JP2020059085A - Precision adjustment apparatus, precision adjustment method, and precision adjustment program - Google Patents

Precision adjustment apparatus, precision adjustment method, and precision adjustment program Download PDF

Info

Publication number
JP2020059085A
JP2020059085A JP2018191741A JP2018191741A JP2020059085A JP 2020059085 A JP2020059085 A JP 2020059085A JP 2018191741 A JP2018191741 A JP 2018191741A JP 2018191741 A JP2018191741 A JP 2018191741A JP 2020059085 A JP2020059085 A JP 2020059085A
Authority
JP
Japan
Prior art keywords
shim
accuracy
amount
machine tool
simultaneous equations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018191741A
Other languages
Japanese (ja)
Other versions
JP7160619B2 (en
Inventor
大輔 上西
Daisuke Kaminishi
大輔 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2018191741A priority Critical patent/JP7160619B2/en
Publication of JP2020059085A publication Critical patent/JP2020059085A/en
Application granted granted Critical
Publication of JP7160619B2 publication Critical patent/JP7160619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Machine Tool Units (AREA)

Abstract

To provide a precision adjustment apparatus, a precision adjustment method, and a precision adjustment program that can output an appropriate adjustment position and adjustment amount when adjusting the precision of a machine tool.SOLUTION: A precision adjustment apparatus 1 includes: a storage unit 20 in which are stored simultaneous equations that define the relationship between the amounts of insertion of shims into a plurality of predetermined respective positions between components and conditions for limiting the amounts of insertion of the shims that are variables of the simultaneous equations to keep precisions within acceptable range with respect to measured values of predetermined precisions due to errors that occur between components constituting the machine tool when such components are mounted; and an arithmetic unit 11 that solves the simultaneous equations in response to input of measured values, and that outputs a solution that satisfies the conditions as the amount of insertion of the shims.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械の精度を調整するための装置、方法及びプログラムに関する。   The present invention relates to an apparatus, method and program for adjusting the accuracy of a machine tool.

近年、IT部品及び装飾品等、長時間の加工を要する外観部品の需要が増加傾向であり、これらを加工するための切削加工機が増産されている。
工作機械を製造し出荷する工程では、通常、各部品を加工し組み立てた後、精度調整及び検査が行われる。精度調整は、公差内で仕上がった部品を組み立てる際に発生する誤差を、インジケータ又は円筒スコヤ等を用いて既定の精度まで調整する作業である。この誤差は、機械毎に異なることが多く、特に、切削加工機において重要なテーブル上面基準での精度は、コラム、ベッド及び主軸頭の部品精度と組み付け精度とが大きく影響し、ばらつきが大きい。このように機械毎に異なる誤差に対して、安定して精度調整する作業には熟練を要する。
In recent years, there is an increasing demand for external parts such as IT parts and ornaments that require long-time processing, and a cutting machine for processing these parts has been increased in production.
In the process of manufacturing and shipping a machine tool, accuracy adjustment and inspection are usually performed after processing and assembling each part. The precision adjustment is a work for adjusting an error generated when assembling finished parts within the tolerance to a predetermined precision by using an indicator, a cylinder square, or the like. This error often differs from machine to machine, and in particular, the accuracy on the basis of the table upper surface, which is important in a cutting machine, is greatly affected by the accuracy of the parts of the column, bed, and spindle head, and the accuracy of assembly, resulting in large variations. As described above, it is necessary to have a skill to stably adjust the accuracy with respect to the error that differs for each machine.

例えば、テーブル上面基準での精度について、テーブル上面の振り回しの誤差量又は直角度等の調整は、従来、次のような手法で行われてきた。
(1)仮組立時の精度測定結果に応じて、コラムとベッドとの接触面を研磨又はキサゲ加工によって微調整する。
(2)コラムとベッドとの間、及びコラムと主軸頭との間に数十μm〜数百μm程度のシム(スペーサ)を挿入し、微調整を行う。
For example, regarding the accuracy based on the table top surface, adjustment of the error amount or squareness of the table top surface swing has been conventionally performed by the following method.
(1) The contact surface between the column and the bed is finely adjusted by polishing or scraping according to the accuracy measurement result at the time of temporary assembly.
(2) Insert shims (spacers) of about several tens of μm to several hundreds of μm between the column and the bed and between the column and the spindle head to perform fine adjustment.

特開2018−062037号公報JP, 2008-062037, A

しかしながら、これらの従来手法では、次のような課題があった。
前述の手法(1)では、一旦コラムとベッドとを組み上げた状態で精度測定を行い、測定結果に応じてベッド若しくはコラム、又は両方を研磨する必要がある。この場合、研磨及び組み立ての作業工数が増えるため、大量生産が必要な工作機械の製造には適さなかった。
前述の手法(2)では、機械の組み立て後の精度測定結果に応じてシムを挿入することで精度調整を行うが、シムの挿入量及び挿入位置は、熟練者のノウハウ及び勘に頼った判断が必要になり、自動化及び大量生産に対応できなかった。
However, these conventional methods have the following problems.
In the above-mentioned method (1), it is necessary to perform accuracy measurement with the column and the bed assembled once and polish the bed, the column, or both according to the measurement result. In this case, since the number of man-hours for polishing and assembling increases, it is not suitable for manufacturing a machine tool that requires mass production.
In the method (2) described above, the accuracy is adjusted by inserting the shim according to the result of accuracy measurement after the machine is assembled. Was required, and automation and mass production could not be supported.

本発明は、工作機械の精度調整の際に、適切な調整位置及び調整量を出力できる精度調整装置、精度調整方法及び精度調整プログラムを提案することを目的とする。   An object of the present invention is to propose a precision adjusting device, a precision adjusting method, and a precision adjusting program that can output an appropriate adjustment position and an appropriate adjustment amount when adjusting the precision of a machine tool.

(1) 本発明に係る精度調整装置(例えば、後述の精度調整装置1)は、工作機械を構成する部品間の取り付け時の誤差に起因する所定の精度の測定値に対して、前記精度を許容範囲に収めるために、前記部品間の予め定められた複数の位置それぞれへのシムの挿入量の関係を定めた連立方程式と共に、当該連立方程式の変数である前記シムの挿入量を限定するための条件を記憶する記憶部(例えば、後述の記憶部20)と、前記測定値の入力に対して、前記連立方程式を解き、前記条件を満たす解を前記シムの挿入量として出力する演算部(例えば、後述の演算部11)と、を備える。   (1) An accuracy adjusting device (for example, an accuracy adjusting device 1 described later) according to the present invention is configured to adjust the accuracy to a measured value having a predetermined accuracy due to an error in mounting between components forming a machine tool. To limit the insertion amount of the shim, which is a variable of the simultaneous equations, with a simultaneous equation that defines the relationship of the insertion amount of the shim at each of a plurality of predetermined positions between the parts so as to be within the allowable range. A storage unit (for example, a storage unit 20 described later) that stores the condition of, and an arithmetic unit that solves the simultaneous equations with respect to the input of the measurement value and outputs a solution satisfying the condition as the insertion amount of the shim ( For example, the following calculation unit 11) is provided.

(2) (1)に記載の精度調整装置において、前記記憶部は、前記測定値の範囲に応じて、複数の前記条件を記憶してもよい。   (2) In the accuracy adjustment device according to (1), the storage unit may store a plurality of conditions according to the range of the measured value.

(3) (1)又は(2)に記載の精度調整装置は、前記シムの挿入量、及び前記シムを挿入する前後の前記測定値を入力として、前記連立方程式の係数を算出する係数決定部(例えば、後述の係数決定部12)を備えてもよい。   (3) The accuracy adjustment device according to (1) or (2) is a coefficient determination unit that calculates the coefficient of the simultaneous equations by inputting the insertion amount of the shim and the measured values before and after inserting the shim. (For example, a coefficient determining unit 12 described below) may be provided.

(4) (1)から(3)のいずれかに記載の精度調整装置において、前記精度は、前記工作機械におけるテーブル(例えば、後述のテーブルT)上面基準での主軸の直角度を含み、前記直角度を調整するための前記シムは、前記工作機械を構成するコラム(例えば、後述のコラムC)とベッド(例えば、後述のベッドB)との間に挿入されてもよい。   (4) In the accuracy adjusting device according to any one of (1) to (3), the accuracy includes a squareness of a spindle with respect to an upper surface of a table (for example, a table T described later) of the machine tool, and The shim for adjusting the perpendicularity may be inserted between a column (for example, a column C described below) and a bed (for example, a bed B described later) that configure the machine tool.

(5) (1)から(4)のいずれかに記載の精度調整装置において、前記精度は、前記工作機械における主軸の振り回しの誤差量を含み、前記振り回しの誤差量を調整するための前記シムは、前記工作機械を構成するコラム(例えば、後述のコラムC)と主軸頭(例えば、後述の主軸頭H)との間に挿入されてもよい。   (5) In the accuracy adjusting device according to any one of (1) to (4), the accuracy includes an error amount of swinging of a spindle in the machine tool, and the shim for adjusting the swing error amount. May be inserted between a column (for example, a column C described later) and a spindle head (for example, a spindle head H described later) that constitute the machine tool.

(6) 本発明に係る精度調整方法は、コンピュータ(例えば、後述の精度調整装置1)が、工作機械を構成する部品間の取り付け時の誤差に起因する所定の精度の測定値に対して、前記精度を許容範囲に収めるために、前記部品間の予め定められた複数の位置それぞれへのシムの挿入量の関係を定めた連立方程式と共に、当該連立方程式の変数である前記シムの挿入量を限定するための条件を記憶し、前記測定値の入力に対して、前記連立方程式を解き、前記条件を満たす解を前記シムの挿入量として出力する。   (6) In the accuracy adjusting method according to the present invention, a computer (for example, an accuracy adjusting device 1 described later) uses a measurement value with a predetermined accuracy, which is caused by an error in mounting between components forming a machine tool, In order to keep the accuracy within the allowable range, a simultaneous equation that defines the relationship of the insertion amount of the shim at each of a plurality of predetermined positions between the parts, and the insertion amount of the shim that is a variable of the simultaneous equation is set. The limiting condition is stored, the simultaneous equations are solved for the input of the measured value, and the solution satisfying the condition is output as the insertion amount of the shim.

(7) 本発明に係る精度調整プログラムは、(1)から(5)のいずれかに記載の精度調整装置としてコンピュータを機能させるためのものである。   (7) The accuracy adjustment program according to the present invention is for causing a computer to function as the accuracy adjustment device according to any one of (1) to (5).

本発明によれば、工作機械の精度調整の際に、適切な調整位置及び調整量を出力できる。   According to the present invention, an appropriate adjustment position and adjustment amount can be output when adjusting the accuracy of a machine tool.

実施形態に係る精度調整装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the precision adjusting device which concerns on embodiment. 実施形態に係る精度調整方法が対象とする切削加工機の構成を示す概要図である。It is a schematic diagram showing the composition of the cutting machine which the accuracy adjustment method concerning an embodiment makes object. 実施形態に係る切削加工機における直角度の測定結果を例示する図である。It is a figure which illustrates the measurement result of the perpendicularity in the cutting machine which concerns on embodiment. 実施形態に係る切削加工機における振り回し誤差量の測定結果を例示する図である。It is a figure which illustrates the measurement result of the swing error amount in the cutting machine which concerns on embodiment. 実施形態に係る切削加工機におけるコラムとベッドとの固定構造、及びシムの挿入位置を示す図である。It is a figure which shows the fixed structure of the column and bed in the cutting machine which concerns on embodiment, and the insertion position of a shim. 実施形態に係る切削加工機におけるベッドの上面から見たシムの挿入位置を示す図である。It is a figure which shows the insertion position of the shim seen from the upper surface of the bed in the cutting machine which concerns on embodiment. 実施形態に係るシムの挿入により直角度が調整された例を示す図である。It is a figure which shows the example in which the squareness was adjusted by inserting the shim which concerns on embodiment. 実施形態に係る切削加工機における主軸頭の正面断面図に対して、シムの挿入位置を示した図である。It is the figure which showed the insertion position of the shim with respect to the front sectional view of the spindle head in the cutting machine which concerns on embodiment. 実施形態に係るシムの挿入により振り回しの誤差量が調整された例を示す図である。It is a figure which shows the example which the error amount of swinging was adjusted by the insertion of the shim which concerns on embodiment. 実施形態に係る直角度を調整する際にシムの挿入量を限定するための条件を示す図である。It is a figure which shows the conditions for limiting the insertion amount of a shim when adjusting the squareness which concerns on embodiment. 実施形態に係る振り回しの誤差量を調整する際にシムの挿入量を限定するための条件を示す図である。It is a figure which shows the conditions for limiting the amount of insertion of a shim when adjusting the amount of error of swinging concerning an embodiment.

以下、本発明の実施形態の一例について説明する。
図1は、本実施形態に係る精度調整装置1の機能構成を示すブロック図である。
精度調整装置1は、サーバ装置又はパーソナルコンピュータ等の情報処理装置(コンピュータ)であり、制御部10と、記憶部20とを備え、さらに、各種の入出力及び通信デバイスを備えていてよい。
Hereinafter, an example of the embodiment of the present invention will be described.
FIG. 1 is a block diagram showing a functional configuration of the accuracy adjustment device 1 according to the present embodiment.
The accuracy adjustment device 1 is an information processing device (computer) such as a server device or a personal computer, and includes a control unit 10 and a storage unit 20, and may further include various input / output and communication devices.

制御部10は、精度調整装置1の全体を制御する部分であり、記憶部20に記憶されたソフトウェア(精度調整プログラム)を読み出して実行することにより、本実施形態における各種機能を実現している。制御部10は、CPUであってよい。   The control unit 10 is a unit that controls the entire accuracy adjustment device 1, and realizes various functions in the present embodiment by reading and executing software (accuracy adjustment program) stored in the storage unit 20. . The control unit 10 may be a CPU.

記憶部20は、ハードウェア群を精度調整装置1として機能させるための各種プログラム、及び各種データ等の記憶領域であり、ROM、RAM、フラッシュメモリ又はハードディスクドライブ(HDD)等であってよい。   The storage unit 20 is a storage area for storing various programs and various data for causing the hardware group to function as the accuracy adjustment device 1, and may be a ROM, a RAM, a flash memory, a hard disk drive (HDD), or the like.

本実施形態において、記憶部20は、工作機械を構成する部品間の取り付け時の誤差に起因する所定の精度の測定値に対して、この精度を許容範囲に収めるために、部品間の予め定められた複数の位置それぞれへのシムの挿入量の関係を定めた連立方程式を記憶する。
さらに、記憶部20は、この連立方程式の変数であるシムの挿入量を限定するための条件を記憶する。この条件は、測定値の範囲に応じて異なり、複数の条件が記憶されてよい。
In the present embodiment, the storage unit 20 predetermines between the parts in order to keep the accuracy within a permissible range with respect to the measurement value of the predetermined accuracy due to an error in mounting between the parts constituting the machine tool. The simultaneous equations that define the relationship of the insertion amount of the shim at each of the plurality of positions that are stored are stored.
Further, the storage unit 20 stores a condition for limiting the insertion amount of the shim which is a variable of the simultaneous equations. This condition differs depending on the range of measurement values, and a plurality of conditions may be stored.

ここで、測定される精度は、工作機械におけるテーブル上面基準での主軸の直角度を含む。直角度を調整するためのシムは、工作機械を構成するコラムとベッドとの間に挿入される。
また、測定される精度は、工作機械における主軸の振り回しの誤差量を含む。振り回しの誤差量を調整するためのシムは、工作機械を構成するコラムと主軸頭との間に挿入される。
Here, the measured accuracy includes the perpendicularity of the spindle with respect to the table top surface of the machine tool. The shim for adjusting the squareness is inserted between the bed and the column that constitutes the machine tool.
Further, the measured accuracy includes the amount of error in swinging the spindle in the machine tool. The shim for adjusting the swing error amount is inserted between the column and the spindle head that configure the machine tool.

演算部11は、測定値の入力に対して、連立方程式を解き、条件を満たす解を、各位置へ挿入すべきシムの量として出力する。   The calculation unit 11 solves the simultaneous equations with respect to the input of the measured value, and outputs the solution satisfying the conditions as the amount of shims to be inserted at each position.

係数決定部12は、挿入するシムの量、及びシムを挿入する前後の測定値を入力として、連立方程式の係数を算出する。
連立方程式の係数は、コラム重量及びハイコラム仕様等の違いにより、工作機械の種類毎に異なるため、種類毎に予め算出される。なお、係数は、機械学習によって決定されてもよい。
The coefficient determination unit 12 calculates the coefficient of the simultaneous equations by inputting the amount of shims to be inserted and the measurement values before and after the insertion of the shims.
The coefficients of the simultaneous equations are different for each type of machine tool due to differences in column weight, high column specifications, etc., and are therefore calculated in advance for each type. The coefficient may be determined by machine learning.

本実施形態において、工作機械及び調整される精度の種類は限定されないが、以下、一例として、切削加工機の直角度及び振り回しの誤差量を調整する手法を例示する。   In the present embodiment, the machine tool and the type of accuracy to be adjusted are not limited, but as an example, a method of adjusting the squareness of the cutting machine and the amount of swinging error will be described below.

図2は、本実施形態に係る精度調整方法が対象とする切削加工機の構成を示す概要図である。
切削加工機のテーブルTは、ベッドBに設けられたLM(Linear Motion)ガイドを摺動するLMブロックに固定される。
ベッドBには、コラムCがボルトによって垂直に固定される。また、コラムCに設けられたLMガイドを摺動するLMブロックに主軸頭Hが固定される。
FIG. 2 is a schematic diagram showing the configuration of the cutting machine targeted by the accuracy adjustment method according to the present embodiment.
The table T of the cutting machine is fixed to an LM block that slides on an LM (Linear Motion) guide provided on the bed B.
A column C is vertically fixed to the bed B by bolts. Further, the spindle head H is fixed to the LM block that slides on the LM guide provided on the column C.

ここで、ベッドBとコラムCとの固定部分A1に挿入するシムの位置及び量を調整することで、テーブルTの上面に対するコラムCの傾きと、主軸頭Hの傾きとが変化する。これにより、テーブルTの上面に対する垂直軸(Z軸)の直角度が調整される。
また、コラムC上のLMガイドを摺動するLMブロックと主軸頭Hとの固定部分A2に挿入するシムの位置及び量を調整することで、テーブルTの上面に対する主軸頭Hの傾きが変化する。これにより、直角度を保ったまま、テーブルTの上面に対する主軸の振り回しの誤差量が調整される。
Here, by adjusting the position and the amount of the shim to be inserted into the fixed portion A1 of the bed B and the column C, the inclination of the column C with respect to the upper surface of the table T and the inclination of the spindle head H are changed. Thereby, the perpendicularity of the vertical axis (Z axis) with respect to the upper surface of the table T is adjusted.
Further, by adjusting the position and amount of the shim to be inserted into the fixed portion A2 of the LM block that slides the LM guide on the column C and the spindle head H, the inclination of the spindle head H with respect to the upper surface of the table T changes. . As a result, the error amount of swinging the main shaft with respect to the upper surface of the table T is adjusted while maintaining the squareness.

なお、この切削加工機におけるX軸は正面から見て右方向、Y軸は奥方向、Z軸は上方向と定義する。   In this cutting machine, the X axis is defined as the right direction when viewed from the front, the Y axis is defined as the rear direction, and the Z axis is defined as the upward direction.

図3は、本実施形態に係る切削加工機における直角度の測定結果を例示する図である。
この例は、Z軸の位置0mm、すなわちテーブルTの上面から300mmまで主軸を上昇させたときの、X軸方向及びY軸方向それぞれのずれ量を測定したものである。
なお、X軸方向の測定値Px0はX軸のプラス方向からの、X軸方向の測定値Py0はY軸のプラス方向からの、それぞれ円筒スコヤに対するダイヤルゲージの当たり量を測定した値である。
FIG. 3 is a diagram illustrating the measurement result of the squareness in the cutting machine according to the present embodiment.
In this example, the displacement amount in each of the X-axis direction and the Y-axis direction is measured when the position of the Z axis is 0 mm, that is, when the main shaft is raised from the upper surface of the table T to 300 mm.
The measured value P x0 in the X-axis direction is the value measured from the positive direction of the X-axis, and the measured value P y0 in the X-axis direction is the value obtained by measuring the contact amount of the dial gauge with respect to the cylindrical square roller. is there.

この例は、Z軸が300mm移動すると、X軸のマイナス方向へ12μm、Y軸のマイナス方向へ12μm移動したことを示しており、テーブルTの上面に対してコラムCが左手前方向に傾いていることが分かる。   This example shows that when the Z axis moves 300 mm, it moves 12 μm in the negative direction of the X axis and 12 μm in the negative direction of the Y axis, and the column C is tilted in the left front direction with respect to the upper surface of the table T. I know that

図4は、本実施形態に係る切削加工機における振り回し誤差量の測定結果を例示する図である。
この例は、直径300mmでの主軸の振り回しによる、テーブルTの上面に対する高さの変化を測定したものである。
なお、測定値Xl0、Xr0、Yf0、Yr0は、Z軸プラス方向からの、テーブルTの上面に設置されたブロックゲージに対するダイヤルゲージの当たり量を測定した値である。
FIG. 4 is a diagram illustrating the measurement result of the swing error amount in the cutting machine according to the present embodiment.
In this example, the change in height with respect to the upper surface of the table T is measured by swinging the main shaft with a diameter of 300 mm.
The measured values X l0 , X r0 , Y f0 , and Y r0 are values obtained by measuring the contact amount of the dial gauge with respect to the block gauge installed on the upper surface of the table T from the Z-axis plus direction.

この例では、手前の−Yの位置で高さが0であったのに対して、+Y、+X及び−Xの位置でそれぞれZ軸のプラス方向へ18μm、12μm及び6μm移動したことを示しており、テーブルTの上面に対して、主軸の先端が垂直下向きから右奥方向へ傾いていることが分かる。   In this example, the height was 0 at the -Y position on the front side, whereas it was moved by 18 μm, 12 μm, and 6 μm in the plus direction of the Z axis at the + Y, + X, and -X positions, respectively. Therefore, it can be seen that the tip of the main shaft is inclined vertically downward from the upper surface of the table T to the right rear direction.

図5Aは、本実施形態に係る切削加工機におけるコラムCとベッドBとの固定構造、及びシムの挿入位置を示す図である。
この例では、コラムCは、ベッドBに対して、左右4本ずつのボルトにより固定される。また、シムの挿入位置は、各ボルト穴を挟んで2箇所ずつ、合計16箇所設けられる。
FIG. 5A is a diagram showing a fixing structure of the column C and the bed B and the insertion position of the shim in the cutting machine according to the present embodiment.
In this example, the column C is fixed to the bed B by four left and right bolts. In addition, the shim insertion positions are provided at two places with each bolt hole sandwiched therebetween, for a total of 16 places.

図5Bは、本実施形態に係る切削加工機におけるベッドBの上面から見たシムの挿入位置を示す図である。
正面から見て左右4本ずつのボルト穴それぞれに対して、シムの挿入位置が2箇所ずつ設けられている。
FIG. 5B is a diagram showing the insertion position of the shim viewed from the upper surface of the bed B in the cutting machine according to the present embodiment.
Two shim insertion positions are provided for each of the four left and right bolt holes when viewed from the front.

ここで、手前から見て右側の奥からi番目のボルト穴に対応する、手前側及び奥側の挿入位置へのシムの挿入量をそれぞれRfi、Rriとし、左側の奥からi番目のボルト穴に対応する、手前側及び奥側の挿入位置へのシムの挿入量をそれぞれLfi、Lriとする。
また、2枚のシムの平均挿入量R=(Rfi+Rri)/2、及びL=(Lfi+Lri)/2を定義する。なお、Rfi=Rri、Lfi=Lriであってよい。
Here, the insertion amounts of the shims at the insertion positions on the front side and the back side, which correspond to the i-th bolt hole from the back on the right side when viewed from the front, are R fi and R ri , respectively. The insertion amounts of the shims at the front and rear insertion positions corresponding to the bolt holes are L fi and L ri , respectively.
Further, the average insertion amount R i = (R fi + R ri ) / 2 and L i = (L fi + L ri ) / 2 of the two shims are defined. Note that R fi = R ri and L fi = L ri may be satisfied .

図6は、本実施形態に係るシムの挿入により直角度が調整された例を示す図である。
この例では、図3及び図4の測定結果に応じて、Lr4=Lf4=30μmのシムが挿入されている。
これにより、コラムCの傾きが改善され、シム挿入後の直角度の測定値は、Z軸位置によらず0となっている。
FIG. 6 is a diagram showing an example in which the squareness is adjusted by inserting the shim according to the present embodiment.
In this example, a shim of L r4 = L f4 = 30 μm is inserted according to the measurement results of FIGS. 3 and 4.
As a result, the inclination of the column C is improved, and the measured value of the squareness after inserting the shim is 0 regardless of the Z-axis position.

また、この調整により振り回しの誤差量も変化し、この例では、+Yの位置でYr0=−18μmからYrp=−6μmに、+Xの位置でXr0=−12μmからXrp=−6μmに、−Xの位置でXl0=−6μmからXlp=0μmに変化している。 The amount of swing error also changes due to this adjustment, and in this example, Y r0 = −18 μm to Y rp = −6 μm at the + Y position, and X r0 = −12 μm to X rp = −6 μm at the + X position. , −X at the position of −X changes from X 10 = −6 μm to X lp = 0 μm.

図7は、本実施形態に係る切削加工機における主軸頭Hの正面断面図に対して、シムの挿入位置を示した図である。
主軸頭Hは、左右2本のLMガイドそれぞれに設けられた2個ずつのLMブロックD、つまり合計4個のLMブロックDに固定される。
FIG. 7 is a view showing the insertion position of the shim with respect to the front sectional view of the spindle head H in the cutting machine according to the present embodiment.
The spindle head H is fixed to two LM blocks D provided on each of the two left and right LM guides, that is, a total of four LM blocks D.

主軸頭HのY方向の傾きを調整するためのシムは、主軸頭HのLMブロックDへの設置面に挿入される。ここでは、LMブロックD毎に1箇所の挿入位置が設けられ、上部左側、上部右側、下部左側、下部右側へのシムの挿入量を、それぞれT、T、B、Bとする。
また、2枚のシムの平均挿入量B=(B+B)/2、及びT=(T+T)/2を定義する。なお、B=B、T=Tであってよい。
The shim for adjusting the inclination of the spindle head H in the Y direction is inserted on the installation surface of the spindle head H on the LM block D. Here, one insertion position is provided for each LM block D, and the insertion amounts of the shims on the upper left side, the upper right side, the lower left side, and the lower right side are T l , T r , B l , and Br , respectively. .
Further, the average insertion amount B = (B 1 + B r ) / 2 and T = (T 1 + T r ) / 2 of the two shims are defined. Note that B 1 = B r and T l = T r may be satisfied.

主軸頭HのX方向の傾きを調整するためのシムは、主軸頭Hを左右方向(X軸方向)に位置決めするために設けられた突起部Eと、LMブロックDとの突き当て面に挿入される。ここでは、左側のLMブロックDそれぞれに1箇所の挿入位置が設けられ、上部及び下部への挿入量を、それぞれSt及びSbとする。   The shim for adjusting the inclination of the spindle head H in the X direction is inserted in the abutting surface between the LM block D and the projection E provided for positioning the spindle head H in the left-right direction (X-axis direction). To be done. Here, one insertion position is provided in each of the left LM blocks D, and the insertion amounts to the upper portion and the lower portion are St and Sb, respectively.

図8は、本実施形態に係るシムの挿入により振り回しの誤差量が調整された例を示す図である。
この例では、直角度が調整された後の図6の測定結果に応じて、B=B=S=10μmのシムが挿入されている。
これにより、主軸の傾きが改善され、シム挿入後の振り回しの誤差量の測定値は、全ての位置で0となっている。
FIG. 8 is a diagram showing an example in which the amount of swinging error is adjusted by inserting the shim according to the present embodiment.
In this example, a shim of B 1 = B r = S t = 10 μm is inserted according to the measurement result of FIG. 6 after the squareness is adjusted.
As a result, the inclination of the main axis is improved, and the measured value of the swing error amount after the shim insertion is zero at all positions.

次に、直角度に関する変位量と、シムの挿入位置及び挿入量との関係を定義した連立方程式を説明する。
シムの挿入後のX軸方向の直角度Pは、シムの挿入前の測定値Px0に対して、次のように定義できる。
=Px0+Kx1(R−L)+Kx2(R−L)+Kx3(R−L)+Kx4(R−L
また、シムの挿入後のY軸方向の直角度Pは、シムの挿入前の測定値Py0に対して、次のように定義できる。
=Py0+Ky1(R+L)+Ky2(R+L)−Ky3(R+L)−Ky4(R+L
Next, a simultaneous equation that defines the relationship between the displacement amount related to the squareness and the insertion position and the insertion amount of the shim will be described.
The perpendicularity P x in the X-axis direction after inserting the shim can be defined as follows with respect to the measured value P x0 before inserting the shim.
P x = P x0 + K x1 (R 1 -L 1) + K x2 (R 2 -L 2) + K x3 (R 3 -L 3) + K x4 (R 4 -L 4)
Further, the perpendicularity P y in the Y-axis direction after inserting the shim can be defined as follows with respect to the measured value P y0 before inserting the shim.
P y = P y0 + K y1 (R 1 + L 1) + K y2 (R 2 + L 2) -K y3 (R 3 + L 3) -K y4 (R 4 + L 4)

xi及びKyiは、係数決定部12により予め決定される係数である。例えば、複数のシムの挿入位置のうち、Rのみにシムを挿入してR〜R及びL〜Lを0とし、挿入前後の直角度の測定値を方程式に代入することで係数Kx1及びKy1が定まる。同様に、R、R、Rのシムを順に単独で挿入し、挿入前後の直角度の測定値を方程式に代入することで、全ての係数が順に定まる。 K xi and K yi are coefficients determined in advance by the coefficient determination unit 12. For example, among the insertion positions of a plurality of shims, a shim is inserted only in R 1 to set R 2 to R 4 and L 1 to L 4 to 0, and the measured values of squareness before and after insertion are substituted into the equation. The coefficients K x1 and K y1 are determined. Similarly, by inserting the shims R 2 , R 3 , and R 4 individually in order and substituting the squareness measurement values before and after the insertion into the equation, all the coefficients are determined in order.

なお、係数の決定方法はこれに限られない。係数決定部12は、R〜R及びL〜Lの少なくともいずれかの値、並びにシムの挿入前後の測定値を代入した方程式を、複数連立して解くことにより、係数を算出する。
係数決定部12は、係数の算出に必要な予め設定されたシムの挿入位置をユーザに提示して、入力値を受け付けてもよい。また、係数決定部12は、方程式の数が不足し係数を算出できない場合に、別パターンの挿入量及び測定値の入力を促す出力を行い、入力値を受け付けてもよい。
The method of determining the coefficient is not limited to this. Coefficient determining unit 12, at least one of the values R 1 to R 4 and L 1 ~L 4, and the equation obtained by substituting the measured values before and after insertion of the shim, by solving a plurality of simultaneous, calculates the coefficients .
The coefficient determination unit 12 may present the user with the preset insertion position of the shim necessary for calculating the coefficient and accept the input value. Further, when the number of equations is insufficient and the coefficient cannot be calculated, the coefficient determination unit 12 may perform an output prompting the user to input the insertion amount and the measurement value of another pattern, and accept the input value.

係数が決定し、シムの挿入後の直角度がP=0、P=0となるときのR及びLを求める場合、変数8個に対して方程式2つでは解が求まらない。そこで、シムの挿入量を限定する条件を追加することで、変数を2個以下に減少させる。 When the coefficients are determined and R i and L i are calculated when the squareness after the insertion of the shim is P x = 0 and P y = 0, a solution can be obtained by two equations for eight variables. Absent. Therefore, the variable is reduced to 2 or less by adding a condition for limiting the insertion amount of shims.

図9は、本実施形態に係る直角度を調整する際にシムの挿入量を限定するための条件を示す図である。
シムの挿入前の直角度の測定値Px0、Py0に応じて、例えば、それぞれの正負の組み合わせに応じて、挿入しない位置が決められ、さらに、挿入する位置については全て、挿入量が等しくなるよう限定される。
このとき、計算上、シムの挿入量がマイナスとならない条件が設定される。
FIG. 9 is a diagram showing conditions for limiting the insertion amount of the shim when adjusting the squareness according to the present embodiment.
The non-insertion position is determined according to the squareness measurement values P x0 and P y0 before the insertion of the shim, for example, according to each combination of positive and negative, and further, the insertion amount is equal at all insertion positions. Limited to be
At this time, a condition is set so that the shim insertion amount does not become negative in calculation.

また、直角度の測定値が非常に大きいと、特定箇所のシムの挿入量が大きくなる場合がある。すると、コラムCとベッドBとの隙間が広がるため、経年によって錆又は変形が生じ精度が悪化しやすい。そこで、例えば、測定値がNを超える場合に、シムの挿入位置を分散させる条件が適用される。
値Nは、予め閾値として固定値が設定されていてもよいし、固定値を設定せず、方程式の解が所定値を超えた場合に条件を切り替える計算手順が採用されてもよい。
Also, if the measured value of the squareness is very large, the amount of insertion of the shim at a specific location may be large. Then, the gap between the column C and the bed B widens, so that rust or deformation occurs over time and the accuracy is likely to deteriorate. Therefore, for example, when the measured value exceeds N, the condition for dispersing the shim insertion positions is applied.
As the value N, a fixed value may be set in advance as a threshold value, or a fixed value may not be set and a calculation procedure for switching the condition when the solution of the equation exceeds a predetermined value may be adopted.

例えば、前述の連立方程式において、係数がKx1=1/10、Kx2=2/10、Kx3=3/10、Kx4=4/10、Ky1=4/10、Ky2=8/10、Ky3=8/10、Ky4=4/10であり、N=30μmの閾値が設定されている場合、シムの挿入量は、次のように計算される。 For example, in the above simultaneous equations, the coefficients are K x1 = 1/10, K x2 = 2/10 , K x3 = 3/10 , K x4 = 4/10 , K y1 = 4/10 , K y2 = 8 / When 10, K y3 = 8/10 , K y4 = 4/10 and the threshold value of N = 30 μm is set, the insertion amount of the shim is calculated as follows.

x0=12μm、Py0=12μmの場合、条件R1〜3=L1〜3=0を用いると、
0=12+(4/10)(R−L
0=12−(4/10)(R+L
が成り立つので、R=0μm、L=30μmとなる。
When P x0 = 12 μm and P y0 = 12 μm, using the conditions R 1 to 3 = L 1 to 3 = 0,
0 = 12 + (4/10) ( R 4 -L 4)
0 = 12- (4/10) (R 4 + L 4)
Therefore, R 4 = 0 μm and L 4 = 30 μm.

x0=40μm、Py0=6μmの場合、条件L=L=L、R=0を用いると、
0=40+(6/10)(0−L)+(4/10)(0−L
0=6+(4/10)(0+L)−(4/10)(0+L
が成り立つので、L1〜3=34μm、L=49μmとなる。
For P x0 = 40 μm and P y0 = 6 μm, using the conditions L 1 = L 2 = L 3 and R i = 0,
0 = 40 + (6/10) ( 0-L 1) + (4/10) (0-L 4)
0 = 6 + (4/10) ( 0 + L 1) - (4/10) (0 + L 4)
Therefore, L 1-3 = 34 μm and L 4 = 49 μm.

x0=−4μm、Py0=20μmの場合、条件R1〜3=L1〜3=0を用いると、
0=−4+(4/10)(R−L
0=20−(4/10)(R+L
が成り立つので、R=30μm、L=20μmとなる。
In the case of P x0 = −4 μm and P y0 = 20 μm, using the conditions R 1 to 3 = L 1 to 3 = 0,
0 = -4 + (4/10) ( R 4 -L 4)
0 = 20- (4/10) (R 4 + L 4)
Therefore, R 4 = 30 μm and L 4 = 20 μm.

なお、挿入できるシムの厚さが10μm単位に限られる等、制限がある場合、方程式の解の近似値が選択されてもよい。
また、直角度の測定値Px0、Py0によっては、P=0、P=0の解が求まらない場合も考えられるが、この場合、P≒0、P≒0となる値が選択されてもよい。
If there are restrictions such as the thickness of the shim that can be inserted is limited to the unit of 10 μm, the approximate value of the solution of the equation may be selected.
Further, depending on the measured values of squareness P x0 and P y0 , it may be possible that a solution of P x = 0 and P y = 0 cannot be obtained. In this case, P x ≈0 and P y ≈0. May be selected.

次に、振り回しに関する変位量と、シムの挿入位置及び挿入量との関係を定義した連立方程式を説明する。
シムの挿入後のX軸方向の誤差量X及びXとY軸方向の誤差量Y及びYとは、シムの挿入前の測定値Xlp、Xrp、Yfp、Yrpに対して、次のように定義できる。
=Yfp=0
=X={(Xlp+Xrp)−(Yfp+Yrp)}/2
=Xlp−C(S−S)+C(B−T)/2
=Xrp+C(S−S)+C(B−T)/2
=Yrp+C(B−T)
Next, the simultaneous equations that define the relationship between the displacement amount related to swirling and the insertion position and insertion amount of the shim will be described.
The error amounts X l and X r in the X-axis direction after inserting the shim and the error amounts Y f and Y r in the Y-axis direction are measured values X lp , X rp , Y fp and Y rp before inserting the shim. On the other hand, it can be defined as follows.
Y f = Y fp = 0
X l = X r = {(X lp + X rp ) − (Y fp + Y rp )} / 2
X l = X lp -C x ( S t -S b) + C y (B-T) / 2
X r = X rp + C x (S t -S b) + C y (B-T) / 2
Y r = Y rp + C y (B-T)

及びCは、係数決定部12により予め決定される係数である。例えば、B又はTのシムを挿入し、挿入前後の振り回しの測定値を方程式に代入することでCが定まる。次に、S又はSのシムを挿入し、挿入前後の振り回しの測定値を方程式に代入することでCが定まる。 C x and C y are coefficients determined in advance by the coefficient determination unit 12. For example, C y is determined by inserting a B or T shim and substituting the measured values of swinging before and after insertion into the equation. Then, by inserting a shim of S t or S b, C x is determined by substituting the measured value of swing of the front and rear insertion into the equation.

なお、係数の決定方法はこれに限られない。係数決定部12は、S、S、B、Tの少なくともいずれかの値、並びにシムの挿入前後の測定値を代入した方程式を、複数連立して解くことにより、係数を算出する。
係数決定部12は、係数の算出に必要な予め設定されたシムの挿入位置をユーザに提示して、入力値を受け付けてもよい。また、係数決定部12は、方程式の数が不足し係数を算出できない場合に、別パターンの挿入量及び測定値の入力を促す出力を行い、入力値を受け付けてもよい。
The method of determining the coefficient is not limited to this. Coefficient determining unit 12, S t, S b, B, at least one of the values T, then as well as the equation obtained by substituting the measured values before and after insertion of the shim, by solving a plurality of simultaneous, calculates the coefficients.
The coefficient determination unit 12 may present the user with the preset insertion position of the shim necessary for calculating the coefficient and accept the input value. Further, when the number of equations is insufficient and the coefficient cannot be calculated, the coefficient determination unit 12 may perform an output prompting the input of the insertion amount and the measurement value of another pattern, and may accept the input value.

係数が決定し、シムの挿入後の振り回しの測定値がX=X=Y=0となるときのB、T、S及びSを求める場合、まず、連立方程式によりB−T及びS−Sが求まる。さらに、シムの挿入量を限定する条件が追加されることで、B、T、S及びSが決定される。 When B, T, S t, and S b are determined when the coefficient is determined and the measured value of swinging after inserting the shim is X 1 = X r = Y r = 0, first, a simultaneous equation is used to calculate B-T. and S t -S b is obtained. Furthermore, B, T, S t, and S b are determined by adding a condition that limits the insertion amount of shims.

図10は、本実施形態に係る振り回しの誤差量を調整する際にシムの挿入量を限定するための条件を示す図である。
シムの挿入量BとTとの大小関係に応じて、例えば、B又はTの少なくともいずれかが0に限定される。
同様に、シムの挿入量SとSとの大小関係に応じて、例えば、S又はSの少なくともいずれかが0に限定される。
FIG. 10 is a diagram showing conditions for limiting the shim insertion amount when adjusting the swing error amount according to the present embodiment.
Depending on the magnitude relationship between the shim insertion amounts B and T, for example, at least one of B and T is limited to 0.
Similarly, in accordance with the magnitude relationship between the insertion amount S t and S b of the shim, for example, at least one of S t or S b is limited to 0.

例えば、前述の連立方程式において、係数がC=3/10、C=6/10の場合、シムの挿入量は、次のように計算される。 For example, in the above simultaneous equations, when the coefficients are C x = 3/10 and C y = 6/10, the shim insertion amount is calculated as follows.

rp=−6μm、Xlp=0μm、Yfp=0μm、Yrp=−6μmの場合、
0=0−(3/10)(S−S)+(6/10)(B−T)/2
0=−6+(3/10)(S−S)+(6/10)(B−T)/2
0=−6+(6/10)(B−T)
が成り立つので、B−T=10、S−S=10となる。ここに前述の条件を適用すると、S=10、B=B=B=10が求まる。
When X rp = −6 μm, X lp = 0 μm, Y fp = 0 μm, and Y rp = −6 μm,
0 = 0- (3/10) (S t -S b) + (6/10) (B-T) / 2
0 = -6 + (3/10) ( S t -S b) + (6/10) (B-T) / 2
0 = -6 + (6/10) (BT)
Therefore, B−T = 10 and S t −S b = 10. If the above-mentioned conditions are applied here, S t = 10 and B = B 1 = B r = 10 are obtained.

本実施形態によれば、精度調整装置1は、工作機械を構成する部品間の取り付け時の誤差に起因する所定の精度の測定値に対して、精度を許容範囲に収めるために、部品間の予め定められた複数の位置それぞれに挿入するシムの量の関係を定めた連立方程式と共に、この連立方程式の変数であるシムの量の少なくともいずれかを限定する条件を記憶し、測定値の入力に対して連立方程式を解き、条件を満たす解をシムの挿入量として出力する。
したがって、精度調整装置1は、工作機械の精度調整の際に、精度の測定値を入力として、適切な調整位置及び調整量を容易に出力できる。
According to the present embodiment, the accuracy adjusting device 1 adjusts the accuracy between the parts in order to keep the accuracy within a permissible range with respect to the measured value of the predetermined accuracy due to the error in mounting the parts constituting the machine tool. Along with simultaneous equations that define the relationship of the amount of shim to be inserted at each of a plurality of predetermined positions, store the condition that limits at least one of the amount of shims that is the variable of this simultaneous equation, and input the measured value. On the other hand, the simultaneous equations are solved, and the solution satisfying the conditions is output as the insertion amount of the shim.
Therefore, the precision adjusting device 1 can easily output an appropriate adjustment position and adjustment amount by inputting the measurement value of the precision when adjusting the precision of the machine tool.

具体的には、精度調整装置1は、例えば、工作機械におけるテーブル上面基準での主軸の直角度を調整する際に、コラムとベッドとの間に挿入するシムの位置及び量を適切に決定できる。また、例えば、工作機械における主軸の振り回しの誤差量を調整する際に、コラムと主軸頭との間に挿入するシムの位置及び量を適切に決定できる。   Specifically, the accuracy adjusting device 1 can appropriately determine the position and the amount of the shim to be inserted between the column and the bed, for example, when adjusting the squareness of the spindle with respect to the table upper surface in the machine tool. . Further, for example, when adjusting the amount of error in swinging of the spindle in the machine tool, the position and amount of shims to be inserted between the column and the spindle head can be appropriately determined.

精度調整装置1は、測定値の範囲毎に異なる条件を記憶することにより、例えばシムの挿入量が偏り隙間ができる等の不都合を抑制でき、適切なシムの配置を出力できる。   By storing different conditions for each range of measured values, the accuracy adjusting apparatus 1 can suppress inconveniences such as uneven insertion amount of shims and gaps, and can output an appropriate shim arrangement.

精度調整装置1は、シムを挿入する前後の測定値を入力として、連立方程式の係数を算出するので、工作機械の種類毎に適切な式を生成でき、汎用性を高めることができる。   Since the accuracy adjusting device 1 calculates the coefficient of the simultaneous equations by inputting the measured values before and after inserting the shim, it is possible to generate an appropriate expression for each type of machine tool and enhance versatility.

以上、本発明の実施形態について説明したが、本発明は前述した実施形態に限るものではない。また、本実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. In addition, the effects described in the present embodiment are merely enumeration of the most suitable effects resulting from the present invention, and the effects according to the present invention are not limited to those described in the present embodiment.

精度調整装置1は、シムの挿入位置及び挿入量の算出処理を、バッチ処理により行ってもよいし、工作機械が製造される度に精度の測定結果を受信し、都度、算出結果を出力してもよい。   The accuracy adjusting device 1 may perform the calculation processing of the insertion position and the insertion amount of the shim by batch processing, receives the measurement result of the accuracy each time the machine tool is manufactured, and outputs the calculation result each time. May be.

精度調整装置1は、制御部10に演算部11と係数決定部12とを共に備える構成としたが、これには限られず、係数決定部12の機能が精度調整装置1とは別の装置に実装されてもよい。この場合、精度調整装置1は、決定された係数を別の装置から受信して記憶部20に記憶する。   The accuracy adjustment device 1 is configured to include both the calculation unit 11 and the coefficient determination unit 12 in the control unit 10, but the present invention is not limited to this, and the function of the coefficient determination unit 12 is different from that of the accuracy adjustment device 1. May be implemented. In this case, the accuracy adjustment device 1 receives the determined coefficient from another device and stores it in the storage unit 20.

精度調整装置1による精度調整方法は、ソフトウェアにより実現される。ソフトウェアによって実現される場合には、このソフトウェアを構成するプログラムが、コンピュータにインストールされる。また、これらのプログラムは、リムーバブルメディアに記録されてユーザに配布されてもよいし、ネットワークを介してユーザのコンピュータにダウンロードされることにより配布されてもよい。   The precision adjusting method by the precision adjusting device 1 is realized by software. When implemented by software, the programs that make up this software are installed in a computer. Further, these programs may be recorded on a removable medium and distributed to users, or may be distributed by being downloaded to a user's computer via a network.

1 精度調整装置
10 制御部
11 演算部
12 係数決定部
20 記憶部
1 Accuracy Adjusting Device 10 Control Unit 11 Computing Unit 12 Coefficient Determining Unit 20 Storage Unit

Claims (7)

工作機械を構成する部品間の取り付け時の誤差に起因する所定の精度の測定値に対して、前記精度を許容範囲に収めるために、前記部品間の予め定められた複数の位置それぞれへのシムの挿入量の関係を定めた連立方程式と共に、当該連立方程式の変数である前記シムの挿入量を限定するための条件を記憶する記憶部と、
前記測定値の入力に対して、前記連立方程式を解き、前記条件を満たす解を前記シムの挿入量として出力する演算部と、を備える精度調整装置。
In order to keep the accuracy within a permissible range with respect to a measurement value of a predetermined accuracy caused by an error in mounting between parts constituting the machine tool, a shim at each of a plurality of predetermined positions between the parts. With simultaneous equations that define the relationship of the insertion amount of, a storage unit that stores a condition for limiting the insertion amount of the shim that is a variable of the simultaneous equations,
An accuracy adjustment device comprising: a calculation unit that solves the simultaneous equations with respect to the input of the measurement value and outputs a solution that satisfies the condition as an insertion amount of the shim.
前記記憶部は、前記測定値の範囲に応じて、複数の前記条件を記憶する請求項1に記載の精度調整装置。   The accuracy adjustment device according to claim 1, wherein the storage unit stores a plurality of the conditions according to the range of the measured value. 前記シムの挿入量、及び前記シムを挿入する前後の前記測定値を入力として、前記連立方程式の係数を算出する係数決定部を備える請求項1又は請求項2に記載の精度調整装置。   The accuracy adjustment device according to claim 1 or 2, further comprising: a coefficient determination unit that calculates a coefficient of the simultaneous equations by inputting the insertion amount of the shim and the measured values before and after the insertion of the shim. 前記精度は、前記工作機械におけるテーブル上面基準での主軸の直角度を含み、
前記直角度を調整するための前記シムは、前記工作機械を構成するコラムとベッドとの間に挿入される請求項1から請求項3のいずれかに記載の精度調整装置。
The accuracy includes the squareness of the spindle with respect to the table upper surface of the machine tool,
The accuracy adjusting device according to any one of claims 1 to 3, wherein the shim for adjusting the perpendicularity is inserted between a column and a bed that configure the machine tool.
前記精度は、前記工作機械における主軸の振り回しの誤差量を含み、
前記振り回しの誤差量を調整するための前記シムは、前記工作機械を構成するコラムと主軸頭との間に挿入される請求項1から請求項4のいずれかに記載の精度調整装置。
The accuracy includes an error amount of swinging of the spindle in the machine tool,
The accuracy adjusting device according to any one of claims 1 to 4, wherein the shim for adjusting the error amount of the swinging is inserted between a column forming the machine tool and a spindle head.
コンピュータが、
工作機械を構成する部品間の取り付け時の誤差に起因する所定の精度の測定値に対して、前記精度を許容範囲に収めるために、前記部品間の予め定められた複数の位置それぞれへのシムの挿入量の関係を定めた連立方程式と共に、当該連立方程式の変数である前記シムの挿入量を限定するための条件を記憶し、
前記測定値の入力に対して、前記連立方程式を解き、前記条件を満たす解を前記シムの挿入量として出力する精度調整方法。
Computer
In order to keep the accuracy within a permissible range with respect to a measurement value of a predetermined accuracy caused by an error in mounting between parts constituting the machine tool, a shim at each of a plurality of predetermined positions between the parts. With the simultaneous equations that define the relationship of the insertion amount of, stores the condition for limiting the insertion amount of the shim that is a variable of the simultaneous equations,
An accuracy adjusting method for solving the simultaneous equations with respect to the input of the measured value and outputting a solution satisfying the condition as an insertion amount of the shim.
請求項1から請求項5のいずれかに記載の精度調整装置としてコンピュータを機能させるための精度調整プログラム。   A precision adjustment program for causing a computer to function as the precision adjustment device according to claim 1.
JP2018191741A 2018-10-10 2018-10-10 Accuracy adjustment device, accuracy adjustment method and accuracy adjustment program Active JP7160619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018191741A JP7160619B2 (en) 2018-10-10 2018-10-10 Accuracy adjustment device, accuracy adjustment method and accuracy adjustment program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018191741A JP7160619B2 (en) 2018-10-10 2018-10-10 Accuracy adjustment device, accuracy adjustment method and accuracy adjustment program

Publications (2)

Publication Number Publication Date
JP2020059085A true JP2020059085A (en) 2020-04-16
JP7160619B2 JP7160619B2 (en) 2022-10-25

Family

ID=70219270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018191741A Active JP7160619B2 (en) 2018-10-10 2018-10-10 Accuracy adjustment device, accuracy adjustment method and accuracy adjustment program

Country Status (1)

Country Link
JP (1) JP7160619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193826A1 (en) 2020-03-27 2021-09-30 富士フイルム株式会社 Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647639A (en) * 1992-07-29 1994-02-22 Mitsutoyo Corp Inclination adjusting device for rotating object holder
JP2004345005A (en) * 2003-05-20 2004-12-09 Toyota Motor Corp Device for determining leveling bolt adjusting quantity to machine tool, machine tool, and method for monitoring level of group of machine tools
JP2007313584A (en) * 2006-05-24 2007-12-06 Nachi Fujikoshi Corp Non-contact cylinder device, and table moving device using non-contact cylinder device
JP2012206178A (en) * 2011-03-29 2012-10-25 Brother Industries Ltd Rotary table device, and machine tool
JP2016026892A (en) * 2013-12-25 2016-02-18 三菱重工業株式会社 Machine tool adjustment system, machine tool adjustment method, program, and machine tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647639A (en) * 1992-07-29 1994-02-22 Mitsutoyo Corp Inclination adjusting device for rotating object holder
JP2004345005A (en) * 2003-05-20 2004-12-09 Toyota Motor Corp Device for determining leveling bolt adjusting quantity to machine tool, machine tool, and method for monitoring level of group of machine tools
JP2007313584A (en) * 2006-05-24 2007-12-06 Nachi Fujikoshi Corp Non-contact cylinder device, and table moving device using non-contact cylinder device
JP2012206178A (en) * 2011-03-29 2012-10-25 Brother Industries Ltd Rotary table device, and machine tool
JP2016026892A (en) * 2013-12-25 2016-02-18 三菱重工業株式会社 Machine tool adjustment system, machine tool adjustment method, program, and machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193826A1 (en) 2020-03-27 2021-09-30 富士フイルム株式会社 Inorganic-solid-electrolyte-containing composition, all-solid-state secondary battery sheet, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery sheet and all solid-state secondary battery

Also Published As

Publication number Publication date
JP7160619B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
TWI468644B (en) Method of compensating measurement errors of a measuring machine deriving from the deformations of the machine bed caused by the load exerted by the workpiece to be measured on the machine bed. and measuring machine operating according to said method
US7908028B2 (en) Machining device and method
KR101198058B1 (en) Machine tool
EP2762830B1 (en) Dynamical monitoring and modelling of a coordinate measuring machine
US20140222372A1 (en) Variable modelling of a measuring device
TWI467130B (en) Method of compensating measurement errors of a measuring machine deriving from the deformations of the machine bed caused by the load exerted by the mobile unit of the machine on the machine bed. and measuring machine operating according to said method
JPWO2010067651A1 (en) Machine motion trajectory measuring device, numerically controlled machine tool, and machine motion trajectory measuring method
Ivanov et al. Experimental diagnostic research of fixture
CN105397863B (en) High-precision punch device
JP5611507B2 (en) Flatness measuring device
TW202035083A (en) Method for the correction of axis motions
JP2020059085A (en) Precision adjustment apparatus, precision adjustment method, and precision adjustment program
JP7158582B2 (en) Adjustment amount estimation device, adjustment amount estimation method, adjustment amount estimation program, and machine tool assembly method
WO2021005887A1 (en) Machining management method and machining management system
CN106092444A (en) The gravity balance device of a kind of Dual-motors Driving and control method
US20230236567A1 (en) Post-processor, machining program generation method, cnc machining system, and program for generating machining program
CN105973182A (en) Individual drive type balancing device and adjusting method
WO2015063912A1 (en) Positioning precision setting method, positioning precision setting device, and positioning precision setting program
Chan et al. Effect of moving structure on the spatial accuracy and compensation of the coordinate measuring machine
Chang et al. Analytical and finite element modeling of the dynamic characteristics of a linear feeding stage with different arrangements of rolling guides
US10480608B2 (en) Machine vibration isolation
Chen et al. The use of response surface methodology to optimize parameter adjustments in CNC machine tools
JP2021171828A (en) Flatness calculation method
CN105415432B (en) Drilling machine
CN114667056B (en) Substrate operation platform and assembly method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221013

R150 Certificate of patent or registration of utility model

Ref document number: 7160619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150