JP2020056025A - Absorbing resin particle and method for producing the same - Google Patents
Absorbing resin particle and method for producing the same Download PDFInfo
- Publication number
- JP2020056025A JP2020056025A JP2019178196A JP2019178196A JP2020056025A JP 2020056025 A JP2020056025 A JP 2020056025A JP 2019178196 A JP2019178196 A JP 2019178196A JP 2019178196 A JP2019178196 A JP 2019178196A JP 2020056025 A JP2020056025 A JP 2020056025A
- Authority
- JP
- Japan
- Prior art keywords
- resin particles
- absorbent resin
- water
- weight
- crosslinking agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 278
- 229920005989 resin Polymers 0.000 title claims abstract description 260
- 239000011347 resin Substances 0.000 title claims abstract description 260
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 186
- 239000000178 monomer Substances 0.000 claims abstract description 108
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 104
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 95
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 90
- 238000010521 absorption reaction Methods 0.000 claims abstract description 63
- 229920006037 cross link polymer Polymers 0.000 claims abstract description 35
- 239000002250 absorbent Substances 0.000 claims description 215
- 230000002745 absorbent Effects 0.000 claims description 205
- 239000000203 mixture Substances 0.000 claims description 61
- 238000004132 cross linking Methods 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 38
- 239000002504 physiological saline solution Substances 0.000 claims description 33
- 239000002738 chelating agent Substances 0.000 claims description 24
- 239000012298 atmosphere Substances 0.000 claims description 16
- 230000014759 maintenance of location Effects 0.000 claims description 14
- 239000006096 absorbing agent Substances 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 11
- 230000007062 hydrolysis Effects 0.000 claims description 10
- 238000006460 hydrolysis reaction Methods 0.000 claims description 10
- 239000004677 Nylon Substances 0.000 claims description 6
- 229920001778 nylon Polymers 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000007664 blowing Methods 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 claims description 2
- 238000004383 yellowing Methods 0.000 claims description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 20
- 210000002700 urine Anatomy 0.000 abstract description 10
- 238000005342 ion exchange Methods 0.000 abstract description 7
- 230000009182 swimming Effects 0.000 abstract description 2
- 150000003839 salts Chemical group 0.000 description 72
- 239000000499 gel Substances 0.000 description 47
- 238000002156 mixing Methods 0.000 description 37
- 238000006116 polymerization reaction Methods 0.000 description 32
- 239000000835 fiber Substances 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 27
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 24
- -1 carboxy, sulfo, phosphono, hydroxyl Chemical group 0.000 description 21
- 206010016807 Fluid retention Diseases 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 239000000017 hydrogel Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000011259 mixed solution Substances 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- 238000009775 high-speed stirring Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 238000009423 ventilation Methods 0.000 description 10
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 9
- 230000007774 longterm Effects 0.000 description 9
- 239000001509 sodium citrate Substances 0.000 description 9
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 244000269722 Thea sinensis Species 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 238000004040 coloring Methods 0.000 description 7
- 239000002657 fibrous material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000002845 discoloration Methods 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 150000005846 sugar alcohols Polymers 0.000 description 6
- FYRWKWGEFZTOQI-UHFFFAOYSA-N 3-prop-2-enoxy-2,2-bis(prop-2-enoxymethyl)propan-1-ol Chemical compound C=CCOCC(CO)(COCC=C)COCC=C FYRWKWGEFZTOQI-UHFFFAOYSA-N 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 235000010323 ascorbic acid Nutrition 0.000 description 5
- 229960005070 ascorbic acid Drugs 0.000 description 5
- 239000011668 ascorbic acid Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 5
- 239000007863 gel particle Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical class C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- IQIXQINTSRHNDE-UHFFFAOYSA-N butanimidamide;dihydrochloride Chemical compound Cl.Cl.CCCC(N)=N IQIXQINTSRHNDE-UHFFFAOYSA-N 0.000 description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 4
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229920001131 Pulp (paper) Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000027939 micturition Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 3
- 238000010558 suspension polymerization method Methods 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- SSJXIUAHEKJCMH-PHDIDXHHSA-N (1r,2r)-cyclohexane-1,2-diamine Chemical compound N[C@@H]1CCCC[C@H]1N SSJXIUAHEKJCMH-PHDIDXHHSA-N 0.000 description 1
- DCCWEYXHEXDZQW-BYPYZUCNSA-N (2s)-2-[bis(carboxymethyl)amino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)N(CC(O)=O)CC(O)=O DCCWEYXHEXDZQW-BYPYZUCNSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- AOSFMYBATFLTAQ-UHFFFAOYSA-N 1-amino-3-(benzimidazol-1-yl)propan-2-ol Chemical compound C1=CC=C2N(CC(O)CN)C=NC2=C1 AOSFMYBATFLTAQ-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- CISIJYCKDJSTMX-UHFFFAOYSA-N 2,2-dichloroethenylbenzene Chemical compound ClC(Cl)=CC1=CC=CC=C1 CISIJYCKDJSTMX-UHFFFAOYSA-N 0.000 description 1
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical group CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical class CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- VEUMANXWQDHAJV-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]ethyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCN=CC1=CC=CC=C1O VEUMANXWQDHAJV-UHFFFAOYSA-N 0.000 description 1
- RURPJGZXBHYNEM-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound C=1C=CC=C(O)C=1C=NC(C)CN=CC1=CC=CC=C1O RURPJGZXBHYNEM-UHFFFAOYSA-N 0.000 description 1
- KLDZYURQCUYZBL-UHFFFAOYSA-N 2-[3-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCN=CC1=CC=CC=C1O KLDZYURQCUYZBL-UHFFFAOYSA-N 0.000 description 1
- CCJAYIGMMRQRAO-UHFFFAOYSA-N 2-[4-[(2-hydroxyphenyl)methylideneamino]butyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCCN=CC1=CC=CC=C1O CCJAYIGMMRQRAO-UHFFFAOYSA-N 0.000 description 1
- CIEZZGWIJBXOTE-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)C(C)N(CC(O)=O)CC(O)=O CIEZZGWIJBXOTE-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical class O1C(=NCC1)* 0.000 description 1
- XLLXMBCBJGATSP-UHFFFAOYSA-N 2-phenylethenol Chemical compound OC=CC1=CC=CC=C1 XLLXMBCBJGATSP-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- BXAAQNFGSQKPDZ-UHFFFAOYSA-N 3-[1,2,2-tris(prop-2-enoxy)ethoxy]prop-1-ene Chemical compound C=CCOC(OCC=C)C(OCC=C)OCC=C BXAAQNFGSQKPDZ-UHFFFAOYSA-N 0.000 description 1
- UWRBFYBQPCJRRL-UHFFFAOYSA-N 3-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)CCN(CC(O)=O)CC(O)=O UWRBFYBQPCJRRL-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- MKTOIPPVFPJEQO-UHFFFAOYSA-N 4-(3-carboxypropanoylperoxy)-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OOC(=O)CCC(O)=O MKTOIPPVFPJEQO-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 102100031260 Acyl-coenzyme A thioesterase THEM4 Human genes 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- TUYRAIOYNUOFNH-UHFFFAOYSA-N CP(=O)(O)OP(=O)O Chemical compound CP(=O)(O)OP(=O)O TUYRAIOYNUOFNH-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 description 1
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical compound [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 206010048744 Fear of falling Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 101000638510 Homo sapiens Acyl-coenzyme A thioesterase THEM4 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- RUSUZAGBORAKPY-UHFFFAOYSA-N acetic acid;n'-[2-(2-aminoethylamino)ethyl]ethane-1,2-diamine Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.NCCNCCNCCN RUSUZAGBORAKPY-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 125000000656 azaniumyl group Chemical group [H][N+]([H])([H])[*] 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 150000001669 calcium Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- LISYQMGBXPZIPS-UHFFFAOYSA-N carboxyoxy 2-ethoxyethyl carbonate Chemical compound CCOCCOC(=O)OOC(O)=O LISYQMGBXPZIPS-UHFFFAOYSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- STZIXLPVKZUAMV-UHFFFAOYSA-N cyclopentane-1,1,2,2-tetracarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC1(C(O)=O)C(O)=O STZIXLPVKZUAMV-UHFFFAOYSA-N 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- JESXATFQYMPTNL-UHFFFAOYSA-N mono-hydroxyphenyl-ethylene Natural products OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 150000003109 potassium Chemical class 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- VXYADVIJALMOEQ-UHFFFAOYSA-K tris(lactato)aluminium Chemical compound CC(O)C(=O)O[Al](OC(=O)C(C)O)OC(=O)C(C)O VXYADVIJALMOEQ-UHFFFAOYSA-K 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Landscapes
- Absorbent Articles And Supports Therefor (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、吸収性樹脂粒子及びその製造方法に関するものである。 The present invention relates to absorbent resin particles and a method for producing the same.
近年、乳幼児のプール等での使用を前提とした、尿や便等の排泄物が水中に拡散するのを防止する機能を持つ使い捨て水着(スイミングパンツとも呼ばれている)が市販されている(例えば特許文献1、2参照)。
In recent years, disposable swimwear (also called swimming pants) having a function of preventing excretions such as urine and stool from diffusing into water, which are premised on use in pools of infants and the like, are commercially available ( For example, see
このような使い捨て水着は、尿を吸収する吸収体と、その表側及び裏側をそれぞれ覆う液透過性の表側層及び裏側層とを基本要素としている。 Such a disposable swimsuit has, as basic elements, an absorbent body that absorbs urine, and a liquid-permeable front side layer and a back side layer that cover the front side and the back side, respectively.
吸収体としては、パルプ繊維の積繊体が一般的に使用されている。使い捨て水着は水中で使用するため、内部に浸入した水も吸収体に吸収される。そのため、使い捨て水着の吸収体として、水中での使用を前提としていない紙おむつを水中で使用した場合、水に入った後又は水中では、吸水後の自重増により股間部が垂れ下がったり、ずれ落ちたりすることにより、見栄えや装着感が悪くなる。 As an absorber, a pile of pulp fibers is generally used. Since disposable swimwear is used underwater, water that has entered inside is also absorbed by the absorber. Therefore, when a disposable diaper that is not intended for use in water is used in water as an absorbent body for disposable swimwear, the crotch part will hang down or slip off due to the increase in weight of itself after entering water or in water. As a result, the appearance and the feeling of wearing deteriorate.
従って、このような使い捨て水着の吸収体としては、水中での使用を前提としていない紙おむつとは異なり、吸収体が膨らまないように吸収体中に吸収性樹脂を含有させないか、含有させるとしても少量しか含有させないか、又は水の吸収倍率の小さい吸収性樹脂を使用するのが好ましいと考えられている。 Therefore, unlike a disposable diaper that is not supposed to be used in water, such an absorbent body for a disposable swimsuit does not contain an absorbent resin in the absorbent body so that the absorbent body does not swell, or a small amount even if it is contained. It is considered that it is preferable to use a water-absorbent resin containing only water or having a small water absorption capacity.
しかし、吸収性樹脂を含有させないか、又は少量しか含有させない場合は、尿の吸収性能に劣り、水に入る前や、水辺で遊ぶだけで水に入るか決まっていないときに排尿があると、吸収量がほとんど無いか又は少ないために漏れを生じるおそれがあった。従来、内部架橋剤を多く使用して、水(イオン交換水)の吸収倍率の小さい吸収性樹脂を製造する方法が知られているが(特許文献3参照)、これを吸収体に用いると、水吸収後の吸収体の膨らみは抑制できるが、吸収性樹脂のゲル通液速度が低く排尿時に吸収体内へ尿が拡散しづらく、漏れを生じるおそれがあった。また、内部架橋剤を多く使用した吸収性樹脂は、長期保管時に吸収性樹脂が着色し、使用者に不快感を与える場合があった。一方、ゲル通液速度を向上させる技術として、(1)シリカ及びタルク等の無機化合物を添加することにより物理的なスペースを形成させる方法、(2)変性シリコーン等の表面自由エネルギーの小さい疎水性高分子で表面処理することにより、膨潤ゲル同士の合着を抑制してゲル間隙を形成させる方法及び(3)硫酸アルミニウムや乳酸アルミニウム等を添加する方法が既に知られている(例えば、特許文献4、特許文献5及び特許文献6参照)。しかしこれらの方法では、吸収性樹脂の輸送、散布、供給やミキシング等の際、又は吸収性物品の輸送等の際に、粒子同士の衝突・摩擦や装置壁面等と粒子との衝突・摩擦等によって吸収性樹脂粒子の表面が壊れるのに伴いゲル通液速度が悪化するおそれがあった。
However, if the absorbent resin is not contained or contains only a small amount, the urine absorption performance is inferior, and if there is urination before entering the water or when it is not determined whether to enter the water just by playing at the waterside, Leakage could occur due to little or no absorption. Conventionally, there has been known a method of producing an absorbent resin having a small absorption capacity of water (ion-exchanged water) by using a large amount of an internal crosslinking agent (see Patent Document 3). Although the swelling of the absorbent body after absorbing water can be suppressed, the gel flow rate of the absorbent resin is low, and urine is hardly diffused into the absorbent body at the time of urination, and there is a possibility of leakage. Further, in the case of an absorbent resin using a large amount of an internal crosslinking agent, the absorbent resin may be colored during long-term storage, giving the user discomfort. On the other hand, techniques for improving the gel flow rate include: (1) a method of forming a physical space by adding an inorganic compound such as silica and talc; and (2) a hydrophobic property having a small surface free energy such as a modified silicone. A method of forming a gel gap by suppressing coalescence between swollen gels by surface treatment with a polymer and a method of adding (3) aluminum sulfate, aluminum lactate, or the like are already known (for example, Patent Documents) 4, see
本発明の課題は、吸収性樹脂粒子を使い捨て水着等の吸収性物品に使用した際、水を吸収した後の吸収体の膨張を抑制しつつ、水を吸収する前の尿漏れを防止でき、かつ高温多湿下での着色防止を長期に渡り発揮できる吸収性樹脂粒子、その製造方法、及び該吸収性樹脂粒子を含有する吸収性物品を提供することである。 An object of the present invention is to provide a absorbent article such as a disposable swimwear using absorbent resin particles, while suppressing expansion of the absorber after absorbing water, and preventing urine leakage before absorbing water, Another object of the present invention is to provide an absorbent resin particle capable of exhibiting prevention of coloring under high temperature and high humidity for a long period of time, a method for producing the same, and an absorbent article containing the absorbent resin particle.
本発明者は、上記課題を達成すべく鋭意検討した結果、本発明に到達した。すなわち、本発明は、ビニルモノマー(a)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子を後架橋剤(c)で架橋した吸収性樹脂粒子であって、前記ビニルモノマー(a)は水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)を含み、イオン交換水中に浸漬した吸収性樹脂粒子が単位重量あたりに吸水するイオン交換水の重量[イオン交換水中での吸水倍率]が10〜120(g/g)であり、生理食塩水中に30分間浸漬して膨潤させた後に加重をかけて圧縮した吸収性樹脂粒子を生理食塩水が通過するときの速度[吸収性樹脂粒子のゲル通液速度]が350(ml/分)以上である吸収性樹脂粒子;前記吸収性樹脂粒子を含有する吸収体;前記吸収体を含有する吸収性物品である。
本発明はまた、上記吸収性樹脂粒子の製造方法であって、ビニルモノマー(a)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有し、含水率が22〜90重量%である樹脂粒子と後架橋剤(c)とを反応させる工程を有することを特徴とする吸収性樹脂粒子の製造方法である。
The present inventor has earnestly studied to achieve the above object, and as a result, has reached the present invention. That is, the present invention relates to absorbent resin particles obtained by crosslinking a resin particle containing a crosslinked polymer (A) having a vinyl monomer (a) and a crosslinking agent (b) as essential constituent units with a post-crosslinking agent (c). The vinyl monomer (a) contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis. The weight of the ion-exchanged water that absorbs water per unit weight [the water absorption capacity in the ion-exchanged water] is 10 to 120 (g / g), immersed in physiological saline for 30 minutes to swell, and then compressed by applying a load. Absorbent resin particles having a velocity [absorbent resin particle gel flow rate] of 350 (ml / min) or more when physiological saline passes through the absorbed absorbent resin particles; Absorption containing the absorbent resin particles ; An absorbent article containing the absorbent body.
The present invention also relates to the method for producing absorbent resin particles, comprising a crosslinked polymer (A) having a vinyl monomer (a) and a crosslinking agent (b) as essential constituent units, and having a water content of 22 to 90. A method for producing absorbent resin particles, which comprises a step of reacting the resin particles, which is a weight percentage, with a post-crosslinking agent (c).
本発明の吸収性樹脂粒子は、水に対する吸収倍率を抑制しつつ、適度な保水量と高いゲル通液速度を示す。従って、本発明の吸収性樹脂粒子を使い捨て水着等の吸収性物品に使用した際、吸収性物品の内部に水が浸入しても吸収性物品の吸収体が膨らみにくく、そのため吸収性物品が体からずり落ちづらい。一方、水に入る前や、水辺で遊ぶだけで水に入るか決まっていないときに排尿がある場合も、本発明の吸収性物品は尿を十分吸収でき、漏れを抑制する。 The absorbent resin particles of the present invention exhibit an appropriate amount of water retention and a high gel flow rate while suppressing the water absorption capacity. Therefore, when the absorbent resin particles of the present invention are used for absorbent articles such as disposable swimwear, the absorbent of the absorbent article is unlikely to swell even when water enters the interior of the absorbent article, and therefore the absorbent article is It is hard to slip down. On the other hand, also in the case where urination occurs before entering water or when it is not decided whether to enter the water just by playing on the waterside, the absorbent article of the present invention can sufficiently absorb urine and suppress leakage.
本発明の吸収性樹脂粒子は、ビニルモノマー(a)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子を後架橋剤(c)で架橋した吸収性樹脂粒子であり、前記ビニルモノマー(a)は水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)を含む。 The absorbent resin particles of the present invention are obtained by crosslinking resin particles containing a crosslinked polymer (A) having a vinyl monomer (a) and a crosslinking agent (b) as essential constituent units with a post-crosslinking agent (c). Particles, and the vinyl monomer (a) contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis.
本発明における水溶性ビニルモノマー(a1)としては特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007〜0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003−165883号公報の0009〜0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005−75982号公報の0041〜0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマー等が使用できる。
なお、水溶性ビニルモノマーにおける水溶性とは、数量を用いて表すなら、例えば、溶質が25℃の水100gに少なくとも100g溶解することを意味する。
The water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and may be a known monomer, for example, at least one water-soluble substituent disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 and an ethylenically unsaturated monomer. Vinyl monomers having a saturated group (for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers); anionic vinyl monomers disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883; Vinyl monomers and cationic vinyl monomers, and carboxy, sulfo, phosphono, hydroxyl, carbamoyl, amino and ammonium groups disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982. At least one Vinyl monomers can be used to.
In addition, the water solubility of the water-soluble vinyl monomer, when expressed by using a quantity, means that, for example, at least 100 g of a solute is dissolved in 100 g of water at 25 ° C.
加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)[以下、加水分解性ビニルモノマー(a2)ともいう。]は特に限定はなく、公知のビニルモノマー、例えば、特許第3648553号公報の0024〜0025段落に開示されている加水分解により水溶性置換基となる加水分解性置換基を少なくとも1個有するビニルモノマー、特開2005−75982号公報の0052〜0055段落に開示されている少なくとも1個の加水分解性置換基[1,3−オキソ−2−オキサプロピレン(−CO−O−CO−)基、アシル基及びシアノ基等]を有するビニルモノマー等が使用できる。
なお、加水分解とは、水の存在下で、必要により触媒(酸又は塩基等)を用いて、加水分解性ビニルモノマー(a2)を水溶性ビニルモノマー(a1)に分解することを意味する。加水分解性ビニルモノマー(a2)の加水分解は、重合中、重合後及びこれらの両方のいずれで行っても良いが、得られる吸収性樹脂粒子の吸収性能の観点から、重合後が好ましい。
A vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis [hereinafter also referred to as a hydrolyzable vinyl monomer (a2). Is not particularly limited, and is a known vinyl monomer, for example, a vinyl monomer having at least one hydrolyzable substituent which becomes a water-soluble substituent by hydrolysis disclosed in paragraphs 0024 to 0025 of Japanese Patent No. 3648553. And at least one hydrolyzable substituent [1,3-oxo-2-oxapropylene (-CO-O-CO-) group, acyl group disclosed in paragraphs 0052 to 0055 of JP-A-2005-75982. Group and cyano group etc.].
The hydrolysis means that the hydrolyzable vinyl monomer (a2) is decomposed into a water-soluble vinyl monomer (a1) in the presence of water, using a catalyst (acid or base or the like) as necessary. The hydrolysis of the hydrolyzable vinyl monomer (a2) may be performed during, after, or both of the polymerization, but is preferably performed after the polymerization from the viewpoint of the absorption performance of the resulting absorbent resin particles.
水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)の内、吸収性能等の観点から、水溶性ビニルモノマー(a1)が好ましい。水溶性ビニルモノマー(a1)としては、好ましいのは上述のアニオン性ビニルモノマー;カルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ−、ジ−若しくはトリ−アルキルアンモニオ基を有するビニルモノマー;更に好ましいのはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー;特に好ましいのは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド;とりわけ好ましいのは(メタ)アクリル酸(塩);最も好ましいのはアクリル酸(塩)である。 Among the water-soluble vinyl monomer (a1) and / or the vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis, the water-soluble vinyl monomer (a1) is preferable from the viewpoint of absorption performance and the like. As the water-soluble vinyl monomer (a1), preferred are the above-mentioned anionic vinyl monomers; a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonium group or a mono-, di- or tri-alkyl group. Vinyl monomer having an ammonio group; more preferred is a vinyl monomer having a carboxy (salt) group or carbamoyl group; particularly preferred are (meth) acrylic acid (salt) and (meth) acrylamide; particularly preferred is (meth) Acrylic acid (salt); most preferred is acrylic acid (salt).
なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。
また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH4)塩等が挙げられる。これらの塩の内、吸収性能の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。
The “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”. Also, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylic acid, and (meth) acrylamide means acrylamide or methacrylamide.
Examples of the salt include alkali metal (such as lithium, sodium and potassium) salts, alkaline earth metal (such as magnesium and calcium) salts, and ammonium (NH 4 ) salts. Among these salts, alkali metal salts and ammonium salts are preferred from the viewpoint of absorption performance, more preferred are alkali metal salts, and particularly preferred are sodium salts.
水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる場合、吸水性能や残存モノマーの観点から、酸基含有モノマーの一部が塩基で中和されていることが好ましい。中和する塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を使用できる。中和は、吸収性樹脂粒子の製造において、重合前、重合中、重合後及びこれらの両方のいずれで行っても良いが、例えば、重合前に酸基含有モノマーを中和する方法や重合後に酸基含有ポリマーを含水ゲルの状態で中和する等の方法が好ましい例として例示される。 When an acid group-containing monomer such as acrylic acid or methacrylic acid is used as the water-soluble vinyl monomer (a1), it is preferable that a part of the acid group-containing monomer is neutralized with a base from the viewpoint of water absorption performance and remaining monomers. . As the base to be neutralized, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide and alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate can be used. Neutralization may be performed in the production of the absorbent resin particles, before polymerization, during polymerization, after polymerization, or both of them.For example, a method of neutralizing an acid group-containing monomer before polymerization or after polymerization. A preferred example is a method of neutralizing an acid group-containing polymer in a state of a hydrogel.
また、前記酸基含有モノマーを用いる場合の酸基の中和度は、50〜80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸収性樹脂粒子の保水量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。 When the acid group-containing monomer is used, the degree of neutralization of the acid group is preferably 50 to 80 mol%. When the degree of neutralization is less than 50 mol%, the resulting hydrogel polymer has high tackiness, and the workability during production and use may be deteriorated. Furthermore, the water retention of the obtained absorbent resin particles may decrease. On the other hand, when the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there is a case where safety for human skin is concerned.
水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成単位とする場合、それぞれ1種を単独で構成単位としてもよく、また、必要により2種以上を構成単位としても良い。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合、これらの含有モル比[(a1)/(a2)]は、75/25〜99/1が好ましく、更に好ましくは85/15〜95/5、特に好ましくは90/10〜93/7、最も好ましくは91/9〜92/8である。この範囲内であると、吸収性能が更に良好となる。 When any of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) is used as a constituent unit, one kind may be used alone as a constituent unit, and if necessary, two or more kinds may be used as a constituent unit. good. The same applies to the case where the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units. When the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are the constituent units, the content molar ratio [(a1) / (a2)] thereof is preferably from 75/25 to 99/1. More preferably, it is from 85/15 to 95/5, particularly preferably from 90/10 to 93/7, and most preferably from 91/9 to 92/8. When it is in this range, the absorption performance is further improved.
ビニルモノマー(a)としては、前記の水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)と共重合可能なその他のビニルモノマー(a3)を構成単位とすることができる。その他のビニルモノマー(a3)は1種を単独で用いても、2種以上を併用してもよい。 The vinyl monomer (a) can be copolymerized with the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2). Other vinyl monomers (a3) can be used as constituent units. As the other vinyl monomer (a3), one type may be used alone, or two or more types may be used in combination.
共重合可能なその他のビニルモノマー(a3)としては特に限定はなく、例えば、特許第3648553号公報の0028〜0029段落に開示されている疎水性ビニルモノマー、特開2003−165883号公報の0025段落及び特開2005−75982号公報の0058段落に開示されているビニルモノマー等の公知の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)〜(iii)のビニルモノマー等が使用できる。
(i)炭素数8〜30の芳香族エチレン性モノマー
スチレン、α−メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2〜20の脂肪族エチレン性モノマー
アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5〜15の脂環式エチレン性モノマー
モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The other copolymerizable vinyl monomer (a3) is not particularly limited, and examples thereof include a hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553 and paragraph 0025 of JP-A-2003-165883. And known hydrophobic vinyl monomers such as the vinyl monomer disclosed in paragraph 0058 of JP-A-2005-75982, and specifically, for example, the following vinyl monomers (i) to (iii) and the like. Can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene.
(Ii) C2-C20 aliphatic ethylenic monomers alkenes (such as ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene and octadecene); and alkadienes (such as butadiene and isoprene).
(Iii) alicyclic ethylenic monomers having 5 to 15 carbon atoms, monoethylenically unsaturated monomers (such as pinene, limonene and indene); and polyethylene-based vinyl monomers (such as cyclopentadiene, bicyclopentadiene and ethylidene norbornene).
その他のビニルモノマー(a3)単位の含有量は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位の合計モル数に基づいて、0〜5モル%が好ましく、更に好ましくは0〜3モル%、特に好ましくは0〜2モル%、とりわけ好ましくは0〜1.5モル%であり、吸収性能等の観点から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。 The content of the other vinyl monomer (a3) unit is preferably 0 to 5 mol%, more preferably, based on the total number of moles of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. 0 to 3 mol%, particularly preferably 0 to 2 mol%, particularly preferably 0 to 1.5 mol%, and from the viewpoint of absorption performance and the like, the content of other vinyl monomer (a3) units is 0 mol%. Is most preferred.
架橋剤(b)としては特に限定はなく公知の架橋剤、例えば、特許第3648553号公報の0031〜0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003−165883号公報の0028〜0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005−75982号公報の0059段落に開示されている架橋性ビニルモノマー、特開2005−95759号公報の0015〜0016段落に開示されている架橋性ビニルモノマー並びに特開2018−39929の0066段落に開示されている多価グリシジル化合物等が使用できる。
これらの内、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのは、N,N’−メチレンビスアクリルアミド等のビス(メタ)アクリルアミド;(ポリ)アルキレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びソルビトール等の多価アルコールのポリ(メタ)アクリレート;(ポリ)アルキレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール及びソルビトール等の多価アルコールのポリ(メタ)アリルエーテル、テトラアリロキシエタン並びにトリアリルイソシアヌレート等の多価(メタ)アリル化合物であり、最も好ましいのは多価(メタ)アリル化合物である。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。
The crosslinking agent (b) is not particularly limited, and is a known crosslinking agent, for example, a crosslinking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553, a water-soluble substituent A crosslinking agent having at least one functional group capable of reacting with water and having at least one ethylenically unsaturated group and a crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent; No. 165883, paragraphs 0028 to 0031 of the paragraphs, cross-linking agents having two or more ethylenically unsaturated groups, cross-linking agents having an ethylenically unsaturated group and a reactive functional group, and two or more reactive substituents A crosslinking agent, a crosslinkable vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982, and 0015 to 0016 of JP-A-2005-95759. Polyglycidyl compounds such as disclosed in 0066 paragraph of the crosslinkable vinyl monomer and JP 2018-39929 disclosed in drop can be used.
Among these, from the viewpoint of absorption performance and the like, a crosslinking agent having two or more ethylenically unsaturated groups is preferable, and more preferable is bis (meth) acrylamide such as N, N'-methylenebisacrylamide; (poly) Poly (meth) acrylates of polyhydric alcohols such as alkylene glycol, trimethylolpropane, glycerin, pentaerythritol and sorbitol; poly (meth) acrylates of polyhydric alcohols such as (poly) alkylene glycol, trimethylolpropane, glycerin, pentaerythritol and sorbitol A) polyvalent (meth) allyl compounds such as allyl ether, tetraallyloxyethane and triallyl isocyanurate, and most preferred are polyvalent (meth) allyl compounds. As the crosslinking agent (b), one type may be used alone, or two or more types may be used in combination.
架橋重合体(A)における架橋剤(b)の含有量は、架橋重合体(A)を構成するビニルモノマー(a)の合計重量(すなわち、水溶性ビニルモノマー(a1)、加水分解性ビニルモノマー(a2)及びその他のビニルモノマー(a3)の合計重量)に基づいて、0.2〜5重量%が好ましく、更に好ましくは0.3〜3重量%、最も好ましくは0.4〜1重量%である。前記含有量が0.2重量%未満であると、吸収性樹脂粒子の可溶分が多くなり、ゲル通液速度が低下する場合がある。一方、前記含有量が5重量%より多いと、吸収性樹脂粒子内部の架橋密度が高くなりすぎ、十分な保水量が発揮できなくなる上、長期保管時の変色がしやすくなる。なお、架橋重合体(A)に含まれるビニルモノマー(a)及び架橋剤(b)の重量としては、架橋重合体(A)を製造する際の重合反応に用いるビニルモノマー(a)及び架橋剤(b)の重量を用いる。 The content of the crosslinking agent (b) in the crosslinked polymer (A) depends on the total weight of the vinyl monomers (a) constituting the crosslinked polymer (A) (that is, the water-soluble vinyl monomer (a1), the hydrolyzable vinyl monomer). (Total weight of (a2) and other vinyl monomers (a3)), preferably from 0.2 to 5% by weight, more preferably from 0.3 to 3% by weight, most preferably from 0.4 to 1% by weight. It is. When the content is less than 0.2% by weight, the soluble component of the absorbent resin particles increases, and the gel flow rate may decrease. On the other hand, when the content is more than 5% by weight, the crosslinking density inside the absorbent resin particles becomes too high, so that a sufficient water retention capacity cannot be exhibited, and discoloration during long-term storage is liable to occur. The weight of the vinyl monomer (a) and the weight of the crosslinking agent (b) contained in the crosslinked polymer (A) may be the weight of the vinyl monomer (a) and the weight of the crosslinking agent used in the polymerization reaction when producing the crosslinked polymer (A). Use the weight of (b).
架橋重合体(A)の製造方法としては、公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55−133413号公報等)や、公知の懸濁重合法や逆相懸濁重合(特公昭54−30710号公報、特開昭56−26909号公報及び特開平1−5808号公報等)によって得られる含水ゲル重合体(少なくとも架橋重合体と水を含有する。)を必要により乾燥することで得ることができる。架橋重合体(A)は、1種単独でも良いし、2種以上の混合物であっても良い。 As a method for producing the crosslinked polymer (A), there are known solution polymerization (such as adiabatic polymerization, thin film polymerization and spray polymerization; JP-A-55-133413, etc.), known suspension polymerization and reverse phase polymerization. A hydrogel polymer (containing at least a crosslinked polymer and water) obtained by turbid polymerization (JP-B-54-30710, JP-A-56-26909, JP-A-1-5808, etc.) is required. And can be obtained by drying. The crosslinked polymer (A) may be a single type or a mixture of two or more types.
架橋重合体(A)は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)を含むビニルモノマー(a)並びに架橋剤(b)を必須構成単位とする単量体組成物を重合することにより得ることができるが、重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない架橋重合体が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。 The crosslinked polymer (A) essentially contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a) containing a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis, and a crosslinker (b). It can be obtained by polymerizing the monomer composition as a structural unit, but among the polymerization methods, a solution polymerization method is preferable, and there is no need to use an organic solvent or the like, which is advantageous in terms of production cost. Therefore, an aqueous solution polymerization method is particularly preferred, and a water-soluble adiabatic polymerization method is most preferable because a crosslinked polymer having a large water retention amount and a small amount of a water-soluble component is obtained and temperature control during polymerization is unnecessary. .
水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。水溶液重合に水と有機溶媒とを含む混合溶媒を使用する場合、有機溶媒の使用量は、水の重量を基準として40重量%以下が好ましく、更に好ましくは30重量%以下である。 When performing aqueous solution polymerization, a mixed solvent containing water and an organic solvent can be used. Examples of the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these. And mixtures thereof. When a mixed solvent containing water and an organic solvent is used in the aqueous solution polymerization, the amount of the organic solvent used is preferably 40% by weight or less, more preferably 30% by weight or less based on the weight of water.
重合に触媒を用いる場合、従来のラジカル重合用触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’−アゾビスアミジノプロパンジハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ−t−ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2−エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。ラジカル重合触媒の使用量は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の、その他のビニルモノマー(a3)を用いる場合は(a1)〜(a3)の、合計重量に基づいて、0.0005〜5重量%が好ましく、更に好ましくは0.001〜2重量%である。 When a catalyst is used for the polymerization, a conventional catalyst for radical polymerization can be used. For example, azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobisamidinopropane dihydrochloride and the like], Inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.), organic peroxides such as benzoyl peroxide, di-tert-butyl peroxide, cumene hydroperoxide, succinic peroxide and disulfide (2-ethoxyethyl) peroxydicarbonate and the like] and a redox catalyst (a reducing agent such as an alkali metal sulfite or bisulfite, ammonium sulfite, ammonium bisulfite and ascorbic acid and an alkali metal persulfate, ammonium persulfate, Combination with oxidizing agents such as hydrogen peroxide and organic peroxides That Is) or the like from the combined like. These catalysts may be used alone or in combination of two or more. The amount of the radical polymerization catalyst used is based on the total weight of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), and when other vinyl monomers (a3) are used, (a1) to (a3). 0.0005 to 5% by weight, more preferably 0.001 to 2% by weight.
重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、従来の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。 When a suspension polymerization method or a reversed phase suspension polymerization method is used as the polymerization method, the polymerization may be carried out in the presence of a conventional dispersant or surfactant, if necessary. In the case of the reverse phase suspension polymerization method, polymerization can be carried out using a conventional hydrocarbon solvent such as xylene, normal hexane and normal heptane.
重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0〜100℃が好ましく、更に好ましくは5〜80℃である。 The polymerization initiation temperature can be appropriately adjusted depending on the type of the catalyst used, but is preferably 0 to 100 ° C, more preferably 5 to 80 ° C.
重合によって得られる含水ゲル重合体は、乾燥前に必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm〜10cmが好ましく、更に好ましくは100μm〜2cm、特に好ましくは1mm〜1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。 The hydrogel polymer obtained by polymerization can be shredded as necessary before drying. The size (longest diameter) of the gel after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
細断は、公知の方法で行うことができ、細断装置(例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。 Shredding can be performed by a known method, and can be shredded using a shredding device (for example, Vex Mill, Rubber Chopper, Pharma Mill, mincing machine, impact mill, roll mill) and the like.
また、前述のとおり、重合後に得られた酸基含有ポリマーの含水ゲル重合体に、必要に応じて塩基を混合して中和することもできる。 Further, as described above, a base may be mixed with the hydrogel polymer of the acid group-containing polymer obtained after the polymerization, if necessary, for neutralization.
含水ゲル重合体の溶媒(水を含む。)を留去し、乾燥する方法としては、80〜230℃の温度の熱風で留去(乾燥)する方法、100〜230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 As a method of distilling off the solvent (including water) of the hydrogel polymer and drying it, a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C, a drum dryer heated to 100 to 230 ° C Etc., a thin-film drying method by (e.g.) heating, reduced-pressure drying method (heating), freeze-drying method, drying method by infrared rays, decantation, filtration and the like can be applied.
含水ゲル重合体の溶媒(有機溶媒及び水等)に有機溶媒を含む場合、乾燥後の有機溶媒の含有量は、架橋重合体(A)の重量に基づいて、0〜10重量%が好ましく、更に好ましくは0〜5重量%、特に好ましくは0〜3重量%、最も好ましくは0〜1重量%である。この範囲であると、吸収性樹脂粒子の吸収性能が更に良好となる。 When an organic solvent is contained in the solvent of the hydrogel polymer (such as an organic solvent and water), the content of the organic solvent after drying is preferably 0 to 10% by weight, based on the weight of the crosslinked polymer (A). It is more preferably from 0 to 5% by weight, particularly preferably from 0 to 3% by weight, most preferably from 0 to 1% by weight. Within this range, the absorption performance of the absorbent resin particles will be further improved.
また、含水ゲル重合体の溶媒に水を含む場合、乾燥後の含水率は、架橋重合体(A)の重量に基づいて、0〜20重量%が好ましく、更に好ましくは1〜10重量%、特に好ましくは2〜9重量%、最も好ましくは3〜8重量%である。この範囲であると、後の粉砕工程において粉砕性が良好となり、かつ吸収性能が更に良好となる。 When water is contained in the solvent of the hydrogel polymer, the water content after drying is preferably from 0 to 20% by weight, more preferably from 1 to 10% by weight, based on the weight of the crosslinked polymer (A). Particularly preferably, it is 2 to 9% by weight, most preferably 3 to 8% by weight. Within this range, the pulverizability in the subsequent pulverization step will be good, and the absorption performance will be even better.
なお、有機溶媒の含有量及び含水率は、赤外水分測定器[(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W]により加熱したときの測定試料の重量減量から求められる。 The content and the water content of the organic solvent were measured using an infrared moisture meter [JE400 manufactured by KETT Co., Ltd .: 120 ± 5 ° C., 30 minutes, atmosphere humidity before heating 50 ± 10% RH, lamp specification 100V, 40 W] and the weight loss of the measurement sample when heated.
含水ゲル重合体を乾燥して架橋重合体(A)を得た後、更に粉砕することで、架橋重合体(A)を含有する樹脂粒子が得られる。粉砕方法については、特に限定はなく、粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。樹脂粒子は、必要によりふるい分け等により粒度調整できる。 The hydrogel polymer is dried to obtain a crosslinked polymer (A), and then further pulverized to obtain resin particles containing the crosslinked polymer (A). The pulverizing method is not particularly limited, and a pulverizing apparatus (for example, a hammer-type pulverizer, an impact-type pulverizer, a roll-type pulverizer, and a shet air-flow type pulverizer) can be used. The particle size of the resin particles can be adjusted by sieving or the like, if necessary.
必要によりふるい分けした場合の、樹脂粒子の重量平均粒子径は、100〜800μmが好ましく、更に好ましくは200〜700μm、次に好ましくは250〜600μm、特に好ましくは300〜500μm、最も好ましくは350〜450μmである。この範囲であると、吸収性能が更に良好となる。 If sieved as necessary, the weight average particle diameter of the resin particles is preferably 100 to 800 μm, more preferably 200 to 700 μm, then preferably 250 to 600 μm, particularly preferably 300 to 500 μm, and most preferably 350 to 450 μm. It is. Within this range, the absorption performance is further improved.
なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801−1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。 The weight average particle size was measured using a low tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book Company, 1984). , Page 21). That is, the JIS standard sieves are combined from the top in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and the pan. About 50 g of the particles to be measured is put into the uppermost sieve and shaken with a low tap test sieve shaker for 5 minutes. The weight of the particles measured on each sieve and the pan is weighed, and the weight fraction of the particles on each sieve is determined by taking the total as 100% by weight, and the logarithmic probability paper [the horizontal axis indicates the sieve aperture (particle size) ), The vertical axis is weight fraction], and a line connecting the points is drawn to determine a particle diameter corresponding to a weight fraction of 50% by weight, which is defined as a weight average particle diameter.
また、樹脂粒子に含まれる微粉の含有量は少ないほど吸収性能が良好となるため、樹脂粒子の合計重量に占める106μm以下(好ましくは150μm以下)の粒子の含有率は3重量%以下が好ましく、更に好ましくは1重量%以下である。微粉の含有率は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。 Also, the smaller the content of the fine powder contained in the resin particles, the better the absorption performance becomes. Therefore, the content of particles of 106 μm or less (preferably 150 μm or less) in the total weight of the resin particles is preferably 3% by weight or less, More preferably, it is at most 1% by weight. The content of the fine powder can be determined using a graph created when the above-mentioned weight average particle diameter is determined.
なお、樹脂粒子はその性能を損なわない範囲で、残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。 The resin particles may contain some other components such as a residual solvent and a residual cross-linking component to the extent that their performance is not impaired.
本発明の吸収性樹脂粒子は、前記架橋重合体(A)を含有する樹脂粒子を後架橋剤(c)で架橋した吸水性樹脂粒子であり、本発明の製造方法は、前記架橋重合体(A)を含有する樹脂粒子と後架橋剤(c)とを含む混合物を反応して樹脂粒子を後架橋する工程を有し、混合物の含水率が22〜90重量%である製造方法である。
ここで後架橋とは、前述した架橋剤(b)存在下に溶液状態で水溶性ビニルモノマー等を重合して架橋重合体を得る技術とは異なり、樹脂粒子の状態で更に前記架橋重合体の架橋密度を上げる技術である。後架橋することにより実使用において吸水性樹脂粒子に必要な保水量を維持しつつ、[イオン交換水中での吸水倍率]を低下させ、かつ、[吸収性樹脂粒子のゲル通液速度]を向上させることができる。
The absorbent resin particles of the present invention are water-absorbent resin particles obtained by crosslinking the resin particles containing the crosslinked polymer (A) with a post-crosslinking agent (c). A process comprising the step of reacting a mixture containing resin particles containing A) and a post-crosslinking agent (c) to post-crosslink the resin particles, wherein the water content of the mixture is 22 to 90% by weight.
Here, the post-crosslinking is different from the technique of polymerizing a water-soluble vinyl monomer or the like in a solution state in the presence of the crosslinking agent (b) to obtain a crosslinked polymer. This is a technique to increase the crosslink density. Post-crosslinking reduces [water absorption capacity in ion-exchanged water] and improves [gel flow rate of absorbent resin particles] while maintaining the water retention required for water-absorbent resin particles in actual use by post-crosslinking. Can be done.
後架橋剤(c)としては、特開昭59−189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン化合物及び多価イソシアネート化合物等、特開昭58−180233号公報及び特開昭61−16903号公報の多価アルコール、特開昭61−211305号公報及び特開昭61−252212号公報に記載のシランカップリング剤、特表平5−508425号公報に記載のアルキレンカーボネート、特開平11−240959号公報に記載の多価オキサゾリン化合物並びに特開昭51−136588号公報及び特開昭61−257235号公報に記載の多価金属等の表面架橋剤等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル化合物、多価アルコール及び多価アミンが好ましく、更に好ましいのは多価グリシジル化合物及び多価アルコール、特に好ましいのは多価グリシジル化合物、最も好ましいのはエチレングリコールジグリシジルエーテルである。表面架橋剤は1種を単独で用いても良いし、2種以上を併用しても良い。 Examples of the post-crosslinking agent (c) include polyglycidyl compounds, polyamines, polyaziridines and polyisocyanates described in JP-A-59-189103, JP-A-58-180233 and JP-A-58-180233. Polyhydric alcohols described in JP-A-61-16903, silane coupling agents described in JP-A-61-211305 and JP-A-61-252212, and alkylene carbonates described in JP-T-5-508425. And polyvalent oxazoline compounds described in JP-A-11-240959 and surface crosslinking agents such as polyvalent metals described in JP-A-51-136588 and JP-A-61-257235. Among these surface cross-linking agents, polyhydric glycidyl compounds, polyhydric alcohols and polyamines are preferred from the viewpoint of economy and absorption properties, more preferably polyhydric glycidyl compounds and polyhydric alcohols, and particularly preferably polyhydric glycidyl compounds and polyhydric alcohols. Multivalent glycidyl compounds, most preferred are ethylene glycol diglycidyl ethers. One type of surface cross-linking agent may be used alone, or two or more types may be used in combination.
吸収性樹脂粒子における後架橋剤(c)の合計使用量は、後架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、架橋重合体(A)の重量に基づいて、1〜4重量%が好ましく、更に好ましくは1〜3重量%、最も好ましくは1〜2.5重量%である。この範囲であると、ゲル通液速度が更に良好となる。前記含有量が1重量%未満であると、[イオン交換水中での吸水倍率]が十分に低くならず、ゲル通液速度が十分に高くならない場合がある。一方、前記含有量が4重量%より多いと、長期保管時の変色がしやすくなる。後架橋剤(c)の合計使用量は、後述する後架橋工程で使用する後架橋剤(c)の重量に基づいて計算される。 The total amount of the post-crosslinking agent (c) used in the absorbent resin particles can be variously changed depending on the type of the post-crosslinking agent, conditions for cross-linking, target performance, and the like. It is preferably from 1 to 4% by weight, more preferably from 1 to 3% by weight, most preferably from 1 to 2.5% by weight, based on the weight of A). Within this range, the gel flow rate will be further improved. If the content is less than 1% by weight, the [water absorption capacity in ion-exchanged water] may not be sufficiently low, and the gel flow rate may not be sufficiently high. On the other hand, when the content is more than 4% by weight, discoloration during long-term storage tends to occur. The total amount of the post-crosslinking agent (c) used is calculated based on the weight of the post-crosslinking agent (c) used in the post-crosslinking step described later.
樹脂粒子を後架橋する方法としては、例えば、樹脂粒子と後架橋剤(c)、水及び溶媒からなる混合溶液を混合して混合物を作製し、混合物を反応して後架橋する方法等が挙げられ、反応する方法としては、加熱反応する方法が挙げられる。樹脂粒子と混合溶液を混合して混合物を得る方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて、均一混合する方法が挙げられる。また、表面架橋の均一性の観点から、後架橋剤(c)は、水及び溶媒で希釈した混合溶液を使用することが好ましく、公知の流動式加湿混合造粒装置[フレキソミックス(ホソカワミクロン社製)及びシュギフレキソミックス((株)パウレック製)等]に公知の噴霧装置を取り付けた混合装置等で噴霧する方法や、上記混合溶液に樹脂粒子をディッピングする方法等が挙げられる。 As a method for post-crosslinking the resin particles, for example, a method of mixing a resin particle and a mixed solution comprising a post-crosslinking agent (c), water and a solvent to prepare a mixture, and reacting the mixture to perform post-crosslinking may be mentioned. As a method of reacting, a method of performing a heat reaction is exemplified. As a method of mixing the resin particles and the mixed solution to obtain a mixture, a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer, a Nauter mixer, a double arm kneader, a flow mixer, A method of performing uniform mixing using a mixing device such as a V-type mixer, a mince mixer, a ribbon-type mixer, an airflow-type mixer, a rotating disk-type mixer, a conical blender, and a roll mixer is exemplified. Further, from the viewpoint of surface cross-linking uniformity, it is preferable to use a mixed solution diluted with water and a solvent as the post-crosslinking agent (c), and a known fluid-type humidifying and mixing granulator [Flexomics (manufactured by Hosokawa Micron Co., Ltd.) ) And Sugiflexomics (manufactured by Powrex Co., Ltd.)] with a known mixing device, or a method of dipping resin particles into the mixed solution.
また、前記混合溶液に使用される溶媒としては、後架橋剤(c)の樹脂粒子内部への浸透度合い、後架橋剤(c)の反応性等を考慮し、適宜選択して使用することができるが、好ましくは、メタノール、ジエチレングリコール、プロピレングリコール等の水に溶解しうる親水性有機溶媒である。溶媒は単独で使用してもよいし、2種以上を併用してもよい。溶媒の使用量は、溶媒の種類により適宜調整できるが、後架橋前の樹脂粒子の重量に基づいて、好ましくは1〜10重量%である。 The solvent used in the mixed solution may be appropriately selected and used in consideration of the degree of penetration of the post-crosslinking agent (c) into the resin particles, the reactivity of the post-crosslinking agent (c), and the like. Preferably, a hydrophilic organic solvent that can be dissolved in water, such as methanol, diethylene glycol and propylene glycol, is used. The solvents may be used alone or in combination of two or more. The amount of the solvent used can be appropriately adjusted depending on the type of the solvent, but is preferably 1 to 10% by weight based on the weight of the resin particles before the post-crosslinking.
後架橋は、樹脂粒子と後架橋剤(c)とを含む混合物を反応する工程(以後、後架橋工程ともいう)により行う。後架橋工程においては、樹脂粒子と後架橋剤(c)とを混合した後、加熱して反応させることが好ましい。加熱反応時の加熱温度は、好ましくは80〜230℃、更に好ましくは100〜180℃である。また、反応時間は、反応温度により適宜調整することができるが、好ましくは3〜90分、更に好ましくは30〜60分である。反応温度が80℃未満だと、後架橋反応が十分に進行せず、得られる吸収性樹脂粒子の[イオン交換水中での吸水倍率]が小さくならない場合がある。一方、反応温度が230℃以上だと後架橋反応後の吸収性樹脂粒子の黄色度が悪化する場合がある。 The post-crosslinking is performed by a step of reacting a mixture containing the resin particles and the post-crosslinking agent (c) (hereinafter, also referred to as a post-crosslinking step). In the post-crosslinking step, it is preferable that the resin particles and the post-crosslinking agent (c) are mixed and then reacted by heating. The heating temperature during the heating reaction is preferably 80 to 230C, more preferably 100 to 180C. The reaction time can be appropriately adjusted depending on the reaction temperature, but is preferably 3 to 90 minutes, and more preferably 30 to 60 minutes. When the reaction temperature is lower than 80 ° C., the post-crosslinking reaction does not sufficiently proceed, and the [absorbency in ion-exchanged water] of the resulting absorbent resin particles may not be reduced. On the other hand, if the reaction temperature is 230 ° C. or higher, the yellowness of the absorbent resin particles after the post-crosslinking reaction may deteriorate.
本発明において、後架橋工程における樹脂粒子と後架橋剤(c)との混合及び反応は1回でもよいが、混合と反応をそれぞれ2回以上実施することが好ましい。具体的には、後架橋工程における混合と反応を2回以上実施することで樹脂粒子の後架橋を2回以上に分けて実施することになり、吸収性樹脂粒子の表面近傍の深さ方向へ厚みのある架橋構造を形成することが可能となり、吸収性樹脂粒子の[イオン交換水中での吸水倍率]と保水量のバランスを向上させ、かつ高いゲル通液速度と両立させることができる。さらに好ましくは、樹脂粒子と後架橋剤(c)との混合を2回以上に分けて行う場合、それぞれ樹脂粒子の含水率が異なる条件で実施することが好ましい。なお、2回以上実施する場合に使用する後架橋剤は、毎回同じ後架橋剤であっても、異なった後架橋剤であっていてもよい。
後架橋工程を2回以上実施する場合、1回目の後架橋工程で得られる混合物の含水率は、好ましくは10重量%以下である。この範囲であると、表面付近の架橋密度を上げることができる。
In the present invention, the mixing and reaction between the resin particles and the post-crosslinking agent (c) in the post-crosslinking step may be performed once, but it is preferable to perform the mixing and the reaction twice or more each. Specifically, by performing the mixing and the reaction in the post-crosslinking step twice or more, the post-crosslinking of the resin particles is divided into two or more times and performed in the depth direction near the surface of the absorbent resin particles. It is possible to form a thick crosslinked structure, improve the balance between the [water absorption capacity in ion-exchanged water] of the absorbent resin particles and the water retention amount, and achieve both high gel flow rates. More preferably, in the case where the mixing of the resin particles and the post-crosslinking agent (c) is performed twice or more, it is preferable that the mixing is performed under the condition that the water content of the resin particles is different. In addition, the post-crosslinking agent used in the case of carrying out two or more times may be the same post-crosslinking agent or a different post-crosslinking agent each time.
When the post-crosslinking step is performed two or more times, the water content of the mixture obtained in the first post-crosslinking step is preferably 10% by weight or less. Within this range, the crosslink density near the surface can be increased.
後架橋工程における樹脂粒子と後架橋剤(c)との反応を2回以上行う場合には、少なくとも1回は含水率が22〜90重量%の混合物を反応することが好ましい。樹脂粒子と後架橋剤(c)とを含む混合物の更に好ましい含水率は25〜60重量%、最も好ましくは30〜50重量%である。反応する混合物の含水率が22重量%より低いと、得られる吸収性樹脂粒子の[イオン交換水中での吸水倍率]が小さくならなかったり、ゲル通液維持率が高くならなかったりする場合がある。また、含水率が22重量%以上の混合物で後架橋反応を行うことで、[イオン交換水中での吸水倍率]を低下させ、後述するイオン交換水吸収指数を効果的に低下させることができるので好ましい。一方、含水率が90%重量より大きい場合、反応後水を除去する際の処理時間が長くなるため、経済的でないだけでなく、得られる吸収性樹脂粒子の初期の黄色度が悪化する場合がある。なお、後架橋時における樹脂粒子の含水率は、後架橋前の樹脂粒子の含水率から必要な水の量を算出し、前記混合溶液中の水の量で調整することができる。 When the reaction between the resin particles and the post-crosslinking agent (c) is performed twice or more in the post-crosslinking step, it is preferable to react the mixture having a water content of 22 to 90% by weight at least once. The more preferable water content of the mixture containing the resin particles and the post-crosslinking agent (c) is 25 to 60% by weight, most preferably 30 to 50% by weight. If the water content of the reacting mixture is lower than 22% by weight, the resulting absorbent resin particles may not have a low [water absorption capacity in ion-exchanged water] or a high gel permeation retention rate. . Further, by performing a post-crosslinking reaction with a mixture having a water content of 22% by weight or more, the [water absorption capacity in ion-exchanged water] can be reduced, and the ion exchange water absorption index described later can be effectively reduced. preferable. On the other hand, when the water content is more than 90% by weight, the treatment time for removing water after the reaction becomes longer, which is not only economical, but also sometimes deteriorates the initial yellowness of the resulting absorbent resin particles. is there. In addition, the water content of the resin particles at the time of post-crosslinking can be adjusted by calculating the required amount of water from the water content of the resin particles before the post-crosslinking and by the amount of water in the mixed solution.
後架橋工程における樹脂粒子と後架橋剤(c)とを含む混合物の反応は、密閉下で反応させることが好ましい。密閉下で加熱することで反応中の水の蒸発を防ぎ、反応中の含水率を安定にすることができ、吸水性樹脂粒子に必要な保水量を維持しつつ、[イオン交換水中での吸水倍率]を低下させ、かつ、高いゲル通液速度を安定的に得ることができる。また、混合物の含水率が高い場合は、密閉で加熱することで圧力が上昇するため、耐圧性の容器で反応を行うことが好ましい。 The reaction of the mixture containing the resin particles and the post-crosslinking agent (c) in the post-crosslinking step is preferably performed in a sealed state. Heating in a closed atmosphere prevents evaporation of water during the reaction, stabilizes the water content during the reaction, and maintains [Water absorption in ion-exchanged water while maintaining the water retention required for the water-absorbent resin particles. Magnification] and a high gel flow rate can be stably obtained. In addition, when the water content of the mixture is high, the pressure is increased by heating in a closed state, so that the reaction is preferably performed in a pressure-resistant container.
本発明の吸収性樹脂粒子において、架橋剤(b)及び後架橋剤(c)の含有量の合計割合は架橋重合体(A)の重量に基づいて、好ましくは1.0〜10.0%、更に好ましくは1.8〜7.0%、最も好ましくは2.0〜5.0%である。架橋剤(b)及び後架橋剤(c)の含有量の合計が1.0%未満だと、イオン交換水中の吸水倍率が小さくならない場合がある。架橋剤(b)及び後架橋剤(c)の含有量の合計が10.0%より多いと、70±5℃、相対湿度80±3%の雰囲気下に28日間放置後における黄色度が悪化する場合がある。なお、架橋剤(b)及び後架橋剤(c)の含有量の合計割合を計算する際には、架橋重合体(A)の重量としては、架橋重合体(A)を製造する際に用いたビニルモノマー(a)及び架橋剤(b)の合計重量を用い、架橋剤(b)及び後架橋剤(c)の含有量としては架橋重合体(A)の重合に用いた架橋剤(b)の重量及び後架橋工程で用いた後架橋剤(c)の合計重量をそれぞれ用いる。 In the absorbent resin particles of the present invention, the total content of the crosslinking agent (b) and the post-crosslinking agent (c) is preferably 1.0 to 10.0% based on the weight of the crosslinked polymer (A). , More preferably 1.8 to 7.0%, and most preferably 2.0 to 5.0%. If the total content of the crosslinking agent (b) and the post-crosslinking agent (c) is less than 1.0%, the water absorption capacity in ion-exchanged water may not be reduced. When the total content of the cross-linking agent (b) and the post-cross-linking agent (c) is more than 10.0%, the yellowness deteriorates after standing for 28 days in an atmosphere at 70 ± 5 ° C. and a relative humidity of 80 ± 3%. May be. When calculating the total ratio of the content of the crosslinking agent (b) and the content of the post-crosslinking agent (c), the weight of the crosslinked polymer (A) is used when producing the crosslinked polymer (A). The total weight of the vinyl monomer (a) and the crosslinking agent (b) was used, and the content of the crosslinking agent (b) and the post-crosslinking agent (c) was determined as the content of the crosslinking agent (b) used in the polymerization of the crosslinked polymer (A). ) And the total weight of the post-crosslinking agent (c) used in the post-crosslinking step.
後架橋の後、樹脂粒子中の水等の溶媒を留去又は乾燥し、必要により篩別して粒度調整することで、本発明の吸収性樹脂粒子を得ることができる。粒度調整後に得られた粒子の重量平均粒経は、好ましくは100〜600μm、更に好ましくは200〜500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。 After the post-crosslinking, the absorbent resin particles of the present invention can be obtained by distilling off or drying a solvent such as water in the resin particles and, if necessary, sieving to adjust the particle size. The weight average particle size of the particles obtained after the particle size adjustment is preferably 100 to 600 μm, more preferably 200 to 500 μm. The content of the fine particles is preferably smaller, the content of the particles having a size of 100 μm or less is preferably 3% by weight or less, and the content of the particles having a size of 150 μm or less is more preferably 3% by weight or less.
本発明の吸収性樹脂粒子は、長期保管時の変色の観点から、更にキレート剤(B)を含有することが好ましい。 The absorbent resin particles of the present invention preferably further contain a chelating agent (B) from the viewpoint of discoloration during long-term storage.
キレート剤(B)としては特に限定はなく、カルボキシ(塩)基を分子内に含有するキレート剤(B1)、ホスホン酸(塩)基又はリン酸(塩)基を分子内に含有するキレート剤(B2)及びその他のキレート剤(B3)等が挙げられる。 The chelating agent (B) is not particularly limited, and includes a chelating agent (B1) containing a carboxy (salt) group in the molecule, a chelating agent containing a phosphonic acid (salt) group or a phosphoric acid (salt) group in the molecule. (B2) and other chelating agents (B3).
カルボキシ(塩)基を分子内に含有するキレート剤(B1)としては、水酸基を有するヒドロキシカルボン酸及び/又はその塩(B11)と水酸基を有しないカルボン酸及び/又はその塩(B12)がある。水酸基を有するヒドロキシカルボン酸及び/又はその塩(B11)としては、クエン酸(塩)、乳酸(塩)、没食子酸(塩)及び酒石酸(塩)等が挙げられる。水酸基を有しないカルボン酸及び/又はその塩(B12)としては、エチレンジアミンテトラ酢酸(塩)、ジエチレントリアミンペンタ酢酸(塩)、ヒドロキシエチル−イミノ二酢酸(塩)、1,2−ジアミノシクロヘキサンテトラ酢酸(塩)、トリエチレンテトラミンヘキサ酢酸(塩)、ニトリロ三酢酸(塩)、β−アラニンジ酢酸(塩)、アスパラギン酸ジ酢酸(塩)、メチルグリシンジ酢酸(塩)、イミノジコハク酸(塩)、セリンジ酢酸(塩)、アスパラギン酸(塩)及びグルタミン酸(塩)、ピロメリット酸(塩)、ベンゾポリカルボン酸(塩)、シクロペンタンテトラカルボン酸(塩)等、カルボキシメチルオキシサクシネート、オキシジサクシネート、マレイン酸誘導体、シュウ酸(塩)、マロン酸(塩)、コハク酸(塩)、グルタル酸(塩)及びアジピン酸(塩)等が挙げられる。 Examples of the chelating agent (B1) containing a carboxy (salt) group in a molecule include a hydroxycarboxylic acid having a hydroxyl group and / or a salt thereof (B11) and a carboxylic acid having no hydroxyl group and / or a salt thereof (B12). . Examples of the hydroxycarboxylic acid having a hydroxyl group and / or a salt thereof (B11) include citric acid (salt), lactic acid (salt), gallic acid (salt), and tartaric acid (salt). Examples of the carboxylic acid having no hydroxyl group and / or its salt (B12) include ethylenediaminetetraacetic acid (salt), diethylenetriaminepentaacetic acid (salt), hydroxyethyl-iminodiacetic acid (salt), and 1,2-diaminocyclohexanetetraacetic acid ( Salt), triethylenetetramine hexaacetic acid (salt), nitrilotriacetic acid (salt), β-alanine diacetate (salt), aspartic acid diacetate (salt), methylglycine diacetic acid (salt), iminodisuccinic acid (salt), serine Acetic acid (salt), aspartic acid (salt) and glutamic acid (salt), pyromellitic acid (salt), benzopolycarboxylic acid (salt), cyclopentanetetracarboxylic acid (salt), etc., carboxymethyloxysuccinate, oxydisuccinate Nate, maleic acid derivative, oxalic acid (salt), malonic acid (salt), succinic acid (salt), Etc. Rutaru acid (salt) and adipic acid (salts).
ホスホン酸(塩)基又はリン酸(塩)基を分子内に含有するキレート剤(B2)としては、メチルジホスホン酸(塩)、アミノトリ(メチレンホスホン酸)(塩)、1−ヒドロキシエチリデン−1、1−ジホスホン酸(塩)、ニトリロトリスメチレンホスホン酸(塩)、エチレンジアミンテトラ(メチレンホスホン酸)(塩)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)(塩)、プロピレンジアミンテトラ(メチレンホスホン酸)(塩)、ジエチレントリアミンペンタ(メチレンホスホン酸)(塩)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)(塩)、トリアミノトリエチルアミンヘキサ(メチレンホスホン酸)(塩)、トランス−1、2−シクロヘキサンジアミンテトラ(メチレンホスホン酸)(塩)、グリコールエーテルジアミンテトラ(メチレンホスホン酸)(塩)及びテトラエチレンペンタミンヘプタ(メチレンホスホン酸)(塩)、メタリン酸(塩)、ピロリン酸(塩)、トリポリリン酸(塩)及びヘキサメタリン酸(塩)等が挙げられる。 Examples of the chelating agent (B2) containing a phosphonic acid (salt) group or a phosphoric acid (salt) group in a molecule include methyldiphosphonic acid (salt), aminotri (methylenephosphonic acid) (salt), 1-hydroxyethylidene- 1,1-diphosphonic acid (salt), nitrilotrismethylene phosphonic acid (salt), ethylenediaminetetra (methylenephosphonic acid) (salt), hexamethylenediaminetetra (methylenephosphonic acid) (salt), propylenediaminetetra (methylenephosphonic acid) ) (Salt), diethylenetriaminepenta (methylenephosphonic acid) (salt), triethylenetetraminehexa (methylenephosphonic acid) (salt), triaminotriethylaminehexa (methylenephosphonic acid) (salt), trans-1,2-cyclohexanediamine Tetra (methylene phosphonic acid) (salt), glyco Ether diamine tetra (methylene phosphonic acid) (salt) and tetraethylenepentamine hepta (methylene phosphonic acid) (salt), metaphosphoric acid (salt), pyrophosphoric acid (salt), tripolyphosphoric acid (salt), hexametaphosphoric acid (salt), etc. Is mentioned.
また、これらの塩の内、長期保管時の変色の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。 Among these salts, alkali metal salts and ammonium salts are preferred from the viewpoint of discoloration during long-term storage, more preferred are alkali metal salts, and particularly preferred are sodium salts.
その他のキレート剤(B3)としては、N,N’−ビス(サリチリデン)−1,2−エタンジアミン、N,N’−ビス(サリチリデン)−1,2−プロパンジアミン、N,N’−ビス(サリチリデン)−1,3−プロパンジアミン及びN,N’−ビス(サリチリデン)−1,4−ブタンジアミン等が挙げられる。 Other chelating agents (B3) include N, N'-bis (salicylidene) -1,2-ethanediamine, N, N'-bis (salicylidene) -1,2-propanediamine, N, N'-bis (Salicylidene) -1,3-propanediamine and N, N′-bis (salicylidene) -1,4-butanediamine.
キレート剤(B)の内、長期保管時の変色の観点から、好ましくはカルボキシ(塩)基を分子内に含有するキレート剤(B1)、更に好ましくは水酸基を有するヒドロキシカルボン酸及び/又はその塩(B11)、最も好ましくはクエン酸(塩)である。キレート剤は1種を単独で用いても、2種以上を併用して用いてもよい。 Among the chelating agents (B), from the viewpoint of discoloration during long-term storage, preferably a chelating agent (B1) containing a carboxy (salt) group in the molecule, more preferably a hydroxycarboxylic acid having a hydroxyl group and / or a salt thereof. (B11), most preferably citric acid (salt). One chelating agent may be used alone, or two or more chelating agents may be used in combination.
キレート剤(B)を添加する方法としては、例えば、キレート剤(B)の水溶液を樹脂粒子と混合する方法が挙げられる。樹脂粒子と水溶液を混合する方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて、均一混合する方法が挙げられる。また、キレート剤(B)添加の均一性の観点から、キレート剤(B)は、水で希釈した水溶液を使用することが好ましく、流動式加湿混合造粒装置[フレキソミックス(ホソカワミクロン社製)及びシュギフレキソミックス((株)パウレック製)等]に噴霧装置を取り付けた混合装置等で噴霧する方法や、上記混合溶液に樹脂粒子をディッピングする方法等が挙げられる。
キレート剤(B)単位の含有量は架橋重合体(A)の重量に基づいて、0.1〜10重量%が好ましく、更に好ましくは1〜7重量%、特に好ましくは1.5〜5重量%である。この範囲であると、吸収性能を悪化させずに長期保管における変色が抑制される。
Examples of the method of adding the chelating agent (B) include a method of mixing an aqueous solution of the chelating agent (B) with the resin particles. As a method of mixing the resin particles and the aqueous solution, a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer, a Nauter mixer, a double arm kneader, a flow mixer, a V mixer, A uniform mixing method using a mixing device such as a mince mixer, a ribbon mixer, an airflow mixer, a rotating disk mixer, a conical blender, and a roll mixer can be used. From the viewpoint of uniformity of addition of the chelating agent (B), it is preferable to use an aqueous solution diluted with water as the chelating agent (B), and a fluid-type humidifying and mixing granulator [Flexomics (manufactured by Hosokawa Micron Corporation) and And the like, and a method of dipping resin particles into the above-mentioned mixed solution.
The content of the chelating agent (B) unit is preferably from 0.1 to 10% by weight, more preferably from 1 to 7% by weight, particularly preferably from 1.5 to 5% by weight, based on the weight of the crosslinked polymer (A). %. Within this range, discoloration during long-term storage is suppressed without deteriorating the absorption performance.
本発明の吸収性樹脂粒子は、必要に応じて、添加剤(例えば、特開2003−225565号及び特開2006−131767号等に記載の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤、通液性向上剤及び有機質繊維状物等)を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量は、架橋重合体(A)の重量に基づいて、0.001〜10重量%が好ましく、更に好ましくは0.01〜5重量%、特に好ましくは0.05〜1重量%、最も好ましくは0.1〜0.5重量%である。 The absorbent resin particles of the present invention may optionally contain additives (for example, preservatives, fungicides, antibacterial agents, antioxidants, and antioxidants described in JP-A-2003-225565 and JP-A-2006-131767). UV absorbers, colorants, fragrances, deodorants, liquid permeability improvers, organic fibrous substances, etc.). When these additives are contained, the content of the additives is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, particularly preferably 0.01 to 5% by weight, based on the weight of the crosslinked polymer (A). Preferably it is 0.05-1% by weight, most preferably 0.1-0.5% by weight.
本発明の吸収性樹脂粒子は、イオン交換水中に浸漬した吸収性樹脂粒子が単位重量あたりに吸水するイオン交換水の重量[イオン交換水中での吸水倍率]が10〜120(g/g)であり、生理食塩水中に30分間浸漬して膨潤させた後に加重をかけて圧縮した吸収性樹脂粒子を生理食塩水が通過するときの速度[吸収性樹脂粒子のゲル通液速度]が350(ml/分)以上である吸収性樹脂粒子である。 The absorbent resin particles of the present invention have a weight [absorption capacity in ion-exchanged water] of 10 to 120 (g / g) in which the absorbent resin particles immersed in ion-exchanged water absorb water per unit weight. The speed at which the physiological saline solution passes through the absorbent resin particles compressed by applying weight after being swelled by immersion in physiological saline for 30 minutes is 350 (ml). / Min) or more.
前記の[イオン交換水中での吸水倍率]は、10〜120(g/g)であり、40〜110(g/g)が好ましく、45〜70(g/g)が更に好ましい。[イオン交換水中での吸水倍率]が10未満となると使い捨て水着に使用した際に漏れが発生するおそれがある。イオン交換水中での吸収倍率が120より大きくなると使い捨て水着に使用し水中に入った際に吸収性樹脂粒子が大きく膨潤し、股間部が垂れ下がったり、ずれ落ちたりすることにより見栄えや装着感が悪くなる場合がある。
吸収性樹脂粒子の[イオン交換水中での吸水倍率]を上記範囲にするためには、前記の製造方法において、後架橋工程の少なくとも1回における樹脂粒子の含水率を22〜90重量%にし、架橋剤(b)及び後架橋剤(c)の含有量の合計を架橋重合体(A)の重量に基づいて1.0〜10.0%にすることが好ましい。
The [water absorption capacity in ion-exchanged water] is 10 to 120 (g / g), preferably 40 to 110 (g / g), and more preferably 45 to 70 (g / g). If the [water absorption capacity in ion-exchanged water] is less than 10, leakage may occur when used in disposable swimwear. If the absorption capacity in ion-exchanged water is larger than 120, the absorbent resin particles used in disposable swimwear will swell greatly when they enter the water, and the crotch will sag or slip off, resulting in poor appearance and feeling of wearing. May be.
In order to set the [absorbency against deionized water] of the absorbent resin particles in the above range, in the above-mentioned production method, the water content of the resin particles in at least one of the post-crosslinking steps is set to 22 to 90% by weight, It is preferable that the total content of the crosslinking agent (b) and the post-crosslinking agent (c) be 1.0 to 10.0% based on the weight of the crosslinked polymer (A).
なお、[イオン交換水中での吸水倍率]は、以下の条件で測定する。
目開き63μm(JIS Z8801−1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料0.50gを入れ、イオン交換水(電気伝導度5μS/cm以下)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りし、ティーバックを含めた重量(w1(g))を測定し次式から保水量を求める。(w2(g))は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。使用するイオン交換水及び測定雰囲気の温度は25℃±2℃である。なお、上記袋の重量w1が100(g)を超える場合には上記ティーバッグに投入する測定試料の投入量を0.50g以下になるよう適宜調整する。
[イオン交換水中での吸水倍率](g/g)=((w1)−(w2))/測定試料の重量
The [water absorption capacity in ion-exchanged water] is measured under the following conditions.
0.50 g of a measurement sample is placed in a tea bag (length 20 cm,
[Water absorption capacity in ion-exchanged water] (g / g) = ((w1)-(w2)) / weight of measurement sample
生理食塩水中に30分間浸漬して膨潤させた後に加重をかけて圧縮した吸収性樹脂粒子を生理食塩水が通過するときの速度[吸収性樹脂粒子のゲル通液速度]は、350(ml/分)以上であり、350〜2000(ml/分)が好ましく、350〜1500(ml/分)が更に好ましく、350〜1000(ml/分)が特に好ましい。ゲル通液速度が350未満の場合、使い捨て水着に使用した場合に漏れが発生するおそれがある。
吸収性樹脂粒子のゲル通液速度を上記範囲にするためには、架橋剤(b)単位の含有量を、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位、その他のビニルモノマー(a3)単位も用いる場合は(a1)〜(a3)単位の合計モル数に基づいて0.001〜5モル%にし、前記架橋重合体(A)を含有する樹脂粒子を適量の後架橋剤(c)で架橋することが好ましい。
The speed at which the physiological saline solution passes through the absorbent resin particles that have been swelled by immersion in physiological saline for 30 minutes and then weighted and compressed (the gel flow rate of the absorbent resin particles) is 350 (ml / Min) or more, preferably 350 to 2000 (ml / min), more preferably 350 to 1500 (ml / min), and particularly preferably 350 to 1000 (ml / min). If the gel flow rate is less than 350, leakage may occur when used in disposable swimwear.
In order for the gel flow rate of the absorbent resin particles to be in the above range, the content of the crosslinking agent (b) unit is adjusted so that the water-soluble vinyl monomer (a1) unit, the hydrolyzable vinyl monomer (a2) unit, When a vinyl monomer (a3) unit is also used, the amount is adjusted to 0.001 to 5 mol% based on the total number of moles of the (a1) to (a3) units, and a suitable amount of the resin particles containing the crosslinked polymer (A) is added. It is preferable to crosslink with a crosslinking agent (c).
[吸収性樹脂粒子のゲル通液速度]は、図1及び図2で示される器具を用いて以下の操作により測定する。
測定試料0.32gを150ml生理食塩水1(食塩濃度0.9%)に30分間浸漬して膨潤ゲル粒子2を調製する。そして、垂直に立てた円筒3{直径(内径)25.4mm、長さ40cm、底部から60mlの位置及び40mlの位置にそれぞれ目盛り線4及び目盛り線5が設けてある。}の底部に、金網6(目開き106μm、JIS Z8801−1:2006)と、開閉自在のコック7(通液部の内径5mm)とを有する濾過円筒管内に、コック7を閉鎖した状態で、調製した膨潤ゲル粒子2を生理食塩水と共に移した後、この膨潤ゲル粒子2の上に、金網面に対して垂直に結合する加圧軸9を有する円形金網8(目開き150μm、直径25mm)を金網と膨潤ゲル粒子とが接触するように載せ、更に加圧軸9(重さ22g、長さ47cm)におもり10(88.5g)を載せ、1分間静置した。引き続き、コック7を開き、濾過円筒管内の液面が60ml目盛り線4から40ml目盛り線5になるのに要する時間(T1;秒)を計測し、次式よりゲル通液速度(ml/分)を求める。
ゲル通液速度(ml/分)=20ml×60/(T1−T2)
なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃で行い、T2は測定試料の無い場合について上記と同様の操作により計測した時間である。
[Gel-flow rate of absorbent resin particles] is measured by the following operation using the instrument shown in FIGS. 1 and 2.
0.32 g of the measurement sample is immersed in 150 ml of physiological saline 1 (0.9% salt concentration) for 30 minutes to prepare
Gel flow rate (ml / min) = 20 ml × 60 / (T1-T2)
The temperature of the physiological saline used and the measurement atmosphere was 25 ° C. ± 2 ° C., and T2 is the time measured by the same operation as described above when there was no measurement sample.
生理食塩水中に浸漬した1.00gの本発明の吸収性樹脂粒子が吸水する生理食塩水の重量[吸収性樹脂粒子の生理食塩水に対する保水量]は、好ましくは10〜20(g/g)であり、12〜18(g/g)が更に好ましく、14〜16(g/g)が最も好ましい。保水量が10未満となると使い捨て水着に使用した際に尿を十分に吸収できなくなる場合がある。保水量が20より大きいと尿の吸収量は十分ではあるが水の吸収量も増加するため、使い捨て水着に使用し水中に入った際に吸収性樹脂粒子が大きく膨潤し、股間部が垂れ下がったり、ずれ落ちたりすることにより見栄えや装着感が悪くなる場合がある。
吸収性樹脂粒子の生理食塩水に対する保水量を上記範囲にするためには、適切な水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)を選択する、架橋剤(b)単位の含有量を水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位、その他のビニルモノマー(a3)単位も用いる場合は(a1)〜(a3)単位の合計モル数に基づいて0.001〜5モル%にする及び単量体組成物の重合することが好ましい。
The weight of the physiological saline absorbed by the absorbent resin particles of 1.00 g of the present invention immersed in the physiological saline (the water retention amount of the absorbent resin particles with respect to the physiological saline) is preferably 10 to 20 (g / g). And more preferably 12 to 18 (g / g), and most preferably 14 to 16 (g / g). When the water retention is less than 10, urine may not be sufficiently absorbed when used in a disposable swimsuit. If the amount of water retention is greater than 20, the amount of urine absorbed is sufficient, but the amount of water absorbed also increases, so when used in disposable swimwear and enters the water, the absorbent resin particles swell greatly, and the crotch may hang down In some cases, the appearance and the feeling of wearing may be deteriorated due to slipping and falling.
In order to maintain the water retention of the absorbent resin particles in physiological saline within the above range, an appropriate water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis are used. When the content of the crosslinking agent (b) unit to be selected is selected from (a1) to (a3) when a water-soluble vinyl monomer (a1) unit, a hydrolyzable vinyl monomer (a2) unit, and other vinyl monomer (a3) units are also used. ) It is preferred to make 0.001 to 5 mol% based on the total number of moles of the unit and to polymerize the monomer composition.
なお、吸収性樹脂粒子の生理食塩水に対する保水量は、以下の条件で測定する。
目開き63μm(JIS Z8801−1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9%)1,000ml中に無撹拌下、1時間浸漬した後引き上げて、15分間吊るして水切りする。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求める。(h2)は、測定試料の無い場合について上記と同様の操作により計測したティーバックの重量である。使用する生理食塩水及び測定雰囲気の温度は25℃±2℃である。
保水量(g/g)=(h1)−(h2)
The water retention of the absorbent resin particles in physiological saline is measured under the following conditions.
1.00 g of a measurement sample is placed in a tea bag (length 20 cm,
Water retention (g / g) = (h1)-(h2)
本発明の吸収性樹脂粒子におけるイオン交換水吸収指数は、前記の[イオン交換水中での吸水倍率]と前記の吸収性樹脂粒子の生理食塩水に対する保水量とを用いて下記(式3)で定義される指数であり、吸収性樹脂粒子の[イオン交換水中での吸水倍率]と吸収性樹脂粒子の生理食塩水に対する保水量の比で表される。従って、イオン交換水吸収指数が小さいほど、吸収性樹脂粒子の生理食塩水の保水量に対する[イオン交換水中での吸水倍率]が小さいことを意味する。
(イオン交換水吸収指数)=(吸収性樹脂粒子の[イオン交換水中での吸水倍率])/(吸収性樹脂粒子の生理食塩水に対する保水量) ・・・(式3)
The absorption index of ion-exchanged water in the absorbent resin particles of the present invention is represented by the following (Equation 3) using the above-mentioned [water absorption capacity in ion-exchanged water] and the water retention of the absorbent resin particles in physiological saline. It is an index defined and is expressed by the ratio of the water absorption capacity of absorbent resin particles in ion-exchanged water to the water retention of the absorbent resin particles with respect to physiological saline. Therefore, the smaller the ion-exchanged water absorption index, the smaller the [absorption ratio in ion-exchanged water] with respect to the amount of the absorbent resin particles held in physiological saline.
(Ion-exchanged water absorption index) = ([Water absorption capacity of absorbent resin particles in ion-exchanged water]) / (water retention amount of absorbent resin particles in physiological saline) (Equation 3)
前記のイオン交換水吸収指数は、1.0〜6.0が好ましく、1.5〜5.5が更に好ましく、2.0〜5.0が最も好ましい。イオン交換水吸収指数が1.0未満となると使い捨て水着に使用した際に、尿を吸いきれず漏れが発生する恐れがある。イオン交換水吸収指数が6.0より大きくなると使い捨て水着に使用し水中に入った際に吸収性樹脂粒子が大きく膨潤し、股間部が垂れ下がったり、ずれ落ちたりすることにより見栄えや装着感が悪くなる場合がある。 The ion exchange water absorption index is preferably from 1.0 to 6.0, more preferably from 1.5 to 5.5, and most preferably from 2.0 to 5.0. If the ion-exchange water absorption index is less than 1.0, when used in a disposable swimsuit, it may not be able to absorb urine and may leak. When the ion-exchange water absorption index is larger than 6.0, the absorbent resin particles used in disposable swimwear greatly swell when entering the water, and the crotch hangs down or slips off, resulting in poor appearance and feeling of wearing. May be.
本発明の吸収性樹脂粒子としては、70±5℃、相対湿度80±3%の雰囲気下に28日間放置した後に測定される黄色度(YI値)が20以下である吸収性樹脂粒子が好ましく、前記条件で測定される黄色度が18以下の吸収性樹脂粒子が更に好ましく、15以下の吸収性樹脂粒子が最も好ましい。前記条件で測定される黄色度が20より大きい吸収性樹脂粒子であると、長期保管後に使い捨て水着を使用する際に、使い捨て水着内部で変色した吸収性樹脂粒子が外側から目立って見えてしまう場合がある。 As the absorptive resin particles of the present invention, absorptive resin particles having a yellowness (YI value) of 20 or less measured after being left in an atmosphere of 70 ± 5 ° C. and a relative humidity of 80 ± 3% for 28 days are preferable. Absorbent resin particles having a yellowness of 18 or less, as measured under the above conditions, are more preferred, and absorbent resin particles of 15 or less are most preferred. When the yellowness measured under the above conditions is the absorbent resin particles larger than 20, when the disposable swimwear is used after long-term storage, the discolored absorbent resin particles inside the disposable swimwear may be conspicuously seen from the outside. There is.
なお、黄色度は、吸収性樹脂粒子を用いてJIS K7373 プラスチック−黄色度及び黄変度の求め方に記載の方法に従って測定する。
黄色度は、吸収性樹脂の初期着色(製造直後の着色)及び長期保存又は応用製品中での着色の進行しやすさを評価でき、相対湿度80±3%の雰囲気下に28日間放置した後に測定される黄色度は、簡易型分光色差計(日本電色工業株式会社製本体NF333、センサー部ND120内径φ8mm)を用いて着色促進試験(70±5℃、相対湿度80±3%の雰囲気下に28日間放置)を行った後の黄色度を測定することにより評価する。黄色度は、その値が小さいほど、着色が抑制されていることを示す。
なお、着色促進試験(70±5℃、相対湿度80±3%の雰囲気下に28日間放置)の手順は以下の通りである。
内径90mmのガラスシャーレに10gの吸収性樹脂を入れ、表面が平坦になるように均一に均する。これを70±5℃、80±3%R.H.の恒温恒湿機内に28日間保存する。その後、恒温恒湿機内からシャーレを取り出して室温に戻した後、着色促進試験後の黄色度を測定する。
The degree of yellowness is measured by using the absorbent resin particles according to the method described in JIS K7373 Plastic-Determination of Yellowness and Yellowing Degree.
The degree of yellowness can be evaluated for the initial coloring (coloring immediately after production) of the absorbent resin and the ease with which coloring proceeds in a long-term storage or applied product, and after leaving for 28 days in an atmosphere at a relative humidity of 80 ± 3%. The measured yellowness is measured under a color acceleration test (70 ± 5 ° C., relative humidity 80 ± 3%) using a simple spectral colorimeter (Nippon Denshoku Industries Co., Ltd., NF333, sensor part ND120 inner diameter φ8 mm). , For 28 days) to measure the yellowness. Yellowness indicates that the smaller the value is, the more the coloring is suppressed.
The procedure of the coloring promotion test (left in an atmosphere of 70 ± 5 ° C. and relative humidity of 80 ± 3% for 28 days) is as follows.
10 g of an absorbent resin is placed in a glass Petri dish with an inner diameter of 90 mm, and the surface is evenly leveled. This was taken at 70 ± 5 ° C., 80 ± 3% R.F. H. For 28 days in a thermo-hygrostat. Thereafter, the petri dish is taken out from the thermo-hygrostat and returned to room temperature, and then the yellowness after the coloring acceleration test is measured.
本発明の吸収性樹脂粒子の通液維持率(%)は下記(式4)で定義され、吸収性樹脂粒子のゲル通液速度は壊れ性試験前の吸収性樹脂粒子のゲル通液速度と同義であるから、通液維持率は、後述する壊れ性試験前後の吸収性樹脂粒子のゲル通液速度の比を意味する。従って、通液維持率が高いほどゲル通液速度に関して壊れに強い吸収性樹脂粒子であることを意味する。
(通液維持率)=100×(壊れ性試験後の[吸収性樹脂粒子のゲル通液速度])/(壊れ性試験前の[吸収性樹脂粒子のゲル通液速度]) ・・・(式4)
The liquid retention rate (%) of the absorbent resin particles of the present invention is defined by the following (Equation 4), and the gel liquid penetration rate of the absorbent resin particles is the same as the gel liquid penetration rate of the absorbent resin particles before the fragility test. Since they have the same meaning, the liquid-passing retention ratio means the ratio of the gel-flowing speed of the absorbent resin particles before and after the breakability test described later. Therefore, the higher the liquid permeation retention rate, the more absorptive resin particles are resistant to breakage with respect to the gel liquid permeation speed.
(Liquid penetration rate) = 100 × ([Gel penetration rate of absorbent resin particles after fragility test] / ([Gel penetration rate of absorbent resin particles before fragility test]) ・ ・ ・ ( Equation 4)
本発明の吸収性樹脂粒子の通液維持率は70%以上が好ましく、80%以上が更に好ましく、90%以上が最も好ましい。通液維持率が70%未満となると使い捨て水着に使用した際に漏れが発生する場合がある。通液維持率を向上させるには、物理的衝撃に対する吸水性樹脂粒子の耐久性を上げる必要があり、前述した後架橋工程を実施することが好ましい。すなわち、本発明の後架橋工程を実施することで、従来のシリカ等の無機化合物や硫酸アルミニウム等の多価金属塩などの表面処理剤によるゲル通液速度向上技術と比較して、高いゲル通液速度を発揮できるだけでなく、吸水性樹脂粒子に耐久性を付与し、通液維持率も向上させることができる。
吸収性樹脂粒子の通液維持率を上記範囲にするためには後架橋工程での樹脂粒子の含水率が22〜90重量%である必要がある。樹脂粒子内部まで架橋剤が浸透することで、樹脂粒子全体に均一に架橋構造を有するため、粒子表面が壊れても内部の新しい架橋表面が現れることで、ゲル通液維持率を保つことができる。
The liquid retention rate of the absorbent resin particles of the present invention is preferably 70% or more, more preferably 80% or more, and most preferably 90% or more. If the liquid permeation retention rate is less than 70%, leakage may occur when used for disposable swimwear. In order to improve the liquid retention rate, it is necessary to increase the durability of the water-absorbent resin particles against physical impact, and it is preferable to perform the above-described post-crosslinking step. That is, by performing the post-crosslinking step of the present invention, a higher gel flow rate can be achieved as compared with a conventional gel flow rate improving technique using a surface treatment agent such as an inorganic compound such as silica or a polyvalent metal salt such as aluminum sulfate. Not only can the liquid velocity be exhibited, but also durability can be imparted to the water-absorbing resin particles, and the liquid retention rate can be improved.
In order to maintain the liquid retention rate of the absorbent resin particles in the above range, the water content of the resin particles in the post-crosslinking step needs to be 22 to 90% by weight. Since the cross-linking agent penetrates into the resin particles and has a uniform cross-linking structure throughout the resin particles, even if the particle surface is broken, a new cross-linking surface appears inside, so that the gel flow retention rate can be maintained. .
なお、壊れ性試験前の[吸収性樹脂粒子のゲル通液速度]は前記の[吸収性樹脂粒子のゲル通液速度]と同様の条件で測定した値を用いる。壊れ性試験後の[吸収性樹脂粒子のゲル通液速度]は、壊れ性試験を行った後の吸収性樹脂粒子を用いる以外は前記の[吸収性樹脂粒子のゲル通液速度]と同様の条件で測定する。 In addition, the value measured under the same conditions as the above-mentioned [gel flow rate of the absorbent resin particles] is used as the [gel flow rate of the absorbent resin particles] before the breakability test. The [gel flow rate of the absorbent resin particles] after the breakability test is the same as the above [gel flow rate of the absorbent resin particles] except that the absorbent resin particles after the breakability test are used. Measure under conditions.
なお、壊れ性試験後の[吸収性樹脂粒子のゲル通液速度]は、以下の条件で測定する。
3L丸形セパラブルフラスコ(ASONE製)に吸収性樹脂粒子30gを投入し、前記セパラブルフラスコの上部に、中心部に6mmの穴を開けた目開き63μmのナイロン網(JIS Z8801−1:2000)を敷き、さらにその上に4つ口セパラブルカバー(ASONE製 主管TS29/42、側管TS24/40、24/40、15/35)をセットする。次に3L丸形セパラブルフラスコ用の4つ口セパラブルカバーの主管TS29/42からステンレス製(外径6mm、内径4mm)管を入れ、ステンレス製管がナイロン網を貫通し、かつ先端が前記セパラブルフラスコの底面から45mmの位置となるようセットする。ステンレス製管のもう一方にはウレタンチューブ(長さ1500mm、内径8.5mm)を装着し0.3MPa以上の圧力が達成できるエアーラインに接続し、圧力0.2MPaにてエアーラインを開け、3分間エアーブローして壊れ性試験を行い、その後に吸収性樹脂粒子を取り出して、前記の[吸収性樹脂粒子のゲル通液速度]と同様の条件で圧縮後の吸収性樹脂粒子を生理食塩水が通過するときの速度を測定する。
In addition, the [gel flow rate of the absorbent resin particles] after the breakability test is measured under the following conditions.
30 g of absorptive resin particles are charged into a 3 L round separable flask (made by ASONE), and a nylon mesh having a mesh size of 63 μm (JIS Z8801-1: 2000) having a 6 mm hole at the center is formed on the upper part of the separable flask. ), And a four-port separable cover (main tube TS29 / 42, side tubes TS24 / 40, 24/40, 15/35 made by ASONE) is set thereon. Next, a stainless steel (outer diameter 6 mm, inner diameter 4 mm) tube was inserted from the main tube TS29 / 42 of the four-port separable cover for a 3 L round separable flask, and the stainless steel tube penetrated the nylon mesh and the tip was the same as above. Set so as to be 45 mm from the bottom of the separable flask. A urethane tube (length: 1500 mm, inner diameter: 8.5 mm) is attached to the other end of the stainless steel tube, connected to an air line capable of achieving a pressure of 0.3 MPa or more, and an air line is opened at a pressure of 0.2 MPa. After performing a break test by air blowing for one minute, the absorbent resin particles are taken out, and then the absorbent resin particles after compression are subjected to a physiological saline solution under the same conditions as in the above [gel flow rate of the absorbent resin particles]. Measure the speed at which it passes.
本発明の吸収性樹脂粒子の見掛け密度は、0.54〜0.70g/mlが好ましく、更に好ましくは0.56〜0.65g/ml、特に好ましくは0.58〜0.60g/mlである。この範囲であると、吸収性物品の耐カブレ性が更に良好となる。なお、吸収性樹脂粒子の見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。 The apparent density of the absorbent resin particles of the present invention is preferably 0.54 to 0.70 g / ml, more preferably 0.56 to 0.65 g / ml, and particularly preferably 0.58 to 0.60 g / ml. is there. Within this range, the antifogging property of the absorbent article is further improved. The apparent density of the absorbent resin particles is measured at 25 ° C. according to JIS K7365: 1999.
本発明の吸収性樹脂粒子の形状は、特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらの内、使い捨て水着用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the absorbent resin particles of the present invention is not particularly limited, and examples thereof include irregular crushed shapes, scaly shapes, pearl shapes, and rice grain shapes. Of these, the irregularly crushed shape is preferred from the viewpoint of good entanglement with the fibrous material in disposable swimwear applications and the like, and there is no fear of falling off from the fibrous material.
本発明の吸収性樹脂粒子の重量平均粒子径は、100〜800μmが好ましく、更に好ましくは200〜700μm、次に好ましくは250〜600μm、特に好ましくは300〜500μm、最も好ましくは350〜450μmである。この範囲であると、吸収性能が更に良好となる。 The weight average particle diameter of the absorbent resin particles of the present invention is preferably 100 to 800 μm, more preferably 200 to 700 μm, then preferably 250 to 600 μm, particularly preferably 300 to 500 μm, and most preferably 350 to 450 μm. . Within this range, the absorption performance is further improved.
また、樹脂粒子に含まれる微粉の含有量は少ないほど吸収性能が良好となるため、樹脂粒子の合計重量に占める106μm以下(好ましくは150μm以下)の粒子の含有率は3重量%以下が好ましく、更に好ましくは1重量%以下である。微粉の含有率は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。 Also, the smaller the content of the fine powder contained in the resin particles, the better the absorption performance becomes. Therefore, the content of particles of 106 μm or less (preferably 150 μm or less) in the total weight of the resin particles is preferably 3% by weight or less, More preferably, it is at most 1% by weight. The content of the fine powder can be determined using a graph created when the above-mentioned weight average particle diameter is determined.
本発明の吸収体は、本発明の吸収性樹脂粒子を含有する。吸収体としては、吸収性樹脂粒子を単独で用いても良く、他の材料と共に用いて吸収体としても良い。他の材料としては繊維状物等が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、特開2003−225565号公報、特開2006−131767号公報及び特開2005−097569号公報等と同様である。 The absorber of the present invention contains the absorbent resin particles of the present invention. As the absorber, the absorbent resin particles may be used alone, or may be used together with other materials to form the absorber. Other materials include fibrous materials. The structure and manufacturing method of the absorber when used together with the fibrous material are the same as those in JP-A-2003-225565, JP-A-2006-131767, JP-A-2005-097569, and the like.
上記繊維状物として好ましいのは、セルロース系繊維、有機系合成繊維及びセルロース系繊維と有機系合成繊維との混合物である。 Preferred as the fibrous material are cellulosic fibers, organic synthetic fibers, and mixtures of cellulosic fibers and organic synthetic fibers.
セルロース系繊維としては、例えばフラッフパルプ等の天然繊維、ビスコースレーヨン、アセテート及びキュプラ等のセルロース系化学繊維が挙げられる。このセルロース系天然繊維の原料(針葉樹及び広葉樹等)、製造方法(ケミカルパルプ、セミケミカルパルプ、メカニカルパルプ及びCTMP等)及び漂白方法等は特に限定されない。 Examples of the cellulosic fibers include natural fibers such as fluff pulp and cellulosic chemical fibers such as viscose rayon, acetate and cupra. The raw material (coniferous tree, hardwood, etc.), production method (chemical pulp, semi-chemical pulp, mechanical pulp, CTMP, etc.) and bleaching method of the cellulosic natural fiber are not particularly limited.
有機系合成繊維としては、例えばポリプロピレン系繊維、ポリエチレン系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、ポリエステル系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維及び熱融着性複合繊維(融点の異なる上記繊維の少なくとも2種を鞘芯型、偏芯型、並列型等に複合化された繊維、上記繊維の少なくとも2種をブレンドした繊維及び上記繊維の表層を改質した繊維等)が挙げられる。 Examples of the organic synthetic fibers include polypropylene fibers, polyethylene fibers, polyamide fibers, polyacrylonitrile fibers, polyester fibers, polyvinyl alcohol fibers, polyurethane fibers, and heat-fusible composite fibers (the above fibers having different melting points). , A fiber obtained by blending at least two of the above-mentioned fibers into a sheath-core type, an eccentric type, a side-by-side type, a fiber obtained by blending at least two types of the above-mentioned fibers, and a fiber obtained by modifying the surface layer of the above-mentioned fibers.
これらの繊維状基材の内で好ましいのは、セルロース系天然繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維、熱融着性複合繊維及びこれらの混合繊維であり、更に好ましいのは、得られた吸水剤の吸水後の形状保持性に優れるという点で、フラッフパルプ、熱融着性複合繊維及びこれらの混合繊維である。 Among these fibrous base materials, preferred are cellulose-based natural fibers, polypropylene-based fibers, polyethylene-based fibers, polyester-based fibers, heat-fusible conjugate fibers and mixed fibers thereof. The fluff pulp, the heat-fusible conjugate fiber, and the mixed fiber thereof in that the obtained water-absorbing agent has excellent shape retention after water absorption.
上記繊維状物の長さ、太さについては特に限定されず、長さは1〜200mm、太さは0.1〜100デニールの範囲であれば好適に使用することができる。形状についても繊維状であれば特に限定されず、細い円筒状、スプリットヤーン状、ステープル状、フィラメント状及びウェブ状等が例示される。 The length and thickness of the fibrous material are not particularly limited, and may be suitably used as long as the length is in the range of 1 to 200 mm and the thickness is in the range of 0.1 to 100 denier. The shape is not particularly limited as long as it is fibrous, and examples thereof include a thin cylindrical shape, a split yarn shape, a staple shape, a filament shape, a web shape, and the like.
吸収性樹脂粒子を、繊維状物と共に吸収体とする場合、吸収性樹脂粒子と繊維の重量比率(吸収性樹脂粒子の重量/繊維の重量)は40/60〜90/10が好ましく、更に好ましくは70/30〜80/20である。 When the absorbent resin particles are used as an absorber together with the fibrous material, the weight ratio of the absorbent resin particles to the fibers (weight of the absorbent resin particles / weight of the fibers) is preferably 40/60 to 90/10, and more preferably. Is 70/30 to 80/20.
本発明の吸収性物品は上記吸収体を用いる。吸収性物品としては、使い捨て水着や紙おむつや生理用ナプキン等の衛生用品、各種水性液体の吸収や保持剤用途、ゲル化剤用途等の各種用途に使用されるものとして適用可能であり、好ましくは使い捨て水着である。吸収性物品の製造方法等は、特開2003−225565号公報、特開2006−131767号公報及び特開2005−097569号公報等に記載のものと同様である。 The absorbent article of the present invention uses the above absorber. As an absorbent article, it is applicable as a sanitary article such as a disposable swimsuit, a disposable diaper, a sanitary napkin, an absorbent or a retainer for various aqueous liquids, and a gelling agent, and is preferably used. It is a disposable swimsuit. The manufacturing method of the absorbent article and the like are the same as those described in JP-A-2003-225565, JP-A-2006-131767, JP-A-2005-097569, and the like.
以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部、%は重量%を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “part” indicates “part by weight” and “%” indicates “% by weight”.
<実施例1>
アクリル酸(三菱化学株式会社製、純度100%)100部、架橋剤(ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製)0.4部及びイオン交換水220部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.4部、2%アスコルビン酸水溶液0.8部及び2%の2,2’−アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲルを得た。
<Example 1>
100 parts of acrylic acid (purity 100%, manufactured by Mitsubishi Chemical Corporation), 0.4 parts of a cross-linking agent (pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd.) and 220 parts of ion-exchanged water were stirred and mixed at 3 ° C. Kept. After introducing nitrogen into the mixture to reduce the amount of dissolved oxygen to 1 ppm or less, 0.4 part of a 1% aqueous hydrogen peroxide solution, 0.8 part of a 2% aqueous ascorbic acid solution, and 2% of 2,2′-azobis 0.1 part of an aqueous solution of amidinopropane dihydrochloride was added and mixed to initiate polymerization. After the temperature of the mixture reached 90 ° C., polymerization was carried out at 90 ± 2 ° C. for about 5 hours to obtain a hydrogel.
次にこの含水ゲルをミンチ機(ROYAL社製12VR−400K)で細断しながら、48.5%水酸化ナトリウム水溶液82部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に中和した含水ゲルを通気型乾燥機{200℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、架橋重合体を含む樹脂粒子(A−1)を得た。樹脂粒子(A−1)の含水率は、3%であった。 Next, this water-containing gel was shredded with a mincing machine (12VR-400K, manufactured by ROYAL), and 82 parts of a 48.5% aqueous sodium hydroxide solution was added to mix and neutralize the mixture. 72%). Further, the neutralized hydrogel was dried with a ventilation dryer (200 ° C., air velocity 2 m / sec) to obtain a dried product. The dried product is pulverized with a juicer mixer (OSTERIZER BLENDER manufactured by Oster), sieved, and adjusted to a particle diameter range of 710 to 150 μm to obtain resin particles (A-1) containing a crosslinked polymer. Was. The water content of the resin particles (A-1) was 3%.
ついで、得られた樹脂粒子(A−1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにプロピレングリコール1.4部、後架橋剤としてエチレングリコールジグリシジルエーテル0.18部及びイオン交換水3.6部を混合した混合液を添加し、均一混合した。樹脂粒子(A−1)と後架橋剤との均一混合後の混合物の含水率は、6%であった。その後、通気型乾燥機(大気開放系)にて130℃で30分間加熱して、一回目の後架橋剤との反応を行い、吸収性樹脂粒子(B−1)を得た。吸収性樹脂粒子(B−1)の含水率は、3%であった。 Then, while stirring 100 parts of the obtained resin particles (A-1) at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.4 parts of propylene glycol was added thereto, and ethylene glycol distillate was used as a post-crosslinking agent. A mixed solution obtained by mixing 0.18 parts of glycidyl ether and 3.6 parts of ion-exchanged water was added and uniformly mixed. The water content of the mixture after uniform mixing of the resin particles (A-1) and the post-crosslinking agent was 6%. Thereafter, the mixture was heated at 130 ° C. for 30 minutes in a ventilation dryer (open to the atmosphere) to react with the first post-crosslinking agent to obtain absorbent resin particles (B-1). The water content of the absorbent resin particles (B-1) was 3%.
ついで、得られた吸収性樹脂粒子(B−1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにプロピレングリコール2.0部、後架橋剤としてエチレングリコールジグリシジルエーテル2.0部及びイオン交換水40部を混合した混合液を添加し、均一混合して混合物を得た。均一混合後の吸水性樹脂粒子(B−1)と後架橋剤とを含む混合物の含水率は28%であった。その後、PTFEるつぼ(フロン工業社製)に投入し封をしたのち、130℃で60分加熱して二回目の後架橋剤との反応を行った。さらに加熱後PTFEるつぼを開封し、130℃で20分加熱して水分を除去し吸収性樹脂粒子(C−1)を得た。 Next, 100 parts of the obtained absorbent resin particles (B-1) were stirred at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), and 2.0 parts of propylene glycol was added thereto. A mixed solution obtained by mixing 2.0 parts of glycol diglycidyl ether and 40 parts of ion-exchanged water was added and uniformly mixed to obtain a mixture. The water content of the mixture containing the water-absorbent resin particles (B-1) and the post-crosslinking agent after the uniform mixing was 28%. Thereafter, the mixture was charged into a PTFE crucible (manufactured by Freon Industry Co., Ltd.), sealed, and then heated at 130 ° C. for 60 minutes to perform a second reaction with the post-crosslinking agent. After heating, the PTFE crucible was opened, and heated at 130 ° C. for 20 minutes to remove water, thereby obtaining absorbent resin particles (C-1).
ついで、得られた吸収性樹脂粒子(C−1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにキレート剤としてクエン酸ナトリウム1.6部及びイオン交換水2.4部を混合した混合液を添加し、本発明の吸収性樹脂粒子(P−1)を得た。 Then, while stirring 100 parts of the obtained absorbent resin particles (C-1) at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.6 parts of sodium citrate as a chelating agent and ion A mixture obtained by mixing 2.4 parts of exchanged water was added to obtain the absorbent resin particles (P-1) of the present invention.
<実施例2>
実施例1と同様にして、実施例1における吸収性樹脂粒子(C−1)を本発明の吸収性樹脂粒子(P−2)とした。
<Example 2>
In the same manner as in Example 1, the absorbent resin particles (C-1) in Example 1 were used as the absorbent resin particles (P-2) of the present invention.
<実施例3>
実施例1の一回目の後架橋剤との反応において吸収性樹脂粒子(B−1)100部に対して添加したエチレングリコールジグリシジルエーテル2.0部をエチレングリコールジグリシジルエーテル1.2部に変更する以外は、実施例1と同様の操作を行い、本発明の吸収性樹脂粒子(P−3)を得た。一回目の後架橋剤との加熱反応を行う前の樹脂粒子と後架橋剤とを含む混合物の含水率は28%であった。
<Example 3>
In the first reaction with the post-crosslinking agent in Example 1, 2.0 parts of ethylene glycol diglycidyl ether added to 100 parts of the absorbent resin particles (B-1) were converted to 1.2 parts of ethylene glycol diglycidyl ether. Except for the change, the same operation as in Example 1 was performed to obtain the absorbent resin particles (P-3) of the present invention. The water content of the mixture containing the resin particles and the post-crosslinking agent before the first heat reaction with the post-crosslinking agent was 28%.
<実施例4>
実施例1の一回目の後架橋剤との反応において吸収性樹脂粒子(B−1)100部に対して添加したエチレングリコールジグリシジルエーテル2.0部をエチレングリコールジグリシジルエーテル0.9部に変更する以外は、実施例1と同様の操作を行い、本発明の吸収性樹脂粒子(P−4)を得た。一回目の後架橋剤との加熱反応を行う前の混合物の含水率は28%であった。
<Example 4>
In the first reaction with the post-crosslinking agent of Example 1, 2.0 parts of ethylene glycol diglycidyl ether added to 100 parts of the absorbent resin particles (B-1) were changed to 0.9 parts of ethylene glycol diglycidyl ether. Except for the change, the same operation as in Example 1 was performed to obtain the absorbent resin particles (P-4) of the present invention. The water content of the mixture before performing the heat reaction with the first post-crosslinking agent was 28%.
<実施例5>
アクリル酸(三菱化学株式会社製、純度100%)100部、架橋剤(ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製)0.4部及びイオン交換水220部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.4部、2%アスコルビン酸水溶液0.8部及び2%の2,2’−アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲルを得た。
次にこの含水ゲルをミンチ機(ROYAL社製12VR−400K)で細断しながら、48.5%水酸化ナトリウム水溶液82部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に中和した含水ゲルを通気型乾燥機{200℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、架橋重合体を含む樹脂粒子(A−5)を得た。樹脂粒子(A−5)の含水率は、3%であった。
<Example 5>
100 parts of acrylic acid (purity 100%, manufactured by Mitsubishi Chemical Corporation), 0.4 parts of a cross-linking agent (pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd.) and 220 parts of ion-exchanged water were stirred and mixed at 3 ° C. Kept. After introducing nitrogen into the mixture to reduce the amount of dissolved oxygen to 1 ppm or less, 0.4 part of a 1% aqueous hydrogen peroxide solution, 0.8 part of a 2% aqueous ascorbic acid solution, and 2% of 2,2′-azobis 0.1 part of an aqueous solution of amidinopropane dihydrochloride was added and mixed to initiate polymerization. After the temperature of the mixture reached 90 ° C., polymerization was carried out at 90 ± 2 ° C. for about 5 hours to obtain a hydrogel.
Next, this water-containing gel was shredded with a mincing machine (12VR-400K, manufactured by ROYAL), and 82 parts of a 48.5% aqueous sodium hydroxide solution was added to mix and neutralize the mixture. 72%). Further, the neutralized hydrogel was dried with a ventilation dryer (200 ° C., air velocity 2 m / sec) to obtain a dried product. The dried product is pulverized with a juicer mixer (Osterizer Blender, manufactured by Oster), sieved and adjusted to a particle size range of 710 to 150 μm to obtain resin particles (A-5) containing a crosslinked polymer. Was. The water content of the resin particles (A-5) was 3%.
ついで、得られた樹脂粒子(A−5)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにプロピレングリコール1.4部、後架橋剤としてエチレングリコールジグリシジルエーテル0.18部及びイオン交換水3.6部を混合した混合液を添加し、均一混合して混合物を得た。樹脂粒子(A−5)と後架橋剤とを含む混合物の含水率は、6%であった。その後、通気型乾燥機(大気開放系)にて130℃で30分間加熱して、樹脂粒子と後架橋剤との一回目の反応を行い、吸収性樹脂粒子(B−5)を得た。吸収性樹脂粒子(B−5)の含水率は、3%であった。 Then, while stirring 100 parts of the obtained resin particles (A-5) at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.4 parts of propylene glycol was added thereto, and ethylene glycol distillate was used as a post-crosslinking agent. A mixed solution obtained by mixing 0.18 parts of glycidyl ether and 3.6 parts of ion-exchanged water was added and uniformly mixed to obtain a mixture. The water content of the mixture containing the resin particles (A-5) and the post-crosslinking agent was 6%. Thereafter, the mixture was heated at 130 ° C. for 30 minutes in a ventilation dryer (open to the atmosphere) to perform a first reaction between the resin particles and the post-crosslinking agent, thereby obtaining absorbent resin particles (B-5). The water content of the absorbent resin particles (B-5) was 3%.
ついで、得られた吸収性樹脂粒子(B−5)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにプロピレングリコール2.0部、後架橋剤としてエチレングリコールジグリシジルエーテル2.0部及びイオン交換水100部を混合した混合液を添加し、均一混合して混合物を得た。吸水性樹脂粒子(B−5)と後架橋剤とを含む混合物の含水率は49%であった。その後、PTFEるつぼ(フロン工業社製)に投入し封をしたのち、130℃で60分加熱し二回目の後架橋剤との反応を行った。加熱後PTFEるつぼを開封し、130℃で20分加熱して水分を除去し吸収性樹脂粒子(C−5)を得た。 Next, 100 parts of the obtained absorbent resin particles (B-5) were stirred at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), and 2.0 parts of propylene glycol was added thereto. A mixed solution obtained by mixing 2.0 parts of glycol diglycidyl ether and 100 parts of ion-exchanged water was added and uniformly mixed to obtain a mixture. The water content of the mixture containing the water-absorbent resin particles (B-5) and the post-crosslinking agent was 49%. Thereafter, the mixture was put into a PTFE crucible (manufactured by Freon Industry Co., Ltd.), sealed, and then heated at 130 ° C. for 60 minutes to perform a second reaction with the post-crosslinking agent. After heating, the PTFE crucible was opened and heated at 130 ° C. for 20 minutes to remove water, thereby obtaining absorbent resin particles (C-5).
ついで、得られた吸収性樹脂粒子(C−5)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにキレート剤であるクエン酸ナトリウム1.6部及びイオン交換水2.4部を混合した混合液を添加し、本発明の吸収性樹脂粒子(P−5)を得た。 Then, while stirring 100 parts of the obtained absorbent resin particles (C-5) at a high speed (a high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.6 parts of sodium citrate as a chelating agent and A liquid mixture obtained by mixing 2.4 parts of ion-exchanged water was added to obtain the absorbent resin particles (P-5) of the present invention.
<実施例6>
アクリル酸(三菱化学株式会社製、純度100%)100部、架橋剤(ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製)5.0部及びイオン交換水220部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.4部、2%アスコルビン酸水溶液0.8部及び
2%の2,2’−アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲルを得た。
<Example 6>
100 parts of acrylic acid (manufactured by Mitsubishi Chemical Corporation, 100% purity), 5.0 parts of a crosslinking agent (pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd.) and 220 parts of ion-exchanged water were stirred and mixed at 3 ° C. Kept. After introducing nitrogen into the mixture to reduce the amount of dissolved oxygen to 1 ppm or less, 0.4 part of a 1% aqueous hydrogen peroxide solution, 0.8 part of a 2% aqueous ascorbic acid solution, and 2% of 2,2′-azobis 0.1 part of an aqueous solution of amidinopropane dihydrochloride was added and mixed to initiate polymerization. After the temperature of the mixture reached 90 ° C., polymerization was carried out at 90 ± 2 ° C. for about 5 hours to obtain a hydrogel.
次にこの含水ゲルをミンチ機(ROYAL社製12VR−400K)で細断しながら、48.5%水酸化ナトリウム水溶液82部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に中和した含水ゲルを通気型乾燥機{200℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、架橋重合体を含む樹脂粒子(A−6)を得た。樹脂粒子(A−6)の含水率は、3%であった。 Next, this water-containing gel was shredded with a mincing machine (12VR-400K, manufactured by ROYAL), and 82 parts of a 48.5% aqueous sodium hydroxide solution was added to mix and neutralize the mixture. 72%). Further, the neutralized hydrogel was dried with a ventilation dryer (200 ° C., air velocity 2 m / sec) to obtain a dried product. The dried product is pulverized with a juicer mixer (Osterizer Blender, manufactured by Oster), sieved and adjusted to a particle size range of 710 to 150 μm to obtain resin particles (A-6) containing a crosslinked polymer. Was. The water content of the resin particles (A-6) was 3%.
ついで、得られた樹脂粒子(A−6)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにプロピレングリコール4.0部、後架橋剤としてエチレングリコールジグリシジルエーテル2.0部及びイオン交換水18.8部を混合した混合液を添加し、均一混合して混合物を得た。樹脂粒子(A−6)と後架橋剤とを含む混合物の含水率は、17%であった。その後、通気型乾燥機(大気開放系)にて130℃で30分間加熱して一回目の後架橋剤との反応を行い、吸収性樹脂粒子(B−6)を得た。吸収性樹脂粒子(B−6)の含水率は、3%であった。 Next, 100 parts of the obtained resin particles (A-6) were stirred at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), and 4.0 parts of propylene glycol was added thereto. A mixed liquid obtained by mixing 2.0 parts of glycidyl ether and 18.8 parts of ion-exchanged water was added and uniformly mixed to obtain a mixture. The water content of the mixture containing the resin particles (A-6) and the post-crosslinking agent was 17%. Thereafter, the mixture was heated at 130 ° C. for 30 minutes in a ventilation dryer (open to the atmosphere) to perform a first reaction with the post-crosslinking agent to obtain absorbent resin particles (B-6). The water content of the absorbent resin particles (B-6) was 3%.
ついで、得られた吸収性樹脂粒子(B−6)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにヒュームドシリカ(アエロジル社製Aerosil200)を0.5部、キレート剤であるクエン酸ナトリウム1.6部及びイオン交換水2.4部を混合した混合液を添加し、本発明の吸収性樹脂粒子(P−6)を得た。 Then, 100 parts of the obtained absorbent resin particles (B-6) were stirred at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), and fumed silica (Aerosil 200 manufactured by Aerosil Co.) was added thereto. A mixed solution obtained by mixing 5 parts, 1.6 parts of sodium citrate as a chelating agent and 2.4 parts of ion-exchanged water was added to obtain absorbent resin particles (P-6) of the present invention.
<実施例7>
実施例5における二回目の後架橋剤との反応を行う際に用いたエチレングリコールジグリシジルエーテル2.0部をエチレングリコールジグリシジルエーテル3.6部に変更する以外は、実施例5と同様の操作を行い、吸収性樹脂粒子(P−7)を得た。二回目の後架橋反応を行う際の吸水性樹脂粒子(B−1)と後架橋剤とを含む混合物の含水率は、49%であった。
<Example 7>
Same as Example 5 except that 2.0 parts of ethylene glycol diglycidyl ether used in the reaction with the second post-crosslinking agent in Example 5 was changed to 3.6 parts of ethylene glycol diglycidyl ether. By performing the operation, absorbent resin particles (P-7) were obtained. The water content of the mixture containing the water-absorbent resin particles (B-1) and the post-crosslinking agent when performing the second post-crosslinking reaction was 49%.
<実施例8>
実施例5において吸収性樹脂粒子(C−5)に混合したクエン酸ナトリウム1.6部をクエン酸ナトリウム5.0部に変更し、イオン交換水2.4部をイオン交換水7.5部に変更する以外は、実施例5と同様の操作を行い、吸収性樹脂粒子(P−8)を得た。
<Example 8>
In Example 5, 1.6 parts of sodium citrate mixed with the absorbent resin particles (C-5) was changed to 5.0 parts of sodium citrate, and 2.4 parts of ion-exchanged water was 7.5 parts of ion-exchanged water. Except for changing to, the same operation as in Example 5 was performed to obtain absorbent resin particles (P-8).
<実施例9>
実施例5において用いた架橋剤(ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製)の重量を0.4部から0.2部に変更する以外は、実施例5と同様の操作を行い、吸収性樹脂粒子(P−9)を得た。
<Example 9>
The same operation as in Example 5 was carried out, except that the weight of the crosslinking agent (pentaerythritol triallyl ether, manufactured by Daiso Corporation) used in Example 5 was changed from 0.4 part to 0.2 part, the absorption was performed. Resin particles (P-9) were obtained.
<比較例1>
実施例1で得られる吸収性樹脂粒子(B−2)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにキレート剤であるクエン酸ナトリウム1.6部及びイオン交換水2.4部を混合した混合液を添加し、比較用の吸収性樹脂粒子(R−1)を得た。
<Comparative Example 1>
1.6 parts of sodium citrate as a chelating agent was added to 100 parts of the absorbent resin particles (B-2) obtained in Example 1 while stirring at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm). And a mixed solution obtained by mixing 2.4 parts of ion-exchanged water with each other to obtain absorbent resin particles (R-1) for comparison.
<比較例2>
アクリル酸(三菱化学株式会社製、純度100%)100部、架橋剤(ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製)7.0部及びイオン交換水220部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.4部、2%アスコルビン酸水溶液0.8部及び
2%の2,2’−アゾビスアミジノプロパンジハイドロクロライド水溶液0.1部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲルを得た。
<Comparative Example 2>
100 parts of acrylic acid (manufactured by Mitsubishi Chemical Corporation, purity 100%), 7.0 parts of a crosslinking agent (pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd.) and 220 parts of ion-exchanged water were heated to 3 ° C. while stirring and mixing. Kept. After introducing nitrogen into the mixture to reduce the amount of dissolved oxygen to 1 ppm or less, 0.4 part of a 1% aqueous hydrogen peroxide solution, 0.8 part of a 2% aqueous ascorbic acid solution, and 2% of 2,2′-azobis 0.1 part of an aqueous solution of amidinopropane dihydrochloride was added and mixed to initiate polymerization. After the temperature of the mixture reached 90 ° C., polymerization was carried out at 90 ± 2 ° C. for about 5 hours to obtain a hydrogel.
次にこの含水ゲルをミンチ機(ROYAL社製12VR−400K)で細断しながら、48.5%水酸化ナトリウム水溶液82部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に中和した含水ゲルを通気型乾燥機{200℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、吸収性樹脂粒子(RA−2)を得た。吸収性樹脂粒子(RA−2)の含水率は、3%であった。 Next, this water-containing gel was shredded with a mincing machine (12VR-400K, manufactured by ROYAL), and 82 parts of a 48.5% aqueous sodium hydroxide solution was added to mix and neutralize the mixture. 72%). Further, the neutralized hydrogel was dried with a ventilation dryer (200 ° C., air velocity 2 m / sec) to obtain a dried product. The dried product was pulverized with a juicer mixer (OSTERIZER BLENDER manufactured by Oster), sieved, and adjusted to a particle diameter range of 710 to 150 μm to obtain absorbent resin particles (RA-2). The water content of the absorbent resin particles (RA-2) was 3%.
ついで、得られた吸収性樹脂粒子(HA−2)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにキレート剤であるクエン酸ナトリウム1.6部及びイオン交換水2.4部を混合した混合液を添加し、比較用の吸収性樹脂粒子(R−2)を得た。 Then, while stirring 100 parts of the obtained absorbent resin particles (HA-2) at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.6 parts of sodium citrate as a chelating agent and A mixed solution obtained by mixing 2.4 parts of ion-exchanged water was added to obtain comparative absorbent resin particles (R-2).
<比較例3>
実施例1と同様にして得られた含水ゲルをミンチ機(ROYAL社製12VR−400K)で細断しながら、48.5%水酸化ナトリウム水溶液82部及び架橋剤としてエチレングリコールジグリシジルエーテル1.26部を添加して混合・中和し、中和ゲル(中和度:72%)を得た。更に中和した含水ゲルを通気型乾燥機{200℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、目開き710〜150μmの粒子径範囲に調整して、吸収性樹脂粒子(RA−3)を得た。吸収性樹脂粒子(RA−3)の含水率は、3%であった。
<Comparative Example 3>
While shredding the hydrogel obtained in the same manner as in Example 1 with a mincing machine (12VR-400K, manufactured by ROYAL), 82 parts of a 48.5% aqueous sodium hydroxide solution and ethylene glycol diglycidyl ether as a crosslinking agent were used. 26 parts were added and mixed and neutralized to obtain a neutralized gel (neutralization degree: 72%). Further, the neutralized hydrogel was dried with a ventilation dryer (200 ° C., air velocity 2 m / sec) to obtain a dried product. The dried product was pulverized with a juicer mixer (OSTERIZER BLENDER manufactured by Oster), sieved, and adjusted to a particle size range of 710 to 150 μm to obtain absorbent resin particles (RA-3). The water content of the absorbent resin particles (RA-3) was 3%.
ついで、得られた吸収性樹脂粒子(RA−3)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにプロピレングリコール1.4部、架橋剤としてエチレングリコールジグリシジルエーテル0.18部及びイオン交換水3.6部を混合した混合液を添加し、均一混合して混合物を得た。混合物の含水率は、6%であった。その後、通気型乾燥機(大気開放系)にて130℃で30分間加熱して、吸収性樹脂粒子(RB−3)を得た。 Then, while stirring 100 parts of the obtained absorbent resin particles (RA-3) at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.4 parts of propylene glycol was added thereto, and ethylene glycol was used as a crosslinking agent. A mixed solution obtained by mixing 0.18 parts of diglycidyl ether and 3.6 parts of ion-exchanged water was added and uniformly mixed to obtain a mixture. The water content of the mixture was 6%. Thereafter, the mixture was heated at 130 ° C. for 30 minutes using a ventilation dryer (open to the atmosphere) to obtain absorbent resin particles (RB-3).
ついで、得られた吸収性樹脂粒子(RB−3)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにキレート剤であるクエン酸ナトリウム1.6部及びイオン交換水2.4部を混合した混合液を添加し、比較用の吸収性樹脂粒子(R−3)を得た。 Then, while stirring 100 parts of the obtained absorbent resin particles (RB-3) at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.6 parts of sodium citrate as a chelating agent and A liquid mixture obtained by mixing 2.4 parts of ion-exchanged water was added to obtain comparative absorbent resin particles (R-3).
<比較例4>
実施例1で得られる吸収性樹脂粒子(B−1)をそのまま用いて比較用の吸収性樹脂粒子(R−4)とした。
<Comparative Example 4>
Using the absorbent resin particles (B-1) obtained in Example 1 as they were, comparative absorbent resin particles (R-4) were obtained.
<比較例5>
実施例1で得られる吸収性樹脂粒子(B−1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにプロピレングリコール2.0部、架橋剤としてエチレングリコールジグリシジルエーテル2.0部及びイオン交換水40部を混合した混合液を添加し、均一混合して混合物を得た。均一混合後の混合物の含水率は、28%であった。その後、通気型乾燥機(大気開放系)にて130℃で30分間加熱して、吸収性樹脂粒子(RC−5)を得た。
<Comparative Example 5>
While 100 parts of the absorbent resin particles (B-1) obtained in Example 1 were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 2.0 parts of propylene glycol was added thereto, and ethylene was used as a crosslinking agent. A mixed solution obtained by mixing 2.0 parts of glycol diglycidyl ether and 40 parts of ion-exchanged water was added and uniformly mixed to obtain a mixture. The water content of the mixture after uniform mixing was 28%. Thereafter, the mixture was heated at 130 ° C. for 30 minutes in a ventilation dryer (open to the atmosphere) to obtain absorbent resin particles (RC-5).
ついで、得られた吸収性樹脂粒子(RC−5)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これにクエン酸ナトリウム1.6部及びイオン交換水2.4部を混合した混合液を添加し、比較用の吸収性樹脂粒子(R−5)を得た。 Then, while stirring 100 parts of the obtained absorbent resin particles (RC-5) at a high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), 1.6 parts of sodium citrate and 2 parts of ion-exchanged water were added thereto. A mixed solution obtained by mixing .4 parts was added to obtain comparative absorbent resin particles (R-5).
<比較例6>
比較例5において吸収性樹脂粒子(B−1)と混合するエチレングリコールジグリシジルエーテルの重量を2.0部から4.0部に変更する以外は、比較例5と同様の操作を行い、比較用の吸収性樹脂粒子(R−6)を得た。吸水性樹脂粒子(B−1)と架橋剤とを含む混合物の含水率は、6%であった。
<Comparative Example 6>
Comparative Example 5 was repeated except that the weight of ethylene glycol diglycidyl ether mixed with the absorbent resin particles (B-1) was changed from 2.0 parts to 4.0 parts. Absorbent resin particles (R-6) for use. The water content of the mixture containing the water-absorbent resin particles (B-1) and the crosslinking agent was 6%.
<比較例7>
比較例5において吸収性樹脂粒子(B−1)と混合するエチレングリコールジグリシジルエーテルの重量を2.0部から6.0部に変更する以外は、比較例5と同様の操作を行い、比較用の吸収性樹脂粒子(R−7)を得た。吸収性樹脂粒子(B−1)と架橋剤とを含む混合物の含水率は、6%であった。
<Comparative Example 7>
Comparative Example 5 was repeated except that the weight of ethylene glycol diglycidyl ether mixed with the absorbent resin particles (B-1) was changed from 2.0 parts to 6.0 parts. Absorbent resin particles (R-7) were obtained. The water content of the mixture containing the absorbent resin particles (B-1) and the crosslinking agent was 6%.
<比較例8>
実施例1において吸収性樹脂粒子(B−1)を後架橋する際に用いるイオン交換水40部をイオン交換水25部に変更する以外は、実施例1と同様の操作を行い、比較用の吸収性樹脂粒子(R−8)を得た。吸収性樹脂粒子(B−1)と後架橋剤とを含む混合物の含水率は20%であった。
<Comparative Example 8>
The same operation as in Example 1 was performed except that 40 parts of ion-exchanged water used in post-crosslinking the absorbent resin particles (B-1) in Example 1 was changed to 25 parts of ion-exchanged water, and a comparative sample was used. Absorbent resin particles (R-8) were obtained. The water content of the mixture containing the absorbent resin particles (B-1) and the post-crosslinking agent was 20%.
得られた吸収性樹脂粒子(P−1)〜(P−9)及び比較用の吸収性樹脂粒子(R−1)〜(R−8)のイオン交換水中での吸水倍率、イオン交換水吸収指数、保水量、70±5℃、相対湿度80±3%の雰囲気下に28日間放置後の黄色度、ゲル通液速度、壊れ性試験後のゲル通液速度、通液維持率の評価結果を表1に示した。 Water absorption capacity of the obtained absorbent resin particles (P-1) to (P-9) and comparative absorbent resin particles (R-1) to (R-8) in ion-exchanged water, absorption of ion-exchanged water Evaluation results of index, water retention, yellowness after leaving for 28 days in an atmosphere of 70 ± 5 ° C. and relative humidity of 80 ± 3%, gel permeation speed, gel permeation speed after breakability test, and permeation retention rate Are shown in Table 1.
表1の結果から、本発明の吸収性樹脂粒子は、ゲル通液速度に優れ、かつイオン交換水の吸収倍率及びイオン交換水吸収指数が小さいことが分かる。一方、比較例はたとえゲル通液速度が良好でもイオン交換水吸収指数が大きいか、イオン交換水吸収指数が小さくてもゲル通液速度が劣っている。すなわち、実施例は、ゲル通液速度と小さいイオン交換水の吸収倍率の両立という観点で比較例と有意な差がある事が分かった。 From the results shown in Table 1, it can be seen that the absorbent resin particles of the present invention are excellent in gel flow rate and small in the absorption capacity of ion-exchanged water and the absorption index of ion-exchanged water. On the other hand, in the comparative example, even if the gel flow rate is good, the ion exchange water absorption index is large, or the gel flow rate is inferior even if the ion exchange water absorption index is small. That is, it was found that the example had a significant difference from the comparative example from the viewpoint of compatibility between the gel flow rate and the absorption capacity of the small ion-exchanged water.
本発明の吸収性樹脂粒子はイオン交換水中での吸収倍率が低く、大量の水が浸入する可能性のある吸水性物品に使用しても膨潤を抑制できる。そのため、ナプキン(生理用ナプキン等)、紙タオル、使い捨て水着等の衛生用品に好的に用いられ、特に使い捨て水着に最適である。なお、本発明の吸収性樹脂粒子は衛生用品のみならず、止水剤や人工雪等、種々の用途にも有用である。 The absorbent resin particles of the present invention have a low absorption capacity in ion-exchanged water and can suppress swelling even when used for a water-absorbent article into which a large amount of water may enter. Therefore, it is favorably used for sanitary articles such as napkins (such as sanitary napkins), paper towels and disposable swimwear, and is particularly suitable for disposable swimwear. The absorbent resin particles of the present invention are useful not only for sanitary articles, but also for various uses such as a waterproofing agent and artificial snow.
1 生理食塩水
2 含水ゲル粒子
3 円筒
4 底部から60mlの位置の目盛り線
5 底部から40mlの位置の目盛り線
6 金網
7 コック
8 円形金網
9 加圧軸
10 おもり
DESCRIPTION OF SYMBOLS 1
Claims (13)
(イオン交換水吸収指数)=(吸収性樹脂粒子の[イオン交換水中での吸水倍率])/(吸収性樹脂粒子の生理食塩水に対する保水量) ・・・(式3) [Water absorption capacity in ion-exchanged water] and weight of physiological saline absorbed by 1.00 g of absorbent resin particles immersed in physiological saline [water retention amount of absorbent resin particles with respect to physiological saline] The absorbent resin particle according to claim 1, wherein the ion-exchanged water absorption index defined by the following (formula 3) is 1.0 to 6.0.
(Ion-exchanged water absorption index) = ([Water absorption capacity of absorbent resin particles in ion-exchanged water]) / (water retention amount of absorbent resin particles in physiological saline) (Equation 3)
(ゲル通液維持率)=100×(壊れ性試験後の[吸収性樹脂粒子のゲル通液速度])/(壊れ性試験前の[吸収性樹脂粒子のゲル通液速度]) ・・・(式4)
(式4)中の壊れ性試験前の[吸収性樹脂粒子のゲル通液速度]は、後述する壊れ性試験を行わないで生理食塩水中に30分間浸漬して膨潤させた後に加重をかけて圧縮した吸収性樹脂粒子を生理食塩水が通過するときの速度である。壊れ性試験後の[吸収性樹脂粒子のゲル通液速度]は、3L丸形セパラブルフラスコに吸収性樹脂粒子30gを投入し、前記セパラブルフラスコの上部に、中心部に6mmの穴を開けた目開き63μmのナイロン網を敷き、さらにその上に4つ口セパラブルカバーをセットする。次に3L丸形セパラブルフラスコ用の4つ口セパラブルカバーの主管からステンレス製(外径6mm、内径4mm)管を入れステンレス製管がナイロン網を貫通し、かつ先端が前記セパラブルフラスコの底面から45mmの位置となるようセットする。ステンレス製管のもう一方にはウレタンチューブ(長さ1500mm、内径8.5mm)を装着し0.3MPa以上の圧力が達成できるエアーラインに接続し、圧力0.2MPaにてエアーラインを開け、3分間エアーブローすることで壊れ性試験を行い、その後に取り出した吸収性樹脂粒子を生理食塩水中に30分間浸漬して膨潤させた後に加重をかけて圧縮し、圧縮後の吸収性樹脂粒子を生理食塩水が通過するときの速度である。 The absorbent resin particles according to any one of claims 1 to 6, wherein a gel permeation retention rate obtained by the following (Formula 4) is 70% or more.
(Gel permeation retention rate) = 100 × ([Gel permeation rate of absorbent resin particles after breakability test]) / ([Gel permeation rate of absorbent resin particles before breakability test]) (Equation 4)
In the (Equation 4), the [gel flow rate of the absorbent resin particles] before the breakability test is determined by immersing the gel in physiological saline for 30 minutes to swell without performing the breakability test described below, and then applying a load. This is the speed at which physiological saline passes through the compressed absorbent resin particles. [Geling rate of absorbent resin particles] after the fragility test is as follows: 30 g of the absorbent resin particles are charged into a 3 L round separable flask, and a 6 mm hole is formed at the center of the upper part of the separable flask. A nylon net having a mesh size of 63 μm is laid, and a four-port separable cover is set thereon. Next, a stainless steel (outer diameter 6 mm, inner diameter 4 mm) tube was inserted from the main tube of the four-port separable cover for a 3 L round separable flask, and the stainless steel tube penetrated the nylon net, and the tip was the separable flask. Set so that the position is 45 mm from the bottom. A urethane tube (length 1500 mm, inner diameter 8.5 mm) is attached to the other end of the stainless steel tube, connected to an air line that can achieve a pressure of 0.3 MPa or more, and an air line is opened at a pressure of 0.2 MPa. A breakability test is performed by air blowing for a minute, and then the absorbent resin particles taken out are immersed in physiological saline for 30 minutes to be swollen, and then compressed by applying a load. The speed at which the saline solution passes.
The method for producing absorbent resin particles according to claim 12, wherein the resin particles containing the crosslinked polymer (A) are reacted with a post-crosslinking agent (c) in a sealed state.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018186449 | 2018-10-01 | ||
JP2018186449 | 2018-10-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020056025A true JP2020056025A (en) | 2020-04-09 |
JP7352428B2 JP7352428B2 (en) | 2023-09-28 |
Family
ID=70106521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019178196A Active JP7352428B2 (en) | 2018-10-01 | 2019-09-30 | Absorbent resin particles and their manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7352428B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023276925A1 (en) * | 2021-06-28 | 2023-01-05 | Sdpグローバル株式会社 | Water-absorbing resin composition, absorber and absorbent article obtained using same, and method for producing water-absorbing resin composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003052742A (en) * | 2001-08-09 | 2003-02-25 | San-Dia Polymer Ltd | Absorbent and absorptive structure using the same |
JP2008297512A (en) * | 2007-06-04 | 2008-12-11 | San-Dia Polymer Ltd | Absorbent resin particle, its production method, absorbent body containing the same and absorbent article |
JP2010126552A (en) * | 2008-11-25 | 2010-06-10 | Kao Corp | Method for producing absorptive polymer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4979879B2 (en) | 2003-02-10 | 2012-07-18 | 株式会社日本触媒 | Water-absorbing agent and sanitary material using the same |
US7179851B2 (en) | 2003-09-05 | 2007-02-20 | Kimberly-Clark Worldwide, Inc. | Damage-resistant superabsorbent materials |
-
2019
- 2019-09-30 JP JP2019178196A patent/JP7352428B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003052742A (en) * | 2001-08-09 | 2003-02-25 | San-Dia Polymer Ltd | Absorbent and absorptive structure using the same |
JP2008297512A (en) * | 2007-06-04 | 2008-12-11 | San-Dia Polymer Ltd | Absorbent resin particle, its production method, absorbent body containing the same and absorbent article |
JP2010126552A (en) * | 2008-11-25 | 2010-06-10 | Kao Corp | Method for producing absorptive polymer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023276925A1 (en) * | 2021-06-28 | 2023-01-05 | Sdpグローバル株式会社 | Water-absorbing resin composition, absorber and absorbent article obtained using same, and method for producing water-absorbing resin composition |
WO2023276930A1 (en) * | 2021-06-28 | 2023-01-05 | Sdpグローバル株式会社 | Water-absorbing resin composition, absorbent and absorbent article each including same, and method for producing water-absorbing resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP7352428B2 (en) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6722654B2 (en) | Aqueous liquid absorbent resin particle production method, aqueous liquid absorbent resin particle, absorbent body and absorbent article | |
JP3648553B2 (en) | Absorbent resin particles, absorbent body and absorbent article using the same | |
WO2018147317A1 (en) | Water-absorbent resin particles, and absorber and absorbent article in which same are used | |
JP7015341B2 (en) | Water-absorbent resin composition and its manufacturing method | |
US11084889B2 (en) | Water-absorbent resin particles and method for producing same | |
EP3604352A1 (en) | Molecular-weight controlling agent for radical polymerization, method for producing polymer using same, and polymer | |
EP1659144A1 (en) | Absorbent resin particle, and absorber and absorbent article employing the same | |
US7838610B2 (en) | Ion-sensitive super-absorbent polymer | |
US20180044487A1 (en) | Method for producing aqueous-liquid absorbent resin particles, absorbent body, and absorbent article | |
WO2017200085A1 (en) | Water-absorbing resin particles, process for producing same, and absorbent object and absorbent article both comprising or including same | |
JP2005186016A (en) | Absorbent | |
JP2003192732A (en) | Water absorbent resin and absorbent article formed thereof | |
CN111433258A (en) | Absorbent resin particle, absorbent body, absorbent article, and method for producing absorbent resin particle | |
JP6419550B2 (en) | Absorbent resin particles, absorber containing the same, and absorbent article | |
JP2020056025A (en) | Absorbing resin particle and method for producing the same | |
JP2019141754A (en) | Water-absorbing resin particle, absorber and absorbing article using the same, and production method of water-absorbing resin particle | |
JP2013133399A (en) | Water-absorbing polymer particle | |
JP7291686B2 (en) | Water-absorbing resin particles and method for producing the same | |
JP2005186015A (en) | Absorbent, absorber containing the same and absorbent article | |
JP7453918B2 (en) | Water-absorbing resin particles and their manufacturing method | |
WO2023276925A1 (en) | Water-absorbing resin composition, absorber and absorbent article obtained using same, and method for producing water-absorbing resin composition | |
JPH02253845A (en) | Water absorbing agent having superior salt resistance | |
JP2024027100A (en) | Water-absorbing resin particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230915 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7352428 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |