JP2020055932A - Thermoplastic resin composition, method for producing the same, and exterior material component - Google Patents

Thermoplastic resin composition, method for producing the same, and exterior material component Download PDF

Info

Publication number
JP2020055932A
JP2020055932A JP2018186304A JP2018186304A JP2020055932A JP 2020055932 A JP2020055932 A JP 2020055932A JP 2018186304 A JP2018186304 A JP 2018186304A JP 2018186304 A JP2018186304 A JP 2018186304A JP 2020055932 A JP2020055932 A JP 2020055932A
Authority
JP
Japan
Prior art keywords
resin composition
mass
thermoplastic resin
parts
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018186304A
Other languages
Japanese (ja)
Other versions
JP7209174B2 (en
Inventor
雅 間簔
Tadashi Mamino
雅 間簔
公亮 中村
Kosuke Nakamura
公亮 中村
陽 中島
Akira Nakajima
中島  陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2018186304A priority Critical patent/JP7209174B2/en
Publication of JP2020055932A publication Critical patent/JP2020055932A/en
Application granted granted Critical
Publication of JP7209174B2 publication Critical patent/JP7209174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide: a thermoplastic resin composition having high flame retardancy, high rigidity, and high fluidity; and a method for producing the same, and the like.SOLUTION: The thermoplastic resin composition is produced by first melt kneading a polycarbonate resin and a flame retardant, and adding halfway therethrough inorganic fiber and a lubricant, followed by melt kneading. The thermoplastic resin composition has flame retardancy of HB to 5 VA, toughness of 5 kJ/m2 to 100 kJ/m2, fluidity of 150 mm to 300 mm, and rigidity of 3300 MPa to 7000 MPa. Further, the composition is such that, relative to 100 pts.mass of a polycarbonate resin, there are contained 0.1 to 5 pts.mass of a sulfonic acid metal salt as the flame retardant, 1 to 50 pts.mass of glass fiber as the inorganic fiber, 0.1 to 10 pts.mass of a silicone compound, 0.1 to 10 pts.mass of the lubricant, and 0.1 to 5 pts.mass of a drip inhibitor.SELECTED DRAWING: None

Description

本発明は、高難燃性、高剛性、高流動性を備えた熱可塑性樹脂組成物、その製造方法、これを用いた外装材部品に関する。   The present invention relates to a thermoplastic resin composition having high flame retardancy, high rigidity, and high fluidity, a method for producing the same, and an exterior component using the same.

電気・電子・OA機器等の外装材部品に使用されている樹脂は高強度かつ高難燃性が求められることからポリカーボネート樹脂組成物が広く使われている。また、成形品の軽量化や材料使用量削減による環境負荷の低減を目的として、成形品の薄肉化が行われる。成形品の肉厚を薄くすると、剛性が低くなる課題がある。剛性を高くするには、ガラス繊維を添加することが有効とされている。   Polycarbonate resin compositions are widely used because resins used for exterior parts such as electric / electronic / OA equipment require high strength and high flame retardancy. Further, the thickness of the molded article is reduced for the purpose of reducing the weight of the molded article and reducing the environmental load by reducing the amount of material used. When the thickness of the molded product is reduced, there is a problem that the rigidity is reduced. In order to increase rigidity, it is effective to add glass fiber.

一方、近年、電気・電子・OA機器等の外装材部品の用途を中心に、使用するポリカーボネート樹脂組成物の難燃化の要望が強い。難燃化の要望に応えるため、一般的には、芳香族オリゴマー系リン酸エステルを添加する方法が用いられる。しかし、優れた難燃性を得るためには、芳香族オリゴマー系リン酸エステルを多量に添加する必要があり、そのため機械的性質や熱的性質が損なわれるという欠点があった。ガラス繊維による強化ポリカーボネート樹脂組成物であって非ハロゲン系難燃剤によって難燃化したものとしては、芳香族オリゴマー系リン酸エステルを添加したものの他に、例えばポリカーボネート樹脂にガラス繊維およびスルホン酸金属塩を配合してなる難燃性ガラス繊維強化樹脂組成物がある(下記の特許文献1参照)。   On the other hand, in recent years, there has been a strong demand for the polycarbonate resin composition to be used to be flame-retardant, mainly for the use of exterior parts such as electric, electronic, and OA equipment. In order to meet the demand for flame retardancy, a method of adding an aromatic oligomeric phosphate ester is generally used. However, in order to obtain excellent flame retardancy, it is necessary to add a large amount of an aromatic oligomer-based phosphoric acid ester, which has a disadvantage that mechanical properties and thermal properties are impaired. Glass fiber reinforced polycarbonate resin compositions which have been flame retarded by non-halogen flame retardants include, in addition to those to which aromatic oligomeric phosphate esters have been added, for example, glass fibers and sulfonic acid metal salts in polycarbonate resins. (See Patent Document 1 below).

特開2002−226697号公報JP 2002-226697 A

電気・電子・OA機器等の外装材部品の材料としては、高剛性、高難燃性かつ高流動性を備えた熱可塑性樹脂組成物が望まれる。しかしながら、上記の特許文献1では高難燃化については示されているものの、流動性の改善については特に示されていない。   As a material for an exterior component such as an electric / electronic / OA apparatus, a thermoplastic resin composition having high rigidity, high flame retardancy and high fluidity is desired. However, although the above-mentioned Patent Literature 1 discloses that the flame retardancy is high, it does not specifically show the improvement of the fluidity.

本発明は、上記の要請に鑑みてなされたものであり、高難燃性、高剛性、高流動性を備えた熱可塑性樹脂組成物、その製造方法、該熱可塑性樹脂組成物からなる外装材部品を提供することを目的としている。   The present invention has been made in view of the above requirements, and has a high flame retardancy, a high rigidity, and a high fluidity. It aims to provide parts.

かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。   The gist of the present invention to achieve this object lies in the inventions in the following items.

[1]ポリカーボネート樹脂、難燃剤、無機繊維、滑剤を含む熱可塑性樹脂組成物であって、難燃性がHB以上かつ、流動性が150mm以上である熱可塑性樹脂組成物。 [1] A thermoplastic resin composition containing a polycarbonate resin, a flame retardant, an inorganic fiber, and a lubricant, and has a flame retardancy of HB or more and a fluidity of 150 mm or more.

[2]ポリカーボネート樹脂、難燃剤、無機繊維、滑剤、シリコーン化合物を含む熱可塑性樹脂組成物であって、難燃性がHB以上かつ、靭性が5kJ/m2以上かつ、流動性が150mm以上かつ、剛性が3300MPa以上である熱可塑性樹脂組成物。 [2] A thermoplastic resin composition containing a polycarbonate resin, a flame retardant, an inorganic fiber, a lubricant, and a silicone compound, having a flame retardancy of HB or more, a toughness of 5 kJ / m2 or more, and a fluidity of 150 mm or more, A thermoplastic resin composition having a rigidity of 3300 MPa or more.

[3]ポリカーボネート樹脂100質量部に対して、難燃剤としてスルホン酸金属塩を0.1〜5質量部、無機繊維としてガラス繊維を1〜50質量部、シリコーン化合物を0.1〜10質量部、滑剤を0.1〜10質量部、ドリップ抑制剤を0.1〜5質量部を含む[2]に記載の熱可塑性樹脂組成物。 [3] With respect to 100 parts by mass of the polycarbonate resin, 0.1 to 5 parts by mass of a metal sulfonic acid salt as a flame retardant, 1 to 50 parts by mass of glass fiber as an inorganic fiber, and 0.1 to 10 parts by mass of a silicone compound. The thermoplastic resin composition according to [2], comprising 0.1 to 10 parts by mass of a lubricant and 0.1 to 5 parts by mass of a drip inhibitor.

[4]前記スルホン酸金属塩がポリスチレンスルホン酸金属塩であり、
前記ドリップ抑制剤がフッ素樹脂であり、
前記シリコーン化合物が芳香族基を有するポリオルガノシロキサンであり、
前記滑剤が脂肪酸、脂肪酸エステル、脂肪酸アラミドからなる群より選ばれる1種又は2種以上のものである[3]に記載の熱可塑性樹脂組成物。
[4] The sulfonic acid metal salt is a polystyrene sulfonic acid metal salt,
The drip inhibitor is a fluororesin,
The silicone compound is a polyorganosiloxane having an aromatic group,
The thermoplastic resin composition according to [3], wherein the lubricant is one or more selected from the group consisting of a fatty acid, a fatty acid ester, and a fatty acid aramid.

[5]前記熱可塑性樹脂組成物の難燃性がHB以上5VA以下かつ、靭性が5kJ/m2以上100kJ/m2以下かつ、流動性が150mm以上300mm以下かつ、剛性が3300MPa以上7000MPa以下である[1]乃至[4]のいずれか1つに記載の熱可塑性樹脂組成物。 [5] The thermoplastic resin composition has a flame retardancy of HB or more and 5 VA or less, a toughness of 5 kJ / m2 or more and 100 kJ / m2 or less, a fluidity of 150 mm or more and 300 mm or less, and a rigidity of 3300 MPa or more and 7000 MPa or less [ The thermoplastic resin composition according to any one of [1] to [4].

[6]前記ガラス繊維の繊維長が150μm以上1000μm以下である[1]乃至[5]のいずれか1つに記載の熱可塑性樹脂組成物。 [6] The thermoplastic resin composition according to any one of [1] to [5], wherein the glass fiber has a fiber length of 150 μm or more and 1000 μm or less.

[7][1]乃至[6]のいずれか1つに記載の熱可塑性樹脂組成物からなる複写機用の外装材部品。 [7] An exterior component for a copying machine, comprising the thermoplastic resin composition according to any one of [1] to [6].

[8]はじめにポリカーボネート樹脂と難燃剤を溶融混練し、無機繊維と滑剤を途中から添加して溶融混練することを特徴とする熱可塑性樹脂組成物の製造方法。 [8] A method for producing a thermoplastic resin composition, comprising: first, melt-kneading a polycarbonate resin and a flame retardant; and adding and kneading inorganic fibers and a lubricant in the middle.

[9]混練機のスクリュー長さの50%から80%の間で無機繊維と滑剤を添加することを特徴とする[8]に記載の熱可塑性樹脂組成物の製造方法。 [9] The method for producing a thermoplastic resin composition according to [8], wherein the inorganic fiber and the lubricant are added in an amount of 50% to 80% of the screw length of the kneader.

本発明によれば、高難燃性、高剛性、高流動性を備えた熱可塑性樹脂組成物、その製造方法、該熱可塑性樹脂組成物を用いた外装材部品が提供される。   According to the present invention, there are provided a thermoplastic resin composition having high flame retardancy, high rigidity, and high fluidity, a method for producing the same, and an exterior component using the thermoplastic resin composition.

本発明に係る熱可塑性樹脂組成物は、高難燃性、高剛性、高流動性を備えた熱可塑性樹脂組成物である。たとえば、はじめにポリカーボネート樹脂と難燃剤を溶融混練し、無機繊維と滑剤を途中から添加して溶融混練するといった製造方法で製造することができる。   The thermoplastic resin composition according to the present invention is a thermoplastic resin composition having high flame retardancy, high rigidity, and high fluidity. For example, it can be produced by a production method in which a polycarbonate resin and a flame retardant are first melt-kneaded, and inorganic fibers and a lubricant are added in the middle and melt-kneaded.

上記の製造方法で、高難燃性、高剛性、高流動性を備えた熱可塑性樹脂組成物が得られる理由は以下の通りである。   The reason that a thermoplastic resin composition having high flame retardancy, high rigidity, and high fluidity can be obtained by the above-described production method is as follows.

ポリカーボネート樹脂単体だけでは、高難燃性・高剛性・高流動性を発現することはできない。難燃剤は高難燃性化、無機繊維は高剛性化、滑剤は高流動性化にそれぞれ寄与する。しかし、これらのポリカーボネート樹脂・難燃剤・無機繊維・滑剤を同時に添加して溶融混練しても高難燃性・高剛性化・高流動性を同時に発現させることはできない。   A polycarbonate resin alone cannot exhibit high flame retardancy, high rigidity, and high fluidity. The flame retardant contributes to high flame retardancy, the inorganic fiber contributes to high rigidity, and the lubricant contributes to high fluidity. However, even if these polycarbonate resins, flame retardants, inorganic fibers, and lubricants are simultaneously added and melt-kneaded, high flame retardancy, high rigidity, and high fluidity cannot be simultaneously achieved.

なぜなら、高難燃性を発現させるためには難燃剤を樹脂組成物内に均一に分散させる必要があり、その為には溶融混練時に強いせん断力が必要となる。一方、高剛性・高流動性を発現させるためには無機繊維は長繊維の方が良く、その為には溶融混練時は弱いせん断力の方が良い。また、滑剤は強いせん断力だと滑剤自身が劣化・分解してしまいその機能を果たすことが出来なくなってしまうのでせん断力は弱い方が良い。   This is because it is necessary to uniformly disperse the flame retardant in the resin composition in order to exhibit high flame retardancy, and a strong shearing force is required during melt-kneading. On the other hand, in order to exhibit high rigidity and high fluidity, it is better to use long fibers as the inorganic fibers, and therefore, it is better to use a weak shear force during melt-kneading. Further, if the lubricant has a strong shearing force, the lubricant itself deteriorates or decomposes and cannot perform its function. Therefore, the shearing force is preferably weak.

せん断力は、溶融混練時の混練機のスクリューの長さと関係がある。スクリュー長さ0%は混練機の先頭(混練の開始位置)を示し、スクリュー長さ100%は混練機の終端(混練完了物の出口)を示すものとする。スクリュー長さ0%に近い位置から投入して長く溶融混練すればするほど、せん断出来る時間が長くなるので、混練される材料が受けるせん断力は強くなる。一方、例えばスクリュー長さ50%のような途中から溶融混練すると、そこからスクリュー長さ100%までの間にせん断出来る時間は短くなるので、その分、混練される材料が受けるせん断力は弱くなる。   The shear force is related to the length of the screw of the kneader at the time of melt kneading. A screw length of 0% indicates the head of the kneader (kneading start position), and a screw length of 100% indicates the end of the kneader (outlet of the kneaded product). The longer the screw is fed from a position close to the screw length of 0% and the longer it is melt-kneaded, the longer the shearing time becomes, so that the shearing force applied to the material to be kneaded increases. On the other hand, for example, when melt-kneading from a middle point such as a screw length of 50%, the shearing time from that point to the screw length of 100% is shortened, so that the shearing force applied to the material to be kneaded is correspondingly reduced. .

したがって、はじめに(スクリュー長さ0%の位置から)ポリカーボネート樹脂と難燃剤を溶融混練することで難燃剤を樹脂組成物内に均一に分散させることができる。また、無機繊維と滑剤を途中から添加して溶融混練することで、無機繊維を長繊維に保つことができ、滑剤の劣化・分解を抑制することができる。その結果、高難燃性・高剛性化・高流動性を備えたポリカーボネート樹脂組成物を得ることができる。   Therefore, the flame retardant can be uniformly dispersed in the resin composition by melt-kneading the polycarbonate resin and the flame retardant first (from the position where the screw length is 0%). Further, by adding and kneading the inorganic fiber and the lubricant in the middle and melt-kneading the inorganic fiber, the inorganic fiber can be maintained as a long fiber, and deterioration and decomposition of the lubricant can be suppressed. As a result, a polycarbonate resin composition having high flame retardancy, high rigidity, and high fluidity can be obtained.

さらには、ガラス繊維とシリコーン化合物と滑剤を途中から添加して溶融混練することが好ましい。そうすることで、ガラス繊維を長繊維に保つことができる。滑剤についてはその劣化・分解を抑制することができる。またガラス繊維とシリコーン化合物を同時に添加することで、難燃剤がガラス繊維の周辺に集まり易くなりガラス繊維が蝋燭効果で難燃性を低下させる効果を抑制し、高難燃性・高剛性化・高流動性に優れたポリカーボネート樹脂組成物を得ることができる。   Further, it is preferable that the glass fiber, the silicone compound, and the lubricant are added in the middle and melt-kneaded. By doing so, the glass fibers can be kept as long fibers. The deterioration and decomposition of the lubricant can be suppressed. Also, by adding glass fiber and silicone compound at the same time, the flame retardant tends to gather around the glass fiber, suppressing the effect of reducing the flame retardancy of the glass fiber by the candle effect. A polycarbonate resin composition having excellent high fluidity can be obtained.

また、本発明に係る熱可塑性樹脂組成物は、ポリカーボネート樹脂、難燃剤、無機繊維、滑剤を含む熱可塑性樹脂組成物であり、難燃性がHB以上かつ、流動性が150mm以上の物性を備えたものである。好ましくはさらにシリコーン化合物を含み、難燃性がHB以上かつ、靭性が5kJ/m2以上かつ、流動性が150mm以上かつ、剛性が3300MPa以上の熱可塑性樹脂組成物である。さらに上限を示すならば、難燃性がHB以上5VA以下かつ、靭性が5kJ/m2以上100kJ/m2以下かつ、流動性が150mm以上300mm以下かつ、剛性が3300MPa以上7000MPa以下の物性を示す熱可塑性樹脂組成物である。   Further, the thermoplastic resin composition according to the present invention is a thermoplastic resin composition containing a polycarbonate resin, a flame retardant, an inorganic fiber, and a lubricant. It is a thing. Preferably, it is a thermoplastic resin composition further containing a silicone compound, having flame retardancy of HB or more, toughness of 5 kJ / m2 or more, fluidity of 150 mm or more, and rigidity of 3300 MPa or more. If the upper limit is further indicated, thermoplasticity showing physical properties of flame retardancy of HB or more and 5 VA or less, toughness of 5 kJ / m2 or more and 100 kJ / m2 and fluidity of 150 mm or more and 300 mm or less, and rigidity of 3300 MPa or more and 7000 MPa or less It is a resin composition.

本発明に係る熱可塑性樹脂組成物の処方は、ポリカーボネート樹脂100質量部に対して、難燃剤としてスルホン酸金属塩を0.1〜5質量部、無機繊維としてガラス繊維を1〜50質量部、シリコーン化合物を0.1〜10質量部、滑剤を0.1〜10質量部、ドリップ抑制剤を0.1〜5質量部を含む。特に、スルホン酸金属塩がポリスチレンスルホン酸金属塩であり、ドリップ抑制剤がフッ素樹脂であり、シリコーン化合物が芳香族基を有するポリオルガノシロキサンであり、滑剤が脂肪酸、脂肪酸エステル、脂肪酸アラミドからなる群より選ばれる1種又は2種以上のものであることが好ましい。   The formulation of the thermoplastic resin composition according to the present invention is based on 100 parts by mass of a polycarbonate resin, 0.1 to 5 parts by mass of a metal sulfonate as a flame retardant, and 1 to 50 parts by mass of glass fibers as inorganic fibers. It contains 0.1 to 10 parts by mass of a silicone compound, 0.1 to 10 parts by mass of a lubricant, and 0.1 to 5 parts by mass of a drip inhibitor. In particular, the metal sulfonic acid salt is a metal polystyrene sulfonic acid salt, the drip inhibitor is a fluororesin, the silicone compound is a polyorganosiloxane having an aromatic group, and the lubricant is a group consisting of a fatty acid, a fatty acid ester, and a fatty acid aramid. It is preferable that one or two or more selected from the above.

ガラス繊維の繊維長は150μm以上1000μm以下の範囲にあることが望ましい。また、混練機のスクリュー長さの50%から80%の間で無機繊維と滑剤を添加するとよい。混練機は、単軸スクリュー式、二軸スクリュー式、多軸スクリュー式など任意でよい。   The fiber length of the glass fiber is desirably in the range of 150 μm or more and 1000 μm or less. Further, it is preferable to add the inorganic fiber and the lubricant in the range of 50% to 80% of the screw length of the kneader. The kneader may be of any type, such as a single screw type, a twin screw type, or a multi screw type.

本発明に係る熱可塑性樹脂組成物を用いて射出成型等によって製造された電気・電子・OA機器等の外装材部品、たとえば、複写機や複合機の外装材部品も本発明に含まれる。なお、本発明に係る熱可塑性樹脂組成物を用いて製造される成形品はこれに限定されるものではない。たとえば、家電製品や自動車部品などでもよい。   The present invention also includes exterior parts such as electric / electronic / OA equipment manufactured by injection molding or the like using the thermoplastic resin composition according to the present invention, for example, exterior parts for copiers and multifunction peripherals. In addition, the molded article manufactured using the thermoplastic resin composition according to the present invention is not limited to this. For example, home electric appliances and automobile parts may be used.

次に、本発明に係る熱可塑性樹脂組成物の各種特性の評価方法について説明する。   Next, methods for evaluating various properties of the thermoplastic resin composition according to the present invention will be described.

(1)難燃性評価
評価対象の樹脂組成物を80℃で4時間乾燥させた後、長さ100mm×幅10mm×奥行き1.6mmの短冊型試験片となるように成形し、難燃性試験を行った。
(1) Evaluation of Flame Retardancy After the resin composition to be evaluated was dried at 80 ° C. for 4 hours, it was molded into a strip-shaped test piece having a length of 100 mm × a width of 10 mm × a depth of 1.6 mm. The test was performed.

難燃性試験は、上記試験片を温度23℃、湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めている、周知のUL94試験(機器の部品用プラスチック材料の燃焼試験)に準拠して行った。UL94Vとは、周知のように、HB、V2、V1、V0、5VB、5VAにグレード分けされており、この順で難燃性が高くなる(HBが最も難燃性が低く、5VAが最も難燃性が高い)。   In the flame retardancy test, the test piece was conditioned in a constant temperature room at a temperature of 23 ° C. and a humidity of 50% for 48 hours, and a well-known UL94 test (equipment of equipment) defined by the United States Underwriters Laboratories (UL) was conducted. (Combustion test of plastic materials for parts). As is well known, UL94V is classified into HB, V2, V1, V0, 5VB, and 5VA, and the flame retardancy increases in this order (HB has the lowest flame retardancy, and 5VA has the least difficulty). Highly flammable).

後述する各実施例および比較例の試験片の難燃性を上記の方法で評価し、評価結果を以下のように分類した。
◎:5VA、5VB、V0
○:V1およびV2
△:HB
×:notV (規格外/実用上問題あり)
The flame retardancy of the test pieces of each of Examples and Comparative Examples described later was evaluated by the above method, and the evaluation results were classified as follows.
◎: 5VA, 5VB, V0
:: V1 and V2
△: HB
×: notV (non-standard / practical problem)

(2)靭性評価
評価対象の樹脂組成物を80℃で4時間乾燥させた後、80mm×10mm×4mmの短冊型試験片となるように成形し、「JIS−K7110」に準拠してアイゾット衝撃試験を行い、下記評価基準により評価した。
◎:11kJ/m以上
○:8kJ/m以上11kJ/m未満
△:5kJ/m以上8kJ/m未満(実用上問題なし)
×:5kJ/m未満(実用上問題あり)
(2) Evaluation of Toughness After the resin composition to be evaluated was dried at 80 ° C. for 4 hours, it was molded into a rectangular test piece of 80 mm × 10 mm × 4 mm, and subjected to Izod impact in accordance with “JIS-K7110”. A test was performed and evaluated according to the following evaluation criteria.
◎: 11kJ / m 2 or more ○: 8kJ / m 2 more than 11kJ / m less than 2 △: 5kJ / m 2 or more 8kJ / m less than 2 (practically no problem)
×: less than 5 kJ / m 2 (problematic in practice)

(3)流動性の評価
流動性の評価は、評価対象の樹脂組成物を80℃で4時間乾燥させた後、幅10mm、厚み2mmのらせん状の金型に、射出成形を行い、流動長さを測定した。金型温度50℃、成形温度250℃、射出速度30mm/sec、射出圧力90MPaとした。成形品を薄肉化した場合にも適切に成形可能となることを考慮して以下の基準で評価した。
○:200mm以上
△:150mm以上200mm未満
×:150mm未満
(3) Evaluation of fluidity The fluidity was evaluated by drying the resin composition to be evaluated at 80 ° C. for 4 hours, and then performing injection molding on a spiral mold having a width of 10 mm and a thickness of 2 mm. Was measured. The mold temperature was 50 ° C., the molding temperature was 250 ° C., the injection speed was 30 mm / sec, and the injection pressure was 90 MPa. In consideration of the fact that the molded product can be appropriately molded even when the thickness of the molded product is reduced, evaluation was made based on the following criteria.
:: 200 mm or more △: 150 mm or more and less than 200 mm ×: less than 150 mm

(4)剛性の評価
評価対象の樹脂組成物を80℃で4時間乾燥させた後、80mm×10mm×4mmの短冊型試験片となるように成形し、「JIS 7127」の条件に準拠して曲げ試験を行い、下記評価基準により評価した。
○:3600MPa以上
△:3300MPa以上3600MPa未満
×:3300MPa未満
(4) Evaluation of Rigidity After the resin composition to be evaluated was dried at 80 ° C. for 4 hours, it was molded into a rectangular test piece of 80 mm × 10 mm × 4 mm, and in accordance with the conditions of “JIS 7127”. A bending test was performed and evaluated according to the following evaluation criteria.
:: 3600 MPa or more Δ: 3300 MPa or more and less than 3600 MPa ×: less than 3300 MPa

次に、本発明に係る熱可塑性樹脂組成物に含まれる組成物について説明する。   Next, the composition contained in the thermoplastic resin composition according to the present invention will be described.

<ポリカーボネート>
ポリカーボネート樹脂は、芳香族二価フェノール系化合物と、ホスゲンまたは炭酸ジエステルとを反応させることで製造できる、芳香族ホモまたはコポリカーボネート樹脂である。ポリカーボネート樹脂の製造方法は、特に限定されず、公知の製造方法を採用できる。ポリカーボネート樹脂の製造方法の例には、芳香族二価フェノール系化合物にホスゲンなどを直接反応させる方法(界面重合法)や、芳香族二価フェノール系化合物とジフェニルカーボネートなどの炭酸ジエステルとを溶融状態でエステル交換反応させる方法(溶液法)が含まれる。
<Polycarbonate>
The polycarbonate resin is an aromatic homo- or copolycarbonate resin that can be produced by reacting an aromatic dihydric phenol compound with phosgene or a carbonic acid diester. The method for producing the polycarbonate resin is not particularly limited, and a known production method can be employed. Examples of the method for producing a polycarbonate resin include a method in which phosgene or the like is directly reacted with an aromatic dihydric phenol compound (interfacial polymerization method), or a method in which an aromatic dihydric phenol compound and a carbonic acid diester such as diphenyl carbonate are melted. (Solution method).

ポリカーボネート樹脂の粘度平均分子量は、1×10〜1×10が好ましい。ポリカーボネート樹脂の粘度平均分子量は、「CBM-20Aliteシステム」および「GPCソフトウェア」(いずれも、島津製作所社製)で測定できる。 The viscosity average molecular weight of the polycarbonate resin is preferably from 1 × 10 4 to 1 × 10 6 . The viscosity average molecular weight of the polycarbonate resin can be measured with "CBM-20Alite system" and "GPC software" (both manufactured by Shimadzu Corporation).

芳香族二価フェノール系化合物の例には、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシ−3,5−ジフェニル)ブタン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、および1−フェニル−1,1−ビス(4−ヒドロキシフェニル)エタンが含まれる。芳香族二価フェノール系化合物は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。   Examples of the aromatic dihydric phenol compound include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and bis (4-hydroxyphenyl) ) Methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy-3,5-diphenyl) butane, 2,2 -Bis (4-hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-diethylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, and 1 -Phenyl-1,1-bis (4-hydroxyphenyl) ethane. As the aromatic dihydric phenol compound, one kind may be used alone, or two or more kinds may be used in combination.

炭酸ジエステルの例には、ジフェニルカーボネート、ジトルイルカーボネート、ビス(クロロフェニル)カーボネートなどのジアリールカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネート、ホスゲンなどのカルボニルハライド、2価フェノールのジハロホルメートなどのハロホルメートが含まれる。炭酸ジエステルは、ジフェニルカーボネートが好ましい。炭酸ジエステルは、1種類を単独で使用してもよいし、2種類以上を併用してもよい。   Examples of carbonic acid diesters include diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, carbonyl halides such as phosgene, and haloformates such as dihaloformates of dihydric phenols. It is. The diester carbonate is preferably diphenyl carbonate. One type of carbonic acid diester may be used alone, or two or more types may be used in combination.

ポリカーボネート樹脂の例には、1,1,1−トリス(4−ヒドロキシフェニル)エタンまたは1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンのような三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂が含まれる。ポリカーボネート樹脂は、1種類を単独で使用してもよいし、2種類以上を併用した混合物であってもよい。また、ポリカーボネート樹脂は、使用済みとなって廃棄された成形加工品から得られたポリカーボネート樹脂(再生ポリカーボネート樹脂)であってもよい。   Examples of the polycarbonate resin include polyfunctional tri- or higher such as 1,1,1-tris (4-hydroxyphenyl) ethane or 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane. It includes a branched polycarbonate resin obtained by copolymerizing a functional aromatic compound and a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic bifunctional carboxylic acid. One type of polycarbonate resin may be used alone, or a mixture of two or more types may be used. Further, the polycarbonate resin may be a polycarbonate resin (recycled polycarbonate resin) obtained from a molded product discarded after being used.

<無機繊維>
無機繊維は、調製してもよいし、市販品を購入してもよい。無機繊維の直径は2〜40μmのものが好ましく、繊維長は通常0.1〜10mmの範囲にあるものを使用する。シランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤等で表面処理あるいは表面酸化処理等が施されたものが好ましい。またオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ウレタン系樹脂等で集束処理されたものが好ましい。無機繊維は好ましくはガラス繊維が良い。添加量は、ポリカーボネート樹脂100質量部に対して、1〜50質量部が好ましい。1質量部未満だと難燃性と剛性に悪影響を与え、50質量部より多いと流動性に悪影響を与える。
<Inorganic fiber>
The inorganic fiber may be prepared, or a commercially available product may be purchased. The diameter of the inorganic fiber is preferably 2 to 40 μm, and the fiber length is usually in the range of 0.1 to 10 mm. It is preferable to use a silane coupling agent, a titanate coupling agent, an aluminate coupling agent or the like which has been subjected to a surface treatment or a surface oxidation treatment. Further, it is preferable to use a resin that has been subjected to a bundle treatment with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like. The inorganic fibers are preferably glass fibers. The addition amount is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polycarbonate resin. If it is less than 1 part by mass, the flame retardancy and rigidity are adversely affected, and if it is more than 50 parts by mass, the fluidity is adversely affected.

<難燃剤>
難燃剤は、有機系難燃剤であっても、無機系難燃剤であってもよい。有機系難燃剤の例には、ブロモ化合物、リン化合物が含まれる。無機系難燃剤の例には、アンチモン化合物や金属水酸化物が含まれる。スルホン酸金属塩が特に好ましい。難燃剤は1種単独で用いても2種以上併用してもよい。添加量は、ポリカーボネート樹脂100質量部に対して、0.1〜5質量部が好ましい。0.1質量部未満だと難燃性と流動性に悪影響を与え、5質量部より多いと靭性に悪影響を与える。
<Flame retardant>
The flame retardant may be an organic flame retardant or an inorganic flame retardant. Examples of the organic flame retardant include a bromo compound and a phosphorus compound. Examples of inorganic flame retardants include antimony compounds and metal hydroxides. Metal sulfonic acid salts are particularly preferred. The flame retardants may be used alone or in combination of two or more. The addition amount is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polycarbonate resin. If it is less than 0.1 part by mass, the flame retardancy and fluidity are adversely affected, and if it is more than 5 parts by mass, the toughness is adversely affected.

<ドリップ抑制剤>
ドリップ抑制剤は、燃焼時に樹脂材料の滴下(ドリップ)を抑制し、難燃性を向上させる目的で添加されるものである。ドリップ抑制剤としては、フェノール樹脂類、フッ素系ドリップ抑制剤、シリコンゴム類、層状ケイ酸塩等が挙げられる。ドリップ抑制剤は1種単独で用いても2種以上併用してもよい。フッ素系ドリップ抑制剤が特に好ましい。添加量は、ポリカーボネート樹脂100質量部に対して、0.1〜5質量部が好ましい。0.1質量部未満だと難燃性に悪影響を与え、5質量部より多いと靭性と流動性に悪影響を与える。
<Drip inhibitor>
The drip suppressing agent is added for the purpose of suppressing dripping (drip) of the resin material during combustion and improving flame retardancy. Examples of the drip inhibitor include phenol resins, fluorine-based drip inhibitors, silicone rubbers, and layered silicates. The drip inhibitors may be used alone or in combination of two or more. Fluorine drip inhibitors are particularly preferred. The addition amount is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polycarbonate resin. If it is less than 0.1 part by mass, the flame retardancy is adversely affected, and if it is more than 5 parts by mass, the toughness and fluidity are adversely affected.

<シリコーン化合物>
シリコーン化合物はシロキサン結合に有機基がついたオルガノポリシロキサンをベースとしたものであり、シリコーン化合物としては、ポリ(フェニルメチルメトキシハイドロジェン)シロキサン、ポリ(フェニルメチル)シロキサン、ポリ(フェニルハイドロジェン)シロキサン、ポリ(メチルエチル)シロキサン、ポリ(ジメチル)シロキサン、ポリ(ジフェニル)シロキサン、ポリ(ジエチル)シロキサン、ポリ(エチルフェニル)シロキサンを挙げることができる。
<Silicone compound>
The silicone compound is based on an organopolysiloxane having an organic group attached to a siloxane bond. Examples of the silicone compound include poly (phenylmethylmethoxyhydrogen) siloxane, poly (phenylmethyl) siloxane, and poly (phenylhydrogen). Examples include siloxane, poly (methylethyl) siloxane, poly (dimethyl) siloxane, poly (diphenyl) siloxane, poly (diethyl) siloxane, and poly (ethylphenyl) siloxane.

さらに、ポリオルガノシロキサンの具体例として、ジメチルシロキサン、メチルエチルシロキサン、フェニルメチルシロキサン、ジフェニルシロキサン、ジエチルシロキサン、エチルフェニルシロキサン、メチルハイドロジェンシロキサン、フェニルハイドロジェンシロキサン、フェニルメトキシシロキサン、メチルメトキシシロキサンなどのシロキサンユニットの複数が共重合したもの及びこれらの混合物を挙げることができる。   Further, specific examples of polyorganosiloxane include dimethylsiloxane, methylethylsiloxane, phenylmethylsiloxane, diphenylsiloxane, diethylsiloxane, ethylphenylsiloxane, methylhydrogensiloxane, phenylhydrogensiloxane, phenylmethoxysiloxane, methylmethoxysiloxane, and the like. Examples thereof include those obtained by copolymerizing a plurality of siloxane units and mixtures thereof.

これらポリオルガノシロキサンを構成するシロキサンユニットのケイ素に結合する官能基(置換基)としては、例えば水素基、芳香族基、アルキル基、アルコキシ基、水酸基、アミノ基、カルボキシル基、シラノール基、メルカプト基、エポキシ基、ビニル基、アリールオキシ基、ポリオキシアルキレン基、ビニル基等が挙げられる。ポリオルガノシロキサンの形態については、例えばオイル状、ワニス状、ガム状、粉末状、ペレット状のいずれであっても良い。   Examples of the functional group (substituent) bonded to silicon of the siloxane unit constituting the polyorganosiloxane include a hydrogen group, an aromatic group, an alkyl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, a silanol group, and a mercapto group. , An epoxy group, a vinyl group, an aryloxy group, a polyoxyalkylene group, a vinyl group and the like. The form of the polyorganosiloxane may be, for example, any of oil, varnish, gum, powder, and pellet.

芳香族基を有するポリオルガノシロキサンが特に好ましい。添加量は、ポリカーボネート樹脂100質量部に対して、0.1〜10質量部が好ましい。0.1質量部未満だと難燃性と靭性に悪影響を与え、10質量部より多いと流動性に悪影響を与える。   Polyorganosiloxanes having aromatic groups are particularly preferred. The addition amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polycarbonate resin. If it is less than 0.1 part by mass, the flame retardancy and toughness are adversely affected, and if it is more than 10 parts by mass, the fluidity is adversely affected.

<滑剤>
滑剤としては、脂肪酸、脂肪酸塩、脂肪酸エステル、脂肪酸アラミド、シランポリマー、固体パラフィン、液体パラフィン、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸アミド、シリコーン粉末、メチレンビスステアリン酸アミド及びN,N’−エチレンビスステアリン酸アミドからなる群より選ばれる1種又は2種以上のものが挙げられる。脂肪酸、脂肪酸エステル、脂肪酸アラミドが特に好ましい。添加量は、ポリカーボネート樹脂100質量部に対して、0.1〜10質量部が好ましい。0.1質量部未満だと流動性に悪影響を与え、10質量部より多いと難燃性と靭性に悪影響を与える。
<Lubricant>
Examples of the lubricant include fatty acids, fatty acid salts, fatty acid esters, fatty acid aramids, silane polymers, solid paraffin, liquid paraffin, calcium stearate, zinc stearate, stearic amide, silicone powder, methylenebisstearic amide, and N, N′-ethylene One or more kinds selected from the group consisting of bisstearic acid amides may be mentioned. Fatty acids, fatty acid esters and fatty acid aramids are particularly preferred. The addition amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polycarbonate resin. If it is less than 0.1 part by mass, the fluidity is adversely affected, and if it is more than 10 parts by mass, the flame retardancy and toughness are adversely affected.

つぎに、実施例および比較例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Next, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

以下に示す表1は、各組成物(化合物)の名称、製品名、製造者名を一覧にして示したものである。   Table 1 below lists the names, product names, and manufacturer names of each composition (compound).

表2は、実施例および比較例の評価結果とそれぞれの熱可塑性樹脂組成物の処方を示している。表2では、各組成物の割合を、質量部数を単位に示してある。   Table 2 shows the evaluation results of Examples and Comparative Examples and the formulations of the respective thermoplastic resin compositions. In Table 2, the proportion of each composition is shown in units of parts by mass.

実施例および比較例について説明する。   Examples and comparative examples will be described.

(実施例1)
2軸混練機「KTX−30」(神戸製鋼所社製)を用いて、ポリカーボネート樹脂「タフロンA-1900」(出光興産社製)100質量部と、難燃剤「KFBS」(三菱マテリアル電子化成社製)1質量部とを、シリンダー温度260℃、スクリュー回転数300rpmで混練しているところに、KTX-30のスクリュー長70%の位置から、ガラス繊維「CS 3PE-937S」(日東紡績社製)40質量部と滑剤「LICOWAX PE520」(クラリアント社製)1質量部とを途中添加することにより、実施例1の熱可塑性樹脂組成物を得た。難燃性、靱性、流動性、剛性の何れの物性も実用上問題のない値である。
(Example 1)
Using a twin-screw kneader "KTX-30" (manufactured by Kobe Steel), 100 parts by mass of a polycarbonate resin "Taflon A-1900" (manufactured by Idemitsu Kosan Co., Ltd.) and a flame retardant "KFBS" (Mitsubishi Materials Electronics Chemical Co., Ltd.) And 1 part by mass of a glass fiber "CS 3PE-937S" (manufactured by Nitto Boseki Co., Ltd.) from a position where the screw length of 70% of KTX-30 is kneaded at a cylinder temperature of 260 ° C. and a screw rotation speed of 300 rpm. ) 40 parts by mass and 1 part by mass of a lubricant "LICOWAX PE520" (manufactured by Clariant) were added in the middle to obtain a thermoplastic resin composition of Example 1. All of the physical properties such as flame retardancy, toughness, fluidity, and rigidity are values having no practical problems.

(実施例2)
実施例2の熱可塑性樹脂組成物は、ドリップ抑制剤「PR-HF-6」(住友ベークライト社製)2質量部と、シリコーン化合物「KR-220L」(信越化学工業社製)1.5質量部を、KTX-30のスクリュー長70%の位置から新たに途中添加した以外は全て実施例1と同様に作製した。実施例2では、実施例1に対してドリップ抑制剤とシリコーン化合物を新たに追加したことにより難燃性が向上した(HB→V2)。
(Example 2)
The thermoplastic resin composition of Example 2 was composed of 2 parts by mass of a drip inhibitor "PR-HF-6" (manufactured by Sumitomo Bakelite) and 1.5 parts by mass of a silicone compound "KR-220L" (manufactured by Shin-Etsu Chemical Co., Ltd.) All parts were prepared in the same manner as in Example 1 except that KTX-30 was newly added from the position of the screw length of 70%. In Example 2, flame retardancy was improved by adding a drip inhibitor and a silicone compound to Example 1 (HB → V2).

(実施例3)
実施例3の熱可塑性樹脂組成物は、実施例2における難燃剤を「ポリスチレンスルホン酸ナトリウム」(富士フィルム和光純薬社製)1質量部に、ドリップ抑制剤を「メタブレンA-3750」(三菱ケミカル社製)0.5質量部に、シリコーン化合物を「KR-480」(信越化学工業社製)1.5質量部に、滑剤を「脂肪酸アマイドS」(花王社製)1質量部に変えた以外は全て実施例2と同様に作製した。実施例3では、実施例2の組成物を上記のように変更することで実施例2に比べて難燃性(V2→V1)と靱性(5→9)が向上した。
(Example 3)
In the thermoplastic resin composition of Example 3, the flame retardant in Example 2 was 1 part by mass of "sodium polystyrene sulfonate" (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and the drip inhibitor was "METABLEN A-3750" (Mitsubishi). 0.5 parts by mass of Chemical Co., Ltd., 1.5 parts by mass of silicone compound "KR-480" (Shin-Etsu Chemical Co., Ltd.), and 1 part by mass of lubricant "Fatty Acid Amide S" (Kao Corporation) All were produced in the same manner as in Example 2 except for the above. In Example 3, the flame retardancy (V2 → V1) and toughness (5 → 9) were improved as compared with Example 2 by changing the composition of Example 2 as described above.

(実施例4)
実施例4の熱可塑性樹脂組成物は、実施例3のガラス繊維「CS 3PE-937S」(日東紡績社製)40質量部を15質量部へ変えた以外は全て実施例3と同様に作製した。上記の変更により、実施例3に比べて難燃性(V1→V0)、靱性(9→12)、流動性(170→220)が向上し、剛性(3700→3300)は低下したが、いずれの物性も良好な値であり、各実施例の中で総合的に最良である。
(Example 4)
The thermoplastic resin composition of Example 4 was prepared in the same manner as in Example 3 except that the glass fiber “CS 3PE-937S” (manufactured by Nitto Boseki) of 40 parts by mass was changed to 15 parts by mass. . By the above change, the flame retardancy (V1 → V0), toughness (9 → 12), fluidity (170 → 220) and rigidity (3700 → 3300) were reduced compared to Example 3. Are also good values, and are the best overall in each of the examples.

(実施例5)
実施例5の熱可塑性樹脂組成物は、途中添加する際のスクリュー長70%を30%へ変えた以外は全て実施例4と同様に作製した。上記スクリュー長の変更により難燃性(V0→V1)、靱性(12→6)、流動性(220→180)、剛性(3700→3300)がすべて低下したが、何れの物性も実用上問題のない範囲にある。実施例4と対比すれば、スクリュー長は50%以上であることが好ましいと考えられる。
(Example 5)
The thermoplastic resin composition of Example 5 was prepared in the same manner as in Example 4 except that the screw length of 70% at the time of intermediate addition was changed to 30%. Flame retardancy (V0 → V1), toughness (12 → 6), fluidity (220 → 180), and rigidity (3700 → 3300) all decreased due to the above change in screw length. Not in range. Compared with Example 4, it is considered that the screw length is preferably 50% or more.

(実施例6)
実施例6の熱可塑性樹脂組成物は、実施例4におけるガラス繊維「CS 3PE-937S」(日東紡績社製)15質量部を5質量部に、難燃剤の「ポリスチレンスルホン酸ナトリウム」(富士フィルム和光純薬社製)1質量部を0.5質量部に、ドリップ抑制剤「メタブレンA-3750」(三菱ケミカル社製)0.5質量部を0.1質量部に、シリコーン化合物を「KR-480」(信越化学工業社製)1.5質量部を5.5質量部に、滑剤「脂肪酸アマイドS」(花王社製)1質量部を0.1質量部に変えた以外は全て実施例4と同様に作製した。実施例6では、実施例4に比べて靱性(12→120)は大きく向上したが、それ以外の物性(難燃性(V0→HB)、流動性(220→150)、剛性(3700→3300))は低下した。靱性以外の他の物性が低下したことをからして、実施例6における靱性(120)は適切な範囲の上限値を超えていると考えられる。
(Example 6)
The thermoplastic resin composition of Example 6 was prepared by adding 15 parts by mass of the glass fiber “CS 3PE-937S” (manufactured by Nitto Boseki Co., Ltd.) to 5 parts by mass and the flame retardant “sodium polystyrene sulfonate” (Fuji Film 0.5 parts by mass of 1 part by mass (Wako Pure Chemical Industries, Ltd.), 0.5 parts by mass of drip inhibitor "METABLEN A-3750" (manufactured by Mitsubishi Chemical Corporation) in 0.1 parts by mass, and silicone compound "KR" -480 "(Shin-Etsu Chemical Co., Ltd.) 1.5 parts by mass to 5.5 parts by mass, and lubricant" Fatty Acid Amide S "(Kao Corporation) 1 part by mass was changed to 0.1 part by mass. It was produced in the same manner as in Example 4. In Example 6, the toughness (12 → 120) was greatly improved as compared with Example 4, but other physical properties (flammability (V0 → HB), fluidity (220 → 150), rigidity (3700 → 3300) )) Dropped. It is considered that the toughness (120) in Example 6 exceeded the upper limit of an appropriate range, because other physical properties other than toughness were reduced.

(実施例7)
実施例7の熱可塑性樹脂組成物は、実施例4の滑剤「脂肪酸アマイドS」(花王社製)1質量部を3質量部に変えた以外は全て実施例4と同様に作製した。実施例7では、実施例4に比べて流動性(220→310)は向上したが、それ以外の物性(難燃性(V0→HB)、靱性(12→5)、剛性(3700→3300))は低下した。流動性以外の他の物性が低下したことをからして、実施例7における流動性(310)は適切な範囲の上限値を超えていると考えられる。
(Example 7)
The thermoplastic resin composition of Example 7 was prepared in the same manner as in Example 4 except that 1 part by mass of the lubricant “fatty acid amide S” (manufactured by Kao Corporation) in Example 4 was changed to 3 parts by mass. In Example 7, the fluidity (220 → 310) was improved as compared with Example 4, but other physical properties (flame retardancy (V0 → HB), toughness (12 → 5), rigidity (3700 → 3300)) ) Dropped. It is considered that the fluidity (310) in Example 7 exceeds the upper limit of the appropriate range, because other physical properties other than the fluidity were reduced.

(実施例8)
実施例8の熱可塑性樹脂組成物は、途中添加する際のスクリュー長70%を90%へ変えた以外は全て実施例4と同様に作製した。実施例8では、実施例4に比べてガラス繊維長(500→1200)が長くなって剛性(3700→4800)が向上したが、それ以外の物性(難燃性(V0→V1)、靱性(12→5)、流動性(220→155))は低下した。剛性以外の他の物性が低下したことをからして、実施例8におけるガラス繊維長(1200μm)は適切な範囲の上限値を超えていると考えられる。また実施例4と対比すれば、スクリュー長は80%以下であることが好ましいと考えられる。
(Example 8)
The thermoplastic resin composition of Example 8 was prepared in the same manner as in Example 4 except that the screw length at the time of the intermediate addition was changed from 70% to 90%. In Example 8, the glass fiber length (500 → 1200) was longer and the rigidity (3700 → 4800) was improved as compared with Example 4, but other physical properties (flame retardancy (V0 → V1), toughness ( 12 → 5), the liquidity (220 → 155)) decreased. It is considered that the glass fiber length (1200 μm) in Example 8 exceeded the upper limit of an appropriate range, because physical properties other than rigidity were reduced. Further, in comparison with Example 4, it is considered that the screw length is preferably 80% or less.

(比較例1)
比較例1の熱可塑性樹脂組成物は、実施例4のスクリュー長70%、もしくは実施例5のスクリュー長30%、もしくは実施例8のスクリュー長90%を0%へ変えた(途中添加ではなくはじめから一括添加へ変えた)以外は全て実施例4(または5、8)と同様に作製した。実施例4に比べて、スクリュー長の違いにより全ての物性が低下している。特に難燃性、靱性および剛性については実用上問題の生じる値まで低下した。また、実施例5ではガラス繊維長が200μmであるのに対して、全ての物性が低下して実用上問題の生じる比較例1のガラス繊維長は100μmである。したがって、これらの間にガラス繊維長の適正範囲の下限値(たとえば150μm)があると考えられる。
(Comparative Example 1)
In the thermoplastic resin composition of Comparative Example 1, the screw length of Example 4 was changed to 70%, the screw length of Example 5 was changed to 30%, or the screw length of Example 8 was changed to 0%. All were prepared in the same manner as in Example 4 (or 5, 8) except for changing from the beginning to batch addition). As compared with Example 4, all the physical properties are reduced due to the difference in the screw length. In particular, the flame retardancy, toughness, and rigidity were reduced to values that would cause practical problems. Further, while the glass fiber length in Example 5 was 200 μm, the glass fiber length in Comparative Example 1 in which all the physical properties deteriorated and caused a practical problem was 100 μm. Therefore, it is considered that there is a lower limit value (for example, 150 μm) of the appropriate range of the glass fiber length between them.

(比較例2)
比較例2の熱可塑性樹脂組成物は、実施例4の滑剤「脂肪酸アマイドS」(花王社製)1質量部を0質量部へ変えた(滑剤無し)以外は全て実施例4と同様に作製した。これにより、実施例4に比べてすべての物性(難燃性(V0→HB)、靱性(12→5)、流動性(220→140)、剛性(3700→3400))は低下した。特に流動性については実用上問題の生じる値まで低下した。
(Comparative Example 2)
The thermoplastic resin composition of Comparative Example 2 was produced in the same manner as in Example 4 except that 1 part by mass of the lubricant “fatty acid amide S” (manufactured by Kao Corporation) in Example 4 was changed to 0 parts by mass (no lubricant). did. As a result, all physical properties (flame retardancy (V0 → HB), toughness (12 → 5), fluidity (220 → 140), rigidity (3700 → 3400)) were lower than those of Example 4. In particular, the fluidity decreased to a value at which practical problems occurred.

(比較例3)
比較例3の熱可塑性樹脂組成物は、実施例4のガラス繊維をスクリュー長70%から途中添加しているところを0%へ変えた以外は全て実施例4と同様に作製した。これにより、実施例4に比べてすべての物性(難燃性(V0→V1)、靱性(12→5)、流動性(220→180)、剛性(3700→2600))は低下した。特に剛性については実用上問題の生じる値まで低下した。
(Comparative Example 3)
The thermoplastic resin composition of Comparative Example 3 was prepared in the same manner as in Example 4 except that the glass fiber of Example 4 was changed to 70% from 70% of the screw length to 0%. As a result, all physical properties (flame retardancy (V0 → V1), toughness (12 → 5), fluidity (220 → 180), rigidity (3700 → 2600)) were lower than those of Example 4. In particular, the stiffness was reduced to a value at which practical problems occurred.

以上、本発明の実施の形態を説明してきたが、本発明は実施の形態に示したものに限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   The embodiments of the present invention have been described above. However, the present invention is not limited to those shown in the embodiments, and even if there are changes and additions without departing from the gist of the present invention, included.

Claims (9)

ポリカーボネート樹脂、難燃剤、無機繊維、滑剤を含む熱可塑性樹脂組成物であって、難燃性がHB以上かつ、流動性が150mm以上である熱可塑性樹脂組成物。   A thermoplastic resin composition containing a polycarbonate resin, a flame retardant, an inorganic fiber, and a lubricant, wherein the thermoplastic resin composition has a flame retardancy of HB or more and a fluidity of 150 mm or more. ポリカーボネート樹脂、難燃剤、無機繊維、滑剤、シリコーン化合物を含む熱可塑性樹脂組成物であって、難燃性がHB以上かつ、靭性が5kJ/m2以上かつ、流動性が150mm以上かつ、剛性が3300MPa以上である熱可塑性樹脂組成物。   A thermoplastic resin composition containing a polycarbonate resin, a flame retardant, an inorganic fiber, a lubricant, and a silicone compound.The flame retardancy is HB or more, the toughness is 5 kJ / m2 or more, the fluidity is 150 mm or more, and the rigidity is 3300 MPa. The above thermoplastic resin composition. ポリカーボネート樹脂100質量部に対して、難燃剤としてスルホン酸金属塩を0.1〜5質量部、無機繊維としてガラス繊維を1〜50質量部、シリコーン化合物を0.1〜10質量部、滑剤を0.1〜10質量部、ドリップ抑制剤を0.1〜5質量部を含む請求項2に記載の熱可塑性樹脂組成物。   0.1 to 5 parts by mass of a metal sulfonic acid salt as a flame retardant, 1 to 50 parts by mass of a glass fiber as an inorganic fiber, 0.1 to 10 parts by mass of a silicone compound, and a lubricant for 100 parts by mass of a polycarbonate resin. The thermoplastic resin composition according to claim 2, comprising 0.1 to 10 parts by mass and 0.1 to 5 parts by mass of a drip inhibitor. 前記スルホン酸金属塩がポリスチレンスルホン酸金属塩であり、
前記ドリップ抑制剤がフッ素樹脂であり、
前記シリコーン化合物が芳香族基を有するポリオルガノシロキサンであり、
前記滑剤が脂肪酸、脂肪酸エステル、脂肪酸アラミドからなる群より選ばれる1種又は2種以上のものである請求項3に記載の熱可塑性樹脂組成物。
The sulfonic acid metal salt is a polystyrene sulfonic acid metal salt,
The drip inhibitor is a fluororesin,
The silicone compound is a polyorganosiloxane having an aromatic group,
The thermoplastic resin composition according to claim 3, wherein the lubricant is one or more selected from the group consisting of a fatty acid, a fatty acid ester, and a fatty acid aramid.
前記熱可塑性樹脂組成物の難燃性がHB以上5VA以下かつ、靭性が5kJ/m2以上100kJ/m2以下かつ、流動性が150mm以上300mm以下かつ、剛性が3300MPa以上7000MPa以下である請求項1乃至4のいずれか1つに記載の熱可塑性樹脂組成物。   The flame retardancy of the thermoplastic resin composition is HB or more and 5 VA or less, and the toughness is 5 kJ / m2 or more and 100 kJ / m2 or less, the fluidity is 150 mm or more and 300 mm or less, and the rigidity is 3300 MPa or more and 7000 MPa or less. 5. The thermoplastic resin composition according to any one of 4. 前記ガラス繊維の繊維長が150μm以上1000μm以下である請求項1乃至5のいずれか1つに記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to any one of claims 1 to 5, wherein the glass fiber has a fiber length of 150 µm or more and 1000 µm or less. 請求項1乃至6のいずれか1つに記載の熱可塑性樹脂組成物からなる複写機用の外装材部品。   An exterior material part for a copying machine, comprising the thermoplastic resin composition according to any one of claims 1 to 6. はじめにポリカーボネート樹脂と難燃剤を溶融混練し、無機繊維と滑剤を途中から添加して溶融混練することを特徴とする熱可塑性樹脂組成物の製造方法。   A method for producing a thermoplastic resin composition, comprising: first, melt-kneading a polycarbonate resin and a flame retardant; 混練機のスクリュー長さの50%から80%の間で無機繊維と滑剤を添加することを特徴とする請求項8に記載の熱可塑性樹脂組成物の製造方法。   The method for producing a thermoplastic resin composition according to claim 8, wherein the inorganic fiber and the lubricant are added in an amount of 50% to 80% of the screw length of the kneader.
JP2018186304A 2018-10-01 2018-10-01 THERMOPLASTIC RESIN COMPOSITION AND MANUFACTURING METHOD THEREOF, EXTERIOR MATERIAL PARTS Active JP7209174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186304A JP7209174B2 (en) 2018-10-01 2018-10-01 THERMOPLASTIC RESIN COMPOSITION AND MANUFACTURING METHOD THEREOF, EXTERIOR MATERIAL PARTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186304A JP7209174B2 (en) 2018-10-01 2018-10-01 THERMOPLASTIC RESIN COMPOSITION AND MANUFACTURING METHOD THEREOF, EXTERIOR MATERIAL PARTS

Publications (2)

Publication Number Publication Date
JP2020055932A true JP2020055932A (en) 2020-04-09
JP7209174B2 JP7209174B2 (en) 2023-01-20

Family

ID=70106495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186304A Active JP7209174B2 (en) 2018-10-01 2018-10-01 THERMOPLASTIC RESIN COMPOSITION AND MANUFACTURING METHOD THEREOF, EXTERIOR MATERIAL PARTS

Country Status (1)

Country Link
JP (1) JP7209174B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047428A (en) * 2000-08-03 2002-02-12 Teijin Chem Ltd Flame-retardant thermoplastic resin composition
JP2004359913A (en) * 2003-06-09 2004-12-24 Teijin Chem Ltd Polycarbonate resin composition and method for producing the same
JP2007100023A (en) * 2005-10-07 2007-04-19 Teijin Chem Ltd Flame resistant aromatic polycarbonate resin composition
JP2007246824A (en) * 2006-03-17 2007-09-27 Idemitsu Kosan Co Ltd Glass-fiber reinforced polycarbonate resin composition and its molded article
JP2008163315A (en) * 2006-12-08 2008-07-17 Teijin Chem Ltd Flame-retardant polycarbonate resin composition
JP2009280636A (en) * 2008-05-19 2009-12-03 Idemitsu Kosan Co Ltd Glass-fiber-reinforced flame-retardant polycarbonate resin composition and molded article using the resin composition
JP2011016901A (en) * 2009-07-08 2011-01-27 Teijin Chem Ltd Electric-electronic equipment part
US20120289655A1 (en) * 2010-01-15 2012-11-15 Atsushi Sumita Polycarbonate resin composition
JP2014129489A (en) * 2012-12-28 2014-07-10 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded product thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047428A (en) * 2000-08-03 2002-02-12 Teijin Chem Ltd Flame-retardant thermoplastic resin composition
JP2004359913A (en) * 2003-06-09 2004-12-24 Teijin Chem Ltd Polycarbonate resin composition and method for producing the same
JP2007100023A (en) * 2005-10-07 2007-04-19 Teijin Chem Ltd Flame resistant aromatic polycarbonate resin composition
JP2007246824A (en) * 2006-03-17 2007-09-27 Idemitsu Kosan Co Ltd Glass-fiber reinforced polycarbonate resin composition and its molded article
JP2008163315A (en) * 2006-12-08 2008-07-17 Teijin Chem Ltd Flame-retardant polycarbonate resin composition
JP2009280636A (en) * 2008-05-19 2009-12-03 Idemitsu Kosan Co Ltd Glass-fiber-reinforced flame-retardant polycarbonate resin composition and molded article using the resin composition
JP2011016901A (en) * 2009-07-08 2011-01-27 Teijin Chem Ltd Electric-electronic equipment part
US20120289655A1 (en) * 2010-01-15 2012-11-15 Atsushi Sumita Polycarbonate resin composition
JP2014129489A (en) * 2012-12-28 2014-07-10 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded product thereof

Also Published As

Publication number Publication date
JP7209174B2 (en) 2023-01-20

Similar Documents

Publication Publication Date Title
JP3398595B2 (en) Polycarbonate resin composition and equipment housing using the same
TW544462B (en) Flame-retardant polycarbonate resin compositions
US6727312B1 (en) Polycarbonate resin composition
WO2000039217A1 (en) Frame-retardant polycarbonate resin composition and formed article
JP2011132424A (en) Thermoplastic polyester resin composition, molded article using the same and method for producing the same
WO2001007520A1 (en) Polycarbonate resin composition
EP0992542B1 (en) Flame-retardant thermoplastic resin composition
WO2014034012A1 (en) Resin composition and resin-molded article
JP6480120B2 (en) Thermally conductive polycarbonate resin composition and molded article
JP6367039B2 (en) Polycarbonate resin composition and molded article
JP2000103953A (en) Flame retardant thermoplastic resin composition
JP2020055932A (en) Thermoplastic resin composition, method for producing the same, and exterior material component
JPH1121441A (en) Flame-retardant polycarbonate resin composition, housing obtained by molding the same and battery pack
JP7093272B2 (en) Flame-retardant polycarbonate resin composition and resin molded products containing it
JP2013106622A (en) Illumination cover of electric decoration part for game machine
JP2019156942A (en) Polycarbonate resin composition and molding
JP5357505B2 (en) Flame retardant thermoplastic polyester resin composition
JPH11343400A (en) Flame retardant thermoplstic resin composition
JP6285137B2 (en) Instrument protective cover
JP5614926B2 (en) Polycarbonate resin composition and molded article comprising the same
JP6454038B2 (en) Polycarbonate resin composition and molded article
JP2000129109A (en) Flame-retarded thermoplastic resin composition
JP2013124278A (en) Polycarbonate resin composition of excellent chemical resistance
JP6652332B2 (en) Glass fiber reinforced polycarbonate resin composition
JP2022080749A (en) Polycarbonate resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R150 Certificate of patent or registration of utility model

Ref document number: 7209174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150