the diesel engine 211.
The diesel engine 211 was operated at a rotation speed of 3100 rpm and a torque of 50 Nm, and a part of the exhaust gas from the diesel engine 211 was circulated through the honeycomb structure 10 to collect PM on the honeycomb filter.

そして、ハニカム構造体にPMを捕集し、ハニカム構造体を650℃に加熱した状態で、酸素濃度が約20%のガスを流入させることで、捕集したPMを燃焼させた。PM燃焼後のハニカム構造体にクラックが発生しているか否かを観察した。
そして、この再生処理を行う実験を、PMの捕集量を変化させながら行い、ハニカム構造体にクラックが発生するか否かを調査した。そして、クラックが発生しない最大PM量のハニカム構造体の見掛け容積1Lあたりの量を再生限界値とした。
Then, PM was collected in the honeycomb structure, and while the honeycomb structure was heated to 650 ° C., a gas having an oxygen concentration of about 20% was introduced to burn the collected PM. It was observed whether the honeycomb structure after PM burning had cracks.
Then, an experiment for carrying out this regeneration treatment was conducted while changing the amount of PM trapped, and it was investigated whether or not cracks were generated in the honeycomb structure. Then, the amount per 1 L of apparent volume of the honeycomb structure having the maximum PM amount in which cracks did not occur was taken as the regeneration limit value.

その結果は以下の通りであった。
実施例1:12g/L
実施例2:12g/L
実施例3:12g/L
比較例1:11g/L
すなわち、排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さにバラつきがあることで、再生限界値が向上した。これは、再生時にPMの燃焼時期に差を生じさせることができ、排ガス出口側の端面が急激に加熱することを防ぐことができて、ハニカム構造体に破損が生じることが防止されたことを示す。
The results were as follows.
Example 1: 12 g / L
Example 2: 12 g / L
Example 3: 12 g / L
Comparative Example 1: 11 g / L
That is, the variation in the thickness of the central portion of the cell partition wall forming the contour of the exhaust gas discharge cell opening improved the regeneration limit value. This can cause a difference in PM combustion timing during regeneration, can prevent the end face on the exhaust gas outlet side from being rapidly heated, and can prevent the honeycomb structure from being damaged. Show.

10 ハニカム構造体
10a、10b 端面
10A、10C 端部領域
10B 内部領域
11 セル隔壁
12 排ガス導入セル
13 排ガス排出セル
20′ 未封止ハニカム成形体
20a′、20b′ 端面
21 セル隔壁
21b 一の辺
22、23 セル
30 テーパー冶具
31 基台部
32 先端部
32b 平面
32c 角部
33 支持部
10 Honeycomb Structures 10a, 10b End Faces 10A, 10C End Region 10B Inner Region 11 Cell Partition 12 Exhaust Gas Introducing Cell 13 Exhaust Gas Emitting Cell 20 'Unsealed Honeycomb Molded Products 20a', 20b 'End Face 21 Cell Partition 21b One Side 22 , 23 cell 30 taper jig 31 base part 32 tip part 32b plane 32c corner part 33 support part

Claims (9)

排ガスの流路となる複数のセルと、前記複数のセルを区画形成する多孔質のセル隔壁とを備えたハニカム構造体であって、
前記複数のセルは、排ガスが導入される複数の排ガス導入セルと排ガスが排出される複数の排ガス排出セルを含み、
前記排ガス導入セルは、排ガス入口側の端面に排ガス導入セル開口部を有し、且つ、排ガス出口側の端面に排ガス導入セル封止部を有し、
前記排ガス排出セルは、排ガス入口側の端面に排ガス排出セル封止部を有し、且つ、排ガス出口側の端面に排ガス排出セル開口部を有し、
前記ハニカム構造体は、前記ハニカム構造体の長手方向に垂直な断面において、前記排ガス導入セルの形状及び前記排ガス排出セルの形状が一定である内部領域と、排ガス出口側の端面に近づくに従って排ガス導入セルが縮小され且つ排ガス排出セルが拡大される端部領域とを有し、
前記排ガス導入セル封止部は、前記排ガス排出セル開口部の輪郭を形成するセル隔壁であり、
排ガス出口側の端面において、1つの前記排ガス排出セル開口部の輪郭を形成するセル隔壁の中心部の厚さを厚さαとすると、前記複数の排ガス排出セル開口部における複数の厚さαの標準偏差は、0.01以上であることを特徴とするハニカム構造体。
A plurality of cells to be a flow path of the exhaust gas, a honeycomb structure including a porous cell partition wall to partition the plurality of cells,
The plurality of cells includes a plurality of exhaust gas introduction cells into which exhaust gas is introduced and a plurality of exhaust gas discharge cells from which exhaust gas is discharged,
The exhaust gas introduction cell has an exhaust gas introduction cell opening portion on the end surface on the exhaust gas inlet side, and, and has an exhaust gas introduction cell sealing portion on the end surface on the exhaust gas outlet side,
The exhaust gas discharge cell has an exhaust gas discharge cell sealing portion on the end surface on the exhaust gas inlet side, and has an exhaust gas discharge cell opening portion on the end surface on the exhaust gas outlet side,
The honeycomb structure, in a cross section perpendicular to the longitudinal direction of the honeycomb structure, the exhaust gas introduction cell as the shape of the exhaust gas introduction cell and the exhaust gas discharge cell has a constant inner region, and the exhaust gas is introduced toward the end face on the exhaust gas outlet side. An end region where the cell is reduced and the exhaust gas discharge cell is enlarged,
The exhaust gas introduction cell sealing portion is a cell partition wall forming the contour of the exhaust gas discharge cell opening,
Assuming that the thickness of the central portion of the cell partition wall forming the outline of one of the exhaust gas discharge cell openings is the thickness α on the end face on the exhaust gas outlet side, the plurality of thicknesses α of the plurality of exhaust gas discharge cell openings are A honeycomb structure having a standard deviation of 0.01 or more.
前記複数の厚さαの標準偏差は、0.035以下である請求項1に記載のハニカム構造体。 The honeycomb structure according to claim 1, wherein a standard deviation of the plurality of thicknesses α is 0.035 or less. 前記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さは、1〜10mmである請求項1又は2に記載のハニカム構造体。 The honeycomb structure according to claim 1 or 2, wherein a length in a longitudinal direction of the exhaust gas introducing cell and the exhaust gas discharging cell in the end region is 1 to 10 mm. 前記厚さαの平均値は、0.1〜0.5mmである請求項1〜3のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 3, wherein an average value of the thickness α is 0.1 to 0.5 mm. 前記内部領域における排ガス導入セル及び排ガス排出セルの長手方向に垂直な断面形状は、四角形である請求項1〜4のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 4, wherein a cross-sectional shape of each of the exhaust gas introducing cell and the exhaust gas discharging cell in the internal region is a quadrangle in a vertical direction. 前記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されている請求項1〜5のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 5, wherein the honeycomb structure is composed of one honeycomb fired body having an outer peripheral wall on the outer periphery. 前記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなる請求項6に記載のハニカム構造体。 The honeycomb structure according to claim 6, wherein the honeycomb fired body is made of cordierite or aluminum titanate. 前記セル隔壁の気孔率は、35〜65%である請求項1〜7のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 7, wherein the cell partition walls have a porosity of 35 to 65%. 前記セル隔壁に含まれる気孔の平均気孔径は、5〜30μmである請求項1〜8のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 8, wherein an average pore diameter of pores included in the cell partition wall is 5 to 30 µm.
JP2018193595A 2018-10-12 2018-10-12 honeycomb structure Active JP7154931B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018193595A JP7154931B2 (en) 2018-10-12 2018-10-12 honeycomb structure
PCT/JP2019/039038 WO2020075603A1 (en) 2018-10-12 2019-10-03 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193595A JP7154931B2 (en) 2018-10-12 2018-10-12 honeycomb structure

Publications (2)

Publication Number Publication Date
JP2020059636A true JP2020059636A (en) 2020-04-16
JP7154931B2 JP7154931B2 (en) 2022-10-18

Family

ID=70164545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193595A Active JP7154931B2 (en) 2018-10-12 2018-10-12 honeycomb structure

Country Status (2)

Country Link
JP (1) JP7154931B2 (en)
WO (1) WO2020075603A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253504A (en) * 1996-03-26 1997-09-30 Ngk Insulators Ltd Heater unit excellent in thermal fatigue characteristic
JP2002326035A (en) * 2001-05-02 2002-11-12 Ngk Insulators Ltd Honeycomb structure, honeycomb filter using the same and converter system
JP2003251198A (en) * 2001-12-27 2003-09-09 Hitachi Metals Ltd Ceramic honeycomb structure
JP2009154148A (en) * 2007-12-03 2009-07-16 Ngk Insulators Ltd Honeycomb structure, honeycomb catalytic body and manufacturing method of the same
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same
JP2016061266A (en) * 2014-09-19 2016-04-25 日本碍子株式会社 Heat-sound wave conversion component and heat-sound wave conversion unit
WO2016098835A1 (en) * 2014-12-17 2016-06-23 住友化学株式会社 Honeycomb structured body
JP2016182536A (en) * 2015-03-25 2016-10-20 日本碍子株式会社 Exhaust gas purification filter, exhaust gas purification apparatus, and using method for exhaust gas purification apparatus
JP2018103122A (en) * 2016-12-27 2018-07-05 株式会社デンソー Manufacturing method of porous honeycomb filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253504A (en) * 1996-03-26 1997-09-30 Ngk Insulators Ltd Heater unit excellent in thermal fatigue characteristic
JP2002326035A (en) * 2001-05-02 2002-11-12 Ngk Insulators Ltd Honeycomb structure, honeycomb filter using the same and converter system
JP2003251198A (en) * 2001-12-27 2003-09-09 Hitachi Metals Ltd Ceramic honeycomb structure
JP2009154148A (en) * 2007-12-03 2009-07-16 Ngk Insulators Ltd Honeycomb structure, honeycomb catalytic body and manufacturing method of the same
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same
JP2016061266A (en) * 2014-09-19 2016-04-25 日本碍子株式会社 Heat-sound wave conversion component and heat-sound wave conversion unit
WO2016098835A1 (en) * 2014-12-17 2016-06-23 住友化学株式会社 Honeycomb structured body
JP2016182536A (en) * 2015-03-25 2016-10-20 日本碍子株式会社 Exhaust gas purification filter, exhaust gas purification apparatus, and using method for exhaust gas purification apparatus
JP2018103122A (en) * 2016-12-27 2018-07-05 株式会社デンソー Manufacturing method of porous honeycomb filter

Also Published As

Publication number Publication date
WO2020075603A1 (en) 2020-04-16
JP7154931B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US7208108B2 (en) Method for producing porous ceramic article
JP5144075B2 (en) Honeycomb structure and manufacturing method thereof
JP3925225B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP4094824B2 (en) Honeycomb ceramic filter
US9101865B2 (en) Honeycomb structure and manufacturing method of the same
US9447716B2 (en) Honeycomb structure
WO2004087295A1 (en) Honeycomb structure
JP2014054623A (en) Plugged honeycomb structure
JP5523871B2 (en) Manufacturing method of honeycomb filter
JP2007045686A (en) Method for manufacturing porous ceramic structure
JP5351678B2 (en) Honeycomb structure
JP5345371B2 (en) Manufacturing method of honeycomb structure
JPWO2005068396A1 (en) Honeycomb structure and manufacturing method thereof
EP2221099B1 (en) Honeycomb structure
WO2020075603A1 (en) Honeycomb structure
WO2020075604A1 (en) Honeycomb structure
WO2020075605A1 (en) Honeycomb structure
WO2020075602A1 (en) Honeycomb structure
WO2020075613A1 (en) Honeycomb structure
WO2020075601A1 (en) Honeycomb structure
WO2020075608A1 (en) Honeycomb structure
WO2020075607A1 (en) Honeycomb structure
JP7253892B2 (en) honeycomb structure
WO2020075612A1 (en) Honeycomb structure
JP2020124856A (en) Method for producing honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7154931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150