JP2020056594A - Chromatograph - Google Patents

Chromatograph Download PDF

Info

Publication number
JP2020056594A
JP2020056594A JP2018185298A JP2018185298A JP2020056594A JP 2020056594 A JP2020056594 A JP 2020056594A JP 2018185298 A JP2018185298 A JP 2018185298A JP 2018185298 A JP2018185298 A JP 2018185298A JP 2020056594 A JP2020056594 A JP 2020056594A
Authority
JP
Japan
Prior art keywords
chromatograph
detection
column
peak
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018185298A
Other languages
Japanese (ja)
Other versions
JP7201987B2 (en
Inventor
伊藤 正人
Masato Ito
正人 伊藤
敏伶 裴
Min Ling Pei
敏伶 裴
小澤 真一
Shinichi Ozawa
真一 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2018185298A priority Critical patent/JP7201987B2/en
Priority to US16/565,197 priority patent/US11619617B2/en
Priority to CN201910915187.0A priority patent/CN110967437A/en
Publication of JP2020056594A publication Critical patent/JP2020056594A/en
Application granted granted Critical
Publication of JP7201987B2 publication Critical patent/JP7201987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6034Construction of the column joining multiple columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8637Peak shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8658Optimising operation parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/328Control of physical parameters of the fluid carrier of pressure or speed valves, e.g. check valves of pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8804Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 automated systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8827Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/889Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 monitoring the quality of the stationary phase; column performance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8895Independent juxtaposition of embodiments; Reviews
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed

Abstract

To facilitate the handling of cases where a chromatograph does not operate properly.SOLUTION: The chromatograph (liquid chromatograph 100) for analyzing a sample by supplying an eluent solution and the sample and by separating and detecting components contained in the sample, includes a detection unit (control unit 170) that detects defects in the analyzing, and an operation control unit (control unit 170) that makes the components involved in the analyzing execute at least one of the operations for identifying a cause of the defects or for avoiding the defects from arising.SELECTED DRAWING: Figure 1

Description

本発明は、クロマトグラフに係り、特に、適切に動作させることなどを容易にできる技術に関するものである。   The present invention relates to a chromatograph, and more particularly, to a technique that can facilitate appropriate operation and the like.

クロマトグラフの適切な動作を容易になし得る技術として、既知試料を分析して、分析エラーが生じている場合に、チェック項目に関するガイダンスを表示するようにしたものが知られている(例えば、特許文献1参照。)。   As a technique that can easily perform an appropriate operation of a chromatograph, there is known a technique in which a known sample is analyzed, and when an analysis error occurs, guidance regarding a check item is displayed. Reference 1).

特開平4−130271号公報JP-A-4-130271

しかしながら、クロマトグラフが適切に動作しない場合、その原因は、必ずしも分析結果から特定できるとは限らない。また、チェック項目に関するガイダンスが表示されたとしても、エラーに対処するためには、ユーザの熟練や経験を要する場合があり、必ずしも適切に動作させることは容易ではない。   However, if the chromatograph does not operate properly, the cause cannot always be specified from the analysis results. Even if guidance regarding the check item is displayed, the user may need to be skilled or experienced to deal with the error, and it is not always easy to operate properly.

本発明は、上記の点に鑑みてなされたものであり、クロマトグラフが適切に動作しない場合に、対処を容易にできるようにすることを目的としている。   The present invention has been made in view of the above points, and has as its object to make it easy to deal with a case where a chromatograph does not operate properly.

上記の目的を達成するために、
第1の発明は、
溶離液および試料を供給し、上記試料に含まれる成分を分離して検出することにより上記試料を分析するクロマトグラフであって、
上記分析における不具合を検知する検知部と、
上記不具合の要因を特定するための動作、または上記不具合を回避するための動作の少なくとも一方を上記分析に係る構成要素に行わせる動作制御部と、
を有することを特徴とする。
To achieve the above objectives,
The first invention is
A chromatograph for supplying an eluent and a sample, analyzing the sample by separating and detecting components contained in the sample,
A detection unit that detects a defect in the analysis,
An operation control unit that causes the component related to the analysis to perform at least one of the operation for identifying the cause of the failure or the operation for avoiding the failure,
It is characterized by having.

これにより、試料の分析における種々の不具合が検知されて、その不具合の要因を特定するための動作や、不具合を回避するための動作が行われることによって、クロマトグラフが適切に動作しない場合の対処を容易にすることができる。   As a result, various defects in the analysis of the sample are detected, and an operation for identifying the cause of the defect and an operation for avoiding the defect are performed, thereby coping with a case where the chromatograph does not operate properly. Can be facilitated.

本発明では、クロマトグラフが適切に動作しない場合に、対処を容易にすることができる。   According to the present invention, it is possible to easily deal with a case where the chromatograph does not operate properly.

クロマトグラフの概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a chromatograph. 制御部170の機能的な構成を模式的に示すブロック図である。FIG. 3 is a block diagram schematically illustrating a functional configuration of a control unit 170. クロマトグラムの一部の例を示す説明図である。It is explanatory drawing which shows some examples of a chromatogram. 他のクロマトグラムの一部の例を示す説明図である。It is explanatory drawing which shows some examples of another chromatogram. 他のクロマトグラムの一部の例を示す説明図である。It is explanatory drawing which shows some examples of another chromatogram. 他のクロマトグラムの一部の例を示す説明図である。It is explanatory drawing which shows some examples of another chromatogram. 他のクロマトグラムの一部の例を示す説明図である。It is explanatory drawing which shows some examples of another chromatogram. クロマトグラフの動作を示すフローチャートである。It is a flowchart which shows the operation | movement of a chromatograph.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(液体クロマトグラフ100の構成)
図1に液体クロマトグラフ100の概略構成を示す。この液体クロマトグラフ100は、バルブ111を介して溶離液槽112から供給される溶離液を送液するポンプ110(グラジエントポンプ)と、図示しない試料を注入するとともに、自動パージング機能を有するオートサンプラ120と、六方バルブ131を介して切り替え可能に設けられたガードカラム132・133(またはプレカラム)と、六方バルブ141を介して切り離し可能に設けられた分離カラム142と、上記分離カラム142の温度を検出、制御する温度センサ143およびカラム恒温装置144と、六方バルブ151を介して切り離し可能に設けられたリアクタ152と、分離された試料中の成分を検出する検出器160と、液体クロマトグラフ100の各構成要素の動作を制御する制御部170(検知部、動作制御部)とを備えている。なお、上記ガードカラム132・133等とともに、またはこれらに代えて、1つまたは複数の(イン)ラインフィルタが切り離しまたは切り替え可能に設けられて、同様に制御されるようにしてもよい。また、上記リアクタ152の種類は特に限定されず、例えば、カートリッジタイプリアクタ、反応カラム、反応コイルなどが適用され得る。
(Configuration of Liquid Chromatograph 100)
FIG. 1 shows a schematic configuration of a liquid chromatograph 100. The liquid chromatograph 100 includes a pump 110 (gradient pump) for sending an eluent supplied from an eluent tank 112 via a valve 111, an autosampler 120 for injecting a sample (not shown), and having an automatic purging function. And guard columns 132 and 133 (or pre-columns) which are switchably provided via a six-way valve 131, a separation column 142 which is provided detachably via a six-way valve 141, and the temperature of the separation column 142 is detected. , A temperature sensor 143 and a column thermostat 144 to be controlled, a reactor 152 detachably provided via a six-way valve 151, a detector 160 for detecting components in the separated sample, and a liquid chromatograph 100. The control unit 170 (the detection unit, the operation control Part) and a. In addition, one or more (in) line filters may be provided so as to be detachable or switchable together with or instead of the guard columns 132 and 133, and may be similarly controlled. The type of the reactor 152 is not particularly limited, and for example, a cartridge type reactor, a reaction column, a reaction coil, and the like can be applied.

上記制御部170は、詳しくは、例えば圧力センサ113によって検出されるポンプ圧や、温度センサ143によって検出される分離カラム142の温度、検出器160による試料中の各成分の検出結果に基づいて、ポンプ圧の異常上昇や、各成分の検出不良などの不具合を検知するとともに、その不具合の要因を特定するための動作や、不具合を回避するための動作を各部に行わせるようになっている。より詳しくは、制御部170は、例えば、図2に示すように推論エンジン170aを有し、圧力センサ113や温度センサ143、検出器160から入力される入力信号に応じて、知識データ記憶部170bや通信部170cから得られる知識データ等に基づいて、六方バルブ131〜151や、カラム恒温装置144、ポンプ110の動作を調整するようになっている。以下、具体的な例を説明する。   The control unit 170 is, for example, based on the pump pressure detected by the pressure sensor 113, the temperature of the separation column 142 detected by the temperature sensor 143, and the detection result of each component in the sample by the detector 160, In addition to detecting an abnormality such as an abnormal increase in pump pressure or a failure in detecting each component, each unit is caused to perform an operation for identifying a factor of the abnormality and an operation for avoiding the abnormality. More specifically, the control unit 170 includes, for example, an inference engine 170a as shown in FIG. 2, and according to input signals input from the pressure sensor 113, the temperature sensor 143, and the detector 160, the knowledge data storage unit 170b The operation of the six-way valves 131 to 151, the column thermostat 144, and the pump 110 is adjusted based on knowledge data obtained from the communication unit 170c. Hereinafter, a specific example will be described.

(ポンプ圧異常の要因特定、異常回避)
圧力センサ113によって検出されるポンプ圧が異常に上昇した場合、制御部170は、例えば下記(表1)に示すように、六方バルブ131〜151を順に切り替え制御して、ポンプ圧上昇の要因を特定する。
(Identify the cause of pump pressure abnormality and avoid abnormality)
If the pump pressure detected by the pressure sensor 113 rises abnormally, the control unit 170 controls the switching of the six-way valves 131 to 151 in order as shown in, for example, (Table 1) below to determine the cause of the pump pressure rise. Identify.

Figure 2020056594
Figure 2020056594

例えば、まず、六方バルブ131によってガードカラム132・133を一方から他方に切り替える。これによって、ポンプ圧が適切な圧力に低下すれば、不具合の要因はガードカラム132・133であったことが特定されるとともに、上記不具合は回避され、その後の検出を適切に行うことができるようになる。   For example, first, the guard columns 132 and 133 are switched from one to the other by the six-way valve 131. As a result, if the pump pressure is reduced to an appropriate pressure, it is specified that the cause of the problem is the guard columns 132 and 133, and the above problem is avoided, so that subsequent detection can be performed appropriately. become.

また、ガードカラム132・133を切り替えてもポンプ圧が低下しなければ、次に、六方バルブ151によってリアクタ152が送液流路から切り離される。これによって、ポンプ圧が適切な圧力に低下すれば、不具合の要因はリアクタ152であったことが特定(推定)される。この場合には、例えば図示しない表示部にリアクタ152の交換を促すメッセージが表示され、ユーザによってリアクタ152が交換されると、その後の検出を適切に行うことができるようになる。   In addition, if the pump pressure does not decrease even when the guard columns 132 and 133 are switched, the reactor 152 is separated from the liquid sending flow path by the six-way valve 151 next. As a result, if the pump pressure decreases to an appropriate pressure, it is determined (estimated) that the cause of the malfunction was the reactor 152. In this case, for example, a message prompting replacement of the reactor 152 is displayed on a display unit (not shown), and if the user replaces the reactor 152, subsequent detection can be performed appropriately.

さらに、リアクタ152を切り離してもポンプ圧が低下しなければ、次に、六方バルブ141によって分離カラム142が送液流路から切り離される。これによって、ポンプ圧が適切な圧力に低下すれば、不具合の要因は分離カラム142であったことが特定され、上記リアクタ152の場合と同様に分離カラム142の交換を促すメッセージが表示されて分離カラム142が交換されると、その後の検出を適切に行うことができるようになる。なお、前記ガードカラム132・133の切り替えは、このリアクタ152の切り離しが試みられた後に行われるように、すなわち下流側から順に確認されるようにしてもよい。   Furthermore, if the pump pressure does not decrease even when the reactor 152 is separated, the separation column 142 is separated from the liquid sending flow path by the six-way valve 141. As a result, if the pump pressure is reduced to an appropriate pressure, the cause of the failure is identified to be the separation column 142, and a message prompting replacement of the separation column 142 is displayed as in the case of the reactor 152, and the separation is performed. When the column 142 is replaced, the subsequent detection can be appropriately performed. Note that the switching of the guard columns 132 and 133 may be performed after the attempt to disconnect the reactor 152 is performed, that is, the guard columns 132 and 133 may be sequentially confirmed from the downstream side.

上記のように不具合の要因が自動的に特定されたり、不具合が回避されたりすることによって、速やかに検査を続行することができる。また、分析操作者が適切なポンプ圧を意識したりする必要もない。   As described above, the cause of the defect is automatically specified or the defect is avoided, so that the inspection can be promptly continued. Further, there is no need for the analysis operator to be aware of an appropriate pump pressure.

なお、上記のようにガードカラム132を2本設けるのに限らず、1本だけ設けて、分離カラム142やリアクタ152と同様に、不具合がある場合にはユーザによって交換されるようにしてもよい。一方、3本以上設けて、順次切り替えて使用できるようにしてもよい。また、分離カラム142やリアクタ152も、必ずしも1本に限るものではなく、複数本設けて自動的に切り替えられるようにしてもよい。   It should be noted that the present invention is not limited to providing two guard columns 132 as described above, and it is also possible to provide only one guard column 132 and replace the guard column 132 by a user when there is a defect, similarly to the separation column 142 and the reactor 152. . On the other hand, three or more wires may be provided so that they can be sequentially switched and used. Also, the number of the separation column 142 and the reactor 152 is not necessarily limited to one, and a plurality of the separation columns 142 and the reactor 152 may be automatically switched.

また、上記のように六方バルブ131〜151を切り替える際には、急激なポンプ圧の上昇などが防止されるように、ポンプの流量を制御するなどしてもよい。   When the six-way valves 131 to 151 are switched as described above, the flow rate of the pump may be controlled so as to prevent a sudden increase in the pump pressure.

また、上記のような動作をしても不具合の要因が特定できないような場合には、例えば自動的にインターネットなどの通信手段を介して専門家への問い合わせが行われるようにしたり、電話によるサービスコールやメール送信などによって問い合わせることを促す案内表示をしたりしてもよい。   If the cause of the problem cannot be identified even after performing the above-mentioned operations, for example, an inquiry to a specialist is automatically made via a communication means such as the Internet, or a telephone service is provided. A guidance display for prompting an inquiry by a call, mail transmission, or the like may be displayed.

(クロマトグラムの解析による不具合の検知や回避)
分析における不具合の検知は、上記のように圧力センサ113等のセンサを用いて行われるのに限らず、例えば1回以上測定を行った後に、結果のクロマトグラムを解析してクロマトグラフィックな性能指標を得ることにより行われたりしてもよい。また、不具合の要因を特定するための動作、または不具合を回避するための動作は、測定のために装置に設定される種々の装置設定パラメータを設定する動作であってもよい。上記クロマトグラフィックな性能指標としては、例えば、分離度、分離係数、理論段数、ピーク面積、ピーク高さ、ピーク幅、保持時間、ホールドアップタイム、保持係数、理論段数相当高さ、カラム圧力損失、シンメトリー係数、ピークバレー比、SN比、ベースラインノイズ、ベースラインドリフト、検出限界、定量限界、精度、真度などを適用することができる。特に、例えば、上記成分の分離度、分離係数、理論段数、理論段数相当高さ、およびピーク幅の少なくとも1つを含む分離性能の程度を適用することができる。また、上記装置設定パラメータとしては、ハードウエアの設定をさし、例えば、グラジエント溶離タイムプログラム、溶離液切替タイミング、溶離液組成、流量、注入量、試料希釈倍率、カラム温度、カラム温度切替タイミング、カラムセレクト、反応温度、反応試薬組成、検出波長、検出波長切替タイミング、レスポンス時定数などを適用することができる。特に、例えば、上記溶離液の切り替えタイミング、グラジエント溶離タイムプログラム、カラム温度の切り替えタイミング、および流量の少なくとも1つを含む溶離条件を適用することができる。
(Detection and avoidance of defects by analyzing chromatograms)
The detection of a defect in the analysis is not limited to be performed using the sensor such as the pressure sensor 113 as described above. For example, after performing one or more measurements, the resulting chromatogram is analyzed to perform a chromatographic performance index. Or may be performed by obtaining Further, the operation for specifying the cause of the failure or the operation for avoiding the failure may be an operation for setting various device setting parameters set in the device for measurement. Examples of the chromatographic performance index include, for example, separation degree, separation coefficient, theoretical plate number, peak area, peak height, peak width, retention time, hold-up time, retention coefficient, theoretical plate number equivalent height, column pressure loss, Symmetry coefficients, peak valley ratios, SN ratios, baseline noise, baseline drift, detection limits, quantification limits, accuracy, accuracy, and the like can be applied. In particular, for example, the degree of separation performance including at least one of the degree of separation of the components, the separation coefficient, the number of theoretical plates, the height corresponding to the number of theoretical plates, and the peak width can be applied. Further, as the device setting parameters, hardware settings, for example, gradient elution time program, eluent switching timing, eluent composition, flow rate, injection amount, sample dilution ratio, column temperature, column temperature switching timing, Column selection, reaction temperature, reaction reagent composition, detection wavelength, detection wavelength switching timing, response time constant, and the like can be applied. In particular, for example, elution conditions including at least one of the above-described eluent switching timing, gradient elution time program, column temperature switching timing, and flow rate can be applied.

これにより、測定動作が最適条件になるように装置側で変更することもできる。さらに、例えば、繰り返し測定等のために同じ組成のサンプルが複数オートサンプラに搭載されていた場合に、最初の測定結果を解析して前述のような不具合を検知した場合に、設定を変更して引き続きの測定を行うようにしてもよい。その場合、装置が設定を変更したことをアナウンスして測定を繰り返すようにしてもよい。また、条件変更を測定者に指示するようにしたりしてもよい。   Thus, the apparatus can be changed so that the measurement operation is performed under the optimum condition. Further, for example, when a plurality of samples of the same composition are mounted on the autosampler for repeated measurement, etc., when the first measurement result is analyzed and the above-described problem is detected, the setting is changed. Subsequent measurement may be performed. In that case, the measurement may be repeated by announcing that the device has changed the setting. Further, the condition change may be instructed to the measurer.

また、設定された条件に不備があるのか、設定された条件は合っているが何らかの原因で装置側がそのとおりに動作していないかを判断して、これに応じた動作をさせるようにしてもよい。すなわち、例えば、分離度が閾値を下回る場合(具体的には、例えばAlaとCysの分離度が1.2未満となる場合)、概ね設定条件の不備が原因であるが、設定条件は合っていても装置の構成要素である分離カラムの理論段数が低下していることが原因の可能性もある。このようなケースでは、分離度だけではなく分離カラムの理論段数も判断指標に加え、条件不備か装置起因か判断できる。そこで、条件不備であれば、設定条件を変更する一方、例えばGlyなど孤立ピークの理論段数が3,000段未満であれば、装置起因と判定して、その旨を装置起因の推定要因として表示したり、(分離)カラムの切換え動作などの不具合回避動作をさせるようにしたりしてもよい。   It is also possible to determine whether the set conditions are inadequate or whether the set conditions are satisfied but the device side is not operating as such for some reason, and perform an operation according to the determined conditions. Good. That is, for example, when the degree of separation is lower than the threshold value (specifically, for example, when the degree of separation between Ala and Cys is less than 1.2), this is mostly due to inadequate setting conditions, but the setting conditions are met. However, there is also a possibility that the number of theoretical plates of the separation column, which is a component of the apparatus, is reduced. In such a case, not only the degree of separation but also the theoretical plate number of the separation column is added to the determination index, and it can be determined whether the condition is inadequate or the apparatus is used. Therefore, if the condition is not satisfactory, the setting condition is changed. On the other hand, if the number of theoretical peaks of an isolated peak such as Gly is less than 3,000, it is determined that the device is attributable to the device, and the fact is displayed as an estimated factor attributable to the device. Alternatively, a trouble avoidance operation such as a (separation) column switching operation may be performed.

(分離度不良の回避1)
検出器160の検出結果として得られるクロマトグラムの解析によって、所定の成分の分離度が適切でないことが検知された場合、上記(表1)に併せて示すように溶離液の切り替えタイミングを制御することによって、分離度不良が自動的に回避されるようにすることができる。
(Avoid separation failure 1)
When the chromatogram obtained as a result of the detection by the detector 160 is analyzed and it is detected that the degree of separation of the predetermined component is not appropriate, the switching timing of the eluent is controlled as shown in Table 1 above. In this way, it is possible to automatically avoid poor separation.

具体的には、例えば、グラジエント法を用いてアミノ酸の分析が行われる場合に、図3(a)に示すように、アラニン(Ala)とシスチン(Cys)の分離度が1.0以下であるか、またはアラニン(Ala)とシスチン(Cys)のピーク時間差t1が所定以下であるかの少なくとも一方であるアーリーピーク状態が検知された場合には、バルブ111の制御により溶離液の切り替えタイミングが遅くされる。一方、図3(b)に示すように、シスチン(Cys)とバリン(Val)の分離度が1.0以下であるか、またはアラニン(Ala)とシスチン(Cys)のピーク時間差t2が所定以上であるかの少なくとも一方であるレートピーク状態が検知された場合には、バルブ111の制御により溶離液の切り替えタイミングが早くされる。このような制御が行われることによって、図3(c)に示すようにアラニン(Ala)とシスチン(Cys)のピーク時間差t3が適切になるようすることができる。   Specifically, for example, when an amino acid is analyzed using a gradient method, the degree of separation between alanine (Ala) and cystine (Cys) is 1.0 or less, as shown in FIG. If an early peak state, which is at least one of the peak time difference t1 between alanine (Ala) and cystine (Cys) being equal to or less than a predetermined value, is detected, the control of the valve 111 delays the switching timing of the eluent. Is done. On the other hand, as shown in FIG. 3B, the degree of separation between cystine (Cys) and valine (Val) is 1.0 or less, or the peak time difference t2 between alanine (Ala) and cystine (Cys) is greater than a predetermined value. If at least one of the rate peak states is detected, the switching timing of the eluent is advanced by controlling the valve 111. By performing such control, the peak time difference t3 between alanine (Ala) and cystine (Cys) can be made appropriate as shown in FIG.

(分離度不良の回避2)
試料に含まれる各成分の保持時間に対するカラム温度の影響は、成分ごとに異なる。例えば図4に示すように、Gluは、AspNH2やGluNH2に比べて、カラム温度が低い場合の保持時間の増加程度が大きい。そこで、上記(分離度不良の回避1)と同様に、検出器160の検出結果として得られるクロマトグラムの解析によって、所定の成分の分離度が適切でないことなどが検知された場合、カラム恒温装置144の設定温度を制御することによって、分離度不良の要因を特定したり、分離度不良が自動的に回避されるようにしたりすることができる。
(Avoid separation failure 2)
The effect of the column temperature on the retention time of each component contained in the sample differs for each component. For example, as shown in FIG. 4, Glu has a greater increase in retention time when the column temperature is lower than AspNH2 and GluNH2. Therefore, in the same manner as the above (Avoidance of poor separation degree 1), when it is detected by analysis of the chromatogram obtained as a detection result of the detector 160 that the separation degree of a predetermined component is not appropriate, the column thermostat is used. By controlling the set temperature of 144, it is possible to specify the cause of the separation failure and to automatically avoid the separation failure.

(分離度不良の回避3)
また、例えば図5に示すように、カラム恒温装置144の設定温度を40℃から70℃に切り替えるタイミングを、所定の基準時刻後63分から48分に切り替えることにより、主にTrpの保持時間だけを短くして分離度不良を回避することなどができる。
(Avoidance of poor separation 3)
Further, as shown in FIG. 5, for example, by switching the timing of switching the set temperature of the column thermostat 144 from 40 ° C. to 70 ° C. from 63 minutes to 48 minutes after a predetermined reference time, mainly, only the holding time of Trp is reduced. It can be shortened to avoid poor separation.

(分離度不良の回避4)
また、例えば図6に示すように、所定の基準時刻後66〜72分の間、溶離液の組成をB4=100%からB1/B4=60/40%に変えることによって、NH3とHylys(およびその異性体)の分離不良を回避することができる。
(Avoid separation failure 4)
For example, as shown in FIG. 6, the composition of the eluent is changed from B4 = 100% to B1 / B4 = 60/40% for 66 to 72 minutes after the predetermined reference time, so that NH3 and Hylys (and Poor separation of its isomer) can be avoided.

(分離度不良の回避5)
また、例えば図7に示すように、所定の基準時刻後85〜98分の間、溶離液の組成をB4=100%からB2/B4=20/80%に変えることによって、3MehisとAnsとCarの分離不良を回避することができる。
(Avoid separation failure 5)
For example, as shown in FIG. 7, the composition of the eluent is changed from B4 = 100% to B2 / B4 = 20/80% from 85% to 98 minutes after the predetermined reference time, so that 3Mehis, Ans and Car are changed. Can be avoided.

(ピーク高さ不良の回避)
検出器160の検出結果として得られるクロマトグラムの解析によって、例えばアスパラギン酸(Asp)のピーク高さが適切でないことが検知された場合の例を図8のフローチャートおよび上記(表1)に基づいて説明する。
(Avoid peak height failure)
Based on the analysis of the chromatogram obtained as a result of detection by the detector 160, for example, an example in which it is detected that the peak height of aspartic acid (Asp) is not appropriate is based on the flowchart of FIG. 8 and the above (Table 1). explain.

(S101) まず、分析が行われるのに先立って、標準試料のアスパラギン酸(Asp)が検出される場合のピーク高さの基準値Rが図示しないデータベース等から読み込まれる。   (S101) First, prior to the analysis, a reference value R of the peak height when aspartic acid (Asp) of the standard sample is detected is read from a database or the like (not shown).

(S102) 試料の分析が行われると、分析結果のクロマトグラムに基づいてピーク高さHが測定される。   (S102) When the sample is analyzed, the peak height H is measured based on the chromatogram of the analysis result.

(S103) 測定されたピーク高さHが、例えば基準値Rの0.7倍を下回っているかが判定され、下回っていなければ、(S112)に移行して、例えば計測完了表示などがなされ、計測動作が完了する。   (S103) It is determined whether the measured peak height H is less than, for example, 0.7 times the reference value R. If not, the process proceeds to (S112) and, for example, a measurement completion display is performed. The measurement operation is completed.

(S104) 一方、ピーク高さHが、例えば基準値Rの0.7倍を下回っている場合には、オートサンプラ(AS)120の自動パージングが行われたかが判定される。   (S104) On the other hand, if the peak height H is smaller than, for example, 0.7 times the reference value R, it is determined whether the automatic purging of the autosampler (AS) 120 has been performed.

(S105) 上記(S104)で自動パージングが行われていないと判定された場合には、自動パージングを行った後、(S102)に戻って、再度分析が行われてピーク高さHの測定以降が繰り返される。すなわち、ピーク高さ不良の回避が試みられ、回避されれば、上記のように(S112)に移行して計測動作が完了する。   (S105) When it is determined in the above (S104) that the automatic purging has not been performed, after performing the automatic purging, the process returns to (S102), and the analysis is performed again to measure the peak height H and thereafter. Is repeated. That is, avoidance of the peak height failure is attempted, and if it is avoided, the process proceeds to (S112) as described above, and the measurement operation is completed.

(S106) 一方、既に自動パージングが行われていた場合には、例えば他の回避策をユーザに案内するために、まず、ニンヒドリン試薬の交換日が読み出される。   (S106) On the other hand, if the automatic purging has already been performed, the date of replacement of the ninhydrin reagent is firstly read, for example, to guide the user to another workaround.

(S107) ニンヒドリン試薬の交換日から2週間以上経過しているかどうかが判定される。   (S107) It is determined whether two weeks or more have passed since the date of replacement of the ninhydrin reagent.

(S108) ニンヒドリン試薬の交換日から2週間以上経過していれば、ユーザに交換を促すメッセージが表示されて、計測動作が終了する。   (S108) If two weeks or more have elapsed since the date of replacement of the ninhydrin reagent, a message prompting the user to replace is displayed, and the measurement operation ends.

(S109) また、ニンヒドリン試薬の交換日から2週間以上経過していない場合には、さらに、標準試料の調整から1か月以上経過しているかが判定される。   (S109) When two weeks or more have not passed since the exchange date of the ninhydrin reagent, it is further determined whether one month or more has passed since the preparation of the standard sample.

(S110) 標準試料の調整から1か月以上経過していれば、ユーザに新規の標準の調整試料を促すメッセージが表示されて、計測動作が終了する。   (S110) If one month or more has passed since the adjustment of the standard sample, a message prompting the user for a new standard adjustment sample is displayed, and the measurement operation ends.

(S111) 一方、標準試料の調整から1か月を経過していなければ、他の要因が想定されるので、例えば装置の異常状態を示す表示をして計測動作が終了する。なお、このような不明な要因が想定されるような場合には、例えば自動的にインターネットなどの通信手段を介して専門家への問い合わせが行われるようにしたり、電話によるサービスコールやメール送信などによって問い合わせることを促す案内表示をしたりしてもよい。   (S111) On the other hand, if one month has not passed since the adjustment of the standard sample, other factors are assumed, and for example, a display indicating an abnormal state of the apparatus is displayed, and the measurement operation ends. In the case where such unknown factors are assumed, for example, it is possible to automatically make an inquiry to a specialist through communication means such as the Internet, or to make a service call or e-mail transmission by telephone. May be displayed for prompting an inquiry.

なお、上記(S103)でピーク高さHが、例えば基準値Rの0.7倍を下回っていると判定された場合には、常にオートサンプラ120の自動パージングを行った後、再度の分析を自動的に行うことなく、(S106)以降で他の要因の確認等を行って計測動作を終了するようにしてもよい。   When it is determined in the above (S103) that the peak height H is, for example, less than 0.7 times the reference value R, the automatic purging of the autosampler 120 is always performed, and the analysis is performed again. The measurement operation may be terminated after checking other factors or the like after (S106) without automatically performing the measurement.

上記のように、試料の分析における種々の不具合が検知されて、その不具合の要因を特定するための動作や、不具合を回避するための動作が行われることによって、クロマトグラフが適切に動作しない場合の対処を容易にすることができる。   As described above, when various inaccuracies in the sample analysis are detected and the operation for identifying the cause of the inconvenience and the operation for avoiding the inconvenience are performed, so that the chromatograph does not operate properly. Can be easily handled.

100 液体クロマトグラフ
110 ポンプ
111 バルブ
112 溶離液槽
113 圧力センサ
120 オートサンプラ
131 六方バルブ
132・133 ガードカラム
141 六方バルブ
142 分離カラム
143 温度センサ
144 カラム恒温装置
151 六方バルブ
152 リアクタ
160 検出器
170 制御部
170a 推論エンジン
170b 知識データ記憶部
170c 通信部
Reference Signs List 100 Liquid chromatograph 110 Pump 111 Valve 112 Eluent tank 113 Pressure sensor 120 Autosampler 131 Hexagonal valve 132/133 Guard column 141 Hexagonal valve 142 Separation column 143 Temperature sensor 144 Column thermostat 151 Hexagonal valve 152 Reactor 160 Detector 170 Control unit 170a Inference engine 170b Knowledge data storage unit 170c Communication unit

Claims (10)

溶離液および試料を供給し、上記試料に含まれる成分を分離して検出することにより上記試料を分析するクロマトグラフであって、
上記分析における不具合を検知する検知部と、
上記不具合の要因を特定するための動作、または上記不具合を回避するための動作の少なくとも一方を上記分析に係る構成要素に行わせる動作制御部と、
を有することを特徴とするクロマトグラフ。
A chromatograph for supplying an eluent and a sample, analyzing the sample by separating and detecting components contained in the sample,
A detection unit that detects a defect in the analysis,
An operation control unit that causes the component related to the analysis to perform at least one of the operation for identifying the cause of the failure or the operation for avoiding the failure,
A chromatograph comprising:
請求項1のクロマトグラフであって、
上記不具合の要因を特定するための動作、または上記不具合を回避するための動作は、上記分析に係る構成要素を選択的に解除、または他の構成要素に切り替える動作であることを特徴とするクロマトグラフ。
The chromatograph of claim 1, wherein
The operation for identifying the cause of the defect or the operation for avoiding the defect is an operation for selectively releasing a component related to the analysis or switching to another component. Graph.
請求項1および請求項2のうち何れか1項のクロマトグラフであって、
上記分析に係る上記構成要素は、
溶離液を送液するポンプと、
上記ポンプの吐出側の圧力を検出する圧力センサと、
ガードカラム、プレカラム、分離カラム、およびリアクタのうちの少なくとも2つと、
を含み、
上記検知部は、上記圧力センサの検出圧力が所定以上であることを検知し、
上記動作制御部は、上記所定以上の検出圧力が検知されたときに、上記ガードカラム、プレカラム、分離カラム、またはリアクタを下流側または上流側から順次切り離して、上記検出圧力上昇の要因を特定することを特徴とするクロマトグラフ。
It is a chromatograph of any one of Claim 1 and Claim 2,
The above components related to the above analysis include:
A pump for sending an eluent,
A pressure sensor for detecting the pressure on the discharge side of the pump,
At least two of a guard column, a precolumn, a separation column, and a reactor;
Including
The detection unit detects that the pressure detected by the pressure sensor is equal to or higher than a predetermined value,
The operation control unit, when the detection pressure equal to or higher than the predetermined value is detected, sequentially disconnects the guard column, the precolumn, the separation column, or the reactor from the downstream side or the upstream side, and specifies a factor of the detection pressure increase. A chromatograph characterized in that:
請求項3のクロマトグラフであって、
複数のガードカラムまたはプレカラムと、
上記複数のガードカラムまたはプレカラムを選択的に切り替える切り替えバルブとを備え、
上記動作制御部は、何れかのガードカラムまたはプレカラムを他のガードカラムまたはプレカラムに切り替えることを特徴とするクロマトグラフ。
The chromatograph of claim 3, wherein
Multiple guard columns or pre-columns,
A switching valve for selectively switching the plurality of guard columns or pre-columns,
The chromatograph, wherein the operation control unit switches any guard column or pre-column to another guard column or pre-column.
請求項1のクロマトグラフであって、
上記検知部は、上記試料に含まれる成分の検出結果に基づいて、上記成分についてのクロマトグラフィックな性能指標により、上記分析における不具合を検知し、
上記動作制御部は、上記検知結果に応じて、上記分析における装置設定パラメータを制御すること、または上記分析に係る構成要素を他の構成要素に切り替える動作を行わせることを特徴とするクロマトグラフ。
The chromatograph of claim 1, wherein
Based on the detection results of the components contained in the sample, the detection unit detects a defect in the analysis by using a chromatographic performance index for the components,
The chromatograph, wherein the operation control unit controls an apparatus setting parameter in the analysis or performs an operation of switching a component related to the analysis to another component according to the detection result.
請求項5のクロマトグラフであって、
上記クロマトグラフィックな性能指標は、分離度、分離係数、理論段数、ピーク面積、ピーク高さ、ピーク幅、保持時間、ホールドアップタイム、保持係数、理論段数相当高さ、カラム圧力損失、シンメトリー係数、ピークバレー比、SN比、ベースラインノイズ、ベースラインドリフト、検出限界、定量限界、精度、および真度の少なくとも1つであり、
上記装置設定パラメータは、グラジエント溶離タイムプログラム、溶離液切替タイミング、溶離液組成、流量、注入量、試料希釈倍率、カラム温度、カラム温度切替タイミング、カラムセレクト、反応温度、反応試薬組成、検出波長、検出波長切替タイミング、およびレスポンス時定数の少なくとも1つであることを特徴とするクロマトグラフ。
The chromatograph of claim 5, wherein
The above-mentioned chromatographic performance index includes the degree of separation, the separation coefficient, the number of theoretical plates, the peak area, the peak height, the peak width, the retention time, the hold-up time, the retention coefficient, the height equivalent to the number of theoretical plates, the column pressure loss, the symmetry coefficient, At least one of a peak valley ratio, a signal-to-noise ratio, a baseline noise, a baseline drift, a detection limit, a quantification limit, accuracy, and accuracy;
The above device setting parameters include a gradient elution time program, an eluent switching timing, an eluent composition, a flow rate, an injection amount, a sample dilution ratio, a column temperature, a column temperature switching timing, a column select, a reaction temperature, a reaction reagent composition, a detection wavelength, A chromatograph characterized by at least one of a detection wavelength switching timing and a response time constant.
請求項5のクロマトグラフであって、
複数の溶離液を切り替えて供給し得るように構成されるとともに、
上記検知部は、上記試料に含まれる成分の検出結果に基づいて分離性能の程度を検知し、
上記動作制御部は、溶離条件を制御することを特徴とするクロマトグラフ。
The chromatograph of claim 5, wherein
While being configured to be able to switch and supply multiple eluents,
The detection unit detects a degree of separation performance based on a detection result of a component contained in the sample,
A chromatograph, wherein the operation control section controls elution conditions.
請求項7のクロマトグラフであって、
アミノ酸を分析し得るように構成されるとともに、
上記検知部は、
アラニンとシスチンの分離度が所定以下であるか、またはアラニンとシスチンのピーク時間差が所定以下であるかの少なくとも一方であるアーリーピーク状態、および
シスチンとバリンの分離度が所定以下であるか、またはアラニンとシスチンのピーク時間差が所定以上であるかの少なくとも一方であるレートピーク状態を検知し、
上記動作制御部は、上記アーリーピーク状態の場合に所定の溶離液の切り替えタイミングを遅らせる一方、上記レートピーク状態の場合に上記所定の溶離液の切り替えタイミングを早めることを特徴とするクロマトグラフ。
8. The chromatograph of claim 7, wherein:
Configured to analyze amino acids,
The detection unit,
An early peak state in which the degree of separation between alanine and cystine is equal to or less than a predetermined value, or the peak time difference between alanine and cystine is equal to or less than a predetermined value, and the degree of separation between cystine and valine is equal to or less than a predetermined value, or Detecting a rate peak state that is at least one of the peak time difference between alanine and cystine is not less than a predetermined value,
The chromatograph, wherein the operation control unit delays the timing of switching the predetermined eluent in the early peak state, and advances the timing of switching the predetermined eluent in the rate peak state.
請求項1のクロマトグラフであって、
上記分析に係る上記構成要素は、自動パージング機能を有するオートサンプラを含み、
上記検知部は、検出された所定の成分のピーク高さと標準試料のピーク高さの基準値との比が所定以下である検出不良を検知し、
上記動作制御部は、上記検出不良の場合に、上記オートサンプラに自動パージングを行わせることを特徴とするクロマトグラフ。
The chromatograph of claim 1, wherein
The components according to the analysis include an autosampler having an automatic purging function,
The detection unit detects a detection failure in which the ratio between the detected peak height of the predetermined component and the reference value of the peak height of the standard sample is equal to or less than a predetermined value,
The chromatograph, wherein the operation control unit causes the autosampler to perform automatic purging when the detection failure occurs.
請求項9のクロマトグラフであって、
アミノ酸を分析し得るように構成されるとともに、
上記検出不良は、検出されたアスパラギン酸のピーク高さと標準試料のピーク高さの基準値との比が所定以下であることを特徴とするクロマトグラフ。
10. The chromatograph of claim 9, wherein:
Configured to analyze amino acids,
The chromatogram is characterized in that the detection failure is such that the ratio of the detected peak height of aspartic acid to the reference value of the peak height of the standard sample is not more than a predetermined value.
JP2018185298A 2018-09-28 2018-09-28 chromatograph Active JP7201987B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018185298A JP7201987B2 (en) 2018-09-28 2018-09-28 chromatograph
US16/565,197 US11619617B2 (en) 2018-09-28 2019-09-09 Chromatograph having operation controller that causes automatic purging in a case of detection failure
CN201910915187.0A CN110967437A (en) 2018-09-28 2019-09-26 Chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018185298A JP7201987B2 (en) 2018-09-28 2018-09-28 chromatograph

Publications (2)

Publication Number Publication Date
JP2020056594A true JP2020056594A (en) 2020-04-09
JP7201987B2 JP7201987B2 (en) 2023-01-11

Family

ID=69945772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018185298A Active JP7201987B2 (en) 2018-09-28 2018-09-28 chromatograph

Country Status (3)

Country Link
US (1) US11619617B2 (en)
JP (1) JP7201987B2 (en)
CN (1) CN110967437A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166988B (en) * 2022-02-09 2022-04-19 华谱科仪(北京)科技有限公司 Chromatograph cluster fault detection method and device
JP2023154779A (en) * 2022-04-08 2023-10-20 横河電機株式会社 analysis system
CN115951002B (en) * 2023-03-10 2023-05-16 山东省计量科学研究院 Gas chromatograph-mass spectrometer fault detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127394A (en) * 1978-03-25 1979-10-03 Hitachi Ltd Amino acid analytical method
JPH03269258A (en) * 1990-03-19 1991-11-29 Hitachi Ltd Data processing apparatus for chromatograph
JP2003329662A (en) * 2002-05-09 2003-11-19 Toshiba Corp Chromatograph analysis system, server device and method of providing method of coping with abnormality
JP2004354144A (en) * 2003-05-28 2004-12-16 Hitachi High-Technologies Corp Amino acid analyzer
JP2008209334A (en) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp Liquid chromatography device
JP2013518286A (en) * 2010-01-26 2013-05-20 オールテック・アソシエイツ・インコーポレーテッド How to optimize gradients in a liquid chromatography system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986919A (en) * 1986-03-10 1991-01-22 Isco, Inc. Chromatographic pumping method
JP3131439B2 (en) 1990-09-21 2001-01-31 株式会社日立製作所 Liquid chromatograph
US5441700A (en) * 1993-06-07 1995-08-15 Markelov; Michael Headspace autosampler apparatus
US9778149B2 (en) * 2014-05-02 2017-10-03 Swagelok Company Fluid sample system and method
SG11201901032PA (en) * 2016-08-15 2019-03-28 Greyscan Pty Ltd Elution and detection
WO2018083706A1 (en) * 2016-11-04 2018-05-11 Rosemount Analytical Inc. A method of monitoring the components of gas analyser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127394A (en) * 1978-03-25 1979-10-03 Hitachi Ltd Amino acid analytical method
JPH03269258A (en) * 1990-03-19 1991-11-29 Hitachi Ltd Data processing apparatus for chromatograph
JP2003329662A (en) * 2002-05-09 2003-11-19 Toshiba Corp Chromatograph analysis system, server device and method of providing method of coping with abnormality
JP2004354144A (en) * 2003-05-28 2004-12-16 Hitachi High-Technologies Corp Amino acid analyzer
JP2008209334A (en) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp Liquid chromatography device
JP2013518286A (en) * 2010-01-26 2013-05-20 オールテック・アソシエイツ・インコーポレーテッド How to optimize gradients in a liquid chromatography system

Also Published As

Publication number Publication date
US20200103382A1 (en) 2020-04-02
JP7201987B2 (en) 2023-01-11
US11619617B2 (en) 2023-04-04
CN110967437A (en) 2020-04-07

Similar Documents

Publication Publication Date Title
JP2020056594A (en) Chromatograph
JP3131439B2 (en) Liquid chromatograph
US8968560B2 (en) Chromatography using multiple detectors
Van Leeuwen et al. RES, an expert system for the set-up and interpretation of a ruggedness test in HPLC method validation: Part 1: The ruggedness test in HPLC method validation
JP4778748B2 (en) Liquid chromatograph
US20100064770A1 (en) Gas chromatography apparatus
JP2007225420A (en) Autosampler and analyzing system
Yu et al. A sensitive and accurate method for the determination of perfluoroalkyl and polyfluoroalkyl substances in human serum using a high performance liquid chromatography-online solid phase extraction-tandem mass spectrometry
JP6221458B2 (en) Method for determining the injection state of a specimen
JP7187029B2 (en) Chromatography equipment
CN112444586A (en) Technique for checking the status of an analyzer
JP4521330B2 (en) Liquid chromatograph
WO1997041771A1 (en) Chromatographic method for the identification and characterization of hemoglobin variants in blood
US11867673B2 (en) NIR based real-time control of loading in protein a chromatography
JP2006023280A (en) Liquid chromatograph
US20140260539A1 (en) Gas chromatograph with improved operation
JP2017187319A (en) Background correction method by section division
JP5345194B2 (en) Liquid chromatograph
JP2020051960A (en) Liquid chromatograph analysis method and liquid chromatograph analyzer
Epshtein et al. Investigation of robustness at validation of HPLC and UPLC methods: a modern approach including risk analysis
JP2014235023A (en) Quantifying method of hemoglobin f using liquid chromatography
JP7262472B2 (en) Analysis apparatus having liquid chromatograph and liquid chromatograph analysis method
JP2011033556A (en) Liquid chromatography apparatus
CN113167772A (en) Analytical apparatus having a plurality of chromatographs and control method thereof
JP2015127700A (en) Liquid chromatography measurement method, liquid chromatography measurement device, and liquid chromatography measurement program

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7201987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150