JP2020056544A - Method for inspecting heat supply system - Google Patents

Method for inspecting heat supply system Download PDF

Info

Publication number
JP2020056544A
JP2020056544A JP2018187573A JP2018187573A JP2020056544A JP 2020056544 A JP2020056544 A JP 2020056544A JP 2018187573 A JP2018187573 A JP 2018187573A JP 2018187573 A JP2018187573 A JP 2018187573A JP 2020056544 A JP2020056544 A JP 2020056544A
Authority
JP
Japan
Prior art keywords
heat medium
heat
thermal valve
temperature side
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018187573A
Other languages
Japanese (ja)
Inventor
望 今西
Nozomi Imanishi
望 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2018187573A priority Critical patent/JP2020056544A/en
Publication of JP2020056544A publication Critical patent/JP2020056544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

To provide a method for inspecting a heat supply system, which can appropriately detect opening failure of a thermal valve.SOLUTION: A method for inspecting a heat supply system includes: a first measurement process of measuring a first operating state value while a heating medium is circulated in a heating medium circulation passage 10 in a first operating state where a command to close a thermal valve V to be inspected out of a plurality of thermal valves V is issued and a heating medium pump 7 is operated at predetermined rotating speed; a second measurement process of measuring a second operating state value while the heating medium is circulated in the heating medium circulation passage 10 in a second operating state that is the same as the first operating state with the exception that the command to open the thermal valve V to be inspected is issued; and a determination process of determining that the thermal valve V to be inspected includes an abnormal thermal valve V that cannot be closed normally if a difference between the first operating state value and the second operating state value is within a predetermined range and determining that the thermal valve V to be inspected does not include the abnormal thermal valve V if the difference between the first operating state value and the second operating state value is larger than the predetermined range.SELECTED DRAWING: Figure 1

Description

本発明は、熱媒体を加熱する熱源機と、熱媒体が流れる熱媒体循環路とを備え、熱を消費する熱消費端末に対して、熱媒体循環路を介して熱媒体を供給できるように構成されている熱供給システムの検査方法に関する。   The present invention includes a heat source device that heats a heat medium, and a heat medium circulation path through which the heat medium flows, so that a heat medium can be supplied to a heat consuming terminal that consumes heat via the heat medium circulation path. The present invention relates to an inspection method for a heat supply system configured.

特許文献1(特開2001−248847号公報)には、熱媒体を加熱する熱源機(温水暖房装置1)と、熱媒体が流れる熱媒体循環路(温水往き配管11、温水戻り配管12)とを備え、熱を消費する熱消費端末(浴室暖房装置1)に対して、熱媒体循環路を介して熱媒体を供給できるように構成されている熱供給システムが記載されている。このような熱消費端末への熱媒体の供給を行う熱動弁が正常に閉じなくなる開故障が発生した場合、本来は熱媒体が流れない部分にも熱媒体が流れる、即ち、より多くの量の熱媒体を熱源機で加熱しなければならないため、通常よりも多くの熱エネルギーが必要となってしまう。   Patent Literature 1 (Japanese Patent Application Laid-Open No. 2001-248847) discloses a heat source device (hot water heating device 1) for heating a heat medium, a heat medium circulation path (hot water outflow pipe 11, hot water return pipe 12) through which the heat medium flows. And a heat supply system configured to supply a heat medium via a heat medium circulation path to a heat consuming terminal (bathroom heating apparatus 1) that consumes heat. When an open failure occurs in which the heat valve that supplies the heat medium to the heat consuming terminal does not close normally, the heat medium also flows in a portion where the heat medium does not normally flow, that is, a larger amount. Has to be heated by the heat source device, so that more heat energy is required than usual.

特許文献1に記載の熱供給システムでは、熱消費端末へ熱媒体を供給する流路を開閉する熱動弁の故障を自己診断することが記載されている。具体的には、この熱供給システムでは、特定の熱消費端末を運転していない場合において、その熱消費端末に熱媒体を供給する流路での熱媒の温度が所定温度(例えば60℃)を超える場合には熱動弁が開故障であると判定される。つまり、本来ならば、熱媒体が流れておらず、低温であるはずの流路での熱媒体の温度に基づいて、熱動弁の故障を見つけようとしている。   The heat supply system described in Patent Literature 1 describes that a self-diagnosis of a failure of a heat valve that opens and closes a flow path that supplies a heat medium to a heat consuming terminal. Specifically, in this heat supply system, when the specific heat consuming terminal is not operating, the temperature of the heat medium in the flow path for supplying the heat medium to the heat consuming terminal is a predetermined temperature (for example, 60 ° C.). Is exceeded, it is determined that the thermal valve is open. That is, an attempt is made to find a failure in the thermal valve based on the temperature of the heat medium in the flow path, which is supposed to be at a low temperature because the heat medium is not flowing normally.

特開2001−248847号公報JP 2001-248847 A

特許文献1に記載の熱供給システムでは、複数の熱消費端末のうちの一つの熱消費端末へ熱媒体を供給する流路を開閉する熱動弁の故障を検出するためには、他の熱消費端末が運転中であり、熱媒体循環路を高温の熱媒体が循環中であることが必要になる。例えば、熱動弁に開故障が発生しても、全ての熱消費端末の運転が停止されていれば、熱媒体の循環も停止されているため、開故障中の熱動弁を熱媒体が流れることもない。その結果、熱消費端末に熱媒体を供給する流路での熱媒の温度が所定温度(例えば60℃)を超えることもない。このように、特許文献1に記載の熱供給システムは、熱動弁の開故障を適切に検出できない場合がある。   In the heat supply system described in Patent Literature 1, in order to detect a failure of a heat valve that opens and closes a flow path that supplies a heat medium to one of the plurality of heat consuming terminals, another heat consuming terminal is required. It is necessary that the consuming terminal is operating and a high-temperature heat medium is circulating in the heat medium circulation path. For example, even if an open failure occurs in the heat valve, if the operation of all the heat consuming terminals is stopped, the circulation of the heat medium is also stopped. It does not flow. As a result, the temperature of the heat medium in the flow path for supplying the heat medium to the heat consuming terminal does not exceed a predetermined temperature (for example, 60 ° C.). As described above, the heat supply system described in Patent Literature 1 may not properly detect an open failure of the thermal valve.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、熱動弁の開故障を適切に検出できる熱供給システムの検査方法を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an inspection method of a heat supply system that can appropriately detect an open failure of a thermal valve.

上記目的を達成するための本発明に係る熱供給システムの検査方法の特徴構成は、熱媒体を加熱する熱源機と、熱媒体が流れる熱媒体循環路とを備え、熱を消費する熱消費端末に対して、前記熱媒体循環路を介して熱媒体を供給できるように構成されている熱供給システムの検査方法であって、
前記熱媒体循環路は、前記熱消費端末を経由させずに熱媒体を循環させることができる共通流路部分と、当該共通流路部分から複数の前記熱消費端末に向けて分岐し、途中に熱動弁がそれぞれ設けられる複数の個別流路部分とを有し、
前記熱媒体循環路で熱媒体を流すための熱媒体ポンプを備え、
複数の前記熱動弁のうちの検査対象とする熱動弁を閉じる指令を与え且つ前記熱媒体ポンプを所定の回転速度で動作させた第1動作状態で前記熱媒体循環路に熱媒体を循環させながら、前記熱供給システムでの所定の動作状態を表す第1の動作状態値を測定する第1測定工程と、
前記検査対象とする熱動弁を開く指令を与える以外は前記第1動作状態と同じ第2動作状態で前記熱媒体循環路に熱媒体を循環させながら、前記熱供給システムでの前記所定の動作状態を表す第2の動作状態値を測定する第2測定工程と、
前記第1の動作状態値と前記第2の動作状態値との差が所定範囲内であれば前記検査対象とする熱動弁が正常に閉じない異常状態の熱動弁を含んでいると判定し、前記第1の動作状態値と前記第2の動作状態値との差が前記所定範囲よりも大きければ前記検査対象とする熱動弁が前記異常状態の熱動弁を含んでいないと判定する判定工程とを有する点にある。
In order to achieve the above object, a characteristic configuration of an inspection method of a heat supply system according to the present invention includes a heat source device that heats a heat medium and a heat medium circulation path through which the heat medium flows, and a heat consuming terminal that consumes heat. A method for inspecting a heat supply system configured to be able to supply a heat medium via the heat medium circulation path,
The heat medium circulation path, a common flow path portion that can circulate the heat medium without passing through the heat consumption terminal, and branching from the common flow path portion toward the plurality of heat consumption terminals, in the middle A plurality of individual flow path portions each provided with a thermal valve,
A heat medium pump for flowing a heat medium in the heat medium circulation path,
A heat medium is circulated in the heat medium circulation path in a first operation state in which a command to close a heat valve to be inspected among the plurality of heat valves is given and the heat medium pump is operated at a predetermined rotation speed. A first measuring step of measuring a first operating state value representing a predetermined operating state in the heat supply system,
The predetermined operation in the heat supply system while circulating the heat medium in the heat medium circulation path in the second operation state same as the first operation state except that a command to open the heat valve to be inspected is given. A second measuring step of measuring a second operating state value representing the state;
If the difference between the first operating state value and the second operating state value is within a predetermined range, it is determined that the thermal valve to be inspected includes an abnormal thermal valve that does not close normally. If the difference between the first operating state value and the second operating state value is larger than the predetermined range, it is determined that the thermal valve to be inspected does not include the abnormal thermal valve. And a determination step.

特定の熱動弁が開閉されると、それまで熱媒体が流れていなかった経路に熱媒体が流れることや、それまで熱媒体が流れていた経路に熱媒体が流れなくなることなどが発生する。そのため、特定の熱動弁が開閉されると、熱媒体循環路の全体で見ると、熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)が変化する。このとき、熱媒体循環路で熱媒体を流すための熱媒体ポンプの回転速度が一定のまま、即ち、熱媒体ポンプが単位時間当たりに吐出する熱媒体量が一定のままの場合、流れる熱媒体の総量が変化すると、熱媒体ポンプの負荷は変化する。また、熱媒体ポンプが単位時間当たりに吐出する熱媒体量が一定のままの場合、複数の熱消費端末に向けて分岐した複数の個別流路部分の夫々に設けられた熱動弁が開閉されると、各個別流路部分への熱媒体の分配状態も変化するため、熱媒体循環路の途中で測定される単位時間当たりの熱媒体の流量が変化する。このように、特定の熱動弁が開閉されると、熱供給システムでの所定の動作状態を表す動作状態値(例えば、熱媒体ポンプの負荷や、熱媒体循環路の途中で測定される単位時間当たりの熱媒体の流量など)が変化する。   When a specific heat valve is opened or closed, the heat medium may flow in a path through which the heat medium has not flown before, or the heat medium may not flow through a path through which the heat medium has flown before. Therefore, when a specific thermal valve is opened or closed, the volume of the portion where the heat medium flows (that is, the total amount of the heat medium flowing) changes in the entire heat medium circulation path. At this time, if the rotation speed of the heat medium pump for flowing the heat medium in the heat medium circulation path remains constant, that is, if the heat medium pump discharges a constant amount of heat medium per unit time, the heat medium flowing Changes, the load of the heat medium pump changes. In addition, when the amount of the heat medium discharged by the heat medium pump per unit time remains constant, the heat valve provided in each of the plurality of individual flow paths branched toward the plurality of heat consuming terminals is opened and closed. Then, since the distribution state of the heat medium to each individual flow path portion also changes, the flow rate of the heat medium per unit time measured in the middle of the heat medium circulation path changes. As described above, when a specific thermal valve is opened and closed, an operation state value (for example, a load of the heat medium pump or a unit measured in the middle of the heat medium circulation path) representing a predetermined operation state in the heat supply system. The heat medium flow rate per hour).

そこで本特徴構成では、判定工程において、検査対象とする熱動弁を閉じる指令を与えた場合に測定された第1の動作状態値と、検査対象とする熱動弁を開く指令を与えた場合に測定された第2の動作状態値とを対比して、その検査対象とする熱動弁が、正常に閉じない異常状態の熱動弁を含んでいるか否かを判定する。つまり、検査対象とする熱動弁が異常状態の熱動弁を含んでいる場合、検査対象とする熱動弁を閉じる指令を与えても、実際には熱動弁が開いた状態のままになっているため、その場合に測定される第1の動作状態値は、検査対象とする熱動弁を開く指令を与えた場合に測定される第2の動作状態値と近い値になると考えられる。そのため、第1の動作状態値と第2の動作状態値との差が所定範囲内であれば、検査対象とする熱動弁が正常に閉じない異常状態の熱動弁を含んでいると判定でき、第1の動作状態値と第2の動作状態値との差が所定範囲よりも大きければ検査対象とする熱動弁が異常状態の熱動弁を含んでいないと判定できる。このように、本特徴構成では、従来のように、他の熱消費端末が運転中でなくても、検査対象とする熱動弁が異常状態であるか否かを判定できる。
従って、熱動弁の開故障を適切に検出できる熱供給システムの検査方法を提供できる。
Therefore, in this characteristic configuration, in the determination step, the first operation state value measured when a command to close the thermal valve to be inspected is given, and the command to open the thermal valve to be inspected is given Then, it is determined whether or not the thermal valve to be inspected includes a thermal valve in an abnormal state that cannot be normally closed by comparing the measured second operational state value with the second operational state value. In other words, when the thermal valve to be inspected includes a thermal valve in an abnormal state, even if a command to close the thermal valve to be inspected is given, the thermal valve is actually left open. Therefore, the first operating state value measured in that case is considered to be a value close to the second operating state value measured when a command to open the thermal valve to be inspected is given. . Therefore, if the difference between the first operating state value and the second operating state value is within a predetermined range, it is determined that the thermal valve to be inspected includes an abnormal thermal valve that does not close normally. If the difference between the first operating state value and the second operating state value is larger than a predetermined range, it can be determined that the thermal valve to be inspected does not include the abnormal thermal valve. As described above, according to the present characteristic configuration, it is possible to determine whether or not the thermal valve to be inspected is in an abnormal state even when the other heat consuming terminal is not operating as in the related art.
Therefore, it is possible to provide a method of inspecting a heat supply system that can appropriately detect an open failure of a thermal valve.

本発明に係る熱供給システムの検査方法の別の特徴構成は、前記動作状態値は、前記熱媒体ポンプの消費電流値である点にある。   Another characteristic configuration of the heat supply system inspection method according to the present invention is that the operation state value is a current consumption value of the heat medium pump.

熱媒体循環路で熱媒体を流すための熱媒体ポンプの回転速度が一定のまま、即ち、熱媒体ポンプが単位時間当たりに吐出する熱媒体量が一定のままの場合、熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)が変化すると、熱媒体ポンプの負荷が変化して、熱媒体ポンプの消費電流値が変化する。
従って、本特徴構成のように、熱媒体ポンプの消費電流値を、熱供給システムでの所定の動作状態を表す動作状態値とすることで、検査対象とする熱動弁が異常状態であるか否かを確実に判定できる。
When the rotation speed of the heat medium pump for flowing the heat medium in the heat medium circulation path is constant, that is, when the heat medium pump discharges the heat medium amount per unit time constant, the heat medium is flowing. When the volume of the portion (that is, the total amount of flowing heat medium) changes, the load of the heat medium pump changes, and the current consumption value of the heat medium pump changes.
Therefore, by setting the current consumption value of the heat medium pump to an operation state value representing a predetermined operation state in the heat supply system as in the present characteristic configuration, whether the thermal valve to be inspected is in an abnormal state is determined. Can be reliably determined.

本発明に係る熱供給システムの検査方法の更に別の特徴構成は、前記動作状態値は、前記熱媒体循環路の途中で測定される単位時間当たりの熱媒体の流量である点にある。   Still another characteristic configuration of the inspection method of the heat supply system according to the present invention is that the operating state value is a flow rate of the heat medium per unit time measured in the heat medium circulation path.

熱媒体循環路で熱媒体を流すための熱媒体ポンプの回転速度が一定のまま、即ち、熱媒体ポンプが単位時間当たりに吐出する熱媒体量が一定のままの場合、複数の熱消費端末に向けて分岐した複数の個別流路部分の夫々に設けられた熱動弁が開閉されると、各個別流路部分への熱媒体の分配状態も変化するため、熱媒体循環路の途中で測定される単位時間当たりの熱媒体の流量が変化する。
従って、本特徴構成のように、熱媒体循環路の途中で測定される単位時間当たりの熱媒体の流量を、熱供給システムでの所定の動作状態を表す動作状態値とすることで、検査対象とする熱動弁が異常状態であるか否かを確実に判定できる。
When the rotation speed of the heat medium pump for flowing the heat medium in the heat medium circulation path is constant, that is, when the heat medium amount discharged by the heat medium pump per unit time remains constant, a plurality of heat consuming terminals When the thermal valves provided in each of the plurality of individual flow paths branched toward and from each other are opened and closed, the distribution state of the heat medium to each of the individual flow paths also changes, so measurement is performed in the middle of the heat medium circulation path. The flow rate of the heat medium per unit time changes.
Therefore, as in the present characteristic configuration, the flow rate of the heat medium per unit time measured in the middle of the heat medium circulation path is set as an operation state value representing a predetermined operation state in the heat supply system, so that the inspection target Can be reliably determined whether or not the thermal valve is in an abnormal state.

第1実施形態の熱供給システムの構成を示す図である。It is a figure showing composition of a heat supply system of a 1st embodiment. 第1実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。It is a figure which illustrates the circulation state of the heat carrier in the heat supply system of a 1st embodiment. 第1実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。It is a figure which illustrates the circulation state of the heat carrier in the heat supply system of a 1st embodiment. 第1実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。It is a figure which illustrates the circulation state of the heat carrier in the heat supply system of a 1st embodiment. 第3実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。It is a figure which illustrates the circulation state of the heat carrier in the heat supply system of a 3rd embodiment. 第3実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。It is a figure which illustrates the circulation state of the heat carrier in the heat supply system of a 3rd embodiment. 第3実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。It is a figure which illustrates the circulation state of the heat carrier in the heat supply system of a 3rd embodiment. 第3実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。It is a figure which illustrates the circulation state of the heat carrier in the heat supply system of a 3rd embodiment.

<第1実施形態>
以下に図面を参照して本発明の第1実施形態に係る熱供給システムの検査方法について説明する。
図1は、熱供給システムの構成を示す図である。図示するように、熱供給システムは、熱媒体を加熱する熱源機1と、熱媒体が流れる熱媒体循環路10とを備え、熱を消費する熱消費端末Hに対して、熱媒体循環路10を介して熱媒体を供給できるように構成されている。本実施形態の熱供給システムには、熱消費端末Hとして、高温熱消費端末H1と低温熱消費端末H2とが設けられ、熱動弁Vとして、高温側熱動弁V1と低温側熱動弁V2とがそれぞれの熱消費端末H1,H2に対応して設けられる。そして、熱媒体循環路10は、熱消費端末Hを経由させずに熱媒体を循環させることができる共通流路部分11と、共通流路部分11から複数の熱消費端末Hに向けて分岐し、途中に熱動弁Vがそれぞれ設けられる複数の個別流路部分15とを有している。
<First embodiment>
Hereinafter, an inspection method of the heat supply system according to the first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a heat supply system. As shown in the figure, the heat supply system includes a heat source device 1 that heats a heat medium, and a heat medium circulation path 10 through which the heat medium flows. It is configured to be able to supply the heat medium via the. In the heat supply system of the present embodiment, a high-temperature heat consuming terminal H1 and a low-temperature heat consuming terminal H2 are provided as the heat consuming terminals H. V2 are provided corresponding to the respective heat consuming terminals H1 and H2. The heat medium circulating path 10 branches off from the common flow path portion 11 that can circulate the heat medium without passing through the heat consuming terminal H, to the plurality of heat consuming terminals H. , And a plurality of individual flow path portions 15 in each of which the thermal valves V are provided.

熱供給システムは、熱消費端末Hでの各種設定、運転開始指令、運転停止指令、運転予約などの情報の入力を利用者から受け付け、熱消費端末Hの運転状態などの情報を利用者に出力する情報入出力装置Dを備える。情報入出力装置Dは、例えば、台所の壁面などに設けられたリモコン装置等を用いて実現できる。
また、熱供給システムは、熱供給システムで取り扱われる情報を記憶する記憶装置Mを備える。
The heat supply system accepts input of information such as various settings at the heat consuming terminal H, an operation start command, an operation stop command, an operation reservation, and outputs information such as an operation state of the heat consuming terminal H to the user. The information input / output device D is provided. The information input / output device D can be realized by using, for example, a remote control device provided on a kitchen wall or the like.
In addition, the heat supply system includes a storage device M that stores information handled by the heat supply system.

熱源機1は、燃焼室2の内部に燃焼器3を備える。燃焼器3には、燃料ガスがガス供給路4を通って供給され、空気がブロア5によって供給される。燃焼器3への燃料ガス及び空気の供給量は制御装置Cが制御する。燃焼室2では、燃焼器3で発生した燃焼熱が、熱媒体循環路10を流れる熱媒体に伝達される。   The heat source device 1 includes a combustor 3 inside a combustion chamber 2. Fuel gas is supplied to the combustor 3 through a gas supply path 4, and air is supplied by a blower 5. The control device C controls the supply amounts of the fuel gas and the air to the combustor 3. In the combustion chamber 2, combustion heat generated in the combustor 3 is transmitted to the heat medium flowing through the heat medium circulation path 10.

熱媒体循環路10での熱媒体の流動は、制御装置Cによって動作が制御される熱媒体ポンプ7によって行われる。
共通流路部分11は、熱媒体循環路10のうち、熱媒体ポンプ7で付勢された熱媒体が、分岐部8と熱源機1と分岐部9と合流部17と暖房タンク6とを順に通って再び熱媒体ポンプ7に帰還する経路である。暖房タンク6は熱媒体循環路10を循環する熱媒体が一時的に貯えられる部分であり、例えば、温度変化に伴う熱媒体の体積変化を吸収するために設置されている。図示は省略するが、暖房タンク6には熱媒体を補充するための補充流路が接続されており、この熱供給システムの稼働開始時や熱媒体の減少時などのタイミングで、熱媒体の供給や補充が行われる。
The flow of the heat medium in the heat medium circulation path 10 is performed by the heat medium pump 7 whose operation is controlled by the control device C.
The common flow path portion 11 is configured such that the heat medium urged by the heat medium pump 7 in the heat medium circulation path 10 passes through the branch section 8, the heat source device 1, the branch section 9, the junction section 17, and the heating tank 6 in order. This is a path through which the heat medium returns to the heat medium pump 7 again. The heating tank 6 is a portion in which the heat medium circulating in the heat medium circulation path 10 is temporarily stored, and is installed, for example, to absorb a volume change of the heat medium due to a temperature change. Although not shown, a replenishment flow path for replenishing the heating medium is connected to the heating tank 6, and the heating medium is supplied at a timing such as when the heat supply system starts operating or when the heating medium is reduced. And replenishment is performed.

個別流路部分15は、共通流路部分11から高温熱消費端末H1に向けて分岐する高温側個別流路部分12と、共通流路部分11から低温熱消費端末H2に向けて分岐する低温側個別流路部分13とを有する。また、高温熱消費端末H1及び低温熱消費端末H2で熱が消費された後の熱媒体は、帰還流路部分14を通って共通流路部分11の合流部17へと帰還する。   The individual channel portion 15 includes a high-temperature side individual channel portion 12 that branches from the common channel portion 11 toward the high-temperature heat consuming terminal H1 and a low-temperature side channel that branches from the common channel portion 11 toward the low-temperature heat consuming terminal H2. And an individual flow path portion 13. Further, the heat medium after the heat has been consumed by the high-temperature heat consuming terminal H1 and the low-temperature heat consuming terminal H2 returns to the junction 17 of the common flow path 11 through the return flow path 14.

高温側個別流路部分12は、熱媒体ポンプ7から見て、熱源機1よりも下流側の共通流路部分11の分岐部9から分岐して高温熱消費端末H1に至る。高温側個別流路部分12には高温側熱動弁V1が設けられる。このような構成を採用することで、高温側熱動弁V1が開いている場合には、熱媒体が共通流路部分11から高温側個別流路部分12へと分岐して流れ、高温熱消費端末H1で熱が消費された後の熱媒体が、帰還流路部分14を通って共通流路部分11の合流部17へと帰還する。尚、高温側熱動弁V1が閉じている場合には、高温側個別流路部分12に熱媒体は流れない。本実施形態では、高温側熱動弁V1の開閉動作は制御装置Cが制御する。   The high-temperature side individual flow path portion 12 branches from the branch portion 9 of the common flow path portion 11 downstream of the heat source device 1 as viewed from the heat medium pump 7 and reaches the high-temperature heat consuming terminal H1. The high-temperature side individual valve section 12 is provided with a high-temperature side thermal valve V1. By adopting such a configuration, when the high-temperature side thermal valve V1 is open, the heat medium branches and flows from the common flow path portion 11 to the high-temperature side individual flow path portion 12, and the high-temperature heat consumption is reduced. The heat medium after the heat has been consumed at the terminal H1 returns to the junction 17 of the common flow path 11 through the return flow path 14. Note that when the high temperature side thermal valve V1 is closed, the heat medium does not flow through the high temperature side individual flow path portion 12. In the present embodiment, the control device C controls the opening / closing operation of the high temperature side thermal valve V1.

低温側個別流路部分13は、熱媒体ポンプ7から見て、熱源機1よりも上流側の共通流路部分11の分岐部8から分岐して低温熱消費端末H2に至る。低温側個別流路部分13には低温側熱動弁V2が設けられる。このような構成を採用することで、低温側熱動弁V2が開いている場合には、熱媒体が共通流路部分11から低温側個別流路部分13へと分岐して流れ、低温熱消費端末H2で熱が消費された後の熱媒体が、合流部16及び帰還流路部分14を通って共通流路部分11の合流部17へと帰還する。尚、低温側熱動弁V2が閉じている場合には、低温側個別流路部分13に熱媒体は流れない。本実施形態では、低温側熱動弁V2の開閉動作は制御装置Cが制御する。   The low-temperature side individual flow path portion 13 branches from the branch portion 8 of the common flow path portion 11 on the upstream side of the heat source device 1 when viewed from the heat medium pump 7, and reaches the low-temperature heat consuming terminal H2. The low-temperature side individual valve section 13 is provided with a low-temperature side thermal valve V2. By adopting such a configuration, when the low-temperature side heat valve V2 is open, the heat medium branches and flows from the common flow path portion 11 to the low-temperature side individual flow path portion 13, and the low-temperature heat consumption is reduced. The heat medium after the heat has been consumed at the terminal H2 returns to the junction 17 of the common channel portion 11 through the junction 16 and the return channel portion 14. In addition, when the low temperature side thermal valve V2 is closed, the heat medium does not flow through the low temperature side individual flow path portion 13. In the present embodiment, the control device C controls the opening / closing operation of the low temperature side thermal valve V2.

熱媒体循環路10の途中には、単位時間当たりの熱媒体の流量を測定する流量センサ18及び流量センサ19が設けられている。流量センサ18及び流量センサ19の測定結果は制御装置Cに伝達され、必要に応じて記憶装置Mに記憶される。   A flow sensor 18 and a flow sensor 19 for measuring the flow rate of the heat medium per unit time are provided in the middle of the heat medium circulation path 10. The measurement results of the flow sensors 18 and 19 are transmitted to the control device C and stored in the storage device M as needed.

流量センサ18及び流量センサ19は、検査対象とする熱動弁Vの開閉に伴って熱媒体の単位時間当たりの流量が変化する部位に設けておけばよい。
例えば、流量センサ18は、低温側熱動弁V2を検査対象とする場合、その低温側熱動弁V2が設けられている個別流路部分15(低温側個別流路部分13)が共通流路部分11から分岐する分岐部8よりも下流側、且つ、合流部17よりも上流側に設けられている。そのため、低温側熱動弁V2が開くことで低温側個別流路部分13を流れる熱媒体の量が増加すると、共通流路部分11の途中の流量センサ18が設けられている部位を流れる熱媒体の量は減少する。
同様に、流量センサ19は、高温側熱動弁V1を検査対象とする場合、その高温側熱動弁V1が設けられている個別流路部分15(高温側個別流路部分12)が共通流路部分11から分岐する分岐部9よりも下流側、且つ、合流部17よりも上流側に設けられている。そのため、高温側熱動弁V1が開くことで高温側個別流路部分12を流れる熱媒体の量が増加すると、共通流路部分11の途中の流量センサ19が設けられている部位を流れる熱媒体の量は減少する。
The flow rate sensor 18 and the flow rate sensor 19 may be provided in a portion where the flow rate of the heat medium per unit time changes with the opening and closing of the thermal valve V to be inspected.
For example, when the low-temperature-side thermal valve V2 is to be inspected, the flow rate sensor 18 is connected to the individual channel portion 15 (the low-temperature-side individual channel portion 13) provided with the low-temperature side thermal valve V2. It is provided downstream of the branch portion 8 branching from the portion 11 and upstream of the junction 17. Therefore, when the amount of the heat medium flowing through the low-temperature side individual flow path portion 13 increases due to the opening of the low-temperature side heat valve V2, the heat medium flowing through the portion of the common flow path portion 11 where the flow sensor 18 is provided is provided. Amount is reduced.
Similarly, when the high temperature side thermal valve V1 is to be inspected, the flow sensor 19 uses the common flow path portion 15 (the high temperature side individual flow path portion 12) provided with the high temperature side thermal valve V1 as a common flow. It is provided on the downstream side of the branch portion 9 branched from the road portion 11 and on the upstream side of the junction 17. Therefore, when the amount of the heat medium flowing through the high-temperature side individual flow path portion 12 increases due to the opening of the high-temperature side heat valve V1, the heat medium flowing through the portion of the common flow path portion 11 where the flow sensor 19 is provided is provided. Amount is reduced.

次に、図2〜図4を参照して熱媒体の循環状態を説明する。図2〜図4では、熱媒体が流動する部分を太線で描いている。   Next, the circulation state of the heat medium will be described with reference to FIGS. In FIG. 2 to FIG. 4, a portion through which the heat medium flows is drawn by a thick line.

図2は、高温側熱動弁V1が閉じており且つ低温側熱動弁V2が閉じている場合での熱媒体の循環状態を示す図である。この場合、高温側熱動弁V1が閉じているため、高温側個別流路部分12及び高温熱消費端末H1には熱媒体は流れない。同様に、低温側熱動弁V2が閉じているため、低温側個別流路部分13及び低温熱消費端末H2には熱媒体は流れない。   FIG. 2 is a diagram illustrating a circulation state of the heat medium when the high-temperature side thermal valve V1 is closed and the low-temperature side thermal valve V2 is closed. In this case, since the high-temperature side thermal valve V1 is closed, the heat medium does not flow through the high-temperature side individual flow path portion 12 and the high-temperature heat consuming terminal H1. Similarly, since the low-temperature side thermal valve V2 is closed, no heat medium flows through the low-temperature side individual flow path portion 13 and the low-temperature heat consuming terminal H2.

図3は、高温側熱動弁V1が開いており且つ低温側熱動弁V2が閉じている場合での熱媒体の循環状態を示す図である。この場合、低温側熱動弁V2が閉じているため、低温側個別流路部分13及び低温熱消費端末H2には熱媒体は流れない。それに対して、高温側熱動弁V1が開いているため、高温側個別流路部分12及び高温熱消費端末H1には熱媒体が流れる。その結果、熱媒体は、共通流路部分11を循環するのに加えて、共通流路部分11の分岐部9から分岐して高温側個別流路部分12を流れ、高温熱消費端末H1及び帰還流路部分14を経由して、共通流路部分11の合流部17へと流れる。   FIG. 3 is a diagram illustrating a circulation state of the heat medium when the high-temperature side thermal valve V1 is open and the low-temperature side thermal valve V2 is closed. In this case, since the low temperature side heat valve V2 is closed, the heat medium does not flow through the low temperature side individual flow path portion 13 and the low temperature heat consuming terminal H2. On the other hand, since the high temperature side heat valve V1 is open, the heat medium flows through the high temperature side individual flow path portion 12 and the high temperature heat consuming terminal H1. As a result, in addition to circulating through the common flow path portion 11, the heat medium branches from the branch portion 9 of the common flow path portion 11, flows through the high-temperature side individual flow path portion 12, and flows through the high-temperature heat consuming terminal H1 and the return. It flows to the confluence 17 of the common flow channel portion 11 via the flow channel portion 14.

図3に示す熱媒体の循環状態は、高温熱消費端末H1が使用されている場合での循環状態である。この場合、制御装置Cは、熱源機1で加熱された後の熱媒体の温度(温度センサT2で測定される温度)が例えば80℃になるように熱源機1を動作させる。その結果、高温熱消費端末H1には80℃の熱媒体が供給されて、その熱が消費される。   The circulation state of the heat medium shown in FIG. 3 is a circulation state when the high-temperature heat consuming terminal H1 is used. In this case, the control device C operates the heat source device 1 such that the temperature of the heat medium (the temperature measured by the temperature sensor T2) after being heated by the heat source device 1 becomes, for example, 80 ° C. As a result, the heat medium of 80 ° C. is supplied to the high-temperature heat consuming terminal H1, and the heat is consumed.

図4は、高温側熱動弁V1が閉じており且つ低温側熱動弁V2が開いている場合での熱媒体の循環状態を示す図である。この場合、高温側熱動弁V1が閉じているため、高温側個別流路部分12及び高温熱消費端末H1には熱媒体は流れない。それに対して、低温側熱動弁V2が開いているため、低温側個別流路部分13及び低温熱消費端末H2には熱媒体が流れる。その結果、熱媒体は、共通流路部分11を循環するのに加えて、共通流路部分11の分岐部8から分岐して低温側個別流路部分13を流れ、低温熱消費端末H2及び帰還流路部分14を経由して、共通流路部分11の合流部17へと流れる。   FIG. 4 is a diagram illustrating a circulation state of the heat medium when the high-temperature side thermal valve V1 is closed and the low-temperature side thermal valve V2 is open. In this case, since the high-temperature side thermal valve V1 is closed, the heat medium does not flow through the high-temperature side individual flow path portion 12 and the high-temperature heat consuming terminal H1. On the other hand, since the low-temperature side heat valve V2 is open, the heat medium flows through the low-temperature side individual flow path portion 13 and the low-temperature heat consuming terminal H2. As a result, in addition to circulating through the common flow path portion 11, the heat medium branches from the branch portion 8 of the common flow path portion 11, flows through the low-temperature side individual flow path portion 13, and flows through the low-temperature heat consuming terminal H2 and the return path. It flows to the confluence 17 of the common flow channel portion 11 via the flow channel portion 14.

図4に示す熱媒体の循環状態は、低温熱消費端末H2が使用されている場合での循環状態である。この場合、低温側個別流路部分13は熱源機1よりも上流側で共通流路部分11から分岐しているため、低温熱消費端末H2には熱源機1で加熱された熱媒体が直接供給されることはなく、熱源機1で加熱された熱媒体と低温熱消費端末H2から帰還した熱媒体とが合流部17で合流され、その合流後の熱媒体が低温熱消費端末H2に供給される。よって、制御装置Cは、温度センサT1で温度が測定される、合流部17で合流された後の熱媒体(即ち、低温熱消費端末H2に供給される熱媒体)の温度が例えば60℃になるように熱源機1を動作させる。その結果、低温熱消費端末H2には60℃の熱媒体が供給されて、その熱が消費される。   The circulation state of the heat medium shown in FIG. 4 is a circulation state when the low-temperature heat consuming terminal H2 is used. In this case, since the low-temperature side individual flow path portion 13 is branched from the common flow path portion 11 on the upstream side of the heat source device 1, the heat medium heated by the heat source device 1 is directly supplied to the low-temperature heat consuming terminal H2. The heat medium heated by the heat source unit 1 and the heat medium returned from the low-temperature heat consuming terminal H2 are merged at the merging unit 17, and the heat medium after the merging is supplied to the low-temperature heat consuming terminal H2. You. Therefore, the control device C sets the temperature of the heat medium (that is, the heat medium supplied to the low-temperature heat consuming terminal H2) after the temperature is measured by the temperature sensor T1 and joined by the joining section 17 to, for example, 60 ° C. The heat source device 1 is operated so as to be as follows. As a result, the heat medium of 60 ° C. is supplied to the low-temperature heat consuming terminal H2, and the heat is consumed.

尚、図示は省略するが、高温熱消費端末H1及び低温熱消費端末H2の両方が使用されている場合には、高温側熱動弁V1及び低温側熱動弁V2の両方が開いており、高温側個別流路部分12及び高温熱消費端末H1には熱媒体が流れ、低温側個別流路部分13及び低温熱消費端末H2にも熱媒体が流れる。そして、高温熱消費端末H1及び低温熱消費端末H2から熱媒体が合流部17へと帰還する。   Although not shown, when both the high-temperature heat consuming terminal H1 and the low-temperature heat consuming terminal H2 are used, both the high-temperature side heat valve V1 and the low-temperature side heat valve V2 are open, The heat medium flows through the high temperature side individual flow path portion 12 and the high temperature heat consuming terminal H1, and the heat medium also flows through the low temperature side individual flow path portion 13 and the low temperature heat consuming terminal H2. Then, the heat medium returns from the high-temperature heat consuming terminal H1 and the low-temperature heat consuming terminal H2 to the junction 17.

以上のような構成の熱供給システムでは、特定の熱動弁Vが新たに開閉されると、それまで熱媒体が流れていなかった経路に熱媒体が流れることや、それまで熱媒体が流れていた経路に熱媒体が流れなくなることなどが発生する。そのため、特定の熱動弁Vが開閉されると、熱媒体循環路10の全体で見ると、熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)が変化する。このとき、熱媒体循環路10で熱媒体を流すための熱媒体ポンプ7の回転速度が一定のまま、即ち、熱媒体ポンプ7が単位時間当たりに吐出する熱媒体量が一定のままの場合、流れる熱媒体の総量が変化すると、熱媒体ポンプ7の負荷は変化する。このように、特定の熱動弁Vが開閉されると、熱供給システムでの所定の動作状態を表す動作状態値が変化する。   In the heat supply system having the above-described configuration, when a specific heat valve V is newly opened and closed, the heat medium flows into a path through which the heat medium has not flowed, or the heat medium has flown until then. For example, the heat medium may not flow in the route that has flowed. Therefore, when the specific heat valve V is opened and closed, the volume of the portion where the heat medium flows (that is, the total amount of the heat medium flowing) changes in the heat medium circulation path 10 as a whole. At this time, when the rotation speed of the heat medium pump 7 for flowing the heat medium in the heat medium circulation path 10 is kept constant, that is, when the heat medium pump 7 discharges a fixed amount of heat medium per unit time, When the total amount of flowing heat medium changes, the load on the heat medium pump 7 changes. As described above, when a specific thermal valve V is opened and closed, an operation state value representing a predetermined operation state in the heat supply system changes.

次に、熱動弁Vが正常であるか否かを検証するための本実施形態の熱供給システムの検査方法について説明する。本実施形態では、熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す動作状態値を測定し、その動作状態値に基づいて、異常状態の熱動弁Vが含まれているか否かを判定する。   Next, an inspection method of the heat supply system of the present embodiment for verifying whether the thermal valve V is normal will be described. In the present embodiment, while circulating the heat medium in the heat medium circulation path 10, an operation state value representing a predetermined operation state in the heat supply system is measured, and based on the operation state value, the thermal valve in an abnormal state is measured. It is determined whether V is included.

本実施形態では、上記動作状態値は、熱媒体ポンプ7の消費電流値である。熱媒体循環路10で熱媒体を流すための熱媒体ポンプ7の回転速度が一定のまま、即ち、熱媒体ポンプ7が単位時間当たりに吐出する熱媒体量が一定のままの場合、熱動弁Vが開閉して熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)が変化すると、熱媒体ポンプ7の負荷が変化して、熱媒体ポンプ7の消費電流値が変化する。例えば、熱媒体ポンプ7が所定の回転速度で動作する場合、熱媒体循環路10で流動する熱媒体の量が多くなれば(即ち、負荷が大きくなれば)熱媒体ポンプ7の消費電流値は大きくなり、熱媒体循環路10で流動する熱媒体の量が少なくなれば(即ち、負荷が小さくなれば)熱媒体ポンプ7の消費電流値は小さくなる。   In the present embodiment, the operation state value is a current consumption value of the heat medium pump 7. If the rotation speed of the heat medium pump 7 for flowing the heat medium in the heat medium circulation path 10 is kept constant, that is, if the heat medium pump 7 discharges a fixed amount of heat medium per unit time, the thermal valve When the volume of the portion where the heat medium flows (ie, the total amount of the heat medium flowing) changes due to the opening and closing of V, the load of the heat medium pump 7 changes, and the current consumption value of the heat medium pump 7 changes. For example, when the heat medium pump 7 operates at a predetermined rotation speed, if the amount of the heat medium flowing in the heat medium circulation path 10 increases (that is, if the load increases), the current consumption value of the heat medium pump 7 becomes The current consumption of the heat medium pump 7 decreases as the size of the heat medium pump 7 increases and the amount of the heat medium flowing in the heat medium circulation path 10 decreases (that is, the load decreases).

〔高温側熱動弁V1を検査対象とした場合〕
以下に示す例は、高温熱消費端末H1に熱媒体を流すか否かを切り替えるための高温側熱動弁V1が正常に閉じるか否かを検証するための方法である。つまり、高温側熱動弁V1が検査対象とする熱動弁Vである。尚、以下に説明する第1測定工程及び第2測定工程及び判定工程は、熱供給システムを運転開始してから一定時間(例えば、360時間や720時間など)経過した後などの適当なタイミングで行えばよい。例えば、第1測定工程及び第2測定工程及び判定工程の機能を実行するためのプログラムを記憶装置Mに記憶しておき、制御装置Cがそのプログラムを読み出して実行することで行われる。
[When the high temperature side thermal valve V1 is the inspection target]
The following example is a method for verifying whether or not the high-temperature side thermal valve V1 for switching whether or not to flow the heat medium to the high-temperature heat consuming terminal H1 normally closes. That is, the high-temperature side thermal valve V1 is the thermal valve V to be inspected. Note that the first measurement step, the second measurement step, and the determination step described below are performed at an appropriate timing such as after a certain time (for example, 360 hours or 720 hours) has elapsed since the start of operation of the heat supply system. Just do it. For example, a program for executing the functions of the first measurement step, the second measurement step, and the determination step is stored in the storage device M, and the control device C reads and executes the program.

・第1測定工程
制御装置Cは、複数の熱動弁Vのうちの検査対象とする熱動弁Vを閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第1の動作状態値を測定する(第1測定工程)。例えば、図2に示すように、制御装置Cは、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、熱媒体ポンプ7の消費電流値を測定する(第1測定工程)。この場合、熱源機1を動作させなくてもよい。
First measurement step The control device C gives a command to close the thermal valve V to be inspected among the plurality of thermal valves V, and the first operation state in which the heat medium pump 7 is operated at a predetermined rotation speed. A first operation state value representing a predetermined operation state in the heat supply system is measured while circulating the heat medium in the heat medium circulation path 10 (first measurement step). For example, as shown in FIG. 2, the control device C gives a command to close both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2, and operates the first heat medium pump 7 at a predetermined rotation speed. The current consumption value of the heat medium pump 7 is measured while circulating the heat medium in the heat medium circulation path 10 in the operating state (first measurement step). In this case, the heat source device 1 does not need to be operated.

つまり、第1測定工程で測定する第1の動作状態値(熱媒体ポンプ7の消費電流値)は、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)に関連する。よって、高温側熱動弁V1及び低温側熱動弁V2の両方が正常に閉じていれば、第1測定工程で測定する熱媒体ポンプ7の消費電流値は、図2において太線で示す共通流路部分11の容積に関連した値になるはずである。   In other words, the first operation state value (current consumption value of the heat medium pump 7) measured in the first measurement step gives an instruction to close both the high-temperature side heat valve V1 and the low-temperature side heat valve V2, and sets the heat medium In the case where the heat medium is circulated through the heat medium circulation path 10 in the first operation state in which the pump 7 is operated at a predetermined rotation speed, the volume of the portion where the heat medium flows (that is, the total amount of the heat medium flowing) )is connected with. Therefore, if both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2 are normally closed, the current consumption value of the heat medium pump 7 measured in the first measurement step is the common flow indicated by the bold line in FIG. It should be a value related to the volume of the road section 11.

・第2測定工程
制御装置Cは、上述した検査対象とする熱動弁Vを開く指令を与える以外は第1動作状態と同じ第2動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第2の動作状態値を測定する(第2測定工程)。例えば、図3に示すように、制御装置Cは、高温側熱動弁V1を開く指令を与える以外は第1動作状態と同じ第2動作状態(高温側熱動弁V1を開く指令を与え、低温側熱動弁V2を閉じる指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態)で、熱媒体循環路10に熱媒体を循環させながら、熱媒体ポンプ7の消費電流値を測定する(第2測定工程)。この場合、熱源機1を動作させなくてもよい。
The second measurement step The control device C circulates the heat medium through the heat medium circulation path 10 in the second operation state, which is the same as the first operation state, except that the above-described instruction to open the thermal valve V to be inspected is given. And measuring a second operation state value representing a predetermined operation state in the heat supply system (second measurement step). For example, as shown in FIG. 3, the control device C gives a command to open the high-temperature side thermal valve V1 except for giving a command to open the high-temperature thermal valve V1. While the heat medium pump 7 is instructed to close the low temperature side heat valve V2 and the heat medium pump 7 is operated at the same rotation speed as the first operation state), the heat medium is circulated through the heat medium circulation path 10 while the heat medium is circulated. The current consumption value of the pump 7 is measured (second measuring step). In this case, the heat source device 1 does not need to be operated.

つまり、第2測定工程で測定する第2の動作状態値(熱媒体ポンプ7の消費電流値)は、高温側熱動弁V1を開く指令を与え、低温側熱動弁V2を閉じる指令を与え、且つ、熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)に関連する。よって、高温側熱動弁V1が正常に開き且つ低温側熱動弁V2が正常に閉じていれば、第2測定工程で測定する熱媒体ポンプ7の消費電流値は、図3において太線で示す共通流路部分11及び高温側個別流路部分12及び帰還流路部分14の容積に関連した値になるはずである。   That is, the second operation state value (current consumption value of the heat medium pump 7) measured in the second measurement step gives an instruction to open the high-temperature side thermal valve V1 and an instruction to close the low-temperature side thermal valve V2. In the case where the heat medium is circulated through the heat medium circulation path 10 in a state where the heat medium pump 7 is operated at the same rotation speed as the first operation state, the volume of the portion where the heat medium flows ( That is, the total amount of the flowing heat medium). Therefore, if the high-temperature side thermal valve V1 is normally opened and the low-temperature side thermal valve V2 is normally closed, the consumed current value of the heat medium pump 7 measured in the second measurement step is shown by a thick line in FIG. It should be a value related to the volume of the common flow path portion 11, the high temperature side individual flow path portion 12, and the return flow path portion 14.

尚、この例では、検査対象としない低温側熱動弁V2を、第1測定工程及び第2測定工程の間、常に閉じているが、検査対象としない低温側熱動弁V2を、第1測定工程及び第2測定工程の間、常に開いていてもよい。つまり、検査対象としない低温側熱動弁V2の開閉状態を、第1測定工程及び第2測定工程の間、変化させなければよい。   In this example, the low-temperature side thermal valve V2 not to be inspected is always closed during the first measurement step and the second measurement step. It may be always open during the measurement step and the second measurement step. That is, the open / close state of the low-temperature side thermal valve V2, which is not to be inspected, need not be changed between the first measurement step and the second measurement step.

・判定工程
制御装置Cは、第1の動作状態値と第2の動作状態値との差が所定範囲内であれば、検査対象とする熱動弁Vが正常に閉じない異常状態の熱動弁Vを含んでいると判定し、第1の動作状態値と第2の動作状態値との差が所定範囲よりも大きければ検査対象とする熱動弁Vが異常状態の熱動弁Vを含んでいないと判定する(判定工程)。
Judgment Step If the difference between the first operating state value and the second operating state value is within a predetermined range, the control device C determines whether the thermal valve V to be inspected is in an abnormal state where the thermal valve V is not normally closed. It is determined that the valve includes the valve V, and if the difference between the first operating state value and the second operating state value is larger than a predetermined range, the thermal valve V to be inspected is determined to be the abnormal state. It is determined that it is not included (determination step).

以上のような第1測定工程及び第2測定工程を行った場合、高温側熱動弁V1が正常に開閉していれば、第1測定工程(図2)を行った場合に熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)は、第2測定工程(図3)を行った場合に熱媒体が流れている部分の容積よりも小さいため、第1測定工程(図2)を行った場合の熱媒体ポンプ7の負荷は、第2測定工程(図3)を行った場合の熱媒体ポンプ7の負荷よりも小さくなるはずである。そのため、制御装置Cは、第1測定工程で測定した熱媒体ポンプ7の消費電流値(第1の動作状態値)と、第2測定工程で測定した熱媒体ポンプ7の消費電流値(第2の動作状態値)との差が所定範囲よりも大きければ高温側熱動弁V1が異常状態ではないと判定する。   When the first measurement step and the second measurement step as described above are performed, if the high-temperature side thermal valve V1 is normally opened and closed, the heat medium flows when the first measurement step (FIG. 2) is performed. Since the volume of the portion where the heat medium flows (that is, the total amount of the flowing heat medium) is smaller than the volume of the portion where the heat medium flows when the second measurement step (FIG. 3) is performed, the first measurement step (FIG. 2) ) Should be smaller than the load on the heat medium pump 7 when the second measurement step (FIG. 3) is performed. For this reason, the control device C determines the current consumption value of the heat medium pump 7 (first operation state value) measured in the first measurement step and the current consumption value of the heat medium pump 7 (second operation state value) measured in the second measurement step. Is larger than a predetermined range, it is determined that the high temperature side thermal valve V1 is not in an abnormal state.

それに対して、高温側熱動弁V1に開故障が発生していれば、即ち、高温側熱動弁V1に閉じ指令を与えていた第1測定工程(図2)の場合にも、実際には高温側熱動弁V1を経由して熱媒体が流れていれば、第1測定工程(図2)を行った場合の熱媒体ポンプ7の負荷は、第2測定工程(図3)を行った場合の熱媒体ポンプ7の負荷と近い値になるはずである。そのため、制御装置Cは、第1測定工程で測定した熱媒体ポンプ7の消費電流値(第1の動作状態値)と、第2測定工程で測定した熱媒体ポンプ7の消費電流値(第2の動作状態値)との差が所定範囲内であれば高温側熱動弁V1が異常状態であると判定する。   On the other hand, if an open failure has occurred in the high-temperature side thermal valve V1, that is, in the first measurement step (FIG. 2) in which a close command was given to the high-temperature side thermal valve V1, actually, If the heat medium is flowing via the high-temperature side heat valve V1, the load on the heat medium pump 7 in the case where the first measurement step (FIG. 2) is performed is the same as in the case where the second measurement step (FIG. 3) is performed. The value should be close to the load of the heat medium pump 7 in the case of the above. For this reason, the control device C determines the current consumption value of the heat medium pump 7 (first operation state value) measured in the first measurement step and the current consumption value of the heat medium pump 7 (second operation state value) measured in the second measurement step. If the difference is within the predetermined range, it is determined that the high-temperature side thermal valve V1 is in an abnormal state.

〔低温側熱動弁V2を検査対象とした場合〕
以下に示す例は、低温熱消費端末H2に熱媒体を流すか否かを切り替えるための低温側熱動弁V2が正常に閉じるか否かを検証するための方法である。つまり、低温側熱動弁V2が、検査対象とする熱動弁Vである。
[When the low-temperature side thermal valve V2 is the inspection target]
The following example is a method for verifying whether or not the low-temperature side thermal valve V2 for switching whether or not to flow the heat medium to the low-temperature heat consuming terminal H2 normally closes. That is, the low-temperature side thermal valve V2 is the thermal valve V to be inspected.

・第1測定工程
図2に示すように、制御装置Cは、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、熱媒体ポンプ7の消費電流値を測定する(第1測定工程)。第1測定工程で測定する第1の動作状態値(熱媒体ポンプ7の消費電流値)は、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で流動する熱媒体の量に関連する。よって、高温側熱動弁V1及び低温側熱動弁V2の両方が正常に閉じていれば、第1測定工程で測定する熱媒体ポンプ7の消費電流値は、図2において太線で示す共通流路部分11のみを流動する熱媒体の量に関連した値になるはずである。
-First measurement step As shown in Fig. 2, the control device C gives a command to close both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2 and operates the heat medium pump 7 at a predetermined rotation speed. While circulating the heat medium in the heat medium circulation path 10 in the first operation state, the current consumption value of the heat medium pump 7 is measured (first measurement step). The first operation state value (current consumption value of the heat medium pump 7) measured in the first measurement step gives an instruction to close both the high-temperature side heat valve V1 and the low-temperature side heat valve V2 and outputs the heat medium pump 7 Is related to the amount of the heat medium flowing in the heat medium circulation path 10 when the heat medium is circulated in the heat medium circulation path 10 in the first operation state in which the heat medium is operated at a predetermined rotation speed. Therefore, if both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2 are normally closed, the current consumption value of the heat medium pump 7 measured in the first measurement step is the common flow indicated by the bold line in FIG. The value should be related to the amount of the heat medium flowing only in the road section 11.

・第2測定工程
図4に示すように、制御装置Cは、低温側熱動弁V2を開く指令を与える以外は第1動作状態と同じ第2動作状態(高温側熱動弁V1を閉じる指令を与え、低温側熱動弁V2を開く指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態)で、熱媒体循環路10に熱媒体を循環させながら、熱媒体ポンプ7の消費電流値を測定する(第2測定工程)。第2測定工程で測定する第2の動作状態値(熱媒体ポンプ7の消費電流値)は、高温側熱動弁V1を閉じる指令を与え、低温側熱動弁V2を開く指令を与え、且つ、熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で流動する熱媒体の量に関連する。よって、高温側熱動弁V1が正常に閉じ且つ低温側熱動弁V2が正常に開いていれば、第2測定工程で測定する熱媒体ポンプ7の消費電流値は、図4において太線で示す共通流路部分11及び低温側個別流路部分13及び帰還流路部分14を流動する熱媒体の量に関連した値になるはずである。
-2nd measurement process As shown in FIG. 4, the control apparatus C is the 2nd operation state same as the 1st operation state except giving the command to open the low temperature side thermal valve V2 (the command to close the high temperature side thermal valve V1). While the heat medium pump 7 is operated at the same rotation speed as the first operation state), and the heat medium is circulated through the heat medium circulation path 10. Then, the current consumption value of the heat medium pump 7 is measured (second measuring step). The second operation state value (current consumption value of the heat medium pump 7) measured in the second measurement step gives a command to close the high-temperature side thermal valve V1, gives a command to open the low-temperature side thermal valve V2, and The amount of the heat medium flowing in the heat medium circulation path 10 when the heat medium is circulated in the heat medium circulation path 10 in a state where the heat medium pump 7 is operated at the same rotation speed as the first operation state. is connected with. Therefore, if the high-temperature side thermal valve V1 is normally closed and the low-temperature side thermal valve V2 is normally open, the consumption current value of the heat medium pump 7 measured in the second measurement step is indicated by a thick line in FIG. The value should be related to the amount of the heat medium flowing through the common flow path portion 11, the low temperature side individual flow path portion 13, and the return flow path portion 14.

尚、この例では、検査対象としない高温側熱動弁V1を、第1測定工程及び第2測定工程の間、常に閉じているが、検査対象としない高温側熱動弁V1を、第1測定工程及び第2測定工程の間、常に開いていてもよい。つまり、検査対象としない高温側熱動弁V1の開閉状態を、第1測定工程及び第2測定工程の間、変化させなければよい。   In this example, the high-temperature side thermal valve V1 not to be inspected is always closed during the first measurement step and the second measurement step. It may be always open during the measurement step and the second measurement step. That is, the open / closed state of the high-temperature side thermal valve V1 which is not to be inspected need not be changed between the first measurement step and the second measurement step.

・判定工程
以上のような第1測定工程及び第2測定工程を行った場合、低温側熱動弁V2が正常に開閉していれば、第1測定工程(図2)を行った場合に熱媒体が流れている部分の容積(即ち、流れる熱媒体の総量)は、第2測定工程(図4)を行った場合に熱媒体が流れている部分の容積よりも小さいため、第1測定工程(図2)を行った場合の熱媒体ポンプ7の負荷は、第2測定工程(図4)を行った場合の熱媒体ポンプ7の負荷よりも小さくなるはずである。つまり、制御装置Cは、上記第1の動作状態値と上記第2の動作状態値との差が所定範囲よりも大きければ低温側熱動弁V2が異常状態ではないと判定する。
-Judgment step When the first measurement step and the second measurement step as described above are performed, if the low-temperature side thermal valve V2 is normally opened and closed, the heat is determined when the first measurement step (Fig. 2) is performed. Since the volume of the portion where the medium flows (that is, the total amount of the flowing heat medium) is smaller than the volume of the portion where the heat medium flows when the second measurement process (FIG. 4) is performed, the first measurement process is performed. The load on the heat medium pump 7 when performing (FIG. 2) should be smaller than the load on the heat medium pump 7 when performing the second measurement step (FIG. 4). That is, if the difference between the first operating state value and the second operating state value is larger than the predetermined range, the control device C determines that the low temperature side thermal valve V2 is not in an abnormal state.

それに対して、低温側熱動弁V2に開故障が発生していれば、即ち、低温側熱動弁V2に閉じ指令を与えていた第1測定工程(図2)の場合にも、実際には低温側熱動弁V2を経由して熱媒体が流れていれば、第1測定工程(図2)を行った場合の熱媒体ポンプ7の負荷は、第2測定工程(図4)を行った場合の熱媒体ポンプ7の負荷と近い値になるはずである。つまり、制御装置Cは、上記第1の動作状態値と上記第2の動作状態値との差が所定範囲内であれば低温側熱動弁V2が異常状態であると判定する。   On the other hand, if an open failure has occurred in the low-temperature side thermal valve V2, that is, in the first measurement step (FIG. 2) in which a close command was given to the low-temperature side thermal valve V2, If the heat medium is flowing via the low-temperature side heat valve V2, the load on the heat medium pump 7 in the case where the first measurement step (FIG. 2) is performed is the same as in the case where the second measurement step (FIG. 4) is performed. The value should be close to the load of the heat medium pump 7 in the case of the above. That is, the control device C determines that the low-temperature side thermal valve V2 is in an abnormal state if the difference between the first operating state value and the second operating state value is within a predetermined range.

制御装置Cは、上記判定工程によって熱動弁Vが正常に閉じていないと判定した場合、その旨を報知する(報知工程)。例えば、制御装置Cは、情報入出力装置Dの表示部(図示せず)に、熱動弁Vの開故障を示すエラーコードなどを表示させる。その結果、情報入出力装置Dで報知された情報を見た利用者は、熱供給システムの販売者等に修理などを依頼できる。或いは、制御装置Cが、インターネットなどの情報通信網と接続されている場合には、熱供給システムの販売者等に熱動弁Vの開故障を示す情報を情報通信網を介して報知してもよい。   When the control device C determines that the thermal valve V is not normally closed in the determination process, the control device C notifies the fact (notification process). For example, the control device C causes a display unit (not shown) of the information input / output device D to display an error code or the like indicating an open failure of the thermal valve V. As a result, the user who sees the information notified by the information input / output device D can request the heat supply system seller or the like for repair. Alternatively, when the control device C is connected to an information communication network such as the Internet, the information indicating the open failure of the thermal valve V is notified to the heat supply system seller or the like via the information communication network. Is also good.

<第2実施形態>
第2実施形態の熱供給システムの検査方法は、熱媒体循環路10の途中で測定される単位時間当たりの熱媒体の流量を上記動作状態値として用いる点で上記実施形態と異なる。以下に第2実施形態の熱供給システムの検査方法について説明するが、上記実施形態と同様の構成については説明を省略する。
<Second embodiment>
The inspection method of the heat supply system according to the second embodiment differs from the above embodiment in that the flow rate of the heat medium per unit time measured in the heat medium circulation path 10 is used as the operation state value. Hereinafter, an inspection method of the heat supply system according to the second embodiment will be described, but the description of the same configuration as the above embodiment will be omitted.

本実施形態でも、熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す動作状態値を測定し、その動作状態値に基づいて、異常状態の熱動弁Vが含まれているか否かを判定する。本実施形態では、動作状態値は、熱媒体循環路10の途中で測定される単位時間当たりの熱媒体の流量である。   Also in the present embodiment, while circulating the heat medium in the heat medium circulation path 10, an operation state value representing a predetermined operation state in the heat supply system is measured, and based on the operation state value, the thermal valve in an abnormal state is measured. It is determined whether V is included. In the present embodiment, the operation state value is a flow rate of the heat medium per unit time measured in the middle of the heat medium circulation path 10.

〔高温側熱動弁V1を検査対象とした場合〕
以下に示す例は、高温熱消費端末H1に熱媒体を流すか否かを切り替えるための高温側熱動弁V1が正常に閉じるか否かを検証するための方法である。つまり、高温側熱動弁V1が、検査対象とする熱動弁Vである。
[When the high temperature side thermal valve V1 is the inspection target]
The following example is a method for verifying whether or not the high-temperature side thermal valve V1 for switching whether or not to flow the heat medium to the high-temperature heat consuming terminal H1 normally closes. That is, the high-temperature side thermal valve V1 is the thermal valve V to be inspected.

・第1測定工程
制御装置Cは、複数の熱動弁Vのうちの検査対象とする熱動弁Vを閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第1の動作状態値を測定する(第1測定工程)。例えば、図2に示すように、制御装置Cは、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、流量センサ19を用いて熱媒体の単位時間当たりの流量を測定する(第1測定工程)。この場合、熱源機1を動作させなくてもよい。
First measurement step The control device C gives a command to close the thermal valve V to be inspected among the plurality of thermal valves V, and the first operation state in which the heat medium pump 7 is operated at a predetermined rotation speed. A first operation state value representing a predetermined operation state in the heat supply system is measured while circulating the heat medium in the heat medium circulation path 10 (first measurement step). For example, as shown in FIG. 2, the control device C gives a command to close both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2, and operates the first heat medium pump 7 at a predetermined rotation speed. While circulating the heat medium in the heat medium circulation path 10 in the operating state, the flow rate of the heat medium per unit time is measured using the flow rate sensor 19 (first measurement step). In this case, the heat source device 1 does not need to be operated.

つまり、第1測定工程で測定する第1の動作状態値(熱媒体の単位時間当たりの流量)は、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で単位時間当たりに流動する熱媒体の量に対応する。よって、高温側熱動弁V1及び低温側熱動弁V2の両方が正常に閉じていれば、第1測定工程において流量センサ19で測定する熱媒体の単位時間当たりの流量は、図2において太線で示す共通流路部分11のみを流動する熱媒体の量に対応した値になるはずである。   That is, the first operation state value (flow rate of the heat medium per unit time) measured in the first measurement step gives a command to close both the high-temperature side heat valve V1 and the low-temperature side heat valve V2, and outputs the heat medium. When the heat medium is circulated in the heat medium circulation path 10 in the first operation state in which the pump 7 is operated at a predetermined rotation speed, the amount of the heat medium flowing per unit time in the heat medium circulation path 10 Corresponding. Therefore, if both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2 are normally closed, the flow rate of the heat medium per unit time measured by the flow rate sensor 19 in the first measurement step is indicated by a bold line in FIG. It should be a value corresponding to the amount of the heat medium flowing only in the common flow path portion 11 indicated by.

・第2測定工程
制御装置Cは、上述した検査対象とする熱動弁Vを開く指令を与える以外は第1動作状態と同じ第2動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第2の動作状態値を測定する(第2測定工程)。例えば、図3に示すように、制御装置Cは、高温側熱動弁V1を開く指令を与える以外は第1動作状態と同じ第2動作状態(高温側熱動弁V1を開く指令を与え、低温側熱動弁V2を閉じる指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態)で、熱媒体循環路10に熱媒体を循環させながら、流量センサ19を用いて熱媒体の単位時間当たりの流量を測定する(第2測定工程)。この場合、熱源機1を動作させなくてもよい。
The second measurement step The control device C circulates the heat medium through the heat medium circulation path 10 in the second operation state, which is the same as the first operation state, except that the above-described instruction to open the thermal valve V to be inspected is given. And measuring a second operation state value representing a predetermined operation state in the heat supply system (second measurement step). For example, as shown in FIG. 3, the control device C gives a command to open the high-temperature side thermal valve V1 except for giving a command to open the high-temperature thermal valve V1. While the heat medium pump 7 is instructed to close the low-temperature side heat valve V2 and the heat medium pump 7 is operated at the same rotation speed as the first operation state), the heat medium 19, the flow rate of the heat medium per unit time is measured (second measuring step). In this case, the heat source device 1 does not need to be operated.

つまり、第2測定工程で測定する第2の動作状態値(熱媒体の単位時間当たりの流量)は、高温側熱動弁V1を開く指令を与え、低温側熱動弁V2を閉じる指令を与え、且つ、熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で熱媒体の単位時間当たりの流量に対応する。よって、高温側熱動弁V1が正常に開き且つ低温側熱動弁V2が正常に閉じていれば、第2測定工程において流量センサ19で測定する熱媒体の単位時間当たりの流量は、図3において太線で示す分岐部9と合流部17との間を単位時間当たりに流動する熱媒体の量に対応した値になるはずである。   In other words, the second operating state value (flow rate of the heat medium per unit time) measured in the second measurement step gives a command to open the high-temperature side thermal valve V1 and a command to close the low-temperature side thermal valve V2. And a unit of the heat medium in the heat medium circulation path 10 when the heat medium is circulated in the heat medium circulation path 10 in a state where the heat medium pump 7 is operated at the same rotation speed as the first operation state. It corresponds to the flow rate per hour. Therefore, if the high-temperature side thermal valve V1 is normally opened and the low-temperature side thermal valve V2 is normally closed, the flow rate of the heat medium per unit time measured by the flow rate sensor 19 in the second measurement step is as shown in FIG. The value should correspond to the amount of the heat medium flowing per unit time between the branch portion 9 and the junction portion 17 indicated by the thick line.

・判定工程
制御装置Cは、第1の動作状態値と第2の動作状態値との差が所定範囲内であれば、検査対象とする熱動弁Vが正常に閉じない異常状態の熱動弁Vを含んでいると判定し、第1の動作状態値と第2の動作状態値との差が所定範囲よりも大きければ検査対象とする熱動弁Vが異常状態の熱動弁Vを含んでいないと判定する(判定工程)。
Judgment Step If the difference between the first operating state value and the second operating state value is within a predetermined range, the control device C determines whether the thermal valve V to be inspected is in an abnormal state where the thermal valve V is not normally closed. It is determined that the valve includes the valve V, and if the difference between the first operating state value and the second operating state value is larger than a predetermined range, the thermal valve V to be inspected is determined to be the abnormal state. It is determined that it is not included (determination step).

以上のような第1測定工程及び第2測定工程を行った場合、熱媒体ポンプ7が単位時間当たりに流す熱媒体の流量は一定であるのだから、高温側熱動弁V1が正常に開閉していれば、第1測定工程(図2)を行った場合に流量センサ19で測定される熱媒体の流量は、第2測定工程(図3)を行った場合に流量センサ19で測定される熱媒体よりも多くなるはずである。つまり、制御装置Cは、上記第1の動作状態値と上記第2の動作状態値との差が所定範囲よりも大きければ高温側熱動弁V1が異常状態ではないと判定する。   When the first measurement step and the second measurement step as described above are performed, since the flow rate of the heat medium flowing per unit time by the heat medium pump 7 is constant, the high-temperature side thermal valve V1 normally opens and closes. If so, the flow rate of the heat medium measured by the flow sensor 19 when the first measurement step (FIG. 2) is performed is measured by the flow sensor 19 when the second measurement step (FIG. 3) is performed. It should be more than the heat carrier. That is, the control device C determines that the high temperature side thermal valve V1 is not in an abnormal state if the difference between the first operating state value and the second operating state value is larger than a predetermined range.

それに対して、高温側熱動弁V1に開故障が発生していれば、即ち、高温側熱動弁V1に閉じ指令を与えていた第1測定工程(図2)の場合にも、実際には高温側熱動弁V1を経由して熱媒体が流れていれば、第1測定工程(図2)を行った場合に流量センサ19で測定される熱媒体の流量は、第2測定工程(図3)を行った場合に流量センサ19で測定される熱媒体の流量と近い値になるはずである。つまり、制御装置Cは、上記第1の動作状態値と上記第2の動作状態値との差が所定範囲内であれば高温側熱動弁V1が異常状態であると判定する。   On the other hand, if an open failure has occurred in the high-temperature side thermal valve V1, that is, in the first measurement step (FIG. 2) in which a close command was given to the high-temperature side thermal valve V1, actually, If the heat medium is flowing via the high temperature side heat valve V1, the flow rate of the heat medium measured by the flow sensor 19 when the first measurement step (FIG. 2) is performed is determined by the second measurement step ( 3), the value should be close to the flow rate of the heat medium measured by the flow rate sensor 19. That is, the control device C determines that the high temperature side thermal valve V1 is in an abnormal state if the difference between the first operating state value and the second operating state value is within a predetermined range.

〔低温側熱動弁V2を検査対象とした場合〕
以下に示す例は、高温熱消費端末H1に熱媒体を流すか否かを切り替えるための低温側熱動弁V2が正常に閉じるか否かを検証するための方法である。つまり、低温側熱動弁V2が検査対象とする熱動弁Vである。
[When the low-temperature side thermal valve V2 is the inspection target]
The following example is a method for verifying whether or not the low-temperature side thermal valve V2 for switching whether or not to flow the heat medium to the high-temperature heat consuming terminal H1 normally closes. That is, the low-temperature side thermal valve V2 is the thermal valve V to be inspected.

・第1測定工程
図2に示すように、制御装置Cは、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、流量センサ18を用いて熱媒体の単位時間当たりの流量を測定する(第1測定工程)。つまり、第1測定工程で測定する第1の動作状態値(熱媒体の単位時間当たりの流量)は、高温側熱動弁V1及び低温側熱動弁V2の両方を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で単位時間当たりに流動する熱媒体の量に対応する。よって、高温側熱動弁V1及び低温側熱動弁V2の両方が正常に閉じていれば、第1測定工程において流量センサ18で測定する熱媒体の単位時間当たりの流量は、図2において太線で示す共通流路部分11のみを流動する熱媒体の量に対応した値になるはずである。
-First measurement step As shown in Fig. 2, the control device C gives a command to close both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2 and operates the heat medium pump 7 at a predetermined rotation speed. In the first operating state, the flow rate of the heat medium per unit time is measured using the flow rate sensor 18 while circulating the heat medium in the heat medium circulation path 10 (first measurement step). That is, the first operation state value (flow rate of the heat medium per unit time) measured in the first measurement step gives a command to close both the high-temperature side heat valve V1 and the low-temperature side heat valve V2, and outputs the heat medium. When the heat medium is circulated in the heat medium circulation path 10 in the first operation state in which the pump 7 is operated at a predetermined rotation speed, the amount of the heat medium flowing per unit time in the heat medium circulation path 10 Corresponding. Therefore, if both the high-temperature side thermal valve V1 and the low-temperature side thermal valve V2 are normally closed, the flow rate of the heat medium per unit time measured by the flow rate sensor 18 in the first measurement step is represented by a bold line in FIG. It should be a value corresponding to the amount of the heat medium flowing only in the common flow path portion 11 indicated by.

・第2測定工程
図4に示すように、制御装置Cは、低温側熱動弁V2を開く指令を与える以外は第1動作状態と同じ第2動作状態(高温側熱動弁V1を閉じる指令を与え、低温側熱動弁V2を開く指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態)で、熱媒体循環路10に熱媒体を循環させながら、流量センサ18を用いて熱媒体の単位時間当たりの流量を測定する(第2測定工程)。つまり、第2測定工程で測定する第2の動作状態値(熱媒体の単位時間当たりの流量)は、高温側熱動弁V1を閉じる指令を与え、低温側熱動弁V2を開く指令を与え、且つ、熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で熱媒体の単位時間当たりの流量に対応する。よって、高温側熱動弁V1が正常に閉じ且つ低温側熱動弁V2が正常に開いていれば、第2測定工程において流量センサ18で測定する熱媒体の単位時間当たりの流量は、図4において太線で示す分岐部8と合流部17との間を単位時間当たりに流動する熱媒体の量に対応した値になるはずである。
-2nd measurement process As shown in FIG. 4, the control apparatus C is the 2nd operation state same as the 1st operation state except giving the command to open the low temperature side thermal valve V2 (the command to close the high temperature side thermal valve V1). While the heat medium pump 7 is operated at the same rotation speed as the first operation state), and the heat medium is circulated through the heat medium circulation path 10. Then, the flow rate of the heat medium per unit time is measured using the flow rate sensor 18 (second measuring step). That is, the second operation state value (flow rate of the heat medium per unit time) measured in the second measurement step gives a command to close the high-temperature side thermal valve V1 and a command to open the low-temperature side thermal valve V2. And a unit of the heat medium in the heat medium circulation path 10 when the heat medium is circulated in the heat medium circulation path 10 in a state where the heat medium pump 7 is operated at the same rotation speed as the first operation state. It corresponds to the flow rate per hour. Therefore, if the high-temperature side thermal valve V1 is normally closed and the low-temperature side thermal valve V2 is normally open, the flow rate of the heat medium per unit time measured by the flow rate sensor 18 in the second measurement step is as shown in FIG. The value should correspond to the amount of the heat medium flowing per unit time between the branching portion 8 and the merging portion 17 indicated by the bold line.

・判定工程
以上のような第1測定工程及び第2測定工程を行った場合、熱媒体ポンプ7が単位時間当たりに流す熱媒体の流量は一定であるのだから、低温側熱動弁V2が正常に開閉していれば、第1測定工程(図2)を行った場合に流量センサ18で測定される熱媒体の流量は、第2測定工程(図4)を行った場合に流量センサ18で測定される熱媒体よりも多くなるはずである。つまり、制御装置Cは、上記第1の動作状態値と上記第2の動作状態値との差が所定範囲よりも大きければ低温側熱動弁V2が異常状態ではないと判定する。
-Judgment step When the first measurement step and the second measurement step as described above are performed, the flow rate of the heat medium flowing per unit time by the heat medium pump 7 is constant, so that the low temperature side heat valve V2 is normal. When the first measurement step (FIG. 2) is performed, the flow rate of the heat medium measured by the flow rate sensor 18 is changed by the flow rate sensor 18 when the second measurement step (FIG. 4) is performed. It should be more than the measured heat carrier. That is, if the difference between the first operating state value and the second operating state value is larger than the predetermined range, the control device C determines that the low temperature side thermal valve V2 is not in an abnormal state.

それに対して、高温側熱動弁V1に開故障が発生していれば、即ち、高温側熱動弁V1に閉じ指令を与えていた第1測定工程(図2)の場合にも、実際には高温側熱動弁V1を経由して熱媒体が流れていれば、第1測定工程(図2)を行った場合に流量センサ18で測定される熱媒体の流量は、第2測定工程(図4)を行った場合に流量センサ18で測定される熱媒体の流量と近い値になるはずである。つまり、制御装置Cは、上記第1の動作状態値と上記第2の動作状態値との差が所定範囲内であれば低温側熱動弁V2が異常状態であると判定する。   On the other hand, if an open failure has occurred in the high-temperature side thermal valve V1, that is, in the first measurement step (FIG. 2) in which a close command was given to the high-temperature side thermal valve V1, actually, If the heat medium is flowing via the high temperature side heat valve V1, the flow rate of the heat medium measured by the flow sensor 18 when the first measurement step (FIG. 2) is performed is determined by the second measurement step ( 4), the value should be close to the flow rate of the heat medium measured by the flow rate sensor 18. That is, the control device C determines that the low-temperature side thermal valve V2 is in an abnormal state if the difference between the first operating state value and the second operating state value is within a predetermined range.

<第3実施形態>
第3実施形態の熱供給システムの検査方法は、3つ以上の熱消費端末Hに対して熱媒体を供給するような熱供給システムにおいて、熱動弁Vが異常状態であるか否かを判定する点で上記実施形態と異なっている。以下に、第3実施形態の熱供給システムの検査方法について説明するが、上記実施形態と同様の構成については説明を省略する。
<Third embodiment>
The inspection method of the heat supply system according to the third embodiment determines whether or not the heat valve V is in an abnormal state in a heat supply system that supplies a heat medium to three or more heat consuming terminals H. This is different from the above embodiment in that Hereinafter, the inspection method of the heat supply system according to the third embodiment will be described, but the description of the same configuration as the above embodiment will be omitted.

図5〜図8は、第3実施形態の熱供給システムでの熱媒体の循環状態を例示する図である。図示するように、本実施形態の熱供給システムは、高温熱消費端末H1及び第1低温熱消費端末H3及び第2低温熱消費端末H4という3つの熱消費端末Hに対して熱媒体を供給できる。   FIG. 5 to FIG. 8 are diagrams illustrating the circulation state of the heat medium in the heat supply system of the third embodiment. As illustrated, the heat supply system of the present embodiment can supply a heat medium to three heat consuming terminals H, that is, a high-temperature heat consuming terminal H1, a first low-temperature heat consuming terminal H3, and a second low-temperature heat consuming terminal H4. .

個別流路部分15は、共通流路部分11から高温熱消費端末H1に向けて分岐する高温側個別流路部分12と、共通流路部分11から第1低温熱消費端末H3に向けて分岐する第1低温側個別流路部分22と、共通流路部分11から第2低温熱消費端末H4に向けて分岐する第2低温側個別流路部分23とを有する。また、高温熱消費端末H1及び第1低温熱消費端末H3及び第2低温熱消費端末H4で熱が消費された後の熱媒体は、帰還流路部分14を通って共通流路部分11の合流部17へと帰還する。   The individual flow path section 15 branches from the common flow path section 11 toward the high-temperature heat consuming terminal H1 and the individual flow path section 12 branches from the common flow path section 11 toward the first low-temperature heat consuming terminal H3. It has a first low-temperature side individual flow path portion 22 and a second low-temperature side individual flow path portion 23 branched from the common flow path portion 11 toward the second low-temperature heat consuming terminal H4. The heat medium after the heat has been consumed by the high-temperature heat consuming terminal H1, the first low-temperature heat consuming terminal H3, and the second low-temperature heat consuming terminal H4 passes through the return flow path portion 14 and joins the common flow path portion 11. It returns to the unit 17.

第1低温側個別流路部分22は、熱媒体ポンプ7から見て、熱源機1よりも上流側の共通流路部分11の分岐部8から分岐して第1低温熱消費端末H3に至る。第1低温側個別流路部分22には第1低温側熱動弁V3が設けられる。このような構成を採用することで、第1低温側熱動弁V3が開いている場合には、熱媒体が共通流路部分11の分岐部8から第1低温側個別流路部分22へと分岐して流れ、第1低温熱消費端末H3で熱が消費された後の熱媒体が、合流部16及び帰還流路部分14を通って共通流路部分11の合流部17へと帰還する。尚、第1低温側熱動弁V3が閉じている場合には、第1低温側個別流路部分22に熱媒体は流れない。本実施形態では、第1低温側熱動弁V3の開閉動作は制御装置Cが制御する。   The first low-temperature side individual flow path portion 22 branches from the branch portion 8 of the common flow path portion 11 upstream of the heat source device 1 as viewed from the heat medium pump 7 and reaches the first low-temperature heat consuming terminal H3. The first low-temperature side individual flow path portion 22 is provided with a first low-temperature side thermal valve V3. By adopting such a configuration, when the first low-temperature side thermal valve V3 is open, the heat medium flows from the branch portion 8 of the common flow path portion 11 to the first low-temperature side individual flow path portion 22. The heat medium that has branched and flows, and after the heat has been consumed at the first low-temperature heat consuming terminal H3, returns to the junction 17 of the common flow path 11 through the junction 16 and the return flow path 14. When the first low-temperature side thermal valve V3 is closed, the heat medium does not flow through the first low-temperature side individual flow path portion 22. In the present embodiment, the control device C controls the opening / closing operation of the first low temperature side thermal valve V3.

第2低温側個別流路部分23は、熱媒体ポンプ7から見て、熱源機1よりも上流側の共通流路部分11の分岐部20から分岐して第2低温熱消費端末H4に至る。分岐部20は、第2低温側個別流路部分23が分岐する分岐部8よりも下流側に設けられている。第2低温側個別流路部分23には第2低温側熱動弁V4が設けられる。このような構成を採用することで、第2低温側熱動弁V4が開いている場合には、熱媒体が共通流路部分11の分岐部20から第2低温側個別流路部分23へと分岐して流れ、第2低温熱消費端末H4で熱が消費された後の熱媒体が、合流部21及び帰還流路部分14を通って共通流路部分11の合流部17へと帰還する。尚、第2低温側熱動弁V4が閉じている場合には、第2低温側個別流路部分23に熱媒体は流れない。本実施形態では、第2低温側熱動弁V4の開閉動作は制御装置Cが制御する。   The second low-temperature side individual flow path portion 23 branches from the branch portion 20 of the common flow path portion 11 upstream of the heat source device 1 as viewed from the heat medium pump 7 and reaches the second low-temperature heat consuming terminal H4. The branch portion 20 is provided downstream of the branch portion 8 from which the second low-temperature side individual flow path portion 23 branches. The second low-temperature side individual valve section 23 is provided with a second low-temperature side thermal valve V4. By adopting such a configuration, when the second low-temperature side thermal valve V4 is open, the heat medium flows from the branch portion 20 of the common flow path portion 11 to the second low-temperature side individual flow path portion 23. The heat medium that has branched and flows, and after the heat has been consumed by the second low-temperature heat consuming terminal H4, returns to the junction 17 of the common flow path 11 through the junction 21 and the return flow path 14. When the second low-temperature side thermal valve V4 is closed, the heat medium does not flow through the second low-temperature side individual flow path portion 23. In the present embodiment, the control device C controls the opening and closing operation of the second low-temperature side thermal valve V4.

本実施形態でも、流量センサ18及び流量センサ19は、検査対象とする熱動弁Vの開閉に伴って熱媒体の単位時間当たりの流量が変化する部位に設けられている。
例えば、流量センサ18は、第1低温側熱動弁V3及び第2低温側熱動弁V4を検査対象とする場合、それら第1低温側熱動弁V3及び第2低温側熱動弁V4が設けられている個別流路部分15(第1低温側個別流路部分22、第2低温側個別流路部分23)が共通流路部分11から分岐する分岐部8,20よりも下流側、且つ、合流部17よりも上流側に設けられている。そのため、例えば、第1低温側熱動弁V3が開くことで第1低温側個別流路部分22を流れる熱媒体の量が増加すると、共通流路部分11の途中の流量センサ18が設けられている部位を流れる熱媒体の量は減少する。同様に、第2低温側熱動弁V4が開くことで第2低温側個別流路部分23を流れる熱媒体の量が増加すると、共通流路部分11の途中の流量センサ18が設けられている部位を流れる熱媒体の量は減少する。
Also in the present embodiment, the flow rate sensor 18 and the flow rate sensor 19 are provided at a portion where the flow rate of the heat medium per unit time changes with the opening and closing of the thermal valve V to be inspected.
For example, when the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 are to be inspected, the flow rate sensor 18 determines whether the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 are to be inspected. The provided individual flow path portions 15 (the first low-temperature side individual flow path section 22 and the second low-temperature side individual flow path section 23) are located downstream of the branch portions 8 and 20 branching from the common flow path section 11, and , Provided upstream of the junction 17. Therefore, for example, when the amount of the heat medium flowing through the first low-temperature side individual flow path portion 22 increases by opening the first low-temperature side thermal valve V3, the flow sensor 18 is provided in the middle of the common flow path portion 11. The amount of the heat medium flowing through the part where it is located is reduced. Similarly, when the amount of the heat medium flowing through the second low-temperature side individual flow path portion 23 increases due to the opening of the second low-temperature side thermal valve V4, the flow sensor 18 in the middle of the common flow path portion 11 is provided. The amount of heat medium flowing through the site is reduced.

同様に、流量センサ19は、高温側熱動弁V1を検査対象とする場合、その高温側熱動弁V1が設けられている個別流路部分15(高温側個別流路部分12)が共通流路部分11から分岐する分岐部9よりも下流側、且つ、合流部17よりも上流側に設けられている。そのため、高温側熱動弁V1が開くことで高温側個別流路部分12を流れる熱媒体の量が増加すると、共通流路部分11の途中の流量センサ19が設けられている部位を流れる熱媒体の量は減少する。   Similarly, when the high temperature side thermal valve V1 is to be inspected, the flow sensor 19 uses the common flow path portion 15 (the high temperature side individual flow path portion 12) provided with the high temperature side thermal valve V1 as a common flow. It is provided on the downstream side of the branch portion 9 branched from the road portion 11 and on the upstream side of the junction 17. Therefore, when the amount of the heat medium flowing through the high-temperature side individual flow path portion 12 increases due to the opening of the high-temperature side heat valve V1, the heat medium flowing through the portion of the common flow path portion 11 where the flow sensor 19 is provided is provided. Amount is reduced.

次に、図5〜図8を参照して熱媒体の循環状態を説明する。図5〜図8では、熱媒体が流動する部分を太線で描いている。
図5は、高温側熱動弁V1が閉じており且つ第1低温側熱動弁V3が閉じており且つ第2低温側熱動弁V4が閉じている場合での熱媒体の循環状態を示す図である。この場合、高温側熱動弁V1が閉じているため、高温側個別流路部分12及び高温熱消費端末H1には熱媒体は流れない。第1低温側熱動弁V3が閉じているため、第1低温側個別流路部分22及び第1低温熱消費端末H3には熱媒体は流れない。第2低温側熱動弁V4が閉じているため、第2低温側個別流路部分23及び第2低温熱消費端末H4には熱媒体は流れない。熱媒体は、共通流路部分11のみを循環する。
Next, the circulation state of the heat medium will be described with reference to FIGS. In FIG. 5 to FIG. 8, a portion where the heat medium flows is drawn by a thick line.
FIG. 5 shows a circulation state of the heat medium when the high-temperature side thermal valve V1 is closed, the first low-temperature side thermal valve V3 is closed, and the second low-temperature side thermal valve V4 is closed. FIG. In this case, since the high-temperature side thermal valve V1 is closed, the heat medium does not flow through the high-temperature side individual flow path portion 12 and the high-temperature heat consuming terminal H1. Since the first low-temperature side heat valve V3 is closed, no heat medium flows through the first low-temperature side individual flow path portion 22 and the first low-temperature heat consuming terminal H3. Since the second low-temperature side heat valve V4 is closed, the heat medium does not flow through the second low-temperature side individual flow path portion 23 and the second low-temperature heat consuming terminal H4. The heat medium circulates only in the common flow path portion 11.

図6は、高温側熱動弁V1が閉じており且つ第1低温側熱動弁V3が開いており且つ第2低温側熱動弁V4が開いている場合での熱媒体の循環状態を示す図である。つまり、第1低温熱消費端末H3及び第2低温熱消費端末H4が共に使用されている場合での循環状態である。この場合、高温側熱動弁V1が閉じているため、高温側個別流路部分12及び高温熱消費端末H1には熱媒体が流れない。それに対して、第1低温側熱動弁V3及び第2低温側熱動弁V4が開いているため、第1低温側個別流路部分22及び第1低温熱消費端末H3には熱媒体が流れ、第2低温側個別流路部分23及び第2低温熱消費端末H4には熱媒体が流れる。その結果、熱媒体は、共通流路部分11を循環するのに加えて、共通流路部分11の分岐部8から分岐して第1低温側個別流路部分22を流れ、第1低温熱消費端末H3及び帰還流路部分14を経由して、共通流路部分11の合流部17へと流れる。加えて、熱媒体は、共通流路部分11の分岐部20から分岐して第2低温側個別流路部分23を流れ、第2低温熱消費端末H4及び帰還流路部分14を経由して、共通流路部分11の合流部17へと流れる。   FIG. 6 shows a circulation state of the heat medium when the high-temperature side thermal valve V1 is closed, the first low-temperature side thermal valve V3 is open, and the second low-temperature side thermal valve V4 is open. FIG. That is, this is a circulation state when both the first low-temperature heat consuming terminal H3 and the second low-temperature heat consuming terminal H4 are used. In this case, since the high-temperature side thermal valve V1 is closed, the heat medium does not flow through the high-temperature side individual flow path portion 12 and the high-temperature heat consuming terminal H1. On the other hand, since the first low-temperature heat valve V3 and the second low-temperature heat valve V4 are open, the heat medium flows through the first low-temperature individual flow path portion 22 and the first low-temperature heat consuming terminal H3. The heat medium flows through the second low-temperature side individual flow path portion 23 and the second low-temperature heat consuming terminal H4. As a result, in addition to circulating through the common flow path portion 11, the heat medium branches from the branch portion 8 of the common flow path portion 11 and flows through the first low-temperature side individual flow path portion 22, thereby causing the first low-temperature heat consumption. It flows to the junction 17 of the common flow path portion 11 via the terminal H3 and the return flow path portion 14. In addition, the heat medium branches from the branch portion 20 of the common flow path portion 11, flows through the second low-temperature side individual flow path portion 23, passes through the second low-temperature heat consuming terminal H4 and the return flow path portion 14, It flows to the junction 17 of the common channel portion 11.

図7は、高温側熱動弁V1が閉じており且つ第1低温側熱動弁V3が開いており且つ第2低温側熱動弁V4が閉じている場合での熱媒体の循環状態を示す図である。つまり、第1低温熱消費端末H3が使用されている場合での循環状態である。この場合、高温側熱動弁V1及び第2低温側熱動弁V4が閉じているため、高温側個別流路部分12及び高温熱消費端末H1には熱媒体は流れず、第2低温側個別流路部分23及び第2低温熱消費端末H4には熱媒体は流れない。それに対して、第1低温側熱動弁V3が開いているため、第1低温側個別流路部分22及び第1低温熱消費端末H3には熱媒体が流れる。その結果、熱媒体は、共通流路部分11を循環するのに加えて、共通流路部分11の分岐部8から分岐して第1低温側個別流路部分22を流れ、第1低温熱消費端末H3及び帰還流路部分14を経由して、共通流路部分11の合流部17へと流れる。   FIG. 7 shows the circulation state of the heat medium when the high-temperature side thermal valve V1 is closed, the first low-temperature side thermal valve V3 is open, and the second low-temperature side thermal valve V4 is closed. FIG. That is, it is a circulation state when the first low-temperature heat consuming terminal H3 is used. In this case, since the high temperature side heat valve V1 and the second low temperature side heat valve V4 are closed, the heat medium does not flow through the high temperature side individual flow path portion 12 and the high temperature heat consuming terminal H1, and the second low temperature side individual valve The heat medium does not flow through the flow path portion 23 and the second low-temperature heat consuming terminal H4. On the other hand, since the first low-temperature side thermal valve V3 is open, the heat medium flows through the first low-temperature side individual flow path portion 22 and the first low-temperature heat consuming terminal H3. As a result, in addition to the heat medium circulating through the common flow path portion 11, the heat medium branches from the branch portion 8 of the common flow path portion 11 and flows through the first low-temperature side individual flow path portion 22, and the first low-temperature heat consumption It flows to the junction 17 of the common flow path portion 11 via the terminal H3 and the return flow path portion 14.

図8は、高温側熱動弁V1が閉じており且つ第1低温側熱動弁V3が閉じており且つ第2低温側熱動弁V4が開いている場合での熱媒体の循環状態を示す図である。つまり、第2低温熱消費端末H4が使用されている場合での循環状態である。この場合、高温側熱動弁V1及び第1低温側熱動弁V3が閉じているため、高温側個別流路部分12及び高温熱消費端末H1には熱媒体は流れず、第1低温側個別流路部分22及び第1低温熱消費端末H3には熱媒体は流れない。それに対して、第2低温側熱動弁V4が開いているため、第2低温側個別流路部分23及び第2低温熱消費端末H4には熱媒体が流れる。その結果、熱媒体は、共通流路部分11を循環するのに加えて、共通流路部分11の分岐部20から分岐して第2低温側個別流路部分23を流れ、第2低温熱消費端末H4及び帰還流路部分14を経由して、共通流路部分11の合流部17へと流れる。   FIG. 8 shows the circulation state of the heat medium when the high-temperature side thermal valve V1 is closed, the first low-temperature side thermal valve V3 is closed, and the second low-temperature side thermal valve V4 is open. FIG. That is, this is a circulation state when the second low-temperature heat consuming terminal H4 is used. In this case, since the high-temperature side heat valve V1 and the first low-temperature side heat valve V3 are closed, the heat medium does not flow through the high-temperature side individual flow path portion 12 and the high-temperature heat consuming terminal H1, and the first low-temperature side The heat medium does not flow through the flow path portion 22 and the first low-temperature heat consuming terminal H3. On the other hand, since the second low-temperature side thermal valve V4 is open, the heat medium flows through the second low-temperature side individual flow path portion 23 and the second low-temperature heat consuming terminal H4. As a result, in addition to circulating through the common flow path portion 11, the heat medium branches from the branch portion 20 of the common flow path portion 11 and flows through the second low-temperature side individual flow path portion 23, and the second low-temperature heat consumption It flows through the terminal H4 and the return flow path portion 14 to the junction 17 of the common flow path portion 11.

本実施形態でも、熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す動作状態値を測定し、その動作状態値に基づいて、異常状態の熱動弁Vが含まれているか否かを判定する。動作状態値は、上述した第1実施形態及び第2実施形態と同様に、熱媒体ポンプ7の消費電流値、又は、熱媒体循環路10の途中で測定される単位時間当たりの熱媒体の流量である。以下の説明では、動作状態値が熱媒体循環路10の途中で測定される単位時間当たりの熱媒体の流量である場合について説明するが、上記第1実施形態と同様に、動作状態値が熱媒体ポンプ7の消費電流値であってもよい。   Also in the present embodiment, while circulating the heat medium in the heat medium circulation path 10, an operation state value representing a predetermined operation state in the heat supply system is measured, and based on the operation state value, the thermal valve in an abnormal state is measured. It is determined whether V is included. The operating state value is a current consumption value of the heat medium pump 7 or a flow rate of the heat medium per unit time measured in the middle of the heat medium circulation path 10 as in the first and second embodiments described above. It is. In the following description, a case where the operation state value is the flow rate of the heat medium per unit time measured in the middle of the heat medium circulation path 10 will be described. However, as in the first embodiment, the operation state value is the heat medium. The current consumption value of the medium pump 7 may be used.

〔第1低温側熱動弁V3及び第2低温側熱動弁V4の一群を検査対象とした場合〕
以下の例では、先ず、検査対象とする第1低温側熱動弁V3及び第2低温側熱動弁V4の一群が異常状態の熱動弁Vを含んでいるか否かを検証し、その後、第1低温側熱動弁V3及び第2低温側熱動弁V4の内の何れが異常状態であるかを検証する方法について説明する。
[When a group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 is inspected]
In the following example, first, it is verified whether or not a group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 to be inspected includes the abnormal-state thermal valve V, and then, A method of verifying which of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 is in an abnormal state will be described.

・第1測定工程(第1低温側熱動弁V3及び第2低温側熱動弁V4の一群が異常状態の熱動弁Vを含んでいるか否か)
本実施形態において、制御装置Cは、検査対象とする第1低温側熱動弁V3及び第2低温側熱動弁V4を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第1の動作状態値を測定する(第1測定工程)。例えば、図5に示すように、制御装置Cは、第1低温側熱動弁V3及び第2低温側熱動弁V4及び高温側熱動弁V1の全てを閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、流量センサ18を用いて熱媒体の単位時間当たりの流量を測定する(第1測定工程)。この場合、熱源機1を動作させなくてもよい。
First measurement step (whether or not a group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 includes a thermal valve V in an abnormal state)
In the present embodiment, the control device C gives a command to close the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 to be inspected, and operates the heat medium pump 7 at a predetermined rotation speed. While circulating the heat medium in the heat medium circulation path 10 in the first operation state, a first operation state value representing a predetermined operation state in the heat supply system is measured (first measurement step). For example, as shown in FIG. 5, the control device C gives a command to close all of the first low-temperature side thermal valve V3, the second low-temperature side thermal valve V4, and the high-temperature side thermal valve V1, and outputs the heat medium pump 7 While the heat medium is circulated through the heat medium circulation path 10 in the first operation state in which is operated at a predetermined rotation speed, the flow rate of the heat medium per unit time is measured using the flow rate sensor 18 (first measurement step). . In this case, the heat source device 1 does not need to be operated.

つまり、第1測定工程で測定する第1の動作状態値(熱媒体の単位時間当たりの流量)は、第1低温側熱動弁V3及び第2低温側熱動弁V4及び高温側熱動弁V1の全てを閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で単位時間当たりに流動する熱媒体の量に対応する。よって、第1低温側熱動弁V3及び第2低温側熱動弁V4及び高温側熱動弁V1の全てが正常に閉じていれば、第1測定工程で測定する熱媒体の単位時間当たりの流量は、図5において太線で示す共通流路部分11のみを流動する熱媒体の量に対応した値になるはずである。   That is, the first operating state value (flow rate of the heat medium per unit time) measured in the first measuring step is the first low-temperature side thermal valve V3, the second low-temperature side thermal valve V4, and the high-temperature side thermal valve. When the heat medium is circulated through the heat medium circulation path 10 in the first operation state in which a command to close all of V1 is given and the heat medium pump 7 is operated at a predetermined rotation speed, It corresponds to the amount of heat medium flowing per unit time. Therefore, if all of the first low-temperature side thermal valve V3, the second low-temperature side thermal valve V4, and the high-temperature side thermal valve V1 are normally closed, the heat medium per unit time measured in the first measurement step is measured. The flow rate should be a value corresponding to the amount of the heat medium flowing only in the common flow path portion 11 indicated by the thick line in FIG.

・第2測定工程(第1低温側熱動弁V3及び第2低温側熱動弁V4の一群が異常状態の熱動弁Vを含んでいるか否か)
制御装置Cは、上述した検査対象とする第1低温側熱動弁V3及び第2低温側熱動弁V4の一群を共に開く指令を与える以外は第1動作状態と同じ第2動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第2の動作状態値を測定する(第2測定工程)。例えば、図6に示すように、制御装置Cは、検査対象とする第1低温側熱動弁V3及び第2低温側熱動弁V4を開く指令を与える以外は第1動作状態と同じ第2動作状態(第1低温側熱動弁V3及び第2低温側熱動弁V4を開く指令を与え、高温側熱動弁V1を閉じる指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態)で、熱媒体循環路10に熱媒体を循環させながら、流量センサ18を用いて熱媒体の単位時間当たりの流量を測定する(第2測定工程)。この場合、熱源機1を動作させなくてもよい。
Second measurement step (whether or not a group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 includes a thermal valve V in an abnormal state)
The control device C operates in the second operating state, which is the same as the first operating state, except that it issues a command to open both the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 to be inspected. While circulating the heat medium in the medium circulation path 10, a second operation state value representing a predetermined operation state in the heat supply system is measured (second measurement step). For example, as shown in FIG. 6, the control device C is the same as the first operation state except that the control device C issues a command to open the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 to be inspected. Operation state (a command to open the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4, a command to close the high-temperature side thermal valve V1 and the heat medium pump 7 to the first operation state With the heat medium circulating in the heat medium circulation path 10 in a state where the heat medium is operated at the same rotation speed, the flow rate of the heat medium per unit time is measured using the flow rate sensor 18 (second measurement step). In this case, the heat source device 1 does not need to be operated.

つまり、第2測定工程で測定する第2の動作状態値(熱媒体の単位時間当たりの流量)は、第1低温側熱動弁V3及び第2低温側熱動弁V4を開く指令を与え、高温側熱動弁V1を閉じる指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で熱媒体の単位時間当たりの流量に対応する。よって、第1低温側熱動弁V3及び第2低温側熱動弁V4が正常に開き且つ高温側熱動弁V1が正常に閉じていれば、第2測定工程で測定する熱媒体の単位時間当たりの流量は、図6において太線で示す分岐部20と合流部17との間の共通流路部分11を単位時間当たりに流動する熱媒体の量に対応した値になるはずである。   In other words, the second operating state value (the flow rate of the heat medium per unit time) measured in the second measuring step gives a command to open the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4, When a command to close the high temperature side heat valve V1 is given and the heat medium is circulated through the heat medium circulation path 10 in a state where the heat medium pump 7 is operated at the same rotation speed as the first operation state. The heat medium circulation path 10 corresponds to the flow rate of the heat medium per unit time. Therefore, if the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 are normally opened and the high-temperature side thermal valve V1 is normally closed, the unit time of the heat medium measured in the second measurement step The flow rate per contact should be a value corresponding to the amount of the heat medium flowing per unit time through the common flow path portion 11 between the branch portion 20 and the junction portion 17 shown by the thick line in FIG.

尚、この例では、検査対象としない高温側熱動弁V1を、第1測定工程及び第2測定工程の間、常に閉じているが、検査対象としない高温側熱動弁V1を、第1測定工程及び第2測定工程の間、常に開いていてもよい。つまり、検査対象としない高温側熱動弁V1の開閉状態を、第1測定工程及び第2測定工程の間、変化させなければよい。   In this example, the high-temperature side thermal valve V1 not to be inspected is always closed during the first measurement step and the second measurement step. It may be always open during the measurement step and the second measurement step. That is, the open / closed state of the high-temperature side thermal valve V1 which is not to be inspected need not be changed between the first measurement step and the second measurement step.

・判定工程(第1低温側熱動弁V3及び第2低温側熱動弁V4の一群が異常状態の熱動弁Vを含んでいるか否か)
第2実施形態で説明したのと同様に、制御装置Cは、第1の動作状態値と第2の動作状態値との差が所定範囲内であれば、検査対象とする熱動弁V(第1低温側熱動弁V3及び第2低温側熱動弁V4の一群)が正常に閉じない異常状態の熱動弁Vを含んでいると判定し、第1の動作状態値と第2の動作状態値との差が所定範囲よりも大きければ検査対象とする熱動弁V(第1低温側熱動弁V3及び第2低温側熱動弁V4の一群)が異常状態の熱動弁Vを含んでいないと判定する(判定工程)。
Judgment step (whether a group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 includes a thermal valve V in an abnormal state)
As described in the second embodiment, if the difference between the first operation state value and the second operation state value is within a predetermined range, the control device C sets the thermal valve V ( It is determined that the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4) include an abnormal state thermal valve V that does not close normally, and the first operating state value and the second operating state value are compared with each other. If the difference from the operating state value is larger than a predetermined range, the thermal valve V to be inspected (a group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4) is in an abnormal state. Is determined not to be included (determination step).

次に、第1低温側熱動弁V3及び第2低温側熱動弁V4の一群が異常状態の熱動弁Vを含んでいると判定された場合、第1低温側熱動弁V3及び第2低温側熱動弁V4の何れが異常状態であるかを検証する場合の例について説明する。つまり、例えば、第1低温側熱動弁V3及び第2低温側熱動弁V4の一群が異常状態の熱動弁Vを含んでいると判定された場合、その内の一方の熱動弁Vが異常状態であるか否かの判定を行えば、どちらの熱動弁Vが異常状態であるかを判定できる。以下の例では、第1低温側熱動弁V3を検査対象として、第1低温側熱動弁V3が異常状態であるか否かを判定するが、第2低温側熱動弁V4を検査対象としてもよい。   Next, when it is determined that a group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 includes the abnormal state thermal valve V, the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V3 are determined. An example of verifying which of the two low temperature side thermal valves V4 is in an abnormal state will be described. That is, for example, when it is determined that one group of the first low-temperature side thermal valve V3 and the second low-temperature side thermal valve V4 includes the abnormally-operating thermal valve V, one of the thermal valves V is selected. Is determined to be in an abnormal state, it is possible to determine which thermal valve V is in an abnormal state. In the following example, it is determined whether the first low-temperature side thermal valve V3 is in an abnormal state with the first low-temperature side thermal valve V3 as an inspection target, but the second low-temperature side thermal valve V4 is an inspection target. It may be.

・第1測定工程(第1低温側熱動弁V3が異常状態であるか否か)
制御装置Cは、検査対象とする第1低温側熱動弁V3を閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第1の動作状態値を測定する(第1測定工程)。例えば、図5に示すように、制御装置Cは、第1低温側熱動弁V3及び第2低温側熱動弁V4及び高温側熱動弁V1の全てを閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させながら、流量センサ18を用いて熱媒体の単位時間当たりの流量を測定する(第1測定工程)。この場合、熱源機1を動作させなくてもよい。
-First measurement step (whether or not the first low temperature side thermal valve V3 is in an abnormal state)
The control device C gives a command to close the first low-temperature side thermal valve V3 to be inspected, and supplies the heat medium to the heat medium circulation path 10 in the first operation state in which the heat medium pump 7 is operated at a predetermined rotation speed. While circulating, a first operation state value representing a predetermined operation state in the heat supply system is measured (first measurement step). For example, as shown in FIG. 5, the control device C gives a command to close all of the first low-temperature side thermal valve V3, the second low-temperature side thermal valve V4, and the high-temperature side thermal valve V1, and outputs the heat medium pump 7 While the heat medium is circulated through the heat medium circulation path 10 in the first operation state in which is operated at a predetermined rotation speed, the flow rate of the heat medium per unit time is measured using the flow rate sensor 18 (first measurement step). . In this case, the heat source device 1 does not need to be operated.

つまり、第1測定工程で測定する第1の動作状態値(熱媒体の単位時間当たりの流量)は、第1低温側熱動弁V3及び第2低温側熱動弁V4及び高温側熱動弁V1の全てを閉じる指令を与え且つ熱媒体ポンプ7を所定の回転速度で動作させた第1動作状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で単位時間当たりに流動する熱媒体の量に対応する。よって、第1低温側熱動弁V3及び第2低温側熱動弁V4及び高温側熱動弁V1の全てが正常に閉じていれば、第1測定工程で測定する熱媒体の単位時間当たりの流量は、図5において太線で示す共通流路部分11のみを流動する熱媒体の量に対応した値になるはずである。   That is, the first operating state value (flow rate of the heat medium per unit time) measured in the first measuring step is the first low-temperature side thermal valve V3, the second low-temperature side thermal valve V4, and the high-temperature side thermal valve. When the heat medium is circulated through the heat medium circulation path 10 in the first operation state in which a command to close all of V1 is given and the heat medium pump 7 is operated at a predetermined rotation speed, It corresponds to the amount of heat medium flowing per unit time. Therefore, if all of the first low-temperature side thermal valve V3, the second low-temperature side thermal valve V4, and the high-temperature side thermal valve V1 are normally closed, the heat medium per unit time measured in the first measurement step is measured. The flow rate should be a value corresponding to the amount of the heat medium flowing only in the common flow path portion 11 indicated by the thick line in FIG.

・第2測定工程(第1低温側熱動弁V3が異常状態であるか否か)
制御装置Cは、上述した検査対象とする第1低温側熱動弁V3を開く指令を与える以外は第1動作状態と同じ第2動作状態で熱媒体循環路10に熱媒体を循環させながら、熱供給システムでの所定の動作状態を表す第2の動作状態値を測定する(第2測定工程)。例えば、図7に示すように、制御装置Cは、検査対象とする第1低温側熱動弁V3を開く指令を与える以外は第1動作状態と同じ第2動作状態(第1低温側熱動弁V3を開く指令を与え、第2低温側熱動弁V4及び高温側熱動弁V1を閉じる指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態)で、熱媒体循環路10に熱媒体を循環させながら、流量センサ18を用いて熱媒体の単位時間当たりの流量を測定する(第2測定工程)。この場合、熱源機1を動作させなくてもよい。
-Second measurement step (whether or not the first low-temperature side thermal valve V3 is in an abnormal state)
The control device C circulates the heat medium through the heat medium circulation path 10 in the second operation state, which is the same as the first operation state, except that the above-described instruction to open the first low-temperature side thermal valve V3 to be inspected is given. A second operation state value representing a predetermined operation state in the heat supply system is measured (second measurement step). For example, as shown in FIG. 7, the control device C is the same as the first operation state in the second operation state (the first low-temperature side thermal operation) except that the control device C gives a command to open the first low-temperature side thermal valve V3 to be inspected. (A state in which a command to open the valve V3 is given, a command to close the second low-temperature side thermal valve V4 and the high-temperature side thermal valve V1 is given, and the heat medium pump 7 is operated at the same rotational speed as the first operating state) Then, the flow rate of the heat medium per unit time is measured using the flow rate sensor 18 while circulating the heat medium in the heat medium circulation path 10 (second measurement step). In this case, the heat source device 1 does not need to be operated.

つまり、第2測定工程で測定する第2の動作状態値(熱媒体の単位時間当たりの流量)は、第1低温側熱動弁V3を開く指令を与え、第2低温側熱動弁V4及び高温側熱動弁V1を閉じる指令を与え、且つ熱媒体ポンプ7を上記第1動作状態と同じ回転速度で動作させた状態で熱媒体循環路10に熱媒体を循環させている場合での、熱媒体循環路10で熱媒体の単位時間当たりの流量に対応する。よって、第1低温側熱動弁V3が正常に開き且つ第2低温側熱動弁V4が正常に閉じ且つ高温側熱動弁V1が正常に閉じていれば、第2測定工程において流量センサ18で測定する熱媒体の単位時間当たりの流量は、図7において太線で示す分岐部20と合流部17との間の共通流路部分11を単位時間当たりに流動する熱媒体の量に対応した値になるはずである。   That is, the second operating state value (the flow rate of the heat medium per unit time) measured in the second measuring step gives a command to open the first low-temperature side thermal valve V3, and the second low-temperature side thermal valve V4 and When a command to close the high temperature side heat valve V1 is given and the heat medium is circulated through the heat medium circulation path 10 in a state where the heat medium pump 7 is operated at the same rotation speed as the first operation state. The heat medium circulation path 10 corresponds to the flow rate of the heat medium per unit time. Therefore, if the first low-temperature side thermal valve V3 is normally opened, the second low-temperature side thermal valve V4 is normally closed, and the high-temperature side thermal valve V1 is normally closed, the flow rate sensor 18 in the second measurement step is performed. Is a value corresponding to the amount of the heat medium flowing per unit time through the common flow path portion 11 between the branch portion 20 and the junction 17 shown by a thick line in FIG. Should be.

尚、この例では、検査対象としない第2低温側熱動弁V4及び高温側熱動弁V1を、第1測定工程及び第2測定工程の間、常に閉じているが、検査対象としない第2低温側熱動弁V4及び高温側熱動弁V1を、第1測定工程及び第2測定工程の間、常に開いていてもよい。つまり、検査対象としない第2低温側熱動弁V4及び高温側熱動弁V1の開閉状態を、第1測定工程及び第2測定工程の間、変化させなければよい。   In this example, the second low-temperature side thermal valve V4 and the high-temperature side thermal valve V1, which are not to be inspected, are always closed during the first measurement step and the second measurement step. (2) The low-temperature side thermal valve V4 and the high-temperature side thermal valve V1 may be always open during the first measurement step and the second measurement step. That is, the open / close state of the second low-temperature side thermal valve V4 and the high-temperature side thermal valve V1 which are not to be inspected need not be changed between the first measurement step and the second measurement step.

・判定工程(第1低温側熱動弁V3が異常状態であるか否か)
制御装置Cは、第1の動作状態値と第2の動作状態値との差が所定範囲内であれば、検査対象とする熱動弁V(第1低温側熱動弁V3)が正常に閉じない異常状態の熱動弁Vを含んでいると判定し、第1の動作状態値と第2の動作状態値との差が所定範囲よりも大きければ検査対象とする熱動弁V(第1低温側熱動弁V3)が異常状態の熱動弁Vを含んでいないと判定する(判定工程)。
-Judgment step (whether or not the first low temperature side thermal valve V3 is in an abnormal state)
If the difference between the first operating state value and the second operating state value is within a predetermined range, the control device C normally operates the thermal valve V (the first low-temperature thermal valve V3) to be inspected. It is determined that the thermal valve V in an abnormal state that does not close is included, and if the difference between the first operating state value and the second operating state value is larger than a predetermined range, the thermal valve V (the (1) It is determined that the low temperature side thermal valve V3) does not include the abnormal thermal valve V (determination step).

<別実施形態>
<1>
上記実施形態では、本発明の熱供給システムの検査方法について具体例を挙げて説明したが、その構成は適宜変更可能である。
例えば、上記実施形態では、高温熱消費端末H1及び低温熱消費端末H2という2つの熱消費端末Hに熱媒体を供給する例、並びに、高温熱消費端末H1及び第1低温熱消費端末H3及び第2低温熱消費端末H4という3つの熱消費端末Hに熱媒体を供給する例を説明したが、4つ以上の熱消費端末Hに対して熱媒体を供給するような熱供給システムであっても構わない。
<Another embodiment>
<1>
In the above embodiment, the inspection method of the heat supply system of the present invention has been described with a specific example. However, the configuration can be appropriately changed.
For example, in the above-described embodiment, an example in which the heat medium is supplied to the two heat consuming terminals H, the high-temperature heat consuming terminal H1 and the low-temperature heat consuming terminal H2, and the high-temperature heat consuming terminal H1, the first low-temperature heat consuming terminal H3, and the Although the example in which the heat medium is supplied to the three heat consuming terminals H called the two low-temperature heat consuming terminals H4 has been described, a heat supply system that supplies the heat medium to four or more heat consuming terminals H may be used. I do not care.

上記実施形態において、熱媒体循環路10の構成や熱媒体循環路10の途中に設けられる機器の種類や数なども、上記実施形態で説明したものから適宜変更可能である。
また、流量センサ18及び流量センサ19を設ける位置も適宜変更可能である。
In the above embodiment, the configuration of the heat medium circulating path 10 and the type and number of devices provided in the middle of the heat medium circulating path 10 can be appropriately changed from those described in the above embodiment.
Further, the positions where the flow sensors 18 and 19 are provided can be changed as appropriate.

上記実施形態において、第1測定工程及び第2測定工程の何れを先に実施してもよい。   In the above embodiment, either the first measurement step or the second measurement step may be performed first.

<2>
上記実施形態(別実施形態を含む)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
<2>
The configuration disclosed in the above embodiment (including another embodiment) can be applied in combination with the configuration disclosed in another embodiment as long as no contradiction arises, and is disclosed in this specification. The embodiment described above is an exemplification, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、熱動弁の故障を適切に検出可能な熱供給システムに利用できる。   INDUSTRIAL APPLICATION This invention can be utilized for the heat supply system which can detect the failure of a thermal valve appropriately.

1 熱源機
7 熱媒体ポンプ
10 熱媒体循環路
11 共通流路部分
12 高温側個別流路部分(個別流路部分 15)
13 低温側個別流路部分(個別流路部分 15)
22 第1低温側個別流路部分(個別流路部分 15)
23 第2低温側個別流路部分(個別流路部分 15)
H 熱消費端末
H1 高温熱消費端末
H2 低温熱消費端末
H3 第1低温熱消費端末
H4 第2低温熱消費端末
V1 高温側熱動弁(熱動弁 V)
V2 低温側熱動弁(熱動弁 V)
V3 第1低温側熱動弁(熱動弁 V)
V4 第2低温側熱動弁(熱動弁 V)
DESCRIPTION OF SYMBOLS 1 Heat source unit 7 Heat medium pump 10 Heat medium circulation path 11 Common flow path part 12 High temperature side individual flow path part (individual flow path part 15)
13 Low temperature side individual flow path part (individual flow path part 15)
22 1st low temperature side individual flow path part (individual flow path part 15)
23 Second low-temperature side individual flow path part (individual flow path part 15)
H Heat consuming terminal H1 High temperature heat consuming terminal H2 Low temperature heat consuming terminal H3 First low temperature heat consuming terminal H4 Second low temperature heat consuming terminal V1 High temperature side thermal valve (thermal valve V)
V2 Low temperature side thermal valve (thermal valve V)
V3 1st low temperature side thermal valve (thermal valve V)
V4 2nd low temperature side thermal valve (thermal valve V)

Claims (3)

熱媒体を加熱する熱源機と、
熱媒体が流れる熱媒体循環路とを備え、
熱を消費する熱消費端末に対して、前記熱媒体循環路を介して熱媒体を供給できるように構成されている熱供給システムの検査方法であって、
前記熱媒体循環路は、前記熱消費端末を経由させずに熱媒体を循環させることができる共通流路部分と、当該共通流路部分から複数の前記熱消費端末に向けて分岐し、途中に熱動弁がそれぞれ設けられる複数の個別流路部分とを有し、
前記熱媒体循環路で熱媒体を流すための熱媒体ポンプを備え、
複数の前記熱動弁のうちの検査対象とする熱動弁を閉じる指令を与え且つ前記熱媒体ポンプを所定の回転速度で動作させた第1動作状態で前記熱媒体循環路に熱媒体を循環させながら、前記熱供給システムでの所定の動作状態を表す第1の動作状態値を測定する第1測定工程と、
前記検査対象とする熱動弁を開く指令を与える以外は前記第1動作状態と同じ第2動作状態で前記熱媒体循環路に熱媒体を循環させながら、前記熱供給システムでの前記所定の動作状態を表す第2の動作状態値を測定する第2測定工程と、
前記第1の動作状態値と前記第2の動作状態値との差が所定範囲内であれば前記検査対象とする熱動弁が正常に閉じない異常状態の熱動弁を含んでいると判定し、前記第1の動作状態値と前記第2の動作状態値との差が前記所定範囲よりも大きければ前記検査対象とする熱動弁が前記異常状態の熱動弁を含んでいないと判定する判定工程とを有する熱供給システムの検査方法。
A heat source device for heating the heat medium,
A heat medium circulation path through which the heat medium flows,
For a heat consuming terminal that consumes heat, a method for inspecting a heat supply system configured to be able to supply a heat medium via the heat medium circulation path,
The heat medium circulation path, a common flow path portion that can circulate the heat medium without passing through the heat consumption terminal, and branching from the common flow path portion toward the plurality of heat consumption terminals, in the middle A plurality of individual flow path portions each provided with a thermal valve,
A heat medium pump for flowing a heat medium in the heat medium circulation path,
A heat medium is circulated in the heat medium circulation path in a first operation state in which a command to close a heat valve to be inspected among the plurality of heat valves is given and the heat medium pump is operated at a predetermined rotation speed. A first measuring step of measuring a first operating state value representing a predetermined operating state in the heat supply system,
The predetermined operation in the heat supply system while circulating the heat medium in the heat medium circulation path in the second operation state same as the first operation state except that a command to open the heat valve to be inspected is given. A second measuring step of measuring a second operating state value representing the state;
If the difference between the first operating state value and the second operating state value is within a predetermined range, it is determined that the thermal valve to be inspected includes an abnormal thermal valve that does not close normally. If the difference between the first operating state value and the second operating state value is larger than the predetermined range, it is determined that the thermal valve to be inspected does not include the abnormal thermal valve. A method for inspecting a heat supply system, comprising:
前記動作状態値は、前記熱媒体ポンプの消費電流値である請求項1に記載の熱供給システムの検査方法。   The method according to claim 1, wherein the operation state value is a current consumption value of the heat medium pump. 前記動作状態値は、前記熱媒体循環路の途中で測定される単位時間当たりの熱媒体の流量である請求項1に記載の熱供給システムの検査方法。
The inspection method of the heat supply system according to claim 1, wherein the operation state value is a flow rate of the heat medium per unit time measured in the heat medium circulation path.
JP2018187573A 2018-10-02 2018-10-02 Method for inspecting heat supply system Pending JP2020056544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187573A JP2020056544A (en) 2018-10-02 2018-10-02 Method for inspecting heat supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187573A JP2020056544A (en) 2018-10-02 2018-10-02 Method for inspecting heat supply system

Publications (1)

Publication Number Publication Date
JP2020056544A true JP2020056544A (en) 2020-04-09

Family

ID=70106899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187573A Pending JP2020056544A (en) 2018-10-02 2018-10-02 Method for inspecting heat supply system

Country Status (1)

Country Link
JP (1) JP2020056544A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317749A (en) * 2000-05-08 2001-11-16 Tokyo Gas Co Ltd Method of controlling trial operation of hot-water heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317749A (en) * 2000-05-08 2001-11-16 Tokyo Gas Co Ltd Method of controlling trial operation of hot-water heater

Similar Documents

Publication Publication Date Title
RU2741532C1 (en) Apparatus for hot water supply and a method of recycling waste heat in a hot water supply plant
JP5257660B2 (en) Hot water supply system and cogeneration system
JP5170515B2 (en) Cogeneration system and storage tank unit
JP2020056544A (en) Method for inspecting heat supply system
JP4391471B2 (en) Hot water storage water heater
JP2006019169A (en) Cogeneration system and its operation control method
JP2004251591A (en) Heat medium supply equipment
JP3579440B2 (en) Self-check method of temperature sensor in large capacity hot water supply system with combined heat source
JP2021001712A (en) Water heater and hot water supply system
JP7026550B2 (en) How to inspect the heat supply system
JP5796772B2 (en) Hot water system
KR101407642B1 (en) Duplex calorimeter
JP2010008009A (en) Water heater
JP6800084B2 (en) Energy supply system
KR101817949B1 (en) Engine warm-up system and method using the exhaust heat recovery device
JP5370718B2 (en) Hot water supply system and cogeneration system
JP2004251592A (en) Heat source device
JP4377831B2 (en) Failure diagnosis method for hot water supply system, hot water supply system, failure diagnosis apparatus and failure diagnosis program thereof
JP2004251888A (en) Equipment supplying heating medium
JP4266375B2 (en) District heat supply system
JP6548144B2 (en) Hot water heater
US11411518B2 (en) Generator cooling
JP6861549B2 (en) Hot water supply system
JP2000009344A (en) Hot water supply apparatus
JP2022177760A (en) hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131