WO2020075604A1 - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
WO2020075604A1
WO2020075604A1 PCT/JP2019/039039 JP2019039039W WO2020075604A1 WO 2020075604 A1 WO2020075604 A1 WO 2020075604A1 JP 2019039039 W JP2019039039 W JP 2019039039W WO 2020075604 A1 WO2020075604 A1 WO 2020075604A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
honeycomb structure
cell
end surface
honeycomb
Prior art date
Application number
PCT/JP2019/039039
Other languages
French (fr)
Japanese (ja)
Inventor
孝浩 伊藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2020075604A1 publication Critical patent/WO2020075604A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous

Definitions

  • the present invention relates to a honeycomb structure.
  • the exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine contains particulates such as soot (hereinafter, also referred to as PM), and in recent years, this PM may be harmful to the environment or the human body. It's a problem. Moreover, since harmful gas components such as CO, HC or NOx are also contained in the exhaust gas, there is concern about the effect of these harmful gas components on the environment or the human body.
  • titanic acid is used as an exhaust gas purifying apparatus for collecting PM in exhaust gas by connecting with an internal combustion engine and purifying harmful gas components such as CO, HC or NOx contained in the exhaust gas.
  • Various honeycomb structures made of porous ceramics such as aluminum, cordierite, and silicon carbide have been proposed.
  • Patent Document 1 has a plurality of first flow paths that are open at one end surface and closed at the other end surface, and a plurality of second flow paths that are closed at the one end surface and open at the other end surface.
  • a central partition wall in which the cross-sectional area of each of the first flow paths and the second flow path is constant in the axial direction, and a cross-sectional area of each of the first flow paths from the central partition wall toward the other end surface.
  • a honeycomb structure including: the other end side inclined partition wall, which is reduced and has a larger cross-sectional area of each of the second flow paths, wherein the other end side inclined partition wall has an axial length of 4 mm or more.
  • a honeycomb structure is disclosed.
  • the other end surface of the other end side inclined partition wall is flat. Therefore, in the first flow path on the other end surface side, the locations where the PM is most accumulated are aligned. Further, the collected PM will be burned. In the honeycomb structure described in Patent Document 1, since the positions where the PM is most deposited are aligned, the portions are rapidly heated at once as the PM is burned. As described above, when the material is rapidly heated at one time, the stress generated by the heating cannot be dispersed, which causes a problem that the honeycomb structure is damaged.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a honeycomb structure having a structure in which breakage hardly occurs.
  • an exhaust gas introduction cell in which a porous cell partition wall for partitioning and forming a plurality of cells to be a channel of exhaust gas, an end surface on the exhaust gas inlet side is opened, and an end surface on the exhaust gas outlet side is closed
  • a columnar honeycomb structure having an exhaust gas discharge cell in which an end face on the exhaust gas outlet side is opened and an end face on the exhaust gas inlet side is sealed, wherein the exhaust gas introducing cell and the exhaust gas discharging cell are the exhaust gas
  • the end surface on the exhaust gas outlet side has unevenness, and the exhaust gas outlet side from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure. The standard deviation of the length to the end face, characterized
  • the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side is 0.2 or more. That is, the end surface of the honeycomb structure on the exhaust gas outlet side is not located in the same plane and varies. Therefore, the position in the longitudinal direction of the honeycomb structure in which PM burns also varies. If the positions where the PM burns vary, the positions in the longitudinal direction that are heated can be dispersed, so that the concentration of stress that occurs when burning the PM can be suppressed. Therefore, the honeycomb structure of the present invention is less likely to be damaged.
  • the standard deviation of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side is 0.5 or less. With such a range, breakage can be preferably prevented in the honeycomb structure.
  • the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side exceeds 0.5, when the end face on the exhaust gas outlet side is placed downward during manufacturing, The end face may be damaged.
  • the exhaust gas introduction cell and the exhaust gas discharge cell in the end region have a length in the longitudinal direction of 1 to 10 mm.
  • the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is 1 to 10 mm, the resistance at which the exhaust gas is introduced into the cell on the exhaust gas inlet side, Further, at the exhaust gas outlet side, the resistance of exhaust gas discharged from the inside of the cell can be further reduced, so that the pressure loss can be further reduced.
  • the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is less than 1 mm
  • the resistance at the time of introducing the exhaust gas into the cell on the exhaust gas inlet side Of the exhaust gas on the exhaust gas outlet side the resistance when exhaust gas is exhausted increases, so that the pressure loss cannot be reduced sufficiently, while the exhaust gas introduction cell and the exhaust gas exhaust cell in the end region have a long length in the longitudinal direction.
  • it exceeds 10 mm it becomes difficult to manufacture a honeycomb structure having such a structure.
  • the thickness of the cell partition wall on the end face is preferably 0.1 to 0.5 mm.
  • the thickness of the cell partition wall on the end face is 0.1 to 0.5 mm, the thickness of the cell partition wall can be sufficiently reduced without lowering the compressive strength. Therefore, the pressure loss can be sufficiently reduced.
  • the measurement position is the central region of each cell on the end face.
  • the thickness of the cell partition wall on the end face is less than 0.1 mm, the thickness of the cell partition wall becomes too thin, resulting in a decrease in compressive strength.
  • the thickness of the cell partition wall exceeds 0.5 mm, the thickness of the cell partition wall is too thick, and it becomes difficult to sufficiently reduce the pressure loss.
  • the exhaust gas introduction cells and the exhaust gas discharge cells in the above-mentioned internal region have a rectangular cross-sectional shape in the longitudinal direction.
  • the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cells and the exhaust gas discharge cells in the internal region is a quadrangle, when manufacturing the honeycomb structure, in the end region, of the cells
  • a cross-sectional shape perpendicular to the longitudinal direction can be easily expanded or reduced as it approaches the end face, and a honeycomb structure with sufficiently low pressure loss can be realized.
  • the honeycomb structure of the present invention it is desirable that the honeycomb structure is made of one honeycomb fired body having an outer peripheral wall on the outer periphery.
  • the opening ratio at the end face can be increased due to the absence of the adhesive layer, so that the pressure loss reducing effect is further improved. Can be demonstrated.
  • the honeycomb fired body is preferably made of cordierite or aluminum titanate.
  • the honeycomb fired body when the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, when large thermal stress occurs during regeneration or the like. Even in this case, the honeycomb structure is resistant to cracks.
  • the cell partition walls have a porosity of 35 to 65%.
  • the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.
  • the porosity of the cell partition walls is less than 35%, the proportion of the pores of the cell partition walls is too small, so that the exhaust gas hardly passes through the cell partition walls, and the pressure loss when the exhaust gas passes through the cell partition walls increases.
  • the porosity of the cell partition walls exceeds 65%, the mechanical properties of the cell partition walls are low, and cracks are likely to occur during reproduction or the like.
  • the average pore diameter of the pores contained in the cell partition walls is preferably 5 to 30 ⁇ m.
  • the average pore diameter of the pores contained in the cell partition walls is 5 to 30 ⁇ m, PM can be collected with high collection efficiency while suppressing an increase in pressure loss.
  • the average pore diameter of the pores contained in the cell partition walls is less than 5 ⁇ m, the pores are too small, and the pressure loss when exhaust gas permeates the cell partition walls increases. On the other hand, if the average pore diameter of the pores contained in the cell partition wall exceeds 30 ⁇ m, the pore diameter becomes too large, and the PM trapping efficiency decreases.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a).
  • c) is an end view as seen from one end surface side.
  • FIG. 2 is a drawing schematically showing a position of measuring a length from an imaginary plane in contact with an end surface on the exhaust gas inlet side of the honeycomb structure to an end surface on the exhaust gas outlet side of the end surface of the honeycomb structure on the exhaust gas outlet side.
  • FIG. 3 is a cross-sectional view schematically showing the vicinity of the end face of the honeycomb structure shown in FIG. FIG.
  • FIG. 4 (a) is a perspective view schematically showing an unsealed honeycomb molded body produced by the molding process
  • FIG. 4 (b) is an unsealed honeycomb molded body shown in FIG. 4 (a).
  • FIG. 9 is a sectional view taken along line BB of FIG.
  • FIG. 5 is an explanatory view schematically showing a state of the remolding step of the unsealed honeycomb molded body.
  • FIG. 6 is a cross-sectional view schematically showing a state of a remolding step of the unsealed honeycomb molded body.
  • FIG. 7 is a cross-sectional view schematically showing a PM collecting method in the PM combustion test.
  • the honeycomb structure of the present invention is a porous cell partition wall that partitions and forms a plurality of cells that are channels of exhaust gas, and an exhaust gas introduction cell in which an end surface on the exhaust gas inlet side is opened and an end surface on the exhaust gas outlet side is closed.
  • a columnar honeycomb structure having an exhaust gas discharge cell in which the end face on the exhaust gas outlet side is opened and the end face on the exhaust gas inlet side is sealed, wherein the exhaust gas introducing cell and the exhaust gas discharging cell are The exhaust gas introduction cell and the internal region where the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas discharge cell is constant, and the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end surface.
  • the end surface on the exhaust gas outlet side is uneven, and the exhaust gas outlet side from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure.
  • the standard deviation of the length to the end face characterized in that at least 0.2.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a).
  • c) is an end view as seen from one end surface side.
  • the honeycomb structure 10 shown in FIGS. 1 (a) and 1 (b) has a porous cell partition wall 11 for partitioning and forming a plurality of cells 12 and 13 serving as exhaust gas flow paths, and an end face 10a on the exhaust gas inlet side.
  • An exhaust gas introduction cell 12 that is opened and has an end face 10b on the exhaust gas outlet side sealed, and an exhaust gas discharge cell 13 that has an end face 10b on the exhaust gas outlet side opened and the end face 10a on the exhaust gas inlet side are sealed,
  • the introduction cell 12 and the exhaust gas discharge cell 13 are perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 and the internal region 10B having a constant sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13.
  • the cross-sectional shape is enlarged or reduced as it approaches the end face, and the end regions 10A and 10C are sealed.
  • the honeycomb structure 10 is made of a single honeycomb fired body, the honeycomb fired body is also a honeycomb structure.
  • the end face on the exhaust gas outlet side has irregularities, and the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side is 0.2 or more. Is. This will be described with reference to FIGS. 1B and 2.
  • FIG. 1B shows that the end surface 10a on the exhaust gas inlet side is flat and the end surface 10b on the exhaust gas outlet side is uneven. The degree of this unevenness is shown as "standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side".
  • the “standard deviation of the length from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure to the exhaust gas outlet side end surface” means the value measured by the following method.
  • FIG. 2 is a drawing schematically showing the position on the end face of the honeycomb structure on the exhaust gas outlet side, where the length from the virtual plane in contact with the end face of the honeycomb structure on the exhaust gas inlet side to the end face on the exhaust gas outlet side is measured. .
  • the honeycomb structure is arranged on the mounting surface of the fixing base so that the end surface on the exhaust gas inlet side faces downward.
  • the mounting surface of the fixed base is a virtual plane in contact with the end surface on the exhaust gas inlet side.
  • a virtual line segment S1 is drawn from the center C of the exhaust gas outlet side end surface to the outer peripheral portion P1 of the exhaust gas outlet side end surface.
  • the position 1/3, the position 2/3, and the outer peripheral portion P1 of the distance from the center C on the virtual line segment S1 to the outer peripheral portion P1 are respectively measured at the length measurement positions M1-1, M1-2, M1 of the honeycomb structure.
  • a virtual line segment S2 is drawn from the center C of the end face on the exhaust gas outlet side to the outer peripheral portion P2 of the honeycomb structure so that the angle with the virtual line segment S1 is 5 degrees.
  • the position 1/3 of the distance from the center C on the imaginary line segment S2 to the outer peripheral portion P2, the position 2/3, and the outer peripheral portion P2 are measured at the length measurement positions M2-1, M2-2, M2 of the honeycomb structure, respectively. -3.
  • the virtual line segments S3 ... are drawn so that the angle between adjacent virtual line segments is 5 degrees, and the position is 1 ⁇ 3 of the distance from the center C to the outer peripheral portion on each virtual line segment.
  • the positions of 2/3 and the outer peripheral portion are set as the length measurement positions of the honeycomb structure.
  • the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side, which is obtained by the above method, is 0.2 or more. That is, the end surface of the honeycomb structure on the exhaust gas outlet side is not located in the same plane and varies. Therefore, the position in the longitudinal direction of the honeycomb structure in which PM burns also varies. If the positions where the PM burns vary, the positions in the longitudinal direction that are heated can be dispersed, so that the concentration of stress that occurs when burning the PM can be suppressed. Therefore, the honeycomb structure of the present invention is less likely to be damaged.
  • the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side is 0.5 or less. With such a range, breakage can be preferably prevented in the honeycomb structure.
  • the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side exceeds 0.5, when the end face on the exhaust gas outlet side is placed downward during manufacturing, The end face may be damaged.
  • the exhaust gas introduction cell and the exhaust gas discharge cell in the end region have a length in the longitudinal direction of 1 to 10 mm.
  • the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is 1 to 10 mm, the resistance at which the exhaust gas is introduced into the cell on the exhaust gas inlet side, Further, at the exhaust gas outlet side, the resistance of exhaust gas discharged from the inside of the cell can be made smaller, so that the pressure loss can be further reduced.
  • the thickness of the cell partition wall on the end face is preferably 0.1 to 0.5 mm.
  • the thickness of the cell partition wall on the end face is 0.1 to 0.5 mm, the thickness of the cell partition wall can be sufficiently reduced without lowering the compressive strength. Therefore, the pressure loss can be sufficiently reduced.
  • the thickness of the cell partition wall in the inner region is preferably 0.12 to 0.4 mm.
  • FIG. 3 is a cross-sectional view schematically showing the vicinity of the end face of the honeycomb structure shown in FIG.
  • FIG. 3 shows the thickness d 1 of the cell partition walls 11 on the end surface 10a of the honeycomb structure 10. Further, the thickness d 2 of the cell partition wall 11 in the internal region of the honeycomb structure 10 is also shown.
  • the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end surface, the exhaust gas inlet side and the outlet Since the opening ratio is high on the side end face, the resistance when exhaust gas flows into and out of the honeycomb structure becomes small, and the pressure loss can be sufficiently reduced.
  • the cross-sectional shape of the exhaust gas introduction cell and the exhaust gas discharge cell in the inner region perpendicular to the longitudinal direction is not limited to a quadrangle, and may be a triangle, a hexagon, an octagon, or a quadrangle. It is desirable that it is, and it is more desirable that it is square.
  • the shape of the honeycomb structure of the present invention is not limited to a columnar shape, and examples thereof include a prismatic shape, an elliptic cylindrical shape, an oblong cylindrical shape, and a round chamfered prismatic shape (for example, a round chamfered triangular pillar). .
  • the density of cells in a cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 cells / cm 2 (200 to 1000 cells / inch 2 ).
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • the honeycomb structure of the present invention may be composed of one honeycomb fired body having an outer peripheral wall on the outer periphery, or may be provided with a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are adhesive.
  • the honeycomb fired body has one outer peripheral wall having an outer peripheral wall.
  • the material constituting the honeycomb structure of the present invention is not particularly limited, and examples thereof include carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, and nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide
  • nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • examples include ceramics, alumina, zirconia, cordierite, mullite, oxide ceramics such as aluminum titanate, silicon-containing silicon carbide, etc., but the honeycomb structure is composed of one honeycomb fired body having an outer peripheral wall on the outer periphery. In this case, cordierite or aluminum titanate is desirable.
  • the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, even when a large thermal stress occurs during regeneration, cracks and the like This is because the honeycomb structure does not easily occur.
  • the cell partition walls have a porosity of 35 to 65%.
  • the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.
  • the average pore diameter of the pores contained in the cell partition wall is preferably 5 to 30 ⁇ m.
  • the honeycomb structure of the present invention when the average pore diameter of the pores contained in the cell partition walls is 5 to 30 ⁇ m, PM can be collected with high collection efficiency while suppressing an increase in pressure loss. .
  • the pore diameter and the average pore diameter are measured by a mercury penetration method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
  • honeycomb structure of the present invention Next, a method for manufacturing the honeycomb structure of the present invention will be described.
  • a method for manufacturing a honeycomb structure made of aluminum titanate will be described as an example, but the manufacturing target of the present invention is not limited to aluminum titanate.
  • silica and magnesia also have a role as a firing aid, but as the firing aid, in addition to silica and magnesia, oxides of Y, La, Na, K, Ca, Sr, and Ba are used. It may be used. If necessary, the following additives are added to these mixed powders to obtain a raw material composition.
  • the molding aid include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol.
  • the organic binder include hydrophilic organic polymers such as carboxymethyl cellulose, polyvinyl alcohol, methyl cellulose and ethyl cellulose.
  • Examples of the dispersion medium include a dispersion medium composed of only water or a dispersion medium composed of 50% by volume or more of water and an organic solvent.
  • examples of the organic solvent include alcohols such as benzene and methanol.
  • examples of the pore-forming agent include balloons, which are minute hollow spheres, spherical acrylic particles, graphite, and starch.
  • balloons include alumina balloons, glass micro balloons, shirasu balloons, fly ash (FA) balloons, and mullite balloons.
  • the raw material composition may further contain other components.
  • other components include plasticizers, dispersants, and lubricants.
  • plasticizers include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • dispersant include sorbitan fatty acid ester.
  • lubricant include glycerin.
  • the molding step is a step of molding the raw material composition obtained in the mixing step to produce an unsealed honeycomb molded body.
  • the unsealed honeycomb molded body can be produced by, for example, extruding the raw material composition using an extrusion die. That is, the unsealed honeycomb molded body is manufactured by extruding the tubular outer peripheral wall of the honeycomb structure and the wall portion constituting the partition wall at one time. Further, in the extrusion molding, a molded body corresponding to the shape of a part of the honeycomb structure may be molded. That is, a honeycomb molded body having the same shape as the honeycomb structure may be manufactured by molding a molded body corresponding to a part of the shape of the honeycomb structure and combining the molded bodies.
  • FIG. 4 (a) is a perspective view schematically showing an unsealed honeycomb molded body produced by the molding process
  • FIG. 4 (b) is an unsealed honeycomb molded body shown in FIG. 4 (a).
  • FIG. 9 is a sectional view taken along line BB of FIG.
  • the shape of the cells 22 and 23 at the end faces 20a 'and 20b' is square due to the above-mentioned molding process, and the cross-sectional shape perpendicular to the longitudinal direction of the cells 22 and 23 is square. Also, an unsealed honeycomb molded body 20 'having exactly the same quadrangular shape and having cell partition walls 21 separating cells 22 and 23 and having a cylindrical shape as a whole is manufactured.
  • a taper jig is used to re-form the unsealed honeycomb molded body 20 ′ to form a portion corresponding to an end region of the honeycomb structure, thereby forming an exhaust gas introduction cell and an exhaust gas discharge cell.
  • the cross-sectional shape of 22 and 23 perpendicular to the longitudinal direction is enlarged or reduced as it approaches the end face, and the sealed honeycomb molded body has a closed shape.
  • FIG. 5 is an explanatory view schematically showing a state of the remolding step of the unsealed honeycomb molded body
  • FIG. 6 is a sectional view schematically showing a state of the remolding step of the unsealed honeycomb molded body. is there.
  • a taper including a support portion 33, a base portion 31 fixed on the support portion 33, and a large number of quadrangular pyramid-shaped tip portions 32 formed on the base portion 31.
  • the corner portion 32c which is the boundary portion of the four flat surfaces 32b forming the quadrangular pyramid of the tip portion 32 forms the square of the cell partition wall 21 on the end surface 20b 'of the unsealed honeycomb molded body 20'.
  • the taper jig 30 is arranged so as to come into contact with the center of the side 21b, and the taper jig 30 is pushed toward the central portion of the unsealed honeycomb molded body 20 '.
  • the portion corresponding to the end region of the cell 22 into which the tip 32 is pushed has a shape in which the cross-sectional shape perpendicular to the longitudinal direction of the cell is enlarged as it approaches the end face, and the cell into which the tip 32 is pushed
  • the portions corresponding to the end regions of the cells 23 existing on the upper, lower, left, and right sides of the cell 22 are reduced in shape as the cross-sectional shape perpendicular to the longitudinal direction of the cells 23 approaches the end surface, and become a sealed shape.
  • the shape of the sealed honeycomb formed body viewed from the end face is the same as the honeycomb structure 10 shown in FIG.
  • FIG. 6 shows an example of a taper jig in which the position of the bottom surface of the tip of the quadrangular pyramid is varied.
  • the viscosity and strength of the end region that is pressed and deformed by the taper jig may be adjusted.
  • a method therefor there is a case where water or a solvent is applied to the end portion of the unsealed honeycomb molded body.
  • water or solvent is applied to the end of the unsealed honeycomb molded body, The degree of deformation of the cell partition when the taper jig is pushed in changes. Therefore, unevenness can be provided on the end face on the exhaust gas outlet side by varying the amount of water or solvent applied to the end of the unsealed honeycomb molded body.
  • the unevenness can be provided on the end face on the exhaust gas outlet side also by adjusting the speed when separating the taper jig.
  • the sealed honeycomb molded body obtained by this remolding step is dried at 100 to 150 ° C. using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, and a freeze dryer. Then, it is dried in an air atmosphere and degreased at 250 to 400 ° C. and an oxygen concentration of 5% by volume to an air atmosphere.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, and a freeze dryer.
  • the firing step is a step of firing the sealed honeycomb formed body obtained in the re-forming step at 1400 to 1600 ° C.
  • the reaction with titania proceeds from the surface of alumina to form an aluminum titanate phase.
  • the firing can be performed using a known single furnace, so-called batch furnace, or continuous furnace.
  • the firing temperature is preferably in the range of 1450 to 1550 ° C.
  • the firing time is not particularly limited, but it is preferable to hold the firing temperature for 1 to 20 hours, and more preferably 1 to 10 hours.
  • the oxygen concentration may be adjusted by mixing an inert gas such as nitrogen gas or argon gas into the air atmosphere.
  • the honeycomb structure of the present invention can be manufactured through the above-mentioned mixing step, forming step, re-forming step, and firing step.
  • Example 1 a raw material composition having the following composition was prepared. Fine titania powder having D50 of 0.6 ⁇ m: 11.1% by weight, coarse titania powder having D50 of 13.0 ⁇ m: 11.1% by weight, alumina powder having D50 of 15.9 ⁇ m: 30.4% by weight, D50 of 1 .1 ⁇ m silica powder: 2.8% by weight, D50 3.8 ⁇ m magnesia powder: 1.4% by weight, D50 31.9 ⁇ m acrylic resin (pore forming material): 18.5% by weight, methylcellulose (organic A binder having a composition of 7.1% by weight, a molding aid (ester type nonion): 4.7% by weight, and ion-exchanged water (dispersion medium): 12.9% by weight are mixed with a mixer. A raw material composition was prepared.
  • An unsealed honeycomb molding having the shape shown in FIGS. 4 (a) and 4 (b) and having cells not sealed, is obtained by introducing the prepared raw material composition into an extrusion molding machine and performing extrusion molding. Body 20 'was made.
  • the position of the bottom surface of the quadrangular pyramid-shaped tip portion is varied as shown in FIG. 6 on the end surface of the unsealed honeycomb molded body 20' on the exhaust gas outlet side. Remolding was performed using the squeezed aluminum taper jig 30 to produce a sealed honeycomb molded body.
  • the end face of the unsealed honeycomb molded body 20 'on the exhaust gas inlet side is re-molded using an aluminum taper jig in which the positions of the bottom surfaces of the quadrangular pyramid-shaped tips are uniform, A sealed honeycomb molded body was produced.
  • the honeycomb structure was manufactured by holding and firing the sealed honeycomb molded body obtained through the remolding step at 1450 ° C. for 15 hours in the air atmosphere.
  • the resulting honeycomb structure had a porosity of 57%, an average pore diameter of 17 ⁇ m, a diameter of 132.1 mm, a peripheral wall thickness of 0.3 mm, a cell partition wall thickness of 0.25 mm in the internal region, and a number of cells ( The cell density was 300 cells / inch 2 , and the shape was columnar.
  • the porosity and the average pore diameter were measured by the methods described below.
  • the standard deviation of the length from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure to the exhaust gas outlet side end surface was determined, and the standard deviation was 0.365.
  • the average value of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was 138.8 mm, the maximum value was 139.7 mm, and the minimum value was 138.0 mm.
  • Example 2 (Examples 2 and 3)
  • Example 1 an aluminum taper jig in which the position of the bottom surface of the tip portion of the quadrangular pyramid shape was changed for the end surface of the unsealed honeycomb molded body 20 ′ on the exhaust gas outlet side during the remolding step.
  • remolding was performed to produce a sealed honeycomb molded body.
  • a honeycomb structure was manufactured in the same manner as in Example 1 except for the above. Then, when the standard deviation of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was determined, the standard deviations were 0.217 (Example 2) and 0.473 (Example 2), respectively.
  • Example 3 Example 3
  • the average value of the length from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure to the exhaust gas outlet side end surface is 138.8 mm (Example 2) and 138.8 mm (Example 3), and the maximum value is It was 139.4 mm (Example 2), 140.0 mm (Example 3), and the minimum value was 138.3 mm (Example 2) and 137.7 mm (Example 3).
  • the porosity, average pore diameter, size, outer peripheral wall thickness, cell partition wall thickness, and number of cells (cell density) in the honeycomb structure were the same as in Example 1.
  • Example 1 In Example 1, in the remolding step, the end face of the unsealed honeycomb molded body 20 'on the exhaust gas outlet side has a uniform position of the bottom surface of the tip portion of the quadrangular pyramid shape. was used to remold, and a sealed honeycomb molded body was manufactured. A honeycomb structure was manufactured in the same manner as in Example 1 except for the above. Then, when the standard deviation of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was determined, the standard deviation was 0.182.
  • the average value of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was 138.8 mm, the maximum value was 139.3 mm, and the minimum value was 138.4 mm.
  • the porosity, average pore diameter, size, outer peripheral wall thickness, cell partition wall thickness, and number of cells (cell density) in the honeycomb structure were the same as in Example 1.
  • the porosity, average pore diameter, and regeneration limit value of the honeycomb structures of each of the examples and comparative examples were measured.
  • the honeycomb structure obtained in each of the examples and comparative examples was cut into a size of 10 mm ⁇ 10 mm ⁇ 10 mm to prepare a sample for pore measurement.
  • the porosity and the average pore diameter were measured using a porosimeter (manufactured by Shimadzu Corporation, Autopore III 9420) by a mercury porosimetry using the sample for pore measurement.
  • the contact angle was 130 ° and the surface tension was 485 mN / m under the mercury intrusion method.
  • FIG. 7 is a cross-sectional view schematically showing a PM collecting method in the PM combustion test.
  • the honeycomb structure 10 obtained in Examples 1 to 3 and Comparative Example 1 is provided in a metal casing 213 in a pipe 212 branched from an exhaust gas pipe 214 of a diesel engine 211 having a displacement of 1.6 liters. It was fixed inside and placed.
  • the honeycomb structure 10 is arranged such that the end face on the exhaust gas inlet side is closer to the pipe 212 of the diesel engine 211.
  • the diesel engine 211 was operated at a rotation speed of 3100 rpm and a torque of 50 Nm, and a part of the exhaust gas from the diesel engine 211 was circulated through the honeycomb structure 10 to collect PM on the honeycomb filter.
  • Example 1 12 g / L
  • Example 2 12 g / L
  • Example 3 12 g / L Comparative Example 1: 11 g / L That is, the regeneration limit value was improved due to the variation in the position of the end face of the honeycomb structure on the exhaust gas outlet side. This makes it possible to disperse the position in the longitudinal direction of the honeycomb structure where PM is burned during regeneration, to suppress the concentration of stress generated when burning PM, and to damage the honeycomb structure. Is prevented from occurring.

Abstract

The purpose of this invention is to provide a honeycomb structure having a structure that is less susceptible to damage. This honeycomb structure is a columnar honeycomb structure comprising: porous cell walls that define the plurality of cells which constitute the flowpath for exhaust gas; exhaust gas introduction cells having the exhaust gas inlet-side end surface being open and the exhaust gas outlet-side end surface being closed; and exhaust gas discharge cells having the exhaust gas outlet-side end surface being open and the exhaust gas inlet-side end surface being closed; the honeycomb structure being characterized in that the exhaust gas introduction cells and the exhaust gas discharge cells comprise an inner region having a cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cells and the exhaust gas discharge cells which is constant, and an end region having a cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cells and the exhaust gas discharge cells which becomes larger or smaller approaching the end surface, the exhaust gas outlet-side end surface has recesses and protrusions thereupon, and the standard deviation of the length from a virtual plane which touches the exhaust gas intake-side end surface on the of the honeycomb structure to the exhaust gas outlet-side end surface is at least 0.2.

Description

ハニカム構造体Honeycomb structure
本発明は、ハニカム構造体に関する。 The present invention relates to a honeycomb structure.
ガソリンエンジンやディーゼルエンジン等の内燃機関から排出される排ガス中には、スス等のパティキュレート(以下、PMともいう)が含まれており、近年、このPMが環境または人体に害を及ぼすことが問題となっている。また、排ガス中には、CO、HCまたはNOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境または人体に及ぼす影響についても懸念されている。 The exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine contains particulates such as soot (hereinafter, also referred to as PM), and in recent years, this PM may be harmful to the environment or the human body. It's a problem. Moreover, since harmful gas components such as CO, HC or NOx are also contained in the exhaust gas, there is concern about the effect of these harmful gas components on the environment or the human body.
そこで、内燃機関と連結されることにより排ガス中のPMを捕集したり、排ガスに含まれるCO、HCまたはNOx等の排ガス中の有害なガス成分を浄化したりする排ガス浄化装置として、チタン酸アルミニウム、コージェライト、炭化ケイ素等の多孔質セラミックからなるハニカム構造体が種々提案されている。 Therefore, titanic acid is used as an exhaust gas purifying apparatus for collecting PM in exhaust gas by connecting with an internal combustion engine and purifying harmful gas components such as CO, HC or NOx contained in the exhaust gas. Various honeycomb structures made of porous ceramics such as aluminum, cordierite, and silicon carbide have been proposed.
また、これらのハニカムフィルタでは、内燃機関の燃費を改善し、圧力損失の上昇に起因する運転時のトラブル等をなくすために、圧力損失の低いハニカム構造体からなるフィルタが種々提案されている。 Further, in these honeycomb filters, in order to improve fuel efficiency of an internal combustion engine and eliminate troubles during operation due to an increase in pressure loss, various filters having a honeycomb structure with low pressure loss have been proposed.
特許文献1には、一端面で開放されて他端面で閉じられた複数の第1流路、及び、前記一端面で閉じられて前記他端面で開放された複数の第2流路を有し、各前記第1流路及び各前記第2流路の断面積がそれぞれ軸方向に一定である中央隔壁と、前記中央隔壁から前記他端面に向かって、各前記第1流路の断面積が縮小され、かつ、各前記第2流路の断面積が拡大される、他端側傾斜隔壁と、を備えるハニカム構造体であって、前記他端側傾斜隔壁の軸方向長さは4mm以上であるハニカム構造体が開示されている。 Patent Document 1 has a plurality of first flow paths that are open at one end surface and closed at the other end surface, and a plurality of second flow paths that are closed at the one end surface and open at the other end surface. A central partition wall in which the cross-sectional area of each of the first flow paths and the second flow path is constant in the axial direction, and a cross-sectional area of each of the first flow paths from the central partition wall toward the other end surface. A honeycomb structure including: the other end side inclined partition wall, which is reduced and has a larger cross-sectional area of each of the second flow paths, wherein the other end side inclined partition wall has an axial length of 4 mm or more. A honeycomb structure is disclosed.
再公表2016-098835号Republished 2016-098835
特許文献1では、他端側傾斜隔壁の他端面は平坦である。そのため、他端面側の第1流路において、最もPMが堆積する場所が揃ってしまう。また、捕集されたPMは燃焼されることになる。特許文献1に記載のハニカム構造体では、PMが最も堆積する位置が揃っているので、PMの燃焼に伴い、その部分が一度に急激に加熱されることになる。このように、一度に急激に加熱されると、加熱に伴い発生した応力を分散することができず、ハニカム構造体が破損するという問題が生じる。 In Patent Document 1, the other end surface of the other end side inclined partition wall is flat. Therefore, in the first flow path on the other end surface side, the locations where the PM is most accumulated are aligned. Further, the collected PM will be burned. In the honeycomb structure described in Patent Document 1, since the positions where the PM is most deposited are aligned, the portions are rapidly heated at once as the PM is burned. As described above, when the material is rapidly heated at one time, the stress generated by the heating cannot be dispersed, which causes a problem that the honeycomb structure is damaged.
本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、破損が生じにくい構造のハニカム構造体を提供することである。 The present invention has been made in view of such problems, and an object of the present invention is to provide a honeycomb structure having a structure in which breakage hardly occurs.
本発明のハニカム構造体では、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えた柱状のハニカム構造体であって、上記排ガス導入セル及び上記排ガス排出セルは、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、上記排ガス出口側の端面には凹凸があり、上記ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.2以上であることを特徴とする。 In the honeycomb structure of the present invention, an exhaust gas introduction cell in which a porous cell partition wall for partitioning and forming a plurality of cells to be a channel of exhaust gas, an end surface on the exhaust gas inlet side is opened, and an end surface on the exhaust gas outlet side is closed And a columnar honeycomb structure having an exhaust gas discharge cell in which an end face on the exhaust gas outlet side is opened and an end face on the exhaust gas inlet side is sealed, wherein the exhaust gas introducing cell and the exhaust gas discharging cell are the exhaust gas An internal region in which the cross-sectional shape perpendicular to the longitudinal direction of the introduction cell and the exhaust gas discharge cell is constant, and the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end surface. The end surface on the exhaust gas outlet side has unevenness, and the exhaust gas outlet side from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure. The standard deviation of the length to the end face, characterized in that at least 0.2.
本発明のハニカム構造体では、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.2以上である。すなわち、ハニカム構造体の排ガス出口側の端面は同一平面状に位置しておらずバラついている。そのため、PMが燃焼するハニカム構造体の長手方向の位置もバラつくことになる。
PMが燃焼する位置がバラつくと、加熱される長手方向の位置を分散させることができるので、PMを燃焼させた際に発生する応力の集中を抑制することができる。
従って、本発明のハニカム構造体では破損が生じにくい。
In the honeycomb structure of the present invention, the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side is 0.2 or more. That is, the end surface of the honeycomb structure on the exhaust gas outlet side is not located in the same plane and varies. Therefore, the position in the longitudinal direction of the honeycomb structure in which PM burns also varies.
If the positions where the PM burns vary, the positions in the longitudinal direction that are heated can be dispersed, so that the concentration of stress that occurs when burning the PM can be suppressed.
Therefore, the honeycomb structure of the present invention is less likely to be damaged.
本発明のハニカム構造体では、上記ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.5以下であることが望ましい。
このような範囲であると、ハニカム構造体では破損を好適に防ぐことができる。
ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.5を超えると、製造時に排ガス出口側の端面を下にして置いた際に、端面に破損が生じることがある。
In the honeycomb structure of the present invention, it is desirable that the standard deviation of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side is 0.5 or less.
With such a range, breakage can be preferably prevented in the honeycomb structure.
When the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side exceeds 0.5, when the end face on the exhaust gas outlet side is placed downward during manufacturing, The end face may be damaged.
本発明のハニカム構造体では、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さは、1~10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さが、1~10mmであると、排ガス入口側において、排ガスがセル内部に導入される抵抗、及び排ガス出口側において、排ガスがセル内部より排出される抵抗をより小さくできるため、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, it is desirable that the exhaust gas introduction cell and the exhaust gas discharge cell in the end region have a length in the longitudinal direction of 1 to 10 mm.
In the honeycomb structure of the present invention, when the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is 1 to 10 mm, the resistance at which the exhaust gas is introduced into the cell on the exhaust gas inlet side, Further, at the exhaust gas outlet side, the resistance of exhaust gas discharged from the inside of the cell can be further reduced, so that the pressure loss can be further reduced.
本発明のハニカム構造体において、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さが、1mm未満であると、排ガス入口側において、セル内部への排ガスを導入する際の抵抗が大きくなり、排ガス出口側において、排ガスが排出される際の抵抗が大きくなるため、圧力損失を充分に低減できなくなり、一方、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さが、10mmを超えると、そのような構造のハニカム構造体の製造が難しくなる。 In the honeycomb structure of the present invention, when the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is less than 1 mm, the resistance at the time of introducing the exhaust gas into the cell on the exhaust gas inlet side Of the exhaust gas on the exhaust gas outlet side, the resistance when exhaust gas is exhausted increases, so that the pressure loss cannot be reduced sufficiently, while the exhaust gas introduction cell and the exhaust gas exhaust cell in the end region have a long length in the longitudinal direction. However, if it exceeds 10 mm, it becomes difficult to manufacture a honeycomb structure having such a structure.
本発明のハニカム構造体では、上記端面におけるセル隔壁の厚さは、0.1~0.5mmであることが望ましい。
本発明のハニカム構造体において、上記端面におけるセル隔壁の厚さが、0.1~0.5mmであると、圧縮強度を低下させることなく、セル隔壁の厚さを充分に薄くすることができるので、圧力損失を充分に低減させることができる。
また、上記端面におけるセル隔壁の厚さを測定する際、測定位置は、上記端面の各セルの中心領域とする。
In the honeycomb structure of the present invention, the thickness of the cell partition wall on the end face is preferably 0.1 to 0.5 mm.
In the honeycomb structure of the present invention, when the thickness of the cell partition wall on the end face is 0.1 to 0.5 mm, the thickness of the cell partition wall can be sufficiently reduced without lowering the compressive strength. Therefore, the pressure loss can be sufficiently reduced.
When measuring the thickness of the cell partition wall on the end face, the measurement position is the central region of each cell on the end face.
本発明のハニカム構造体において、上記端面におけるセル隔壁の厚さが、0.1mm未満であると、セル隔壁の厚さが薄すぎることとなり、圧縮強度を低下させてしまう。一方、セル隔壁の厚さが0.5mmを超えると、セル隔壁の厚さが厚すぎるため、圧力損失を充分に低減させることが難しくなる。 In the honeycomb structure of the present invention, if the thickness of the cell partition wall on the end face is less than 0.1 mm, the thickness of the cell partition wall becomes too thin, resulting in a decrease in compressive strength. On the other hand, when the thickness of the cell partition wall exceeds 0.5 mm, the thickness of the cell partition wall is too thick, and it becomes difficult to sufficiently reduce the pressure loss.
本発明のハニカム構造体において、上記内部領域における排ガス導入セル及び排ガス排出セルの長手方向に垂直な断面形状は、四角形であることが望ましい。
本発明のハニカム構造体において、上記内部領域における排ガス導入セル及び排ガス排出セルの長手方向に垂直な断面形状が、四角形であると、ハニカム構造体を製造する際、上記端部領域において、セルの長手方向に垂直な断面形状を、端面に近づくに従って拡大又は縮小させ易く、圧力損失が充分に低いハニカム構造体の実現が可能となる。
In the honeycomb structure of the present invention, it is desirable that the exhaust gas introduction cells and the exhaust gas discharge cells in the above-mentioned internal region have a rectangular cross-sectional shape in the longitudinal direction.
In the honeycomb structure of the present invention, the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cells and the exhaust gas discharge cells in the internal region is a quadrangle, when manufacturing the honeycomb structure, in the end region, of the cells A cross-sectional shape perpendicular to the longitudinal direction can be easily expanded or reduced as it approaches the end face, and a honeycomb structure with sufficiently low pressure loss can be realized.
本発明のハニカム構造体では、上記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。
本発明のハニカム構造体においては、接着剤を用いて多数のハニカムセグメントを組み合わせたハニカム構造体に比べて、接着層がない分、端面における開口率を高くできるため、圧力損失の低減効果がより発揮できる。
In the honeycomb structure of the present invention, it is desirable that the honeycomb structure is made of one honeycomb fired body having an outer peripheral wall on the outer periphery.
In the honeycomb structure of the present invention, as compared with the honeycomb structure in which a large number of honeycomb segments are combined by using an adhesive, the opening ratio at the end face can be increased due to the absence of the adhesive layer, so that the pressure loss reducing effect is further improved. Can be demonstrated.
本発明のハニカム構造体では、上記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなることが望ましい。
本発明のハニカム構造体において、上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となる。
In the honeycomb structure of the present invention, the honeycomb fired body is preferably made of cordierite or aluminum titanate.
In the honeycomb structure of the present invention, when the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, when large thermal stress occurs during regeneration or the like. Even in this case, the honeycomb structure is resistant to cracks.
本発明のハニカム構造体では、上記セル隔壁の気孔率は、35~65%であることが望ましい。
本発明のハニカム構造体において、上記セル隔壁の気孔率が、35~65%であると、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁に起因する圧力損失の上昇を抑制することができる。従って、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, it is desirable that the cell partition walls have a porosity of 35 to 65%.
In the honeycomb structure of the present invention, when the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.
セル隔壁の気孔率が35%未満では、セル隔壁の気孔の割合が小さすぎるため、排ガスがセル隔壁を通過しにくくなり、排ガスがセル隔壁を通過する際の圧力損失が大きくなる。一方、セル隔壁の気孔率が65%を超えると、セル隔壁の機械的特性が低く、再生時等において、クラックが発生し易くなる。 When the porosity of the cell partition walls is less than 35%, the proportion of the pores of the cell partition walls is too small, so that the exhaust gas hardly passes through the cell partition walls, and the pressure loss when the exhaust gas passes through the cell partition walls increases. On the other hand, when the porosity of the cell partition walls exceeds 65%, the mechanical properties of the cell partition walls are low, and cracks are likely to occur during reproduction or the like.
本発明のハニカム構造体では、上記セル隔壁に含まれる気孔の平均気孔径は、5~30μmであることが望ましい。 In the honeycomb structure of the present invention, the average pore diameter of the pores contained in the cell partition walls is preferably 5 to 30 μm.
本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径が、5~30μmであると、圧力損失の増加を抑制しながら、高い捕集効率でPMを捕集することができる。 In the honeycomb structure of the present invention, when the average pore diameter of the pores contained in the cell partition walls is 5 to 30 μm, PM can be collected with high collection efficiency while suppressing an increase in pressure loss. .
セル隔壁に含まれる気孔の平均気孔径が5μm未満であると、気孔が小さすぎるため、排ガスがセル隔壁を透過する際の圧力損失が大きくなる。一方、セル隔壁に含まれる気孔の平均気孔径が30μmを超えると、気孔径が大きくなりすぎるので、PMの捕集効率が低下してしまう。 If the average pore diameter of the pores contained in the cell partition walls is less than 5 μm, the pores are too small, and the pressure loss when exhaust gas permeates the cell partition walls increases. On the other hand, if the average pore diameter of the pores contained in the cell partition wall exceeds 30 μm, the pore diameter becomes too large, and the PM trapping efficiency decreases.
図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図であり、図1(c)は、一方の端面側から見た端面図である。1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention, and FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a). c) is an end view as seen from one end surface side. 図2は、ハニカム構造体の排ガス出口側の端面において、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さを測定する位置を模式的に示す図面である。FIG. 2 is a drawing schematically showing a position of measuring a length from an imaginary plane in contact with an end surface on the exhaust gas inlet side of the honeycomb structure to an end surface on the exhaust gas outlet side of the end surface of the honeycomb structure on the exhaust gas outlet side. . 図3は、図1に示したハニカム構造体の端面の近傍を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the vicinity of the end face of the honeycomb structure shown in FIG. 図4(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図4(b)は、図4(a)に示した未封止ハニカム成形体のB-B線断面図である。FIG. 4 (a) is a perspective view schematically showing an unsealed honeycomb molded body produced by the molding process, and FIG. 4 (b) is an unsealed honeycomb molded body shown in FIG. 4 (a). FIG. 9 is a sectional view taken along line BB of FIG. 図5は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図である。FIG. 5 is an explanatory view schematically showing a state of the remolding step of the unsealed honeycomb molded body. 図6は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a state of a remolding step of the unsealed honeycomb molded body. 図7は、PM燃焼試験におけるPMの捕集方法を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a PM collecting method in the PM combustion test.
(発明の詳細な説明)
[ハニカム構造体]
まず、本発明のハニカム構造体について説明する。
(Detailed description of the invention)
[Honeycomb structure]
First, the honeycomb structure of the present invention will be described.
本発明のハニカム構造体は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えた円柱状のハニカム構造体であって、上記排ガス導入セル及び上記排ガス排出セルは、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、上記排ガス出口側の端面には凹凸があり、上記ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.2以上であることを特徴とする。 The honeycomb structure of the present invention is a porous cell partition wall that partitions and forms a plurality of cells that are channels of exhaust gas, and an exhaust gas introduction cell in which an end surface on the exhaust gas inlet side is opened and an end surface on the exhaust gas outlet side is closed. And a columnar honeycomb structure having an exhaust gas discharge cell in which the end face on the exhaust gas outlet side is opened and the end face on the exhaust gas inlet side is sealed, wherein the exhaust gas introducing cell and the exhaust gas discharging cell are The exhaust gas introduction cell and the internal region where the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas discharge cell is constant, and the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end surface. The end surface on the exhaust gas outlet side is uneven, and the exhaust gas outlet side from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure. The standard deviation of the length to the end face, characterized in that at least 0.2.
図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図であり、図1(c)は、一方の端面側から見た端面図である。
図1(a)及び図1(b)に示すハニカム構造体10は、排ガスの流路となる複数のセル12、13を区画形成する多孔質のセル隔壁11と、排ガス入口側の端面10aが開口され且つ排ガス出口側の端面10bが封じられている排ガス導入セル12と、排ガス出口側の端面10bが開口され且つ排ガス入口側の端面10aが封じられている排ガス排出セル13とを備え、排ガス導入セル12及び排ガス排出セル13は、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が一定である内部領域10Bと、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられている端部領域10A、10Cとからなる。
図1(a)及び図1(b)に示すように、ハニカム構造体10が単一のハニカム焼成体からなる場合、ハニカム焼成体はハニカム構造体でもある。
1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention, and FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a). c) is an end view as seen from one end surface side.
The honeycomb structure 10 shown in FIGS. 1 (a) and 1 (b) has a porous cell partition wall 11 for partitioning and forming a plurality of cells 12 and 13 serving as exhaust gas flow paths, and an end face 10a on the exhaust gas inlet side. An exhaust gas introduction cell 12 that is opened and has an end face 10b on the exhaust gas outlet side sealed, and an exhaust gas discharge cell 13 that has an end face 10b on the exhaust gas outlet side opened and the end face 10a on the exhaust gas inlet side are sealed, The introduction cell 12 and the exhaust gas discharge cell 13 are perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 and the internal region 10B having a constant sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13. The cross-sectional shape is enlarged or reduced as it approaches the end face, and the end regions 10A and 10C are sealed.
As shown in FIGS. 1A and 1B, when the honeycomb structure 10 is made of a single honeycomb fired body, the honeycomb fired body is also a honeycomb structure.
本発明のハニカム構造体では、排ガス出口側の端面には凹凸があり、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.2以上である。
このことについて、図1(b)及び図2を参照して説明する。
図1(b)には、排ガス入口側の端面10aが平坦で、排ガス出口側の端面10bに凹凸があることを示している。
この凹凸の程度を「ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差」として示す。
In the honeycomb structure of the present invention, the end face on the exhaust gas outlet side has irregularities, and the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side is 0.2 or more. Is.
This will be described with reference to FIGS. 1B and 2.
FIG. 1B shows that the end surface 10a on the exhaust gas inlet side is flat and the end surface 10b on the exhaust gas outlet side is uneven.
The degree of this unevenness is shown as "standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side".
なお、本明細書において「ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差」とは、以下の方法で測定された値を意味する。
図2は、ハニカム構造体の排ガス出口側の端面において、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さを測定する位置を模式的に示す図面である。
(1)まず、ハニカム構造体を、排ガス入口側の端面が下になるように固定台の載置面に配置する。ここで、固定台の載置面が排ガス入口側の端面に接する仮想平面となる。
(2)次に、ハニカム構造体の排ガス出口側の端面において、排ガス出口側の端面の中心Cから排ガス出口側の端面の外周部P1まで仮想線分S1を引く。
仮想線分S1上の中心Cから外周部P1までの距離の1/3の位置、2/3の位置及び外周部P1をそれぞれハニカム構造体の長さ測定位置M1-1、M1-2、M1-3とする。
次に、仮想線分S1との角度が5度になるように、排ガス出口側の端面の中心Cからハニカム構造体の外周部P2まで仮想線分S2を引く。
仮想線分S2上の中心Cから外周部P2までの距離の1/3の位置、2/3の位置及び外周部P2をそれぞれハニカム構造体の長さ測定位置M2-1、M2-2、M2-3とする。
以下、同様に、隣り合う仮想線分同士の角度が5度になるように仮想線分S3・・・を引き、各仮想線分上の中心Cから外周部までの距離の1/3の位置、2/3の位置及び外周部をそれぞれハニカム構造体の長さ測定位置とする。
(3)次に、ハニカム構造体の円周上の各長さ測定位置間(M1-1とM2-1間、M1-2とM2-2間、M1-3とM2-3間・・・)における、固定台の載置面から排ガス出口側の端面までの距離を測定し、その最大値を読み取る。
(4)固定台の載置面から排ガス出口側の端面までの距離の各最大値の標準偏差が、「ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差」である。
In the present specification, the “standard deviation of the length from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure to the exhaust gas outlet side end surface” means the value measured by the following method.
FIG. 2 is a drawing schematically showing the position on the end face of the honeycomb structure on the exhaust gas outlet side, where the length from the virtual plane in contact with the end face of the honeycomb structure on the exhaust gas inlet side to the end face on the exhaust gas outlet side is measured. .
(1) First, the honeycomb structure is arranged on the mounting surface of the fixing base so that the end surface on the exhaust gas inlet side faces downward. Here, the mounting surface of the fixed base is a virtual plane in contact with the end surface on the exhaust gas inlet side.
(2) Next, on the exhaust gas outlet side end surface of the honeycomb structure, a virtual line segment S1 is drawn from the center C of the exhaust gas outlet side end surface to the outer peripheral portion P1 of the exhaust gas outlet side end surface.
The position 1/3, the position 2/3, and the outer peripheral portion P1 of the distance from the center C on the virtual line segment S1 to the outer peripheral portion P1 are respectively measured at the length measurement positions M1-1, M1-2, M1 of the honeycomb structure. -3.
Next, a virtual line segment S2 is drawn from the center C of the end face on the exhaust gas outlet side to the outer peripheral portion P2 of the honeycomb structure so that the angle with the virtual line segment S1 is 5 degrees.
The position 1/3 of the distance from the center C on the imaginary line segment S2 to the outer peripheral portion P2, the position 2/3, and the outer peripheral portion P2 are measured at the length measurement positions M2-1, M2-2, M2 of the honeycomb structure, respectively. -3.
Hereinafter, similarly, the virtual line segments S3 ... Are drawn so that the angle between adjacent virtual line segments is 5 degrees, and the position is ⅓ of the distance from the center C to the outer peripheral portion on each virtual line segment. The positions of 2/3 and the outer peripheral portion are set as the length measurement positions of the honeycomb structure.
(3) Next, between the length measurement positions on the circumference of the honeycomb structure (between M1-1 and M2-1, between M1-2 and M2-2, between M1-3 and M2-3 ... In (), measure the distance from the mounting surface of the fixed base to the end surface on the exhaust gas outlet side, and read the maximum value.
(4) The standard deviation of each maximum value of the distances from the mounting surface of the fixed base to the end surface on the exhaust gas outlet side is expressed by "the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side. Standard deviation of ".
本発明のハニカム構造体では、上記方法により求めた、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.2以上である。すなわち、ハニカム構造体の排ガス出口側の端面は同一平面状に位置しておらずバラついている。そのため、PMが燃焼するハニカム構造体の長手方向の位置もバラつくことになる。
PMが燃焼する位置がバラつくと、加熱される長手方向の位置を分散させることができるので、PMを燃焼させた際に発生する応力の集中を抑制することができる。
従って、本発明のハニカム構造体では破損が生じにくい。
In the honeycomb structure of the present invention, the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side, which is obtained by the above method, is 0.2 or more. That is, the end surface of the honeycomb structure on the exhaust gas outlet side is not located in the same plane and varies. Therefore, the position in the longitudinal direction of the honeycomb structure in which PM burns also varies.
If the positions where the PM burns vary, the positions in the longitudinal direction that are heated can be dispersed, so that the concentration of stress that occurs when burning the PM can be suppressed.
Therefore, the honeycomb structure of the present invention is less likely to be damaged.
本発明のハニカム構造体では、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.5以下であることが望ましい。
このような範囲であると、ハニカム構造体では破損を好適に防ぐことができる。
ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.5を超えると、製造時に排ガス出口側の端面を下にして置いた際に、端面に破損が生じることがある。
In the honeycomb structure of the present invention, it is desirable that the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side is 0.5 or less.
With such a range, breakage can be preferably prevented in the honeycomb structure.
When the standard deviation of the length from the virtual plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side exceeds 0.5, when the end face on the exhaust gas outlet side is placed downward during manufacturing, The end face may be damaged.
本発明のハニカム構造体では、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さは、1~10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さが、1~10mmであると、排ガス入口側において、排ガスがセル内部に導入される抵抗、及び、排ガス出口側において、排ガスがセル内部より排出される抵抗をより小さくできるため、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, it is desirable that the exhaust gas introduction cell and the exhaust gas discharge cell in the end region have a length in the longitudinal direction of 1 to 10 mm.
In the honeycomb structure of the present invention, when the length of the exhaust gas introduction cell and the exhaust gas discharge cell in the end region in the longitudinal direction is 1 to 10 mm, the resistance at which the exhaust gas is introduced into the cell on the exhaust gas inlet side, Further, at the exhaust gas outlet side, the resistance of exhaust gas discharged from the inside of the cell can be made smaller, so that the pressure loss can be further reduced.
本発明のハニカム構造体では、上記端面におけるセル隔壁の厚さは、0.1~0.5mmであることが望ましい。
本発明のハニカム構造体において、上記端面におけるセル隔壁の厚さが、0.1~0.5mmであると、圧縮強度を低下させることなく、セル隔壁の厚さを充分に薄くすることができるので、圧力損失を充分に低減させることができる。
また、内部領域におけるセル隔壁の厚さは、0.12~0.4mmであることが望ましい。
図3は、図1に示したハニカム構造体の端面の近傍を模式的に示す断面図である。
図3には、ハニカム構造体10の端面10aにおけるセル隔壁11の厚さdを示している。また、ハニカム構造体10の内部領域におけるセル隔壁11の厚さdも示している。
In the honeycomb structure of the present invention, the thickness of the cell partition wall on the end face is preferably 0.1 to 0.5 mm.
In the honeycomb structure of the present invention, when the thickness of the cell partition wall on the end face is 0.1 to 0.5 mm, the thickness of the cell partition wall can be sufficiently reduced without lowering the compressive strength. Therefore, the pressure loss can be sufficiently reduced.
Further, the thickness of the cell partition wall in the inner region is preferably 0.12 to 0.4 mm.
FIG. 3 is a cross-sectional view schematically showing the vicinity of the end face of the honeycomb structure shown in FIG.
FIG. 3 shows the thickness d 1 of the cell partition walls 11 on the end surface 10a of the honeycomb structure 10. Further, the thickness d 2 of the cell partition wall 11 in the internal region of the honeycomb structure 10 is also shown.
また、本発明のハニカム構造体では、上記端部領域において、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されており、排ガス入口側及び出口側の端面で開口率が高くなっているので、排ガスがハニカム構造体に流入する際及び排ガス構造体から流出する際の抵抗が小さくなり、圧力損失を充分に低減させることができる。 Further, in the honeycomb structure of the present invention, in the end region, the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end surface, the exhaust gas inlet side and the outlet Since the opening ratio is high on the side end face, the resistance when exhaust gas flows into and out of the honeycomb structure becomes small, and the pressure loss can be sufficiently reduced.
本発明のハニカム構造体において、内部領域における排ガス導入セル及び排ガス排出セルの長手方向に垂直な断面形状は、四角形に限定されず、三角形、六角形、八角形であってもよいが、四角形であることが望ましく、正方形であることがより望ましい。 In the honeycomb structure of the present invention, the cross-sectional shape of the exhaust gas introduction cell and the exhaust gas discharge cell in the inner region perpendicular to the longitudinal direction is not limited to a quadrangle, and may be a triangle, a hexagon, an octagon, or a quadrangle. It is desirable that it is, and it is more desirable that it is square.
本発明のハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。 The shape of the honeycomb structure of the present invention is not limited to a columnar shape, and examples thereof include a prismatic shape, an elliptic cylindrical shape, an oblong cylindrical shape, and a round chamfered prismatic shape (for example, a round chamfered triangular pillar). .
本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面のセルの密度は、31~155個/cm(200~1000個/inch)であることが望ましい。 In the honeycomb structure of the present invention, the density of cells in a cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 cells / cm 2 (200 to 1000 cells / inch 2 ).
本発明のハニカム構造体において、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。 In the honeycomb structure of the present invention, when the outer peripheral coat layer is formed on the outer peripheral surface of the honeycomb fired body, the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
本発明のハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤により結合されていてもよいが、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。 The honeycomb structure of the present invention may be composed of one honeycomb fired body having an outer peripheral wall on the outer periphery, or may be provided with a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are adhesive. However, it is preferable that the honeycomb fired body has one outer peripheral wall having an outer peripheral wall.
本発明のハニカム構造体を構成する材料は、特に限定されず、例えば、炭化ケイ素、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック、ケイ素含有炭化ケイ素等が挙げられるが、ハニカム構造体が外周に外周壁を有する一のハニカム焼成体により構成されている場合には、コージェライト、又は、チタン酸アルミニウムが望ましい。 The material constituting the honeycomb structure of the present invention is not particularly limited, and examples thereof include carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, and nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride. Examples include ceramics, alumina, zirconia, cordierite, mullite, oxide ceramics such as aluminum titanate, silicon-containing silicon carbide, etc., but the honeycomb structure is composed of one honeycomb fired body having an outer peripheral wall on the outer periphery. In this case, cordierite or aluminum titanate is desirable.
上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となるからである。 When the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, even when a large thermal stress occurs during regeneration, cracks and the like This is because the honeycomb structure does not easily occur.
本発明のハニカム構造体では、上記セル隔壁の気孔率は、35~65%であることが望ましい。
本発明のハニカム構造体において、上記セル隔壁の気孔率が、35~65%であると、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁に起因する圧力損失の上昇を抑制することができる。従って、圧力損失をさらに低減させることができる。
In the honeycomb structure of the present invention, it is desirable that the cell partition walls have a porosity of 35 to 65%.
In the honeycomb structure of the present invention, when the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.
本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径は、5~30μmであることが望ましい。 In the honeycomb structure of the present invention, the average pore diameter of the pores contained in the cell partition wall is preferably 5 to 30 μm.
本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径が、5~30μmであると、圧力損失の増加を抑制しながら、高い捕集効率でPMを捕集することができる。
本発明のハニカム構造体において、気孔径および平均気孔径は、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定する。
In the honeycomb structure of the present invention, when the average pore diameter of the pores contained in the cell partition walls is 5 to 30 μm, PM can be collected with high collection efficiency while suppressing an increase in pressure loss. .
In the honeycomb structure of the present invention, the pore diameter and the average pore diameter are measured by a mercury penetration method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
次に、本発明のハニカム構造体の製造方法について説明する。
以下においては、チタン酸アルミニウムからなるハニカム構造体の製造方法を例にとって説明するが、本発明の製造対象は、チタン酸アルミニウムに限定されるものではない。
Next, a method for manufacturing the honeycomb structure of the present invention will be described.
In the following, a method for manufacturing a honeycomb structure made of aluminum titanate will be described as an example, but the manufacturing target of the present invention is not limited to aluminum titanate.
(混合工程)
まず、アルミナ粉末及びチタニア粉末にマグネシア粉末、シリカ粉末等の添加剤を添加し、混合することにより混合粉末を得る。
(Mixing process)
First, additives such as magnesia powder and silica powder are added to alumina powder and titania powder and mixed to obtain a mixed powder.
上記混合粉末において、シリカとマグネシアは、焼成助剤としての役割もあるが、焼成助剤としては、シリカとマグネシアの他に、Y、La、Na、K、Ca、Sr、Baの酸化物が用いられていてもよい。これらの混合粉末に以下の添加剤を必要により添加して原料組成物を得る。成形助剤としては、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコールが挙げられる。有機バインダとしては、カルボキシメチルセルロース、ポリビニルアルコール、メチルセルロース、エチルセルロース等の親水性有機高分子が挙げられる。分散媒としては、水のみからなる分散媒、又は、50体積%以上の水と有機溶剤とからなる分散媒が挙げられる。有機溶剤としては、ベンゼン、メタノール等のアルコールが挙げられる。造孔剤としては、微小中空球体であるバルーン、球状アクリル粒子、グラファイト、デンプンが挙げられる。バルーンとしては、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュ(FA)バルーン、ムライトバルーンが挙げられる。 In the above-mentioned mixed powder, silica and magnesia also have a role as a firing aid, but as the firing aid, in addition to silica and magnesia, oxides of Y, La, Na, K, Ca, Sr, and Ba are used. It may be used. If necessary, the following additives are added to these mixed powders to obtain a raw material composition. Examples of the molding aid include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol. Examples of the organic binder include hydrophilic organic polymers such as carboxymethyl cellulose, polyvinyl alcohol, methyl cellulose and ethyl cellulose. Examples of the dispersion medium include a dispersion medium composed of only water or a dispersion medium composed of 50% by volume or more of water and an organic solvent. Examples of the organic solvent include alcohols such as benzene and methanol. Examples of the pore-forming agent include balloons, which are minute hollow spheres, spherical acrylic particles, graphite, and starch. Examples of balloons include alumina balloons, glass micro balloons, shirasu balloons, fly ash (FA) balloons, and mullite balloons.
また、原料組成物中には、その他の成分が更に含有されていてもよい。その他の成分としては、たとえば、可塑剤、分散剤、潤滑剤が挙げられる。可塑剤としては、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物が挙げられる。分散剤としては、たとえば、ソルビタン脂肪酸エステルが挙げられる。潤滑剤としては、たとえば、グリセリンが挙げられる。 Further, the raw material composition may further contain other components. Examples of other components include plasticizers, dispersants, and lubricants. Examples of the plasticizer include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Examples of the dispersant include sorbitan fatty acid ester. Examples of the lubricant include glycerin.
(成形工程)
成形工程は、混合工程により得られた原料組成物を成形して未封止ハニカム成形体を作製する工程である。未封止ハニカム成形体は、たとえば、原料組成物を押出金型を用いて押出成形することにより作製することができる。すなわち、未封止ハニカム成形体は、ハニカム構造体の筒状の外周壁と隔壁となる部分を構成する壁部を一度に押出成形することにより作製する。また、押出成形では、ハニカム構造体の一部の形状に対応する成形体を成形してもよい。すなわち、ハニカム構造体の一部の形状に対応する成形体を成形し、それら成形体を組み合わせることによってハニカム構造体と同一形状を有するハニカム成形体を作製してもよい。
(Molding process)
The molding step is a step of molding the raw material composition obtained in the mixing step to produce an unsealed honeycomb molded body. The unsealed honeycomb molded body can be produced by, for example, extruding the raw material composition using an extrusion die. That is, the unsealed honeycomb molded body is manufactured by extruding the tubular outer peripheral wall of the honeycomb structure and the wall portion constituting the partition wall at one time. Further, in the extrusion molding, a molded body corresponding to the shape of a part of the honeycomb structure may be molded. That is, a honeycomb molded body having the same shape as the honeycomb structure may be manufactured by molding a molded body corresponding to a part of the shape of the honeycomb structure and combining the molded bodies.
図4(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図4(b)は、図4(a)に示した未封止ハニカム成形体のB-B線断面図である。 FIG. 4 (a) is a perspective view schematically showing an unsealed honeycomb molded body produced by the molding process, and FIG. 4 (b) is an unsealed honeycomb molded body shown in FIG. 4 (a). FIG. 9 is a sectional view taken along line BB of FIG.
図4(a)及び図4(b)に示すように、上記成形工程により、セル22、23の長手方向に垂直な断面形状が四角で、端面20a′、20b′におけるセル22、23の形状も全く同じ四角形状で、セル22、23を隔てるセル隔壁21を有し、全体が円柱形状の未封止ハニカム成形体20′が作製される。 As shown in FIGS. 4 (a) and 4 (b), the shape of the cells 22 and 23 at the end faces 20a 'and 20b' is square due to the above-mentioned molding process, and the cross-sectional shape perpendicular to the longitudinal direction of the cells 22 and 23 is square. Also, an unsealed honeycomb molded body 20 'having exactly the same quadrangular shape and having cell partition walls 21 separating cells 22 and 23 and having a cylindrical shape as a whole is manufactured.
(再成形工程)
この後、テーパー冶具を用い、未封止ハニカム成形体20′に対し、ハニカム構造体の端部領域に相当する部分を形成するための再成形を行い、排ガス導入セル及び排ガス排出セルとなるセル22、23の長手方向に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられた形状の封止ハニカム成形体とする。
(Reforming process)
Thereafter, a taper jig is used to re-form the unsealed honeycomb molded body 20 ′ to form a portion corresponding to an end region of the honeycomb structure, thereby forming an exhaust gas introduction cell and an exhaust gas discharge cell. The cross-sectional shape of 22 and 23 perpendicular to the longitudinal direction is enlarged or reduced as it approaches the end face, and the sealed honeycomb molded body has a closed shape.
図5は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図であり、図6は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。
図5及び図6に示すように、支持部33と支持部33上に固定された基台部31と基台部31上に形成された多数の四角錐形状の先端部32とを備えたテーパー冶具30を用い、先端部32の四角錐を構成する4つの平面32bの境界部である角部32cが未封止ハニカム成形体20′の端面20b′におけるセル隔壁21の四角を構成する一の辺21bの真ん中に当接するように配置し、未封止ハニカム成形体20′の中央部分に向かってテーパー冶具30を押し込む。
FIG. 5 is an explanatory view schematically showing a state of the remolding step of the unsealed honeycomb molded body, and FIG. 6 is a sectional view schematically showing a state of the remolding step of the unsealed honeycomb molded body. is there.
As shown in FIGS. 5 and 6, a taper including a support portion 33, a base portion 31 fixed on the support portion 33, and a large number of quadrangular pyramid-shaped tip portions 32 formed on the base portion 31. Using the jig 30, the corner portion 32c which is the boundary portion of the four flat surfaces 32b forming the quadrangular pyramid of the tip portion 32 forms the square of the cell partition wall 21 on the end surface 20b 'of the unsealed honeycomb molded body 20'. The taper jig 30 is arranged so as to come into contact with the center of the side 21b, and the taper jig 30 is pushed toward the central portion of the unsealed honeycomb molded body 20 '.
このとき、先端部32が押し込まれたセル22の端部領域に相当する部分は、セルの長手方向に垂直な断面形状が端面に近づくに従って拡大された形状となり、先端部32が押し込まれたセル22の上下左右に存在していたセル23の端部領域に相当する部分は、セル23の長手方向に垂直な断面形状が端面に近づくに従って縮小され、封じられた形状となる。また、端面から見た封止ハニカム成形体の形状は、図1(c)に示すハニカム構造体10と同じく、端面10bにおけるセル13の四角が内部領域10Bのセル13の四角を45°回転した形状となる。
テーパー治具の先端部32の角度及び隣り合う先端部32同士の幅を調整することにより、端面におけるセル隔壁の厚さを調整することができる。
また、四角錐形状の先端部の底面の位置をバラつかせることにより、排ガス出口側の端面に凹凸を設けることができる。
図6には、四角錐形状の先端部の底面の位置をバラつかせたテーパー冶具の例を示している。
At this time, the portion corresponding to the end region of the cell 22 into which the tip 32 is pushed has a shape in which the cross-sectional shape perpendicular to the longitudinal direction of the cell is enlarged as it approaches the end face, and the cell into which the tip 32 is pushed The portions corresponding to the end regions of the cells 23 existing on the upper, lower, left, and right sides of the cell 22 are reduced in shape as the cross-sectional shape perpendicular to the longitudinal direction of the cells 23 approaches the end surface, and become a sealed shape. Further, the shape of the sealed honeycomb formed body viewed from the end face is the same as the honeycomb structure 10 shown in FIG. 1C, and the square of the cell 13 on the end face 10b is rotated by 45 ° from the square of the cell 13 of the internal region 10B. It becomes the shape.
By adjusting the angle of the tip end portion 32 of the taper jig and the width of the adjacent tip end portions 32, the thickness of the cell partition wall on the end face can be adjusted.
Further, by varying the position of the bottom surface of the quadrangular pyramid-shaped tip portion, unevenness can be provided on the end surface on the exhaust gas outlet side.
FIG. 6 shows an example of a taper jig in which the position of the bottom surface of the tip of the quadrangular pyramid is varied.
再成形工程の際に、テーパー治具によって押し込まれて変形する端部領域の粘度や強度を調整することがある。そのための手法として、未封止ハニカム成形体の端部に水をつけたり、溶媒をつけたりすることがある。未封止ハニカム成形体の端部に水や溶媒をつけると、
テーパー冶具を押し込んだ際のセル隔壁の変形の具合が変化する。
そこで、未封止ハニカム成形体の端部に水や溶媒をつける量をバラつかせることで排ガス出口側の端面に凹凸を設けることができる。
During the reshaping process, the viscosity and strength of the end region that is pressed and deformed by the taper jig may be adjusted. As a method therefor, there is a case where water or a solvent is applied to the end portion of the unsealed honeycomb molded body. When water or solvent is applied to the end of the unsealed honeycomb molded body,
The degree of deformation of the cell partition when the taper jig is pushed in changes.
Therefore, unevenness can be provided on the end face on the exhaust gas outlet side by varying the amount of water or solvent applied to the end of the unsealed honeycomb molded body.
また、テーパー治具を引き離す際の速度の調整によっても、排ガス出口側の端面に凹凸を設けることができる。 Further, the unevenness can be provided on the end face on the exhaust gas outlet side also by adjusting the speed when separating the taper jig.
この再成形工程により得られた封止ハニカム成形体は、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用い、100~150℃、大気雰囲気下で乾燥され、250~400℃、酸素濃度5容積%~大気雰囲気下で脱脂される。
この乾燥工程における乾燥の具合に差をつけることで、セル隔壁の乾燥収縮にムラを生じさせて、排ガス出口側の端面に凹凸を設けることができる。
The sealed honeycomb molded body obtained by this remolding step is dried at 100 to 150 ° C. using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, and a freeze dryer. Then, it is dried in an air atmosphere and degreased at 250 to 400 ° C. and an oxygen concentration of 5% by volume to an air atmosphere.
By making the degree of drying different in this drying step, unevenness can be caused in the drying shrinkage of the cell partition walls, and unevenness can be provided on the end face on the exhaust gas outlet side.
(焼成工程)
焼成工程は、再成形工程により得られた封止ハニカム成形体を1400~1600℃で焼成する工程である。この焼成工程では、アルミナの表面からチタニアとの反応が進行して、チタン酸アルミニウムの相が形成される。焼成は、公知の単独炉、いわゆるバッチ炉や、連続炉を用いて行うことができる。焼成温度は、1450~1550℃の範囲であることが望ましい。焼成時間は特に限定されないが、上記の焼成温度において1~20時間保持することが望ましく、1~10時間保持することがより望ましい。また、焼成工程は大気雰囲気下で行うことが望ましい。大気雰囲気に窒素ガスやアルゴンガス等の不活性ガスを混合することにより、酸素濃度を調整してもよい。
(Firing process)
The firing step is a step of firing the sealed honeycomb formed body obtained in the re-forming step at 1400 to 1600 ° C. In this firing step, the reaction with titania proceeds from the surface of alumina to form an aluminum titanate phase. The firing can be performed using a known single furnace, so-called batch furnace, or continuous furnace. The firing temperature is preferably in the range of 1450 to 1550 ° C. The firing time is not particularly limited, but it is preferable to hold the firing temperature for 1 to 20 hours, and more preferably 1 to 10 hours. In addition, it is desirable that the firing process be performed in the atmosphere. The oxygen concentration may be adjusted by mixing an inert gas such as nitrogen gas or argon gas into the air atmosphere.
上記した混合工程、成形工程、再成形工程、及び、焼成工程を経ることにより、本発明のハニカム構造体を製造することができる。 The honeycomb structure of the present invention can be manufactured through the above-mentioned mixing step, forming step, re-forming step, and firing step.
以下、上記実施形態をさらに具体化した実施例について説明する。
(実施例1)
まず、下記組成の原料組成物を調製した。
D50が0.6μmのチタニア微粉末:11.1重量%、D50が13.0μmのチタニア粗粉末:11.1重量%、D50が15.9μmのアルミナ粉末:30.4重量%、D50が1.1μmのシリカ粉末:2.8重量%、D50が3.8μmのマグネシア粉末:1.4重量%、D50が31.9μmのアクリル樹脂(造孔材):18.5重量%、メチルセルロース(有機バインダ):7.1重量%、成形助剤(エステル型ノニオン):4.7重量%、及び、イオン交換水(分散媒):12.9重量%からなる組成のものを混合機で混合し、原料組成物を調製した。
Hereinafter, examples in which the above embodiment is further embodied will be described.
(Example 1)
First, a raw material composition having the following composition was prepared.
Fine titania powder having D50 of 0.6 μm: 11.1% by weight, coarse titania powder having D50 of 13.0 μm: 11.1% by weight, alumina powder having D50 of 15.9 μm: 30.4% by weight, D50 of 1 .1 μm silica powder: 2.8% by weight, D50 3.8 μm magnesia powder: 1.4% by weight, D50 31.9 μm acrylic resin (pore forming material): 18.5% by weight, methylcellulose (organic A binder having a composition of 7.1% by weight, a molding aid (ester type nonion): 4.7% by weight, and ion-exchanged water (dispersion medium): 12.9% by weight are mixed with a mixer. A raw material composition was prepared.
調製した原料組成物を押出成形機に投入して押出成形を行うことにより、図4(a)及び図4(b)に示す形状を有し、セルが封止されていない未封止ハニカム成形体20′を作製した。 An unsealed honeycomb molding having the shape shown in FIGS. 4 (a) and 4 (b) and having cells not sealed, is obtained by introducing the prepared raw material composition into an extrusion molding machine and performing extrusion molding. Body 20 'was made.
未封止ハニカム成形体20′を作製した後、未封止ハニカム成形体20′の排ガス出口側となる端面につき、図6に示すような、四角錐形状の先端部の底面の位置をバラつかせたアルミ製のテーパー冶具30を用いて、再成形を行い、封止ハニカム成形体を作製した。
なお、未封止ハニカム成形体20′の排ガス入口側となる端面については、四角錐形状の先端部の底面の位置が均一となっているアルミ製のテーパー冶具を用いて、再成形を行い、封止ハニカム成形体を作製した。
After manufacturing the unsealed honeycomb molded body 20 ', the position of the bottom surface of the quadrangular pyramid-shaped tip portion is varied as shown in FIG. 6 on the end surface of the unsealed honeycomb molded body 20' on the exhaust gas outlet side. Remolding was performed using the squeezed aluminum taper jig 30 to produce a sealed honeycomb molded body.
The end face of the unsealed honeycomb molded body 20 'on the exhaust gas inlet side is re-molded using an aluminum taper jig in which the positions of the bottom surfaces of the quadrangular pyramid-shaped tips are uniform, A sealed honeycomb molded body was produced.
この後、再成形工程を経て得られた封止ハニカム成形体を大気雰囲気下、1450℃で15時間保持して焼成することにより、ハニカム構造体を製造した。得られたハニカム構造体は、気孔率が57%、平均気孔径が17μm、直径132.1mm、外周壁の厚さ0.3mm、内部領域におけるセル隔壁の厚さ0.25mm、セルの数(セル密度)が300個/inchで、円柱形状であった。なお、気孔率及び平均気孔径の測定は、下記する方法により行った。 After that, the honeycomb structure was manufactured by holding and firing the sealed honeycomb molded body obtained through the remolding step at 1450 ° C. for 15 hours in the air atmosphere. The resulting honeycomb structure had a porosity of 57%, an average pore diameter of 17 μm, a diameter of 132.1 mm, a peripheral wall thickness of 0.3 mm, a cell partition wall thickness of 0.25 mm in the internal region, and a number of cells ( The cell density was 300 cells / inch 2 , and the shape was columnar. The porosity and the average pore diameter were measured by the methods described below.
そして、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差を求めたところ、標準偏差は0.365であった。
ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの平均値は138.8mmであり、最大値は139.7mm、最小値は138.0mmであった。
Then, the standard deviation of the length from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure to the exhaust gas outlet side end surface was determined, and the standard deviation was 0.365.
The average value of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was 138.8 mm, the maximum value was 139.7 mm, and the minimum value was 138.0 mm.
(実施例2、3)
実施例1において、再成形工程の際に、未封止ハニカム成形体20′の排ガス出口側となる端面につき、四角錐形状の先端部の底面の位置をそれぞれ変化させたアルミ製のテーパー冶具を用いて、再成形を行い、封止ハニカム成形体を作製した。その他は実施例1と同様にしてハニカム構造体を製造した。
そして、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差を求めたところ、標準偏差はそれぞれ0.217(実施例2)と0.473(実施例3)であった。
ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの平均値は138.8mm(実施例2)、138.8mm(実施例3)であり、最大値は139.4mm(実施例2)、140.0mm(実施例3)、最小値は138.3mm(実施例2)、137.7mm(実施例3)であった。
また、ハニカム構造体における気孔率、平均気孔径、大きさ、外周壁の厚さ、内部領域におけるセル隔壁の厚さ、セルの数(セル密度)は実施例1と同様であった。
(Examples 2 and 3)
In Example 1, an aluminum taper jig in which the position of the bottom surface of the tip portion of the quadrangular pyramid shape was changed for the end surface of the unsealed honeycomb molded body 20 ′ on the exhaust gas outlet side during the remolding step. Using this, remolding was performed to produce a sealed honeycomb molded body. A honeycomb structure was manufactured in the same manner as in Example 1 except for the above.
Then, when the standard deviation of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was determined, the standard deviations were 0.217 (Example 2) and 0.473 (Example 2), respectively. Example 3).
The average value of the length from the virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure to the exhaust gas outlet side end surface is 138.8 mm (Example 2) and 138.8 mm (Example 3), and the maximum value is It was 139.4 mm (Example 2), 140.0 mm (Example 3), and the minimum value was 138.3 mm (Example 2) and 137.7 mm (Example 3).
In addition, the porosity, average pore diameter, size, outer peripheral wall thickness, cell partition wall thickness, and number of cells (cell density) in the honeycomb structure were the same as in Example 1.
(比較例1)
実施例1において、再成形工程の際に、未封止ハニカム成形体20′の排ガス出口側となる端面についても四角錐形状の先端部の底面の位置が均一となっているアルミ製のテーパー冶具を用いて、再成形を行い、封止ハニカム成形体を作製した。その他は実施例1と同様にしてハニカム構造体を製造した。そして、ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差を求めたところ、標準偏差は0.182であった。
ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの平均値は138.8mmであり、最大値は139.3mm、最小値は138.4mmであった。
また、ハニカム構造体における気孔率、平均気孔径、大きさ、外周壁の厚さ、内部領域におけるセル隔壁の厚さ、セルの数(セル密度)は実施例1と同様であった。
(Comparative Example 1)
In Example 1, in the remolding step, the end face of the unsealed honeycomb molded body 20 'on the exhaust gas outlet side has a uniform position of the bottom surface of the tip portion of the quadrangular pyramid shape. Was used to remold, and a sealed honeycomb molded body was manufactured. A honeycomb structure was manufactured in the same manner as in Example 1 except for the above. Then, when the standard deviation of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was determined, the standard deviation was 0.182.
The average value of the length from the virtual plane in contact with the end surface on the exhaust gas inlet side of the honeycomb structure to the end surface on the exhaust gas outlet side was 138.8 mm, the maximum value was 139.3 mm, and the minimum value was 138.4 mm.
In addition, the porosity, average pore diameter, size, outer peripheral wall thickness, cell partition wall thickness, and number of cells (cell density) in the honeycomb structure were the same as in Example 1.
(評価試験)
各実施例及び比較例のハニカム構造体の気孔率、平均気孔径、及び、再生限界値を測定した。
[気孔率及び平均気孔径]
各実施例及び比較例で得られたハニカム構造体を10mm×10mm×10mmに切り出して、気孔測定用サンプルを準備した。気孔測定用サンプルを用いて、水銀圧入法によるポロシメーター(島津製作所社製、オートポアIII 9420)により気孔率及び平均気孔径を測定した。水銀圧入法にて接触角を130°、表面張力を485mN/mの条件とした。
(Evaluation test)
The porosity, average pore diameter, and regeneration limit value of the honeycomb structures of each of the examples and comparative examples were measured.
[Porosity and average pore size]
The honeycomb structure obtained in each of the examples and comparative examples was cut into a size of 10 mm × 10 mm × 10 mm to prepare a sample for pore measurement. The porosity and the average pore diameter were measured using a porosimeter (manufactured by Shimadzu Corporation, Autopore III 9420) by a mercury porosimetry using the sample for pore measurement. The contact angle was 130 ° and the surface tension was 485 mN / m under the mercury intrusion method.
[PM燃焼試験]
図7は、PM燃焼試験におけるPMの捕集方法を模式的に示す断面図である。
PM捕集装置210は、排気量1.6リットルのディーゼルエンジン211の排ガス管214から分岐された配管212に、実施例1~3及び比較例1で得られたハニカム構造体10を金属ケーシング213内に固定して配置した。
ハニカム構造体10は、排ガス入口側の端面がディーゼルエンジン211の配管212に近い側に配置される。
ディーゼルエンジン211を回転数3100rpm、トルク50Nmで運転して、ディーゼルエンジン211からの排ガスの一部をハニカム構造体10に流通させてPMをハニカムフィルタに捕集させた。
[PM combustion test]
FIG. 7 is a cross-sectional view schematically showing a PM collecting method in the PM combustion test.
In the PM collecting apparatus 210, the honeycomb structure 10 obtained in Examples 1 to 3 and Comparative Example 1 is provided in a metal casing 213 in a pipe 212 branched from an exhaust gas pipe 214 of a diesel engine 211 having a displacement of 1.6 liters. It was fixed inside and placed.
The honeycomb structure 10 is arranged such that the end face on the exhaust gas inlet side is closer to the pipe 212 of the diesel engine 211.
The diesel engine 211 was operated at a rotation speed of 3100 rpm and a torque of 50 Nm, and a part of the exhaust gas from the diesel engine 211 was circulated through the honeycomb structure 10 to collect PM on the honeycomb filter.
そして、ハニカム構造体にPMを捕集し、ハニカム構造体を650℃に加熱した状態で、酸素濃度が約20%のガスを流入させることで、捕集したPMを燃焼させた。PM燃焼後のハニカム構造体にクラックが発生しているか否かを観察した。
そして、この再生処理を行う実験を、PMの捕集量を変化させながら行い、ハニカム構造体にクラックが発生するか否かを調査した。そして、クラックが発生しない最大PM量のハニカム構造体の見掛け容積1Lあたりの量を再生限界値とした。
Then, PM was collected in the honeycomb structure, and while the honeycomb structure was heated to 650 ° C., a gas having an oxygen concentration of about 20% was introduced to burn the collected PM. It was observed whether the honeycomb structure after PM burning had cracks.
Then, an experiment for carrying out this regeneration treatment was conducted while changing the amount of PM trapped, and it was investigated whether or not cracks were generated in the honeycomb structure. Then, the amount per 1 L of apparent volume of the honeycomb structure having the maximum PM amount in which cracks did not occur was taken as the regeneration limit value.
その結果は以下の通りであった。
実施例1:12g/L
実施例2:12g/L
実施例3:12g/L
比較例1:11g/L
すなわち、ハニカム構造体の排ガス出口側の端面の位置にバラつきがあることで、再生限界値が向上した。これは、再生時にPMが燃焼するハニカム構造体の長手方向の位置をバラつかせることができ、PMを燃焼させた際に発生する応力の集中を抑制することができて、ハニカム構造体に破損が生じることが防止されたことを示す。
The results were as follows.
Example 1: 12 g / L
Example 2: 12 g / L
Example 3: 12 g / L
Comparative Example 1: 11 g / L
That is, the regeneration limit value was improved due to the variation in the position of the end face of the honeycomb structure on the exhaust gas outlet side. This makes it possible to disperse the position in the longitudinal direction of the honeycomb structure where PM is burned during regeneration, to suppress the concentration of stress generated when burning PM, and to damage the honeycomb structure. Is prevented from occurring.
10 ハニカム構造体
10a、10b 端面
10A、10C 端部領域
10B 内部領域
11 セル隔壁
12 排ガス導入セル
13 排ガス排出セル
20′ 未封止ハニカム成形体
20a′、20b′ 端面
21 セル隔壁
21b 一の辺
22、23 セル
30 テーパー冶具
31 基台部
32 先端部
32b 平面
32c 角部
33 支持部
10 Honeycomb Structures 10a, 10b End Faces 10A, 10C End Region 10B Inner Region 11 Cell Partition 12 Exhaust Gas Introducing Cell 13 Exhaust Gas Emitting Cell 20 'Unsealed Honeycomb Molded Products 20a', 20b 'End Face 21 Cell Partition 21b One Side 22 , 23 cell 30 taper jig 31 base part 32 tip part 32b plane 32c corner part 33 support part

Claims (9)

  1. 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えた柱状のハニカム構造体であって、
    前記排ガス導入セル及び前記排ガス排出セルは、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、
    前記排ガス出口側の端面には凹凸があり、
    前記ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.2以上であることを特徴とするハニカム構造体。
    Porous cell partition walls partitioning and forming a plurality of cells that form the flow path of exhaust gas, an exhaust gas introduction cell in which the end surface on the exhaust gas inlet side is opened and the end surface on the exhaust gas outlet side is closed, and the end surface on the exhaust gas outlet side is A columnar honeycomb structure having an exhaust gas discharge cell which is opened and whose end face on the exhaust gas inlet side is sealed,
    The exhaust gas introduction cell and the exhaust gas discharge cell, the exhaust gas introduction cell and the internal region having a constant cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas discharge cell, and vertical to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell A cross-sectional shape that is enlarged or reduced as it approaches the end surface,
    The end surface on the exhaust gas outlet side has unevenness,
    A honeycomb structure characterized in that the standard deviation of the length from a virtual plane in contact with the exhaust gas inlet side end surface of the honeycomb structure to the exhaust gas outlet side end surface is 0.2 or more.
  2. 前記ハニカム構造体の排ガス入口側の端面に接する仮想平面から排ガス出口側の端面までの長さの標準偏差が0.5以下である請求項1に記載のハニカム構造体。 The honeycomb structure according to claim 1, wherein a standard deviation of a length from an imaginary plane in contact with the end face on the exhaust gas inlet side of the honeycomb structure to the end face on the exhaust gas outlet side is 0.5 or less.
  3. 前記端部領域の排ガス導入セル及び排ガス排出セルの長手方向の長さは、1~10mmである請求項1又は2に記載のハニカム構造体。 The honeycomb structure according to claim 1 or 2, wherein the exhaust gas introduction cells and the exhaust gas discharge cells in the end regions have a length in the longitudinal direction of 1 to 10 mm.
  4. 前記端面におけるセル隔壁の厚さは、0.1~0.5mmである請求項1~3のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 3, wherein the thickness of the cell partition wall on the end face is 0.1 to 0.5 mm.
  5. 前記内部領域における排ガス導入セル及び排ガス排出セルの長手方向に垂直な断面形状は、四角形である請求項1~4のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 4, wherein a cross-sectional shape of each of the exhaust gas introducing cell and the exhaust gas discharging cell in the internal region is a quadrangle in a vertical direction.
  6. 前記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されている請求項1~5のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 5, wherein the honeycomb structure is composed of one honeycomb fired body having an outer peripheral wall on the outer periphery.
  7. 前記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなる請求項6に記載のハニカム構造体。 The honeycomb structure according to claim 6, wherein the honeycomb fired body is made of cordierite or aluminum titanate.
  8. 前記セル隔壁の気孔率は、35~65%である請求項1~7のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 7, wherein the cell partition walls have a porosity of 35 to 65%.
  9. 前記セル隔壁に含まれる気孔の平均気孔径は、5~30μmである請求項1~8のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 8, wherein the pores contained in the cell partition walls have an average pore diameter of 5 to 30 µm.
PCT/JP2019/039039 2018-10-12 2019-10-03 Honeycomb structure WO2020075604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193596 2018-10-12
JP2018193596A JP2020059011A (en) 2018-10-12 2018-10-12 Honeycomb structure

Publications (1)

Publication Number Publication Date
WO2020075604A1 true WO2020075604A1 (en) 2020-04-16

Family

ID=70164522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039039 WO2020075604A1 (en) 2018-10-12 2019-10-03 Honeycomb structure

Country Status (2)

Country Link
JP (1) JP2020059011A (en)
WO (1) WO2020075604A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227949U (en) * 1975-08-20 1977-02-26
JPH04301130A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter for cleaning exhaust gas of internal combustion engine
WO2005097446A1 (en) * 2004-04-07 2005-10-20 Liqtech A/S Method for forming organic bonded bodies using ultrasonic energy
JP2006272318A (en) * 2005-03-01 2006-10-12 Denso Corp Manufacturing method of exhaust gas purifying filter
WO2016098834A1 (en) * 2014-12-17 2016-06-23 住友化学株式会社 Honeycomb filter and method for manufacturing honeycomb filter
WO2016098835A1 (en) * 2014-12-17 2016-06-23 住友化学株式会社 Honeycomb structured body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227949U (en) * 1975-08-20 1977-02-26
JPH04301130A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter for cleaning exhaust gas of internal combustion engine
WO2005097446A1 (en) * 2004-04-07 2005-10-20 Liqtech A/S Method for forming organic bonded bodies using ultrasonic energy
JP2006272318A (en) * 2005-03-01 2006-10-12 Denso Corp Manufacturing method of exhaust gas purifying filter
WO2016098834A1 (en) * 2014-12-17 2016-06-23 住友化学株式会社 Honeycomb filter and method for manufacturing honeycomb filter
WO2016098835A1 (en) * 2014-12-17 2016-06-23 住友化学株式会社 Honeycomb structured body

Also Published As

Publication number Publication date
JP2020059011A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP5144075B2 (en) Honeycomb structure and manufacturing method thereof
EP2505248B1 (en) Honeycomb structured body and exhaust gas purifying apparatus
JP5231305B2 (en) Honeycomb structure and bonded honeycomb structure
EP1696109A2 (en) Method of manufacturing plugged honeycomb structure and plugged honeycomb structure
JP2003238271A (en) Method of producing porous ceramic material
WO2012132005A1 (en) Honeycomb structured body
JP5523871B2 (en) Manufacturing method of honeycomb filter
JP5351678B2 (en) Honeycomb structure
JP5345371B2 (en) Manufacturing method of honeycomb structure
JP2018143973A (en) Honeycomb structure
EP2221099B1 (en) Honeycomb structure
JP2010222150A (en) Honeycomb structure
WO2020075604A1 (en) Honeycomb structure
US20110236624A1 (en) Honeycomb structure
WO2020075603A1 (en) Honeycomb structure
WO2020075613A1 (en) Honeycomb structure
WO2020075608A1 (en) Honeycomb structure
WO2020075602A1 (en) Honeycomb structure
WO2020075605A1 (en) Honeycomb structure
WO2020075601A1 (en) Honeycomb structure
WO2020075607A1 (en) Honeycomb structure
JP7253892B2 (en) honeycomb structure
WO2020075612A1 (en) Honeycomb structure
JP2020124856A (en) Method for producing honeycomb structure
JP2020124681A (en) Manufacturing method for honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871129

Country of ref document: EP

Kind code of ref document: A1