JP2020055699A - Amorphous aluminosilicate particle powder and method for producing the same - Google Patents

Amorphous aluminosilicate particle powder and method for producing the same Download PDF

Info

Publication number
JP2020055699A
JP2020055699A JP2018185214A JP2018185214A JP2020055699A JP 2020055699 A JP2020055699 A JP 2020055699A JP 2018185214 A JP2018185214 A JP 2018185214A JP 2018185214 A JP2018185214 A JP 2018185214A JP 2020055699 A JP2020055699 A JP 2020055699A
Authority
JP
Japan
Prior art keywords
peak
ppm
amorphous aluminosilicate
particle powder
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018185214A
Other languages
Japanese (ja)
Other versions
JP6485666B1 (en
Inventor
匠 末益
Takumi Suemasu
匠 末益
晴己 黒川
Harumi Kurokawa
晴己 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2018185214A priority Critical patent/JP6485666B1/en
Application granted granted Critical
Publication of JP6485666B1 publication Critical patent/JP6485666B1/en
Publication of JP2020055699A publication Critical patent/JP2020055699A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

To provide an amorphous aluminosilicate particle powder having a high specific surface area and excellent heat resistance and gas adsorption performance, and to provide a method for producing the same.SOLUTION: In an amorphous aluminosilicate particle powder represented by the general formula a NaO b SiOAlOn HO having a surface area of 650 to 900 m/g, a is in the mol range of 0.05 to 0.29, b is in the mol range of 1.40 to 2.60, n is in the mol range of 0.50 to 1.25, andSi-NMR spectrum in the chemical shift range of -120 to -60 ppm is represented by the superposition of a single peak located at -78.9 to -77.0 ppm and 2 to 6 multiple peaks located at -110 to -79.0 ppm.SELECTED DRAWING: None

Description

本発明は、優れた極性ガス吸着性能を有する耐熱性の非晶質アルミノケイ酸塩粒子粉末及びその製造方法に関する。   The present invention relates to a heat-resistant amorphous aluminosilicate particle powder having excellent polar gas adsorption performance and a method for producing the same.

非晶質アルミノケイ酸塩は古くから非晶質の粘土鉱物と知られており、同時に水分子を吸着する量が多いことが知られている。そのため、今も尚、非晶質アルミノケイ酸塩は高い水の吸着性能を有すると認識されている(非特許論文1〜3)。火山灰中の非晶質アルミノケイ酸塩は風化を受けて成長したと考えられており、糸状の非晶質アルミノケイ酸塩は1962年にイモゴライトと名づけられている。イモゴライトは長さ数ミクロン、直径20nm程度の大きさで、SiO・Al・3HO付近の組成比を有する。イモゴライトは非晶質ではあるが、局所的な結晶構造が議論され、低結晶性と呼ばれることもある。原子レベルで見ると、外径約2nmのチューブ状で、ギブサイト構造のAlO又はAlO(OH)からなる八面体のシートが丸まってチューブを構成している。該AlO又はAlO(OH)八面体シートの八面体の並びはハニカム構造を取り、空席のAlサイト近辺にSiO又はSiO(OH)四面体が単量体で存在する。前記チューブが強く重なり合って直径20nm程度の糸状として観察されている。 Amorphous aluminosilicate has long been known as an amorphous clay mineral, and at the same time, is known to have a large amount of adsorbing water molecules. Therefore, it is still recognized that amorphous aluminosilicate has high water adsorption performance (Non-Patent Documents 1 to 3). It is thought that the amorphous aluminosilicate in the volcanic ash grew by weathering, and the filamentous amorphous aluminosilicate was named imogolite in 1962. Imogolite is several microns in length and about 20 nm in diameter, and has a composition ratio near SiO 2 .Al 2 O 3 .3H 2 O. Imogolite is amorphous, but its local crystal structure has been discussed and is sometimes referred to as low crystalline. At the atomic level, an octahedral sheet of AlO 6 or AlO 3 (OH) 3 having a gibbsite structure and having a tube shape with an outer diameter of about 2 nm is rounded to form a tube. The octahedron of the AlO 6 or AlO 3 (OH) 3 octahedral sheet has a honeycomb structure, and SiO 4 or SiO 3 (OH) tetrahedron exists as a monomer near the vacant Al site. The tubes are strongly overlapped and are observed as a thread having a diameter of about 20 nm.

一方、非晶質アルミノケイ酸塩粒子粉末はアロフェンと呼ばれ、19世紀初めに発見されている。イモゴライト同様に風化して成長をしたと考えられており、類似の低結晶性を有するとも指摘されている。しかしながら、イモゴライトほど結晶性が高くないためか、アロフェンの局所的な結晶構造は統一的な見解がなされていない。アロフェンにおいては、SiO四面体はSiO四面体の単量体とカオリン鉱物由来のSiO四面体シートの2種が存在する、AlO八面体はギブサイト構造のシートを構成するAlO八面体だけでなくAlO四面体としても一部存在する、等が当業者の共通の認識である。アロフェンは数nmの中空粒子を形成しており、2SiO・Al・3HO付近の組成比を有する。比表面積も高く、約600m/gと報告されている。ここで、前記一般式に記載されている水の量はアロフェンやイモゴライトの局所的な結晶構造に含まれる結晶水の量であり、吸着水の量ではない。このような結晶水の多さも、アロフェン粒子粉末の耐熱性が低い理由の一つと発明者は推定している。 On the other hand, amorphous aluminosilicate particle powder is called allophane and was discovered in the early 19th century. It is thought that it grew by weathering like imogolite, and it is also pointed out that it has similar low crystallinity. However, the local crystal structure of allophane has not been consensused because it is not as crystalline as imogolite. In allophane, SiO 4 tetrahedra SiO 4 tetrahedra monomer and SiO 4 tetrahedra two sheets from kaolin minerals are present, AlO x octahedron constitutes the sheet of gibbsite structure AlO 6 octahedra It is a common recognition of those skilled in the art that not only exists but also partially as AlO 4 tetrahedron. Allophane forms hollow particles of several nm, and has a composition ratio near 2SiO 2 .Al 2 O 3 .3H 2 O. The specific surface area is also high, being reported to be about 600 m 2 / g. Here, the amount of water described in the general formula is the amount of water of crystallization contained in the local crystal structure of allophane or imogolite, not the amount of adsorbed water. The inventor estimates that such a large amount of water of crystallization is one of the reasons why the heat resistance of the allophane particle powder is low.

合成される非晶質アルミノケイ酸塩粒子粉末も1970年以降活発に報告されている。火山灰中等に含まれる天然非晶質アルミノケイ酸塩粒子粉末と合成の非晶質アルミノケイ酸塩粒子粉末の大きな違いは不純物含有量である。天然の非晶質アルミノケイ酸塩粒子粉末にはFeやMgを多く含んでいる。合成の非晶質アルミノケイ酸塩粒子粉末を得るために、水系の溶媒で反応温度も100℃以下の常圧合成や100℃を超える水熱合成が検討されてきた。   Synthetic amorphous aluminosilicate particle powders have also been actively reported since 1970. The major difference between natural amorphous aluminosilicate particles contained in volcanic ash and the like and synthetic amorphous aluminosilicate particles is the impurity content. Natural amorphous aluminosilicate particles contain a large amount of Fe and Mg. In order to obtain a synthetic amorphous aluminosilicate particle powder, a normal pressure synthesis using an aqueous solvent having a reaction temperature of 100 ° C. or lower and a hydrothermal synthesis exceeding 100 ° C. have been studied.

一般に、非晶質アルミノケイ酸塩粒子粉末は水溶性ケイ素原料と水溶性アルミニウム原料を撹拌混合した後、pHを中性付近に調整し、混合溶液の加熱反応をすることで得ることができる。高い比表面積と優れた極性ガス吸着性能を有する非晶質アルミノケイ酸塩粒子粉末は、室温でガス吸着作用と高温での吸着ガス脱離作用とを繰り返すことができる。従って、非晶質アルミノケイ酸塩粒子粉末は空調用吸着剤に適している。但し、ガスの吸着・脱着といった繰り返しの長期利用のためには、非晶質アルミノケイ酸塩粒子粉末を高温環境化に晒す程度や頻度を抑える必要がある。例えば、空調用吸着剤において、100℃以下の低温での再生、即ち、吸着ガスの脱離操作が検討されている。いずれにせよ、上記利用に対し、非晶質アルミノケイ酸塩粒子粉末の耐熱性は必要である。   In general, amorphous aluminosilicate particles can be obtained by stirring and mixing a water-soluble silicon raw material and a water-soluble aluminum raw material, adjusting the pH to near neutrality, and subjecting the mixed solution to a heating reaction. Amorphous aluminosilicate particles having a high specific surface area and excellent polar gas adsorption performance can repeat the gas adsorption action at room temperature and the adsorption gas desorption action at high temperature. Therefore, the amorphous aluminosilicate particle powder is suitable for an adsorbent for air conditioning. However, for repeated long-term use such as gas adsorption and desorption, it is necessary to suppress the degree and frequency of exposing the amorphous aluminosilicate particles to a high-temperature environment. For example, regeneration of an air-conditioning adsorbent at a low temperature of 100 ° C. or less, that is, an operation of desorbing an adsorbed gas is being studied. In any case, the heat resistance of the amorphous aluminosilicate particle powder is necessary for the above utilization.

空調用吸着剤の一般的な形として吸着ローターシステムがある。つまり、紙や樹脂、或いは多孔質セラミック等の担持体に吸着剤を担持させ、ローター型に加工して用いるシステムである。この加工の際に、吸着剤含有分散液から吸着剤を担持させている。しかしながら、前記分散液に用いた分散剤等の有機物も吸着ローターに残存してしまうため、吸着ローターに熱処理を施す工程が存在する。そのため、ローター加工時にも吸着剤そのものに耐熱性が求められている。   A common form of air-conditioning adsorbent is an adsorption rotor system. In other words, this is a system in which an adsorbent is supported on a support such as paper, resin, or porous ceramic, and processed into a rotor type for use. At the time of this processing, the adsorbent is carried from the adsorbent-containing dispersion. However, since an organic substance such as a dispersant used in the dispersion liquid also remains in the adsorption rotor, there is a step of performing a heat treatment on the adsorption rotor. Therefore, the adsorbent itself is required to have heat resistance even during rotor processing.

従来技術として、高い比表面積と優れた極性ガス吸着性能を有する非晶質アルミノケイ酸塩粒子粉末は特許文献1〜2に開示されている。しかしながら、これらに示されている非晶質アルミノケイ酸塩粒子粉末は300℃以上で焼成をすると比表面積が大きく低下すると共に、大幅に水蒸気吸着量も低下することが分かっていた。   As prior art, Patent Documents 1 and 2 disclose amorphous aluminosilicate particles having a high specific surface area and excellent polar gas adsorption performance. However, it has been found that when the amorphous aluminosilicate particles shown in these publications are fired at 300 ° C. or higher, the specific surface area is greatly reduced, and the amount of adsorbed water vapor is also significantly reduced.

特許文献1の技術で示されている製造方法の水溶性ケイ素原料と水溶性アルミニウム原料は、ケイ素とアルミニウムのモル比のみを考慮して原料混合している。その後、pHを調整して脱塩し、110℃以下の反応を経て、非晶質アルミノケイ酸塩粒子粉末を得ている。しかしながら、この方法では耐熱性の非晶質アルミノケイ酸塩粒子粉末を得ることが困難であり、また、原料混合時点でゲル化を引き起こすため工業的なプロセスでの生産が困難であった。   The water-soluble silicon raw material and the water-soluble aluminum raw material in the production method disclosed in the technique of Patent Document 1 are mixed in consideration of only the molar ratio of silicon and aluminum. Thereafter, the pH was adjusted and desalted, and the reaction was carried out at 110 ° C. or lower to obtain amorphous aluminosilicate particles. However, in this method, it is difficult to obtain heat-resistant amorphous aluminosilicate particles, and gelation occurs at the time of mixing the raw materials, so that production by an industrial process is difficult.

上記の長時間高温反応以外にも水熱条件での反応も示されている(特許文献2)。しかしながら、工業的量産を考慮すると100℃以上の水熱反応では高圧容器の設備保全や作業安全面からも反応設備の密閉性を高める必要がある。そのため、水熱反応系の加熱昇温と冷却降温に時間がかかってしまう。従って、短時間であっても水熱処理は生産プロセスの中で律速となる。そのため、水熱処理時の反応濃度を上げることによって、水熱反応温度が高い場合でも、粒子粉末生産の効率向上に寄与できるよう改善する必要がある。   In addition to the long-term high-temperature reaction described above, a reaction under hydrothermal conditions is also disclosed (Patent Document 2). However, in consideration of industrial mass production, it is necessary to improve the hermeticity of the reaction equipment in the case of hydrothermal reaction at 100 ° C. or higher from the viewpoint of maintenance of high-pressure vessels and work safety. For this reason, it takes time to heat up and cool down the hydrothermal reaction system. Therefore, even in a short time, the hydrothermal treatment is rate-determining in the production process. Therefore, it is necessary to increase the reaction concentration at the time of hydrothermal treatment so as to contribute to the improvement of particle powder production efficiency even when the hydrothermal reaction temperature is high.

C.S.Ross,et al.,「Halloysite and Allophane」 Geological Survey, United States Department of the Interior,(1934)185−G,p.135−148.C. S. Ross, et al. , "Halloysite and Allophane", Geological Survey, United States Department of the Interior, (1934) 185-G, p. 135-148. 須藤談話会編「粘土科学への招待 〜粘土の素顔と魅力〜」三共出版、2000年6月26日Sudo Discourse, "Invitation to Clay Science: The Real Face and Charm of Clay", Sankyo Publishing, June 26, 2000 R.L.Parfitt著,「Allophane and imogolite:role in soil biogeochemical process」,Clay Minerals,2009年,vol.44,p.135−155.R. L. Parfitt, "Allophane and imogolite: role in soil biogeochemical process", Clay Minerals, 2009, vol. 44, p. 135-155.

特開2008−179533号公報JP 2008-179533 A 国際公開第09/084632号パンフレットWO 09/084632 pamphlet

高い比表面積を有し、水蒸気に対して高吸着量で、且つ相対湿度(RH)に比例して水蒸気吸着性能が向上する非晶質アルミノケイ酸塩粒子粉末は提供されているが、その耐熱性は十分であると言えない。また、前記耐熱性を有する非晶質アルミノケイ酸塩粒子粉末の製造方法において、工業的観点から高効率な製造方法が提供されているとは言い難い。   Amorphous aluminosilicate particles having a high specific surface area, a high adsorption amount to water vapor, and an improvement in water vapor adsorption performance in proportion to relative humidity (RH) have been provided. Is not enough. In addition, it is difficult to say that a highly efficient production method is provided from an industrial point of view in the method for producing the heat-resistant amorphous aluminosilicate particles.

即ち、前出特許文献1〜2には、水蒸気を始めとした極性ガスを吸着するのに優れた非晶質アルミノケイ酸塩粒子粉末とその合成方法が記載されている。しかしながら、記載されている合成方法で得られた非晶質アルミノケイ酸塩粒子粉末は十分な耐熱性を有しておらず、ローター加工時や極性ガスの吸脱着繰り返し利用時において、ガス吸脱着性能の急激な劣化が必ず起こり得ると考えられる。   That is, the above-mentioned Patent Documents 1 and 2 describe amorphous aluminosilicate particle powder excellent in adsorbing a polar gas such as water vapor and a method for synthesizing the same. However, the amorphous aluminosilicate particles obtained by the described synthesis method do not have sufficient heat resistance, and exhibit a gas adsorption / desorption performance during rotor processing or repeated use of adsorption / desorption of polar gas. It is considered that rapid deterioration of the slab can always occur.

また、前出特許文献1〜2に記載されている合成方法で反応系の高濃度化を試みたとき、水溶性ケイ素原料と水溶性アルミニウム原料を混合した時点でゲル化を引き起こしてしまった。従って、ビーカースケールでは水の追加や手操作でのかき混ぜという作業で対応することできるが、該作業時に危険も伴い、更には工業的に対応するのは困難である。   Further, when an attempt was made to increase the concentration of the reaction system by the synthesis methods described in Patent Documents 1 and 2, gelation was caused when the water-soluble silicon raw material and the water-soluble aluminum raw material were mixed. Therefore, in the beaker scale, it is possible to cope with the work of adding water or stirring by manual operation, but this operation involves danger and it is difficult to cope industrially.

加えて、特許文献1〜2に記載の技術では水溶性ケイ素原料と水溶性アルミニウム原料を混合後にpH調整するものの、脱塩処理後の濃縮は全く示唆されていない。仮に前記技術において濃縮操作の追加を試みても、固形分濃度80g/L付近まで濃縮した時点で、濃縮されたスラリーは流動性を失い、その後の加熱処理によっても反応系内を均一にするのは困難であった。   In addition, in the techniques described in Patent Documents 1 and 2, although the pH is adjusted after mixing the water-soluble silicon raw material and the water-soluble aluminum raw material, no concentration after the desalting treatment is suggested. Even if an additional concentration operation is attempted in the above technique, the concentrated slurry loses fluidity at the point when the concentration of the solid content is increased to around 80 g / L, and the inside of the reaction system is made uniform by the subsequent heat treatment. Was difficult.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as described below.

即ち、本発明は、比表面積650〜900m/gを有する一般式a NaO・b SiO・Al・n HOで表される非晶質アルミノケイ酸塩粒子粉末において、aは0.05〜0.29、bは1.40〜2.60、nは0.50〜1.25のmol範囲であり、かつ化学シフト−120〜−60ppmの範囲の29Si−NMRスペクトルが−78.9〜−77.0ppmに位置する単一のピークと−110〜−79.0ppmに位置する2〜6つの複数のピークの重ね合わせで表されることを特徴とする非晶質アルミノケイ酸塩粒子粉末である。(本発明1)。 That is, the present invention provides an amorphous aluminosilicate particle powder having a specific surface area of 650 to 900 m 2 / g and represented by a general formula a Na 2 O · b SiO 2 · Al 2 O 3 .nH 2 O, a is 0.05 to 0.29, b is 1.40 to 2.60, n is a mol range of 0.50 to 1.25, and 29 Si-NMR in a chemical shift range of -120 to -60 ppm. An amorphous phase, wherein a spectrum is represented by a single peak located at -78.9 to -77.0 ppm and a superposition of two to six peaks located at 110 to -79.0 ppm. Aluminosilicate particles. (Invention 1).

また、本発明は、化学シフト−120〜−60ppmの範囲の29Si−NMRスペクトルを示す各々のピークのピーク形状関数がガウス関数で表され、決定係数Rが0.99以上である本発明1記載の非晶質アルミノケイ酸塩粒子粉末である。(本発明2)。 Further, the present invention is the chemical shift -120-60 ppm each peak shape function of a peak showing the 29 Si-NMR spectrum of range is represented by a Gaussian function, the present invention the coefficient of determination R 2 is at least 0.99 2. An amorphous aluminosilicate particle powder according to item 1. (Invention 2).

また、本発明は、化学シフト−110.0〜−79.0ppmの範囲29Si−NMRスペクトルを示す各々のピークにおいて、最も大きいピーク面積を有するピークに対する−91.9〜−90.0ppmに位置する半価幅5ppm以下のピークとの面積比が0.080〜0.200である本発明1又は2記載の非晶質アルミノケイ酸塩粒子粉末である。(本発明3)。 In the present invention, the chemical shift is in the range of −110.0 to −79.0 ppm, and each peak showing the 29 Si-NMR spectrum is located at −91.9 to −90.0 ppm with respect to the peak having the largest peak area. The amorphous aluminosilicate particle powder according to the first or second aspect of the present invention, wherein an area ratio of a peak having a half width of 5 ppm or less is 0.080 to 0.200. (Invention 3).

また、本発明は、300℃−1時間焼成後の比表面積の減少率が10%以下である本発明1〜3のいずれかに記載の非晶質アルミノケイ酸塩粒子粉末である。(本発明4)。   Further, the present invention is the amorphous aluminosilicate particle powder according to any one of the present inventions 1 to 3, wherein a reduction rate of a specific surface area after firing at 300 ° C for 1 hour is 10% or less. (Invention 4).

また、本発明は300℃−1時間焼成後の相対湿度60%の水蒸気吸着量の減少率が12%以下である本発明1〜4のいずれかに記載の非晶質アルミノケイ酸塩粒子粉末である。(本発明5)。   Further, the present invention relates to the amorphous aluminosilicate particle powder according to any one of the present inventions 1 to 4, wherein a reduction rate of a water vapor adsorption amount at a relative humidity of 60% after firing at 300 ° C for 1 hour is 12% or less. is there. (Invention 5).

また、本発明は、水溶性ケイ素原料とアルカリ原料を含む溶液を調整する第一工程、得られた溶液に水溶性アルミニウム原料の添加によって添加後の混合溶液中のAl/OHのmol比が2.0〜3.0、Si/Alのmol比が0.7〜1.4、pHが6.0〜8.0に調整され、反応する第二工程、得られた混合スラリーを水洗と濃縮でpHを7.0〜10.0に調整する第三工程、得られたスラリーを温度170〜250℃で水熱処理する第四工程を有する本発明1〜5のいずれかに記載の非晶質アルミノケイ酸塩粒子粉末の製造方法である。(本発明6)。   Further, the present invention provides a first step of preparing a solution containing a water-soluble silicon raw material and an alkali raw material, and adding a water-soluble aluminum raw material to the obtained solution so that the molar ratio of Al / OH in the mixed solution after addition is 2%. 0.0-3.0, the molar ratio of Si / Al is adjusted to 0.7-1.4, and the pH is adjusted to 6.0-8.0. The second step in which the reaction is carried out. The obtained mixed slurry is washed with water and concentrated. Amorphous according to any one of the inventions 1 to 5, further comprising a third step of adjusting the pH to 7.0 to 10.0 with a fourth step, and a fourth step of hydrothermally treating the obtained slurry at a temperature of 170 to 250 ° C. This is a method for producing aluminosilicate particles. (Invention 6).

また、本発明は、本発明6記載の製造方法であって、第四工程における固形分濃度が90〜300g/Lである非晶質アルミノケイ酸塩粒子粉末の製造方法である。(本発明7)。   Further, the present invention is the production method according to Invention 6, wherein the solid content concentration in the fourth step is from 90 to 300 g / L. (Invention 7).

本発明に係る非晶質アルミノケイ酸塩粒子粉末は、水蒸気を始めとし、エタノール、アセトン、酢酸エチル等の極性有機溶媒のガス、或いは、酢酸やアンモニア、悪臭の要因の硫化水素、窒素酸化物や硫黄酸化物といった有害ガスを吸着し、捕捉することができる。該粒子粉末の耐熱性は高いため、空調用の除湿剤、有機溶媒回収用吸着剤、脱臭剤及び有害ガス吸着剤等の幅広い分野に応用できる。更には、吸着ガスを脱離させるために加熱工程を経ても問題なく、ガス吸着・脱離の繰り返し利用に適切である。また、本発明に係る非晶質アルミノケイ酸塩粒子粉末は300℃−1時間焼成後も、高い比表面積を有し、水蒸気吸着性能の低下も観察されない。従って、加工時に焼成を必要とするような吸着ローター用の吸着剤にも好適である。   Amorphous aluminosilicate particles according to the present invention, including water vapor, ethanol, acetone, a gas of a polar organic solvent such as ethyl acetate, or acetic acid and ammonia, hydrogen sulfide, nitrogen oxides and odor factors. Hazardous gases such as sulfur oxides can be adsorbed and captured. Since the heat resistance of the particle powder is high, it can be applied to a wide range of fields such as a dehumidifier for air conditioning, an adsorbent for recovering an organic solvent, a deodorant, and a harmful gas adsorbent. Further, even if a heating step is performed to desorb the adsorbed gas, there is no problem, and the method is suitable for repeated use of gas adsorption and desorption. Further, the amorphous aluminosilicate particles according to the present invention have a high specific surface area even after firing at 300 ° C. for one hour, and no decrease in water vapor adsorption performance is observed. Therefore, it is also suitable for an adsorbent for an adsorption rotor that requires firing during processing.

更に具体的には、本発明に係る非晶質アルミノケイ酸塩粒子粉末の300℃−1時間の焼成後においても、相対湿度60%の水蒸気吸着量は高い値を維持しており、その減少率は12%以下である。また、本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法は工業的な観点から、高効率な製造方法である。   More specifically, even after calcination of the amorphous aluminosilicate particles according to the present invention at 300 ° C. for one hour, the amount of water vapor adsorbed at a relative humidity of 60% remains high. Is 12% or less. The method for producing amorphous aluminosilicate particles according to the present invention is a highly efficient production method from an industrial viewpoint.

実施例1で得られた非晶質アルミノケイ酸塩粒子粉末の透過型電子顕微鏡(TEM)による観察写真である。2 is a photograph of the amorphous aluminosilicate particles obtained in Example 1 observed by a transmission electron microscope (TEM). 実施例1で得られた非晶質アルミノケイ酸塩粒子粉末のX線回折(XRD)プロファイルである。3 is an X-ray diffraction (XRD) profile of the amorphous aluminosilicate particles obtained in Example 1. 実施例1で得られた非晶質アルミノケイ酸塩粒子粉末のフーリエ変換赤外分光(FT−IR)スペクトルである。3 is a Fourier transform infrared spectroscopy (FT-IR) spectrum of the amorphous aluminosilicate particles obtained in Example 1. 実施例1で得られた非晶質アルミノケイ酸塩粒子粉末の固体27Alの核磁気共鳴(NMR)スペクトルの実測値である。2 is a measured value of a nuclear magnetic resonance (NMR) spectrum of solid 27 Al of the amorphous aluminosilicate particles obtained in Example 1. 実施例1で得られた非晶質アルミノケイ酸塩粒子粉末の固体29Si−NMRスペクトルの実測値、及び計算値である。2 shows the measured and calculated values of the solid-state 29 Si-NMR spectrum of the amorphous aluminosilicate particles obtained in Example 1.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る非晶質アルミノケイ酸塩粒子粉末について述べる。   First, the amorphous aluminosilicate particles according to the present invention will be described.

本発明に係る非晶質アルミノケイ酸塩粒子粉末は、その名の通り非晶質であり、元素の並びにほとんど周期性はない。化学構造は一般式a NaO・b SiO・Al・n HOで表わされる。ここで、一般式のAlを1molとしており、bの値はケイバン比(SiO/Alのmol比)とも呼ばれており、また、前記一般式中のHOは結晶水を表している。Si4+とAl3+は互いにO2−を共有する箇所が存在するため、Si4+周辺は電気的に中性であっても、Al3+周辺はマイナス1価として帯電している。そのため、Al3+周辺は電気的中性になるようMイオンで補われる。該Mイオンは雰囲気によりイオン交換され、前記粒子粉末の系外へ出されることもある。 The amorphous aluminosilicate particles according to the present invention are amorphous as the name implies, and have almost no periodicity of elements. Chemical structure represented by the general formula a Na 2 O · b SiO 2 · Al 2 O 3 · n H 2 O. Here, Al 2 O 3 in the general formula is 1 mol, the value of b is also called the Cayban ratio (mol ratio of SiO 2 / Al 2 O 3 ), and H 2 O in the general formula is Represents water of crystallization. Since Si 4+ and Al 3+ is that there are places to share O 2- one another, Si 4+ surrounding be electrically neutral, Al 3+ peripheral is charged as a minus monovalent. Therefore, the surroundings of Al 3+ are supplemented with M + ions so as to be electrically neutral. The M + ions are ion-exchanged depending on the atmosphere, and may be discharged outside the system of the particle powder.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の一般式において、aは0.05〜0.29のmol範囲である。0.05未満の場合、構造中にOH基の存在量が増え、前記粒子粉末の表面の細孔を塞いでしまい、比表面積が低下する傾向にあるため好ましくない。0.29を超える場合、吸着性能に大きな影響は及ぼさないが、粉体pHが高くなり、粒子粉末の加工面で問題が生じやすくなるため好ましくない。より好ましくは、0.07〜0.27のmol範囲であり、更により好ましくは、0.08〜0.25のmol範囲である。   In the general formula of the amorphous aluminosilicate particles according to the present invention, a is in the range of 0.05 to 0.29 mol. If it is less than 0.05, the abundance of OH groups in the structure increases, and the pores on the surface of the particle powder are blocked, and the specific surface area tends to decrease, which is not preferable. If it exceeds 0.29, the adsorption performance is not significantly affected, but the pH of the powder becomes high, which is not preferable because problems are likely to occur on the processed surface of the particle powder. More preferably, the molar range is from 0.07 to 0.27, and even more preferably, the molar range is from 0.08 to 0.25.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の一般式におけるNaOのNaは非晶質アルミノケイ酸塩粒子粉末合成後にイオン交換で他の元素に置き換えることも可能である。その元素はLi、Mg、K、Ca、Fe、Co、Ni、Cu、Zn、Sr、Y、Zr、Ag、Cs、Baである。 In the general formula of the amorphous aluminosilicate particles according to the present invention, Na of Na 2 O can be replaced with another element by ion exchange after the synthesis of the amorphous aluminosilicate particles. The elements are Li, Mg, K, Ca, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ag, Cs, and Ba.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の一般式において、bは1.40〜2.60のmol範囲である。1.40mol未満の場合、得られる粒子粉末において、非晶質アルミノケイ酸塩粒子より寧ろ規則的なギブサイト結晶構造を有するγ−Al(OH)粒子が主体的になる。そのため、非晶質アルミノケイ酸塩粒子の非晶質構造に由来していた細孔が少なくなり、BET比表面積が下がってしまうため好ましくない。2.60molを超える場合、得られる粒子粉末において、非晶質シリカが主体的となり、吸着性能が下がってしまう。即ち、非晶質シリカと水蒸気の吸着性能の差がなくなってしまうため好ましくない。また、bが1.40mol未満の場合や2.60molを超える場合、得られた粒子粉末の300℃−1時間焼成によって、試料の比表面積が著しく低下してしまうため好ましくない。より好ましくは、1.50〜2.50のmol範囲であり、更により好ましくは、1.60〜2.40のmol範囲である。 In the general formula of the amorphous aluminosilicate particles according to the present invention, b is in the range of 1.40 to 2.60 mol. When the amount is less than 1.40 mol, γ-Al (OH) 3 particles having a regular gibbsite crystal structure rather than amorphous aluminosilicate particles are mainly contained in the obtained particle powder. For this reason, the pores derived from the amorphous structure of the amorphous aluminosilicate particles are reduced, and the BET specific surface area is undesirably reduced. If the amount exceeds 2.60 mol, amorphous silica is predominant in the obtained particle powder, and the adsorption performance is lowered. That is, the difference between the adsorption performance of amorphous silica and the adsorption performance of water vapor disappears, which is not preferable. When b is less than 1.40 mol or more than 2.60 mol, baking the obtained particle powder at 300 ° C. for 1 hour is not preferable because the specific surface area of the sample is significantly reduced. More preferably, the molar range is 1.50 to 2.50, and even more preferably, the molar range is 1.60 to 2.40.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の一般式において、nは0.50〜1.25のmol範囲である。0.50未満の場合、結晶水が少なくなり、規則的な結晶構造を作り、該構造の周期性は高くなる。その場合、高い比表面積を維持することは困難となる。1.25を超える場合、試料中の結晶水が多すぎて所定の耐熱性を得ることが困難である。より好ましくは、0.60〜1.15のmol範囲であり、更により好ましくは、0.70〜1.10のmol範囲である。   In the general formula of the amorphous aluminosilicate particles according to the present invention, n is in the range of 0.50 to 1.25 mol. If it is less than 0.50, the amount of water of crystallization decreases, and a regular crystal structure is formed, and the periodicity of the structure increases. In that case, it is difficult to maintain a high specific surface area. If it exceeds 1.25, the amount of crystallization water in the sample is too large, and it is difficult to obtain a predetermined heat resistance. More preferably, the molar range is 0.60 to 1.15, and even more preferably, the molar range is 0.70 to 1.10.

本発明に係る非晶質アルミノケイ酸塩粒子粉末はX線回折(XRD)プロファイルにおいて結晶由来のピークがほとんど観測されない程度の非晶質性を示し、ほぼ低結晶性であり、アロフェンに属すると言及できることが好ましい。更に好ましくは、カオリナイト又はハロイサイトの単位胞を1〜30個並べた元素配列の周期性を示すことが好ましい。原子レベルな観点から述べると、AlO八面体はギブサイト構造の八面体シート同様のハニカム状のシートを有し、また、SiO四面体の3つのOを共有するカオリン鉱物由来のSiO四面体シートと単量体のSiO四面体を有している。 The amorphous aluminosilicate particles according to the present invention exhibit an amorphous property to the extent that a crystal-derived peak is hardly observed in an X-ray diffraction (XRD) profile, are almost low in crystallinity, and belong to allophane. Preferably it is possible. More preferably, it is preferable to show periodicity of the element arrangement in which 1 to 30 unit cells of kaolinite or halloysite are arranged. From an atomic point of view, AlO 6 octahedron has a honeycomb-like sheet similar to an octahedral sheet having a gibbsite structure, and a SiO 4 tetrahedron derived from a kaolin mineral sharing three Os of a SiO 4 tetrahedron. It has a sheet and a monomeric SiO 4 tetrahedron.

本発明に係る非晶質アルミノケイ酸塩粒子粉末はFT−IRスペクトルにおいて、930〜990cm−1でSiO四面体ユニットのSi−Oに由来する振動スペクトルを有することが好ましい。より好ましくは940〜980cm−1である。 In the FT-IR spectrum, the amorphous aluminosilicate particles according to the present invention preferably have a vibration spectrum at 930 to 990 cm −1 derived from Si—O of the SiO 4 tetrahedral unit. More preferably, it is 940 to 980 cm -1 .

本発明に係る非晶質アルミノケイ酸塩粒子粉末の比表面積は650〜900m/gである。ここで、比表面積とはBET法で測定された値であり、以下、BET比表面積は比表面積と同じ意味とする。BET比表面積が650m/g未満の場合には、水蒸気吸着量が低下するため好ましくない。BET比表面積が900m/gを越えるとガス吸着性能は問題ないが、粉末状にした時の粉塵が多くなりハンドリング性が悪くなるため好ましくない。好ましいBET比表面積は700〜850m/gである。 The specific surface area of the amorphous aluminosilicate particles according to the present invention is from 650 to 900 m 2 / g. Here, the specific surface area is a value measured by the BET method. Hereinafter, the BET specific surface area has the same meaning as the specific surface area. When the BET specific surface area is less than 650 m 2 / g, the amount of adsorbed water vapor is undesirably reduced. If the BET specific surface area exceeds 900 m 2 / g, there is no problem in gas adsorbing performance, but it is not preferable because powdery dust increases and handling properties deteriorate. A preferred BET specific surface area is 700 to 850 m 2 / g.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の27Al−NMRスペクトルにおいて、化学シフト−15〜15ppmの範囲に位置する主のピーク強度に対して、化学シフト−80〜30ppmの範囲に位置する副のピーク強度との比は0.5以下であることが好ましい。化学シフト−15〜15ppmの範囲に位置するピークはAlO八面体の存在を意味し、−80〜30ppmの範囲に位置するピークはAlO四面体の存在を意味する。AlO八面体の存在はアロフェンの構造の安定化に作用する。しかしながら、AlO四面体はアロフェン中のSiO四面体シートのSiO四面体と置換され、アロフェンの構造に欠陥をもたらし、得られる粒子粉末の耐熱性に影響を与える可能性がある。より好ましいピーク強度比は0.4以下、更により好ましいピーク強度比は0.3以下である。 In the 27 Al-NMR spectrum of the amorphous aluminosilicate particles according to the present invention, the chemical shift is located in the range of −80 to 30 ppm with respect to the main peak intensity located in the range of −15 to 15 ppm. The ratio with respect to the secondary peak intensity is preferably 0.5 or less. The peak located in the range of chemical shift -15 to 15 ppm indicates the presence of AlO 6 octahedra, and the peak located in the range of -80 to 30 ppm indicates the presence of AlO 4 tetrahedron. The presence of AlO 6 octahedron acts to stabilize the structure of allophane. However, the AlO 4 tetrahedron is substituted for the SiO 4 tetrahedron of the SiO 4 tetrahedral sheet in allophane, causing defects in the allophane structure and possibly affecting the heat resistance of the resulting particle powder. A more preferred peak intensity ratio is 0.4 or less, and an even more preferred peak intensity ratio is 0.3 or less.

本発明に係る非晶質アルミノケイ酸塩粒子粉末のAlに対して10mol%以下であればAlの代わりに他の金属元素を導入することが可能である。その金属元素はMg、Ca、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Ga、Y、Zrである。10mol%を超えて導入するとAlO八面体及びSiO四面体の配列に影響を及ぼし、得られた粒子粉末の比表面積や耐熱性を低下させてしまうため好ましくない。より好ましい前記金属元素導入量は8mol%以下、更により好ましくは6mol%以下である。 If the content of Al in the amorphous aluminosilicate particles according to the present invention is 10 mol% or less, another metal element can be introduced instead of Al. The metal elements are Mg, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y and Zr. If it is added in excess of 10 mol%, the arrangement of AlO 6 octahedron and SiO 4 tetrahedron is affected, and the specific surface area and heat resistance of the obtained particle powder are undesirably reduced. More preferably, the introduction amount of the metal element is 8 mol% or less, still more preferably, 6 mol% or less.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の29Si−NMRスペクトルは、化学シフト−120〜−60ppmの範囲において、−78.9〜−77.0ppmに位置する単一のピークと−110.0〜−79.0ppmに位置する2〜6つの複数のピークの重ね合わせで表される。一般に、29Si−NMRスペクトルの化学シフトはSiO四面体の重合度に起因する。例えば、−78.9〜−77.0ppmに位置する単一のピークはSiO四面体のOが隣接するSiO四面体と共有していないことを意味する。即ち、単量体のSiO四面体を意味し、Q値のピークである。 The 29 Si-NMR spectrum of the amorphous aluminosilicate particles according to the present invention has a single peak located at −78.9 to −77.0 ppm and −110 in a chemical shift range of −120 to −60 ppm. It is represented by the superposition of two to six peaks located at 0.0 to -79.0 ppm. Generally, the chemical shift of the 29 Si-NMR spectrum is due to the degree of polymerization of the SiO 4 tetrahedron. For example, a single peak located at -78.9~-77.0ppm means that O of SiO 4 tetrahedra do not share the SiO 4 tetrahedra adjacent. That is, it means a monomeric SiO 4 tetrahedron, which is a Q 0 value peak.

一方、−110.0〜−79.0ppmに位置する複数のピークは、任意のSiO四面体のOを共有しているSiO四面体の数の違い、即ち、SiO四面体の重合度の違いや、前記Oを共有しているSiO四面体のSiがAlに置換されてAlO四面体としての存在していることを意味する。SiO四面体が隣接するSiO四面体とOを共有する数は1〜3であり、各々、Q1〜Q値のピークと呼ばれる。ここで、XRDプロファイルから3つのSiO四面体がOを共有しているSiO四面体シートの存在が示唆されていることを考慮すると、−110.0〜−79.0ppmに位置する複数のピークの一つはQ値のピークの可能性が高い。また、27Al−NMRスペクトルからAlO四面体の存在も示唆されている。従って、−110.0〜−79.0ppmに位置するピーク2〜6つの複数のピークの重ね合わせで表現できる主のピークはQ値のピークであり、その他はQ1〜Q値のピークや、AlO四面体が関与したQ1〜Q値のピークの可能性がある。結果として、最大6つのピークの重ね合わせで表現できる。ここで、カーブフィッティングは十分になし得るように、最低限のピーク数を利用した。一方、−110.0〜−79.0ppmで得られたスペクトルにおいて、単一のピークでは十分なフィッティング結果が得られなかった。従って、より好ましい重ね合わせで表現できるピーク数は2〜4、更により好ましくは2、3であることが好ましい。 On the other hand, a plurality of peaks located at -110.0 to -79.0 ppm represent differences in the number of SiO 4 tetrahedra sharing O of an arbitrary SiO 4 tetrahedron, that is, the degree of polymerization of the SiO 4 tetrahedron. And that Si of the SiO 4 tetrahedron sharing O is replaced by Al and present as an AlO 4 tetrahedron. The number of sharing SiO 4 tetrahedra and O to SiO 4 tetrahedra are adjacent is 1-3, each called peak of Q 1 to Q 3 value. Here, considering that the XRD profile suggests the existence of a SiO 4 tetrahedral sheet in which three SiO 4 tetrahedrons share O, a plurality of sheets located at −110.0 to −79.0 ppm are considered. one peak is likely peak Q 3 value. Further, the presence of AlO 4 tetrahedron is suggested from the 27 Al-NMR spectrum. Thus, the main peaks which can be expressed by superposition of the position peak 2-6 one of a plurality of peaks in -110.0~-79.0ppm is the peak of the Q 3 value, other peak of Q 1 to Q 2 value Also, there is a possibility that the peaks of the Q 1 to Q 3 values involve the AlO 4 tetrahedron. As a result, a maximum of six peaks can be expressed. Here, the minimum number of peaks was used so that curve fitting could be sufficiently performed. On the other hand, in the spectrum obtained at -110.0 to -79.0 ppm, a single peak did not provide a sufficient fitting result. Therefore, the number of peaks that can be expressed by more preferable superposition is preferably 2 to 4, and more preferably 2, 3.

本発明に係る非晶質アルミノケイ酸塩粒子粉末において、化学シフト−120〜−60ppmの範囲の29Si−NMRスペクトルを示す各々のピークのピーク形状関数がガウス関数で表され、決定係数Rが0.99以上であることが好ましい。ピーク形状関数は他の候補として、ローレンツ関数や擬Voight関数であっても構わないが、決定係数Rが1に近く、単純な関数としてガウス関数を選択している。また、決定係数Rが増加して1に近づかない場合、それ以上、ピーク形状関数を増やさなかった。決定係数Rはより好ましくは0.992以上である。 In the amorphous aluminosilicate particle powder according to the present invention, the peak shape function of each peak showing a 29 Si-NMR spectrum in the chemical shift range of −120 to −60 ppm is represented by a Gaussian function, and the coefficient of determination R 2 is It is preferably 0.99 or more. As the peak shape function other candidates, but it may be a Lorentzian or pseudo Voight function, the coefficient of determination R 2 is close to 1, selects the Gaussian function as a simple function. Further, if the coefficient of determination R 2 does not approach the 1 increases, more and it did not increase the peak shape function. The coefficient of determination R 2 is more preferably 0.992 or more.

本発明に係る非晶質アルミノケイ酸塩粒子粉末において、化学シフト−110〜−79.0ppmの範囲の29Si−NMRスペクトルについて更に詳しく述べる。前記範囲の各々のピークにおいて、最も大きいピーク面積を有するピークに対する−91.9〜−90.0ppmに位置する半価幅5ppm以下のピークとの面積比が0.080〜0.200であることが好ましい。ここで、−91.9〜−90.0ppmに位置する半価幅5ppm以下のピークは均一なSiO四面体の配列に由来するQ値のピークに該当すると発明者は考えている。従って、前記ピークが非晶質アルミノケイ酸塩粒子粉末の耐熱性を上げる為には、アロフェン構造として、SiO四面体シート内のSiO四面体がより均一となる必要がある。即ち、得られるQ値のピークのピーク幅は狭く、ピーク面積比は高くなる必要がある。一方、最も大きいピーク面積を有するピークもQ値のピークに該当するかもしれない。しかしながら、前記ピークはSiO四面体とAlO四面体の無秩序性に起因して半価幅が大きく、純粋なQ値のピークに比べ、アロフェン構造の不安定に寄与すると推測される。従って、AlO四面体が関与したQ値のピークに対するQ値のピークの面積比が0.080を下回ると得られる粒子粉末の熱安定性が低下するので好ましくない。また、前記面積比が0.200を超える粒子粉末は製造することができなかった。より好ましい範囲は0.082〜0.195である。 The 29 Si-NMR spectrum of the amorphous aluminosilicate particles according to the present invention in the chemical shift range of −110 to −79.0 ppm will be described in more detail. In each of the peaks in the above range, the area ratio of the peak having a half width of 5 ppm or less located at -91.9 to -90.0 ppm to the peak having the largest peak area is 0.080 to 0.200. Is preferred. Here, -91.9~-90.0ppm half width 5ppm or less of the peak located corresponds to the peak of the Q 3 value derived from the sequence of uniform SiO 4 tetrahedra and inventor believes. Therefore, in order for the peak to increase the heat resistance of the amorphous aluminosilicate particles, the SiO 4 tetrahedron in the SiO 4 tetrahedral sheet needs to be more uniform as the allophane structure. That is, the peak width of the peak of Q 3 values obtained is narrow, the peak area ratio needs to be high. On the other hand, the peak having the largest peak area may correspond to the peak of the Q 3 value. However, the peak has a large half-value width due to disorder of the SiO 4 tetrahedron and the AlO 4 tetrahedron, and is considered to contribute to the instability of the allophane structure as compared with the peak of the pure Q 3 value. Therefore, it is not preferable because the thermal stability of the particles the ratio of peak areas of Q 3 value to the peak of the Q 3 value AlO 4 tetrahedra are involved is obtained as below 0.080 is lowered. Further, a particle powder having the area ratio exceeding 0.200 could not be produced. A more preferred range is from 0.082 to 0.195.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の300℃−1時間焼成後の比表面積の減少率10%以下が好ましい。ここで、該減少率とは、本発明の粒子粉末と前記焼成後の粒子粉末のBET比表面積の差を、本発明の粒子粉末のBET比表面積で除した値であり、百分率で表した値である。前記比表面積の減少率が10%を超える場合は、粒子粉末の品質劣化に直結することを意味し、ガス吸脱着の繰り返し利用の際にも劣化を引き起こす為好ましくない。より好ましい比表面積の減少率は9.5%以下であり、更により好ましくは9.0%以下である。前記減少率の下限値は0%であるが、1%であっても構わない。   The reduction rate of the specific surface area of the amorphous aluminosilicate particles according to the present invention after firing at 300 ° C. for 1 hour is preferably 10% or less. Here, the reduction rate is a value obtained by dividing the difference between the BET specific surface area of the particle powder of the present invention and the BET specific surface area of the fired particle powder by the BET specific surface area of the particle powder of the present invention, and is expressed as a percentage. It is. If the decrease rate of the specific surface area exceeds 10%, it means that the quality of the particle powder is directly deteriorated, and it is not preferable because the deterioration is caused even when the gas is adsorbed and desorbed repeatedly. A more preferred specific surface area reduction rate is 9.5% or less, and still more preferably 9.0% or less. The lower limit of the reduction rate is 0%, but may be 1%.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の一次粒子の形状は粒状又は板状が好ましい。また、該粒子粉末の平均一次粒子径は1〜50nmが好ましい。より好ましくは2〜30nmである。   The shape of the primary particles of the amorphous aluminosilicate particles according to the present invention is preferably granular or plate-like. The average primary particle diameter of the particle powder is preferably 1 to 50 nm. More preferably, it is 2 to 30 nm.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の300℃−1時間焼成後の相対湿度60%の水蒸気吸着量の減少率は12%以下であることが好ましい。ここで、該減少率とは、本発明の粒子粉末と前記焼成後の粒子粉末の水蒸気吸着量同士の差を、本発明の粒子粉末の水蒸気吸着量で除した値であり、百分率で表した値である。12%を越える場合は、耐熱性が低く、安価な他の吸着剤と同程度であり、優位性が示せなくなり好ましくない。より好ましい水蒸気吸着量の減少率は11.5%以下、さらに好ましいのは11%以下である。前記減少率の下限値は0%であるが、1%であっても構わない。   The reduction rate of the amount of water vapor adsorbed at a relative humidity of 60% after firing the amorphous aluminosilicate particles according to the present invention at 300 ° C. for 1 hour is preferably 12% or less. Here, the reduction rate is a value obtained by dividing the difference between the water vapor adsorption amounts of the particle powder of the present invention and the fired particle powder by the water vapor adsorption amount of the particle powder of the present invention, and expressed as a percentage. Value. If it exceeds 12%, the heat resistance is low and it is almost the same as other inexpensive adsorbents, and it is not preferable because superiority cannot be exhibited. A more preferable reduction rate of the amount of adsorbed water vapor is 11.5% or less, and further more preferably 11% or less. The lower limit of the reduction rate is 0%, but may be 1%.

次に、本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法について述べる。   Next, a method for producing the amorphous aluminosilicate particles according to the present invention will be described.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法は、水溶性ケイ素原料とアルカリ原料を含む溶液を調整する第一工程、得られた溶液に水溶性アルミニウム原料の添加によって添加後の混合溶液中のAl/OHのmol比が2.0〜3.0、Si/Alのmol比が0.7〜1.4、pHが6.0〜8.0に調整され、反応する第二工程、得られた混合スラリーを水洗と濃縮でpHを7.0〜10.0に調整する第三工程、得られたスラリーを温度170〜250℃で水熱処理する第四工程を有する製造方法であることが好ましい。   The method for producing an amorphous aluminosilicate particle powder according to the present invention comprises a first step of preparing a solution containing a water-soluble silicon raw material and an alkali raw material, and mixing after addition by adding a water-soluble aluminum raw material to the obtained solution. The mole ratio of Al / OH in the solution is adjusted to 2.0 to 3.0, the mole ratio of Si / Al is adjusted to 0.7 to 1.4, and the pH is adjusted to 6.0 to 8.0. A production process having a step, a third step of adjusting the pH to 7.0 to 10.0 by washing and concentrating the obtained mixed slurry, and a fourth step of hydrothermally treating the obtained slurry at a temperature of 170 to 250 ° C. Preferably, there is.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法において、第一工程で用いる水溶性ケイ素原料はオルトケイ酸ナトリウム、水ガラス、オルトケイ酸テトラエチル(TEOS)等を使用することができる。アルカリ原料は炭酸アルカリ水溶液としては炭酸ナトリウム水溶液、炭酸カリウム水溶液、炭酸アンモニウム水溶液等であり、水酸化アルカリ水溶液として水酸化ナトリウム、水酸化カリウム等を使用することができる。ここで、Siの量やOHの量は原料仕込みで決定している。但し、炭酸アルカリ水溶液のCO 2−イオン1molの場合、OHの量は1molと見積もっている。 In the method for producing amorphous aluminosilicate particles according to the present invention, the water-soluble silicon raw material used in the first step may be sodium orthosilicate, water glass, tetraethyl orthosilicate (TEOS), or the like. Examples of the alkali raw material include aqueous sodium carbonate, aqueous potassium carbonate, and aqueous ammonium carbonate as an aqueous alkali carbonate solution, and sodium hydroxide, potassium hydroxide, and the like can be used as an aqueous alkali hydroxide solution. Here, the amount of Si and the amount of OH are determined by the raw material preparation. However, in the case of 1 mol of CO 3 2- ions in the aqueous alkali carbonate solution, the amount of OH is estimated to be 1 mol.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法において、第二工程で用いる水溶性アルミニウム原料は硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム等を使用することができる。第一工程で得られた水溶液に前記アルミニウム原料を混ぜることで、混合溶液を作製できる。該混合により、反応は開始し、混合溶液は混合スラリーとなることができる。   In the method for producing amorphous aluminosilicate particles according to the present invention, the water-soluble aluminum raw material used in the second step may be aluminum sulfate, aluminum nitrate, aluminum chloride or the like. A mixed solution can be prepared by mixing the aluminum raw material with the aqueous solution obtained in the first step. The reaction starts by the mixing, and the mixed solution can be a mixed slurry.

第二工程で用いる水溶性アルミニウム原料に対して10mol%以下の金属塩原料を混合して用いることが可能である。その金属元素はMg、Ca、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Ga、Y、Zrである。それぞれの元素の塩化物、硫酸塩、硝酸塩のどれでも良いが、水溶性の塩であることが好ましい。   It is possible to mix and use 10 mol% or less of a metal salt raw material with respect to the water-soluble aluminum raw material used in the second step. The metal elements are Mg, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y and Zr. Any of chloride, sulfate and nitrate of each element may be used, but a water-soluble salt is preferable.

水溶性アルミニウム原料添加後の混合溶液において、Al/OHのmol比は2.0〜3.0であることが好ましい。2.0未満の場合、原料添加時に増粘やゲル化を引き起こし均一な反応をさせることが困難であり好ましくない。3.0を越える場合、後段の工程を経て得られる非晶質アルミノケイ酸塩粒子粉末の吸着性能が下がってしまうため好ましくない。より好ましいAl/OHのmol比は2.1〜2.9、更に好ましくは2.2〜2.8である。   In the mixed solution after the addition of the water-soluble aluminum raw material, the molar ratio of Al / OH is preferably 2.0 to 3.0. When it is less than 2.0, it is difficult to cause a uniform reaction by causing a viscosity increase or a gelation at the time of adding the raw materials, which is not preferable. If it exceeds 3.0, the adsorption performance of the amorphous aluminosilicate particles obtained through the subsequent steps is undesirably reduced. A more preferred molar ratio of Al / OH is 2.1 to 2.9, and still more preferably 2.2 to 2.8.

水溶性アルミニウム原料添加後の混合溶液において、Si/Alのmol比は0.7〜1.4であることが好ましい。0.7未満であると第四工程を経た時点で結晶性のアルミノシリケートが生じて吸着量や比表面積が下がるため好ましくない。1.4を超えると得られる粒子粉末はかなりの非晶質性であり、比表面積の低い非晶質アルミノケイ酸塩粒子粉末が得られるため好ましくない。より好ましくはSi/Alのmol比が0.8〜1.35、さらに好ましくはSi/Alのmol比が0.9〜1.3である。   In the mixed solution after the addition of the water-soluble aluminum raw material, the molar ratio of Si / Al is preferably 0.7 to 1.4. If it is less than 0.7, crystalline aluminosilicate is generated at the time of passing through the fourth step, and the amount of adsorption and the specific surface area are undesirably reduced. If the ratio exceeds 1.4, the obtained particle powder is considerably amorphous, and an amorphous aluminosilicate particle powder having a low specific surface area is not preferable. More preferably, the molar ratio of Si / Al is 0.8 to 1.35, and still more preferably, the molar ratio of Si / Al is 0.9 to 1.3.

第二工程で行うpH調整は前述の全原料添加後に行う必要がある。pH調製用の酸としては、塩酸、硫酸、硝酸、シュウ酸、酢酸等を使用することができる。pH調製用のアルカリとしては、炭酸アルカリ水溶液の場合、炭酸ナトリウム水溶液、炭酸カリウム水溶液、炭酸アンモニウム水溶液等であり、水酸化アルカリ水溶液の場合、水酸化ナトリウム、水酸化カリウム等を使用することができる。調整後のpHの範囲は6.0〜8.0であることが好ましい。調整するpHが6.0未満、或いは8.0を超える場合、第四工程を経て得られる粒子粉末の比表面積は低下し、ガス吸着性能も低下する。より好ましいpHは6.2〜7.9、更により好ましくは6.5〜7.8である。pH調整後の反応時間は10分〜3時間が好ましい。反応時間の目安はpHが安定する時間であり、長時間放置しても、得られる粒子粉末の性能に大きな影響は及ぼさない。より好ましくは、15分〜2時間30分である。   The pH adjustment in the second step needs to be performed after the addition of all the raw materials described above. As the acid for adjusting the pH, hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, acetic acid and the like can be used. Examples of the alkali for pH adjustment include an aqueous solution of an alkali carbonate, an aqueous solution of sodium carbonate, an aqueous solution of potassium carbonate, an aqueous solution of ammonium carbonate, and the like.For an aqueous solution of an alkali hydroxide, sodium hydroxide, potassium hydroxide, and the like can be used. . The pH range after the adjustment is preferably 6.0 to 8.0. When the pH to be adjusted is less than 6.0 or more than 8.0, the specific surface area of the particle powder obtained through the fourth step decreases, and the gas adsorption performance also decreases. A more preferred pH is 6.2-7.9, and even more preferably 6.5-7.8. The reaction time after the pH adjustment is preferably 10 minutes to 3 hours. The standard of the reaction time is the time at which the pH is stabilized, and even if left for a long time, the performance of the obtained particle powder is not significantly affected. More preferably, it is 15 minutes to 2 hours 30 minutes.

第一工程で言及した通りの原料の添加順や添加量を調整することによって、第二工程で得られる混合スラリーの増粘やゲル化を防ぐことができる。固形分濃度が50g/L未満のときは原料添加後の増粘も低く、生産上問題は無い。しかしながら、生産性を高めるために、それ以上の濃度を採用すると、原料添加後にゲル化を引き起こし生産が不可能となっていた。従って、本発明の第二工程において、原料の混合スラリーの固形分濃度は50〜110g/Lであることが好ましい。この範囲であれば、混合スラリーの増粘やゲル化を引き起こすことなく、第三工程であるスラリー水洗と濃縮のためのタンク移送等も可能である。ここで、前記固形分濃度は、後述する通り、混合スラリー体積を計算し、該混合スラリー乾燥後の固形分の重量から算出される方法で算出される。   By adjusting the order and amount of addition of the raw materials as mentioned in the first step, it is possible to prevent the mixed slurry obtained in the second step from thickening or gelling. When the solid concentration is less than 50 g / L, the viscosity after addition of the raw material is low, and there is no problem in production. However, if a concentration higher than that is adopted in order to enhance the productivity, gelation occurs after the addition of the raw materials, and production has been impossible. Therefore, in the second step of the present invention, the solid content concentration of the mixed slurry of the raw materials is preferably 50 to 110 g / L. Within this range, it is possible to transfer the tank for washing and concentrating the slurry, which is the third step, without causing the mixed slurry to thicken or gel. Here, the solid content concentration is calculated by a method of calculating the volume of the mixed slurry and calculating from the weight of the solid content after drying the mixed slurry, as described later.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法において、第三工程におけるスラリー水洗の終点は濾液の電気伝導度で計測するのが好ましい。該終点の電気伝導度の値は50μS/cm〜800μS/cmが好ましい。50μS/cm未満は到達するまでに時間が長くかかるため、生産性の観点から好ましくない。800μS/cmより大きい場合は後段の工程を経て得られる非晶質アルミノケイ酸塩粒子粉末の吸着性能が下がってしまうため好ましくない。   In the method for producing amorphous aluminosilicate particles according to the present invention, the end point of the slurry washing in the third step is preferably measured by the electric conductivity of the filtrate. The value of the electrical conductivity at the end point is preferably 50 μS / cm to 800 μS / cm. If it is less than 50 μS / cm, it takes a long time to reach it, so that it is not preferable from the viewpoint of productivity. If it is more than 800 μS / cm, the adsorption performance of the amorphous aluminosilicate particles obtained through the subsequent steps is undesirably reduced.

スラリー水洗と濃縮によって、混合スラリーのpHを7.0〜10.0に調整することが好ましい。7.0未満の場合、または10.0より大きい場合は後段の工程を経て得られる非晶質アルミノケイ酸塩粒子粉末の吸着性能が下がってしまうため好ましくない。より好ましくはpH7.2〜9.8、さらにより好ましくはpH7.5〜9.5である。   It is preferable to adjust the pH of the mixed slurry to 7.0 to 10.0 by washing with slurry and concentration. If it is less than 7.0 or more than 10.0, the adsorption performance of the amorphous aluminosilicate particles obtained through the subsequent steps is undesirably reduced. More preferably, the pH is 7.2 to 9.8, and even more preferably, the pH is 7.5 to 9.5.

また、第三工程で得られるスラリー中の粘度は1〜400mPa・sの範囲であることが好ましい。1mPa・s未満の場合、低濃度のスラリーとなり、1バッチ当り得られる粒子粉末の量は少なく、生産性の観点から好ましくない。400mPa・sを超える場合、ハンドリング性の高いスラリーとは言い難い。より好ましくは10〜350mPa・sの範囲である。   Further, the viscosity in the slurry obtained in the third step is preferably in the range of 1 to 400 mPa · s. When the viscosity is less than 1 mPa · s, the slurry becomes a low-concentration slurry, and the amount of particle powder obtained per batch is small, which is not preferable from the viewpoint of productivity. If it exceeds 400 mPa · s, it is difficult to say that the slurry has high handling properties. More preferably, it is in the range of 10 to 350 mPa · s.

第四工程のスラリー中の固形分濃度は第三工程の水洗と濃縮によって調整することができる。即ち、第三工程で得られるスラリー中の固形分濃度は90〜300g/Lが好ましい。ここで、スラリー濃度とは、第四工程後のスラリーを乾燥し、得られる固形分重量を前記乾燥前のスラリーの体積で割った値である。第二工程の混合スラリー中の固形分濃度も同様の手法で計算される。90g/L未満では第四工程の反応濃度が低く生産効率が悪くなるため好ましくない。300g/Lより高濃度ではスラリーの流動性が悪くなり、第三から第四工程の設備へスラリーを移送できないため好ましくない。より好ましくは100〜280g/L、さらに好ましくは110〜260g/Lである。   The solid content concentration in the slurry in the fourth step can be adjusted by washing and concentration in the third step. That is, the solid content concentration in the slurry obtained in the third step is preferably from 90 to 300 g / L. Here, the slurry concentration is a value obtained by drying the slurry after the fourth step and dividing the obtained solid content by the volume of the slurry before drying. The solid content concentration in the mixed slurry in the second step is calculated in the same manner. If it is less than 90 g / L, the reaction concentration in the fourth step is low and the production efficiency is poor, so that it is not preferable. If the concentration is higher than 300 g / L, the fluidity of the slurry deteriorates, and the slurry cannot be transferred to the equipment of the third to fourth steps, which is not preferable. It is more preferably from 100 to 280 g / L, and still more preferably from 110 to 260 g / L.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法において、第四工程の水熱処理の温度は170〜250℃であることが好ましい。170℃未満の場合、得られる粒子粉末の諸特性(比表面積等)を満たすために、水熱処理の時間が、昇温時間と冷却時間を足し合わせた時間より長くなってしまう。結果として、粒子粉末の単位時間当りの生産効率が落ちてしまうため好ましくない。250℃より高いと結晶性カオリナイトが生じてしまい、BET比表面積も低く、吸着性能が低下するため好ましくない。より好ましい水熱処理温度は180〜240℃、更に好ましい水熱処理温度は190〜230℃である。   In the method for producing amorphous aluminosilicate particles according to the present invention, the temperature of the hydrothermal treatment in the fourth step is preferably 170 to 250 ° C. If the temperature is lower than 170 ° C., in order to satisfy various properties (specific surface area and the like) of the obtained particle powder, the time of the hydrothermal treatment is longer than the sum of the temperature raising time and the cooling time. As a result, the production efficiency of the particle powder per unit time decreases, which is not preferable. If the temperature is higher than 250 ° C., crystalline kaolinite is generated, the BET specific surface area is low, and the adsorption performance is undesirably reduced. A more preferred hydrothermal treatment temperature is 180 to 240 ° C, and a still more preferred hydrothermal treatment temperature is 190 to 230 ° C.

第四工程の水熱処理の時間は1〜8時間が好ましい。1時間未満の場合は得られる非晶質アルミノケイ酸塩粒子粉末の吸着性能が下がってしまうため好ましくない。8時間より長い場合は第一工程〜第四工程での処理が24時間サイクルで回すのが困難となり、生産レート低下につながるため好ましくない。より好ましい水熱処理時間は2〜6時間である。   The time of the hydrothermal treatment in the fourth step is preferably 1 to 8 hours. If the time is less than 1 hour, the adsorption performance of the obtained amorphous aluminosilicate particles is undesirably reduced. If the time is longer than 8 hours, it is difficult to perform the processing in the first to fourth steps in a 24-hour cycle, which leads to a reduction in the production rate, which is not preferable. A more preferred hydrothermal treatment time is 2 to 6 hours.

第四工程終了後、常法により、水洗、乾燥、粉砕を行うことができる。この操作により、粒子粉末が得られる。   After completion of the fourth step, washing, drying and pulverization can be performed by a conventional method. By this operation, a particle powder is obtained.

<作用>
本発明において重要な点は、本発明に係る非晶質アルミノケイ酸塩粒子粉末は300℃−1時間で焼成した前後で比表面積と水蒸気吸着量の減少率が非常に小さく、耐熱性を有するという事実である。また、本発明に係る非晶質アルミノケイ酸塩粒子粉末の製造方法では、水熱反応時の固形分濃度を90〜300g/Lと高濃度にすることができ、前記粒子粉末の生産性を高めることができるという事実である。
<Action>
An important point in the present invention is that the amorphous aluminosilicate particles according to the present invention have a very small reduction ratio of the specific surface area and the amount of water vapor adsorption before and after calcination at 300 ° C. for one hour, and have heat resistance. It is a fact. Further, in the method for producing amorphous aluminosilicate particles according to the present invention, the solid content concentration during the hydrothermal reaction can be as high as 90 to 300 g / L, and the productivity of the particle powder is increased. The fact is that you can.

本発明に係る非晶質アルミノケイ酸塩粒子粉末の耐熱性が向上した理由は明らかではないが、該粒子粉末中の結晶水の量を低減でき、低結晶性ながらもギブサイト構造のAlO八面体シート、並びにSiO四面体の単量体及びカオリン鉱物由来のSiO四面体シートを有する構造をとったためと発明者は推定している。このような構造は前述の高濃度水熱反応によって達成できたと推測している。 Although the reason why the heat resistance of the amorphous aluminosilicate particles according to the present invention is improved is not clear, the amount of water of crystallization in the particles can be reduced, and AlO 6 octahedron having a gibbsite structure while having low crystallinity is obtained. The inventor presumes that a structure having a sheet and a SiO 4 tetrahedral sheet derived from SiO 4 tetrahedral monomer and kaolin mineral was adopted. It is presumed that such a structure was achieved by the high-concentration hydrothermal reaction described above.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

試料の比表面積値はBET法により測定した。測定装置はマルチソーブ(カンタクローム・インスツルメンツ・ジャパン製)を使用して測定した。前処理条件として、試料に窒素ガスを通気しつつ、120℃、2hの条件で脱気をした。   The specific surface area of the sample was measured by the BET method. The measurement was carried out using a multisorb (manufactured by Kantachrome Instruments Japan). As a pretreatment condition, the sample was degassed at 120 ° C. for 2 hours while passing nitrogen gas through the sample.

試料の耐熱性を測るために、試料2gを磁製るつぼに量り取り、箱型電気炉の中で昇温速度10℃/min、到達温度300℃、1時間保持で焼成をした。前記磁製るつぼを取り出した後、放冷して、BET比表面積を測定し、比表面積減少率を算出した。後述する水蒸気吸着量減少率測定における試料の300℃−1時間焼成も同様の手順で行った。   In order to measure the heat resistance of the sample, 2 g of the sample was weighed into a porcelain crucible, and baked in a box-type electric furnace at a heating rate of 10 ° C./min, a reaching temperature of 300 ° C. for 1 hour. After taking out the porcelain crucible, it was allowed to cool, the BET specific surface area was measured, and the specific surface area reduction rate was calculated. The sample was calcined at 300 ° C. for one hour in the measurement of the rate of decrease in the amount of adsorbed water vapor described later, in the same manner.

試料のNa、Si、及びAlの含有量測定に、蛍光X線分析装置Rigaku RIX2100を用いた。各々、NaO、SiO、及びAlとみなした。 An X-ray fluorescence analyzer Rigaku RIX2100 was used to measure the contents of Na, Si, and Al in the sample. Each was considered as Na 2 O, SiO 2 , and Al 2 O 3 .

試料の構造内の結晶水量は下記の方法で求めた。先ず磁製るつぼに粒子粉末を2g量り取り、箱型乾燥機内で150℃の温度で20時間加熱した。その後、湿度10%未満のデシケーター内で放冷して、試料の乾燥重量を量り、これを重量(A)とした。次に、前記放冷した磁製るつぼを、予め700℃に加熱していた箱型焼成炉に入れ、1時間保持した。その後、再びデシケーター内で放冷して試料重量を量り、これを重量(B)とした。{重量(A)−重量(B)}/重量(A)×100の式で求められた値を強熱減量(単位:重量%)とした。この値と蛍光X線で得られたNa、Si、Alの含有量を用いて、一般式a NaO・b SiO・Al・n HOの各係数をmolで算出した。 The amount of water of crystallization in the structure of the sample was determined by the following method. First, 2 g of the particle powder was weighed into a porcelain crucible and heated at 150 ° C. for 20 hours in a box dryer. Thereafter, the sample was allowed to cool in a desiccator having a humidity of less than 10%, the dry weight of the sample was measured, and this was defined as the weight (A). Next, the porcelain crucible that had been allowed to cool was placed in a box-type sintering furnace that had been heated to 700 ° C. in advance and held for 1 hour. Thereafter, the sample was allowed to cool in the desiccator again and the sample was weighed, and this was defined as weight (B). The value determined by the formula of {weight (A) -weight (B)} / weight (A) × 100 was defined as the ignition loss (unit: weight%). The value of Na obtained in X-ray fluorescence, Si, using the content of Al, the coefficients of the general formula a Na 2 O · b SiO 2 · Al 2 O 3 · n H 2 O calculated in mol .

試料の平均一次粒子径はTEM装置JEM−F200(日本電子(株)製)で測定した。代表的な粒子から平均一次粒子径を見積もった。   The average primary particle size of the sample was measured with a TEM device JEM-F200 (manufactured by JEOL Ltd.). The average primary particle size was estimated from representative particles.

試料の結晶相の同定にXRD装置D8 ADVANCE(BRUKER製)(管球:Cu、管電圧:40kV、管電流:40mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.010°、走査速度:6°/min、発散スリット:0.2°、受光スリット:0.03mm)を使用した。   XRD apparatus D8 ADVANCE (manufactured by BRUKER) for identifying the crystal phase of the sample (tube: Cu, tube voltage: 40 kV, tube current: 40 mA, goniometer: wide-angle goniometer, sampling width: 0.010 °, scanning speed: 6) ° / min, divergence slit: 0.2 °, light receiving slit: 0.03 mm).

試料の各元素間の化学結合の振動モードに関するスペクトルはFT−IRサーモフィッシャーサイエンティフィック(株)製 Nicolet iS5を用いて測定した。分解能は4cm−1、積算回数は16回であり、ATR(全反射測定)法で測定した。 The spectrum relating to the vibration mode of the chemical bond between the elements of the sample was measured using Nicolet iS5 manufactured by FT-IR Thermo Fisher Scientific Co., Ltd. The resolution was 4 cm −1 , the number of integration was 16 times, and the measurement was performed by ATR (total reflection measurement) method.

試料の核種27Alの化学シフトや配位状態はNMR装置ECA400型(日本電子(株)製)を用いて評価した。磁場強度は9.39T(400MHz)である。測定手法はDD(Dipolar Decoupling)法、試料管は3.2mmのものを用いて、周波数21kHzで回転させて測定した。積算回数は1024回、硝酸アルミニウムを外部標準物質(0ppm)として用いた。 The chemical shift and coordination state of nuclide 27 Al in the sample were evaluated using an NMR apparatus ECA400 (manufactured by JEOL Ltd.). The magnetic field strength is 9.39T (400 MHz). The measurement was carried out using a DD (Dipolar Decoupling) method and a 3.2 mm sample tube rotated at a frequency of 21 kHz. The number of integration was 1024 times, and aluminum nitrate was used as an external standard substance (0 ppm).

試料の核種29Siの化学シフトや配位状態はNMR装置ECA400型(日本電子(株)製)を用いて評価した。磁場強度は9.39T(400MHz)である。測定手法はCP(Cross Polarization)法、試料管は3.2mmのものを用いて、周波数6kHzで回転させて測定した。積算回数は1500回、ポリジメチルシロキサンを外部標準物質(−34ppm)として用いた。 The chemical shift and coordination state of nuclide 29 Si in the sample were evaluated using an NMR apparatus ECA400 (manufactured by JEOL Ltd.). The magnetic field strength is 9.39T (400 MHz). The measurement was carried out using a cross polarization (CP) method and a 3.2 mm sample tube rotated at a frequency of 6 kHz. The number of times of integration was 1500 times, and polydimethylsiloxane was used as an external standard substance (-34 ppm).

本発明に係る試料のデータにおいて、29Siの化学シフト−120〜−60ppmの範囲に着目し、−78.9〜−77.0ppmに位置する単一のピークと−110〜−79.0ppmに位置する2〜6つの複数のピークの重ね合わせで表されることを確認した。用いたピーク形状関数はガウス関数で、フィッティングにおける決定係数Rを算出した。低い化学シフトの値からj番目の位置のピークに対し、ピークパラメータとして、ピーク面積Sj、ピーク位置Pj、半価幅Wj、ピークの高さHjと名づけた。即ち、j=1は−110〜−92.0ppmに位置するピーク、j=2は−91.9〜−90.0ppmに位置するピーク、j=3は−89.9〜−79.0ppmに位置するピーク、j=4は−78.9〜−77.0ppmに位置するピークである。j=5〜7は決定係数Rを1に近づけるため、任意の位置で使用した。ここで、ピーク強度の絶対値には物理的な意味は無く、ピーク面積Sjやピーク強度Hjは同スペクトル中の面積比や強度比として意味をなす。j=2のピークの半価幅は5ppmが以下と小さく、参考文献1等の報告によるカオリン鉱物の測定データを考慮すると、均一なSiO四面体シート由来のQ値のピークと推察される。また、−110〜−79.0ppmに位置する最もピーク面積が大きいk番目のピークもQ値のピークの可能性がある。しかしながら、Al置換やSiO四面体が不均一で構造欠陥を有してk番目のピークの半価幅が非常に高かったと考えられる。従って、S2/Skの面積比を耐熱性に関連するパラメータとした。 In the data of the sample according to the present invention, focusing on the range of the chemical shift of 29 Si from −120 to −60 ppm, a single peak located at −78.9 to −77.0 ppm and a single peak at −110 to −79.0 ppm It was confirmed that the peak was represented by a superposition of two to six peaks. Peak shape function used is a Gaussian function to calculate the coefficient of determination R 2 in the fitting. With respect to the peak at the j-th position from the value of the low chemical shift, peak parameters were named as peak area Sj, peak position Pj, half width Wj, and peak height Hj. That is, j = 1 is a peak located at −110 to −92.0 ppm, j = 2 is a peak located at −91.9 to −90.0 ppm, and j = 3 is a peak located at −89.9 to −79.0 ppm. The peak located, j = 4, is the peak located at -78.9 to -77.0 ppm. For j = 5 to 7 is to bring the coefficient of determination R 2 to 1, and used in any position. Here, the absolute value of the peak intensity has no physical meaning, and the peak area Sj and the peak intensity Hj have meaning as an area ratio and an intensity ratio in the same spectrum. The half-value width of the peak at j = 2 is as small as 5 ppm or less, and in consideration of the kaolin mineral measurement data reported in Reference 1 and the like, it is inferred to be a peak of the Q 3 value derived from a uniform SiO 4 tetrahedral sheet. . Also, k-th peak has the largest peak area located -110~-79.0ppm also the possibility of the peak of the Q 3 value. However, it is considered that the half-width of the k-th peak was extremely high because the Al substitution and the SiO 4 tetrahedron were uneven and had structural defects. Therefore, the area ratio of S2 / Sk was used as a parameter related to heat resistance.

−110〜−79.0ppmに位置するピークのフィッテングについてより詳細に説明する。ガウス関数のピーク数を増やして、決定係数Rの値を1に近づけることも可能であった。しかしながら、決定係数Rの値0.99を基準とし、それを超えたとき、それ以上、ガウス関数のピーク数を増やさなかった。従って、−110〜−79.0ppmに位置するピークは最大6つのガウス関数でフィッテングできたが、便宜上、それ以下のピーク数でフィッティングしている。 The fitting of the peak located at 110 to -79.0 ppm will be described in more detail. Increase the number of peaks of the Gaussian function, the value of the coefficient of determination R 2 was also possible to close to 1. However, with respect to the coefficient of determination R 2 value 0.99, when it exceeds it, higher, it did not increase the number of peaks of the Gaussian function. Therefore, although the peak located at −110 to −79.0 ppm could be fitted with a maximum of six Gaussian functions, the fitting was performed with a smaller number of peaks for convenience.

参考文献1 T.Watanabe,et al.,「29Si− and 27Al−MAS/NMR study of the thermal transformations of Kaolinite」 Clay Minerals(1987)vol.22,p.37−48. Reference 1 T. Watanabe, et al. , "29 Si- and 27 Al-MAS / NMR study of the thermal transformations of Kaolinite " Clay Minerals (1987) vol. 22, p. 37-48.

試料の水蒸気吸着量は300℃−1時間焼成前(即ち、未処理)、該焼成後、共にベルソープaqua3(マイクロトラック・ベル(株)製)を用いて測定した。測定サンプルは試料フォルダーに充填後、予め真空ポンプで減圧した。同時に、該フォルダーを温度120℃で2.5時間加熱をし、フォルダー内圧が10−2kPaまで減圧したことを確認した。その後、窒素置換を行ったもの用い、相対湿度をパラメータとして、温度25℃にて水蒸気吸着量を測定した。 The amount of water vapor adsorbed on the sample was measured using a bell soap aqua3 (manufactured by Microtrac Bell Co., Ltd.) before and after firing at 300 ° C. for 1 hour (ie, untreated). After filling the measurement sample into the sample folder, the pressure was previously reduced by a vacuum pump. At the same time, the folder was heated at a temperature of 120 ° C. for 2.5 hours, and it was confirmed that the internal pressure of the folder was reduced to 10 −2 kPa. Then, the amount of water vapor adsorption was measured at a temperature of 25 ° C. using nitrogen-substituted ones and relative humidity as a parameter.

試料製造時のスラリーの粘度はE型粘度計(東機産業(株)製TVE−35H)を用いて、回転数50rpmで測定した。   The viscosity of the slurry at the time of sample production was measured at 50 rpm using an E-type viscometer (TVE-35H manufactured by Toki Sangyo Co., Ltd.).

実施例1:非晶質アルミノケイ酸塩粒子粉末の製造
内容積800Lの反応容器中に、Siとして5.0mol/Lの3号ケイ酸ナトリウム溶液120Lを投入した後、10NのNaOH溶液を25L追加して撹拌して第一工程を終了した。
Example 1 Production of Amorphous Aluminosilicate Particle Powder Into a reaction vessel having an internal volume of 800 L, 120 L of 5.0 mol / L sodium 3 silicate solution was added as Si, and then 25 L of 10 N NaOH solution was added. And stirred to complete the first step.

次に、400Lの供給用タンクにAlとして2.0mol/Lの塩化アルミニウム溶液295Lを準備した。該塩化アルミニウム溶液を前述の反応容器に添加しながら撹拌し、295Lすべて混合した。原料混合後の仕込みSi/Alモル比は1.02(仕込みケイバン比SiO/Alは2.04モル比)、Al/OHモル比は2.36であった。ここでOHは第一工程で添加したNaOHの仕込み値である。その後、混合溶液を40℃に昇温して、pHを測定した。pHが4.31であったので、6NのNaOH溶液をpH7.1になるまで添加して、反応を進行させた。pH値が7.1±0.1の範囲で30分安定した時点で第二工程を終了した。 Next, 295 L of a 2.0 mol / L aluminum chloride solution as Al was prepared in a 400 L supply tank. The aluminum chloride solution was stirred while being added to the above reaction vessel, and all 295 L were mixed. It charged Si / Al molar ratio after the raw material mixing 1.02 (charged silica-alumina ratio SiO 2 / Al 2 O 3 is 2.04 molar ratio), Al / OH molar ratio was 2.36. Here, OH is a charged value of NaOH added in the first step. Thereafter, the temperature of the mixed solution was raised to 40 ° C., and the pH was measured. Since the pH was 4.31, a 6N NaOH solution was added until the pH reached 7.1, and the reaction was allowed to proceed. The second step was terminated when the pH value was stabilized within a range of 7.1 ± 0.1 for 30 minutes.

得られた混合スラリーを温度40℃でフィルターシックナーを用いて水洗した。ろ液の電気伝導度が300μS/cm以下になるまで水洗し、スラリーを530Lまで濃縮した時点で第三工程を終了した。該濃縮スラリーのpHは8.5、スラリーの固形分濃度は150g/L、粘度は57mPa・sであった。   The obtained mixed slurry was washed with water at a temperature of 40 ° C. using a filter thickener. The filtrate was washed with water until the electric conductivity of the filtrate became 300 μS / cm or less, and the third step was completed when the slurry was concentrated to 530 L. The pH of the concentrated slurry was 8.5, the solid concentration of the slurry was 150 g / L, and the viscosity was 57 mPa · s.

第三工程で得られたスラリーを容積800Lのオートクレーブに移送した。その後、昇温速度1℃/分で加熱して、180℃に保持したスラリーを6時間かけて水熱反応を行った。その後、オートクレーブを放冷して第四工程を終了した。該反応後のスラリーをフィルターシックナーで300μS/cm以下まで水洗して、スラリーを箱型乾燥機に入れた。乾燥温度110℃の設定で乾燥、粉砕後、本発明に係る非晶質アルミノケイ酸塩粒子粉末を得た。第四工程直後のスラリーを乾燥して、前記スラリーの固形分濃度150g/Lを算出している。   The slurry obtained in the third step was transferred to an 800 L autoclave. Thereafter, the slurry was heated at a heating rate of 1 ° C./min, and the slurry maintained at 180 ° C. was subjected to a hydrothermal reaction over 6 hours. Thereafter, the autoclave was allowed to cool, and the fourth step was completed. The slurry after the reaction was washed with a filter thickener to 300 μS / cm or less, and the slurry was put in a box drier. After drying and grinding at a drying temperature of 110 ° C., an amorphous aluminosilicate particle powder according to the present invention was obtained. The slurry immediately after the fourth step is dried to calculate a solid content concentration of the slurry of 150 g / L.

得られた試料のBET比表面積が753m/gであった。蛍光エックス線分析での元素含有量と強熱減量の測定値から、一般式a NaO・b SiO・Al・n HOのa、b、及びnの値を算出したところ、各々、0.13、1.98、及び、1.04molであり、ケイバン比bは出発原料の仕込みケイバン比と同程度であった。 The BET specific surface area of the obtained sample was 753 m 2 / g. From measurements of ignition loss and elemental content of a fluorescent X-ray analysis, the general formula a Na 2 O · b SiO 2 · Al 2 O 3 · n H 2 O in a, was calculated values of b, and n , And 0.13, 1.98, and 1.04 mol, respectively, and the carbane ratio b was substantially the same as the charged carbane ratio of the starting material.

得られた試料のTEM写真を図1に示す。5nm程度の一次粒子が強く凝集体を形成していた。また、図2に得られた試料のXRDプロファイルを示すように、Haloピークも含んでいた。従って、試料は非晶質で、低結晶性であり、TEMの一次粒子サイズからもアロフェンとみなした。XRDプロファイルの2θとして、21°、26°、37°、40°、54°、及び63°付近にブロードなピークが確認できる低結晶性のアルミノケイ酸塩であった。得られたプロファイルは解析の結果、ハロイサイト又はカオリナイトの単位胞を1〜30個並べた程度のプロファイルであり、低結晶性のカオリンの可能性があった。このことはギブサイト構造のAlO八面体シートの存在と29Si−NMRでQ値のSiO四面体シートの存在を示唆するものであった。 FIG. 1 shows a TEM photograph of the obtained sample. Primary particles of about 5 nm strongly formed aggregates. Further, as shown in the XRD profile of the obtained sample in FIG. 2, the sample also contained a Halo peak. Therefore, the sample was amorphous and low crystalline, and was also regarded as allophane also from the primary particle size of the TEM. It was a low crystalline aluminosilicate in which broad peaks could be confirmed at around 21 °, 26 °, 37 °, 40 °, 54 °, and 63 ° as 2θ in the XRD profile. As a result of analysis, the obtained profile was a profile in which 1 to 30 unit cells of halloysite or kaolinite were arranged, and there was a possibility of low-crystalline kaolin. This suggested the existence of an AlO 6 octahedral sheet having a gibbsite structure and the existence of a SiO 4 tetrahedral sheet having a Q 3 value in 29 Si-NMR.

得られた試料のFT−IRスペクトルを図3に示す。横軸は波数で縦軸は吸光度である。1200〜800cm−1、及び560cm−1付近と450cm−1付近にピークが確認できた。非特許参考文献3等を参考にすると、1200〜800cm−1において、1100cm−1のショルダーはSiO四面体の高い重合度を表し、SiO四面体シートの存在を示唆している。これは、XRDで示されたSiO四面体シート存在を支持する結果であった。また、980cm−1と900cm−1付近の2つのピークはイモゴライトと同様のスペクトルであり、SiO四面体単量体の存在、即ち、29Si−NMRでQ値のピークの存在も示唆された。 FIG. 3 shows the FT-IR spectrum of the obtained sample. The horizontal axis is the wave number and the vertical axis is the absorbance. 1200~800Cm -1, and 560 cm -1 and around 450cm peak around -1 was confirmed. And Sankounisuru et Reference 3 and the like, in 1200~800Cm -1, shoulder 1100 cm -1 represents a high polymerization degree of SiO 4 tetrahedra, suggesting the presence of a SiO 4 tetrahedron sheets. This was a result of supporting the presence of the SiO 4 tetrahedral sheet indicated by XRD. The two peaks near 980 cm -1 and 900 cm -1 have the same spectrum as that of imogolite, which suggests the presence of a SiO 4 tetrahedral monomer, that is, the presence of a Q 0 value peak in 29 Si-NMR. Was.

得られた試料の27Al−NMRスペクトルを図4に示す。0ppm付近のピークはAlO八面体、及び60ppm付近のピークはAlO四面体に起因する。実測値はシンボル■で表し、実線でフィッティングによる計算値を示した。ここで、計算値は図に示す4つのガウス関数の重ね合わせの値である。右から順にガウス曲線1、2、3、4と名づけた。AlO八面体由来のピークはガウス曲線1と2の重ねあわせで、AlO四面体由来のピークはガウス曲線3と4の重ねあわせである。前者の重ね合わせたピーク面積に対する後者の重ね合わせたピーク面積との比は0.47であった。従って、得られた試料において、AlO八面体が主体であった。また、AlO四面体はSiO四面体を置換している可能性がある。 FIG. 4 shows a 27 Al-NMR spectrum of the obtained sample. The peak around 0 ppm is due to the AlO 6 octahedron, and the peak around 60 ppm is due to the AlO 4 tetrahedron. The measured value is represented by symbol ■, and the solid line indicates the value calculated by fitting. Here, the calculated value is a value obtained by superimposing the four Gaussian functions shown in the figure. Gaussian curves 1, 2, 3, and 4 were named in order from the right. The peak derived from AlO 6 octahedron is the superposition of Gaussian curves 1 and 2, and the peak derived from AlO 4 tetrahedron is the superposition of Gaussian curves 3 and 4. The ratio of the former superimposed peak area to the latter superimposed peak area was 0.47. Therefore, in the obtained sample, AlO 6 octahedron was mainly contained. Also, the AlO 4 tetrahedron may have replaced the SiO 4 tetrahedron.

得られた試料の29Si−NMRスペクトルを図5に示す。実測値はシンボル■で表し、実線でフィッティングによる計算値を示す。ここで、計算値はj=1〜4の各々のガウス関数による曲線の重ねあわせである。図に示すように、化学シフト−120〜−60ppmの範囲の29Si−NMRスペクトルはト−78.9〜−77.0ppmに位置する単一のピークと−110〜−79.0ppmに位置する3つピークの重ね合わせによって表せた。決定係数Rは0.994と1に近く、良いフィッティングができた。即ち、これ以上ガウス関数のピーク数を増やさなかった。j=2のピークの半値幅は3.05ppmと小さく、均一なSiO四面体の配列に由来するQ値のピークに該当した。このSiO四面体はシートを形成し、アロフェン構造の安定に寄与すると推測された。j=3のピークは半価幅と面積が他のピークより大きかったが、化学シフトの値が−89.49ppmであり、構造欠陥をもつQ値のピークと推測できる。従って、k=3とし、面積比S2/Skは0.090と高い値を示した。また、j=4のピークは化学シフトの値が−78.31ppmであり、イモゴライト同様のSiO四面体単量体のQ由来のピークであった。 FIG. 5 shows the 29 Si-NMR spectrum of the obtained sample. The measured value is represented by the symbol ■, and the solid line indicates the value calculated by the fitting. Here, the calculated value is a superposition of curves by each Gaussian function of j = 1 to 4. As shown in the figure, the 29 Si-NMR spectrum in the chemical shift range of -120 to -60 ppm has a single peak located at -78.9 to -77.0 ppm and a peak located at -1110 to -79.0 ppm. This was represented by the superposition of three peaks. The coefficient of determination R 2 is close to 0.994 and 1, could be fitted. That is, the number of peaks of the Gaussian function was not increased any more. j = 2 of the half-value width of the peak is small and 3.05 ppm, and corresponds to the peak of Q 3 value derived from the sequence of uniform SiO 4 tetrahedron. It was presumed that this SiO 4 tetrahedron formed a sheet and contributed to the stability of the allophane structure. j = 3 peaks but half width and area is larger than the other peaks, the values of chemical shifts are -89.49Ppm, it can be inferred that the peak of the Q 3 value having structural defects. Therefore, k = 3, and the area ratio S2 / Sk showed a high value of 0.090. Further, j = 4 peak values of chemical shifts are -78.31Ppm, it peaked from Q 0 imogolite like SiO 4 tetrahedral monomers.

得られた試料に対し、温度25℃、相対湿度(RH)60%において試料重量に対する水蒸気吸着量は49.6wt%であった。   At a temperature of 25 ° C. and a relative humidity (RH) of 60%, the amount of water vapor adsorbed with respect to the weight of the obtained sample was 49.6 wt%.

300℃−1時間焼成後の試料のBET比表面積は712m/gであり、RH=60%で48.8wt%の水蒸気吸着量であった。比表面積と水蒸気吸着量は300℃−1時間焼成の影響をほとんど受けず、高い値を示した。即ち、比表面積、及び水蒸気吸着量の減少率は、各々5.4%、1.6%と非常に低く、耐熱性の高い試料であった。 The BET specific surface area of the sample after firing at 300 ° C. for 1 hour was 712 m 2 / g, and the amount of water vapor adsorbed was 48.8 wt% at RH = 60%. The specific surface area and the amount of water vapor adsorption were hardly affected by the calcination at 300 ° C. for one hour, and showed high values. That is, the specific surface area and the rate of decrease in the amount of water vapor adsorption were extremely low at 5.4% and 1.6%, respectively, indicating that the sample had high heat resistance.

表1に試料の製造条件を、表2に得られた試料の比表面積と組成式を、表3に29Si−NMRスペクトルで得られたピークに関するパラメータを、表4に水蒸気吸着量、300℃−1時間焼成後の水蒸気吸着量と比表面積、及びそれらの減少率を示す。後述する実施例と比較例の数値も表1〜4に記載した。 Table 1 shows the manufacturing conditions of the sample, Table 2 shows the specific surface area and composition formula of the obtained sample, Table 3 shows the parameters related to the peak obtained in the 29 Si-NMR spectrum, Table 4 shows the amount of water vapor adsorption, 300 ° C. 1 shows the amount of water vapor adsorbed and the specific surface area after sintering for -1 hour, and their reduction rate. Tables 1 to 4 also show numerical values of Examples and Comparative Examples described later.

実施例2〜3、比較例1〜5
表1に示すように、第一、及び第二工程における水溶性ケイ素原料の種類、混合するアルカリ原料の種類・仕込み比、水溶性アルミニウムの種類・仕込み比、及びpH、並びに第三工程における固形分濃度・pH・粘度、第四工程における水熱処理温度と時間を種々変化させた以外は、実施例1と同様にして非晶質アルミノケイ酸塩粒子粉末の試料を作製した。
Examples 2-3, Comparative Examples 1-5
As shown in Table 1, the types of the water-soluble silicon raw materials in the first and second steps, the types and the charging ratios of the alkaline raw materials to be mixed, the types and the charging ratios of the water-soluble aluminum, and the pH, and the solids in the third step A sample of amorphous aluminosilicate particles was prepared in the same manner as in Example 1 except that the concentration, pH, viscosity, and the temperature and time of the hydrothermal treatment in the fourth step were variously changed.

比較例6〜12
比較例6〜12は既存の結晶性アルミノケイ酸化合物、非晶質アルミノケイ酸化合物、非晶質シリカである。即ち、比較例6はナトリウムA型の合成ゼオライト、比較例7はナトリウムX型の合成ゼオライト、比較例8は山形県板谷地区産出の天然ゼオライトで主成分がクリノプチロライトであり副成分としてモルデナイトを含むものである。比較例9〜10は天然の土壌中から産出したアロフェンである。比較例11は沈殿法を用いて作製された非晶質シリカである。比較例12はゲル化法を用いて作製された非晶質シリカである。
Comparative Examples 6 to 12
Comparative Examples 6 to 12 are existing crystalline aluminosilicate compounds, amorphous aluminosilicate compounds, and amorphous silica. That is, Comparative Example 6 was a synthetic zeolite of sodium A type, Comparative Example 7 was a synthetic zeolite of sodium X type, Comparative Example 8 was a natural zeolite produced from Itaya district in Yamagata Prefecture, the main component of which was clinoptilolite, and mordenite was used as an auxiliary component. Is included. Comparative Examples 9 to 10 are allophane produced from natural soil. Comparative Example 11 is an amorphous silica produced using a precipitation method. Comparative Example 12 is amorphous silica produced using a gelling method.

比較例6、7、及び8は各々結晶性のゼオライトであり、各々、ケイバン比bは1.94mol、2.32mol、及び9.92molで、比表面積は1.1m/g、416m/g、及び66m/gであり、本発明の範囲外であった。また、各々、水蒸気吸着量(RH=60%)は20.7wt%、25.5wt%、及び9.8wt%実施例に比べ低かった。比較例11と12は非晶質の合成シリカであり、比表面積は184m/gと666m/gであり、本発明の範囲外であった。また、得られた水蒸気吸着量(RH=60%)は8.1wt%と30.2wt%であり、実施例と比べると低かった。 Comparative Examples 6, 7, and 8 are crystalline zeolites, each having a Caban ratio b of 1.94 mol, 2.32 mol, and 9.92 mol, and a specific surface area of 1.1 m 2 / g, 416 m 2 / g, and 66 m 2 / g, out of the scope of the present invention. Further, the water vapor adsorption amount (RH = 60%) was lower than the examples of 20.7 wt%, 25.5 wt%, and 9.8 wt%, respectively. Comparative Examples 11 and 12 were amorphous synthetic silicas having specific surface areas of 184 m 2 / g and 666 m 2 / g, which were outside the scope of the present invention. Further, the obtained water vapor adsorption amounts (RH = 60%) were 8.1 wt% and 30.2 wt%, which were lower than those of the examples.

表2に示すように、比較例4を除くと、試料の比表面積は本発明の範囲外で、小さかった。従って、これらの試料はガス吸着剤に不向きであることが分かった。また、表3に示すように、比較例9と10は化学シフト−110〜−79.0ppmに位置するピークは一つで、半価幅W3が非常に大きく、ピーク高さH3が低く、かろうじて存在が認められる程度のブロードなピークであった。決定係数Rは0.8以下と小さく、ガウス関数のピーク数を2、3つ増やしてフィッティングしても、決定係数Rは全く増えなかった。そのため、−110〜−79.0ppmに位置するピークは一つとした。比較例9と10は一般にプロトイモゴライトと呼ばれている。比較例5において、j=2の場合で半価幅が5ppm以下のピークは存在せず、また、比較例2と4のS2/Skの値(k=1と3)は0.070と0.050と低かった。 As shown in Table 2, except for Comparative Example 4, the specific surface area of the sample was out of the range of the present invention and small. Therefore, these samples were found to be unsuitable for gas adsorbents. In addition, as shown in Table 3, Comparative Examples 9 and 10 had one peak located at a chemical shift of −110 to −79.0 ppm, had a very large half-value width W3, a low peak height H3, and were barely. The peak was broad enough to be recognized. The coefficient of determination R 2 is as small as 0.8 or less, even if the fitting is increased 2, three the number of peaks of the Gaussian function, the coefficient of determination R 2 was increased at all. Therefore, the number of peaks located at −110 to −79.0 ppm was set to one. Comparative Examples 9 and 10 are generally called protoimogolite. In Comparative Example 5, when j = 2, there was no peak having a half width of 5 ppm or less, and the values of S2 / Sk (k = 1 and 3) in Comparative Examples 2 and 4 were 0.070 and 0. 0.050.

表4に示すように、比較例1〜5の未処理の水蒸気吸着量(RH=60%)は27.4.〜40.2wt%であり、実施例の値に比べ低かった。また、300℃−1時間焼成後の水蒸気吸着量(RH=60%)16.5〜34.2wt%と更に低い値を示した。これは比表面積の減少率が10%を超えるような高い値であったためと推定できる。実施例の試料は比較例の試料に比べ、耐熱性が高かったことを示した。   As shown in Table 4, the untreated water vapor adsorption amounts (RH = 60%) of Comparative Examples 1 to 5 were 27.4. 0.240.2 wt%, which was lower than the value of the example. In addition, the water vapor adsorption amount (RH = 60%) after firing at 300 ° C. for 1 hour showed a much lower value of 16.5 to 34.2 wt%. This can be presumed to be because the reduction rate of the specific surface area was a high value exceeding 10%. The sample of the example showed that the heat resistance was higher than the sample of the comparative example.

本発明に係る非晶質アルミノケイ酸塩粒子粉末は、吸着性能を低下させること無く、従来低かった耐熱性を向上させることができた。従って、これまでよりも水蒸気をはじめとした吸着ガスの吸脱着繰り返し利用に対する耐久性や、吸着ローター加工時の加工性を向上させ、これまでより多用途に利用できる可能性を広げることができた。また、本発明に係る粒子粉末の製造方法は、水熱反応時の濃度を向上させることが可能であり、より生産効率の向上に寄与する。   The amorphous aluminosilicate particles according to the present invention were able to improve the heat resistance, which was conventionally low, without lowering the adsorption performance. Therefore, the durability against repeated use of adsorption and desorption of adsorbed gas such as water vapor and the workability during adsorption rotor processing have been improved, and the possibility of versatile use has been expanded. . In addition, the method for producing a particle powder according to the present invention can improve the concentration at the time of a hydrothermal reaction, which further contributes to improvement in production efficiency.

Claims (7)

比表面積650〜900m/gを有する一般式a NaO・b SiO・Al・n HOで表される非晶質アルミノケイ酸塩粒子粉末において、aは0.05〜0.29、bは1.40〜2.60、nは0.50〜1.25のmol範囲であり、かつ化学シフト−120〜−60ppmの範囲の29Si−NMRスペクトルが−78.9〜−77.0ppmに位置する単一のピークと−110〜−79.0ppmに位置する2〜6つの複数のピークの重ね合わせで表されることを特徴とする非晶質アルミノケイ酸塩粒子粉末。 In the amorphous aluminosilicate particles represented by the formula a Na 2 O · b SiO 2 · Al 2 O 3 · n H 2 O having a specific surface area 650~900m 2 / g, a is 0.05 0.29, b is 1.40 to 2.60, n is in the mol range of 0.50 to 1.25, and the 29 Si-NMR spectrum in the chemical shift range of -120 to -60 ppm is -78.9. Amorphous aluminosilicate particles powder represented by a superposition of a single peak located at ~ -77.0 ppm and two to six peaks located at -110 to -79.0 ppm . 化学シフト−120〜−60ppmの範囲の29Si−NMRスペクトルを示す各々のピークのピーク形状関数がガウス関数で表され、決定係数Rが0.99以上である請求項1記載の非晶質アルミノケイ酸塩粒子粉末。 2. The amorphous material according to claim 1, wherein a peak shape function of each peak showing a 29 Si-NMR spectrum in a chemical shift range of -120 to -60 ppm is represented by a Gaussian function, and a coefficient of determination R2 is 0.99 or more. Aluminosilicate particle powder. 化学シフト−110.0〜−79.0ppmの範囲29Si−NMRスペクトルを示す各々のピークにおいて、最も大きいピーク面積を有するピークに対する−91.9〜−90.0ppmに位置する半価幅5ppm以下のピークとの面積比が0.080〜0.200である請求項1又は2記載の非晶質アルミノケイ酸塩粒子粉末。 Chemical shift: range of -110.0 to -79.0 ppm 29 In each peak showing the 29 Si-NMR spectrum, the half width at 5 ppm or less located at -91.9 to -90.0 ppm relative to the peak having the largest peak area The amorphous aluminosilicate particle powder according to claim 1 or 2, wherein the area ratio with respect to the peak is 0.080 to 0.200. 300℃−1時間焼成後の比表面積の減少率が10%以下である請求項1〜3のいずれかに記載の非晶質アルミノケイ酸塩粒子粉末。 The amorphous aluminosilicate particle powder according to any one of claims 1 to 3, wherein a reduction rate of a specific surface area after firing at 300 ° C for 1 hour is 10% or less. 300℃−1時間焼成後の相対湿度60%の水蒸気吸着量の減少率が12%以下である請求項1〜4のいずれかに記載の非晶質アルミノケイ酸塩粒子粉末。 The amorphous aluminosilicate particle powder according to any one of claims 1 to 4, wherein a reduction rate of a water vapor adsorption amount at a relative humidity of 60% after firing at 300 ° C for 1 hour is 12% or less. 水溶性ケイ素原料とアルカリ原料を含む溶液を調整する第一工程、得られた溶液に水溶性アルミニウム原料の添加によって添加後の混合溶液中のAl/OHのmol比が2.0〜3.0、Si/Alのmol比が0.7〜1.4、pHが6.0〜8.0に調整され、反応する第二工程、得られた混合スラリーを水洗と濃縮でpHを7.0〜10.0に調整する第三工程、得られたスラリーを温度170〜250℃で水熱処理する第四工程を有する請求項1〜5のいずれかに記載の非晶質アルミノケイ酸塩粒子粉末の製造方法。 A first step of preparing a solution containing a water-soluble silicon raw material and an alkali raw material, by adding a water-soluble aluminum raw material to the obtained solution, so that the molar ratio of Al / OH in the mixed solution after the addition is 2.0 to 3.0; , The molar ratio of Si / Al is adjusted to 0.7 to 1.4, the pH is adjusted to 6.0 to 8.0, and the second step in which the reaction is carried out. The resulting mixed slurry is washed with water and concentrated to adjust the pH to 7.0. The amorphous aluminosilicate particle powder according to any one of claims 1 to 5, further comprising a third step of adjusting the temperature of the obtained slurry to 10.0 and a fourth step of hydrothermally treating the obtained slurry at a temperature of 170 to 250 ° C. Production method. 請求項6記載の製造方法であって、第四工程における固形分濃度が90〜300g/Lである非晶質アルミノケイ酸塩粒子粉末の製造方法。
7. The method according to claim 6, wherein the solid content in the fourth step is 90 to 300 g / L.
JP2018185214A 2018-09-28 2018-09-28 Amorphous aluminosilicate particle powder and method for producing the same Active JP6485666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018185214A JP6485666B1 (en) 2018-09-28 2018-09-28 Amorphous aluminosilicate particle powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018185214A JP6485666B1 (en) 2018-09-28 2018-09-28 Amorphous aluminosilicate particle powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP6485666B1 JP6485666B1 (en) 2019-03-20
JP2020055699A true JP2020055699A (en) 2020-04-09

Family

ID=65802284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018185214A Active JP6485666B1 (en) 2018-09-28 2018-09-28 Amorphous aluminosilicate particle powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6485666B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974431A (en) * 2023-01-10 2023-04-18 深圳科宇环保产业有限公司 Alkali-activated geopolymer material and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174413B2 (en) * 2019-04-15 2022-11-17 国立研究開発法人産業技術総合研究所 Method for synthesizing saponite-type clay mineral
JP7275986B2 (en) * 2019-08-09 2023-05-18 株式会社大林組 Cement composition and method for applying cement composition
CN114749170B (en) * 2021-01-11 2023-09-01 中国石油化工股份有限公司 Silicon-aluminum particle aggregate, and manufacturing method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212992B2 (en) * 2007-12-27 2013-06-19 独立行政法人産業技術総合研究所 Aluminum silicate complex and high performance adsorbent comprising the complex
EP2322479A4 (en) * 2008-09-02 2013-07-03 Nat Inst Of Advanced Ind Scien Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same
JP2011056494A (en) * 2009-08-10 2011-03-24 National Institute Of Advanced Industrial Science & Technology Water-soluble volatile organic compound adsorbent
JP5807904B2 (en) * 2011-08-03 2015-11-10 Jfeスチール株式会社 Method for separating and recovering carbon dioxide from mixed gas
CN108341416B (en) * 2018-01-09 2020-10-09 浙江工业大学 Needle-shaped nano zeolite material prepared from metakaolin as well as method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974431A (en) * 2023-01-10 2023-04-18 深圳科宇环保产业有限公司 Alkali-activated geopolymer material and application thereof
CN115974431B (en) * 2023-01-10 2024-05-24 深圳科宇环保产业有限公司 Alkali-activated geopolymer material and application thereof

Also Published As

Publication number Publication date
JP6485666B1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6485666B1 (en) Amorphous aluminosilicate particle powder and method for producing the same
CN107073439B (en) Zeolite adsorbents based on mesoporous zeolites
CN109650403B (en) Metal-containing CHA-type zeolite and process for producing the same
KR20150005538A (en) Beta zeolite and method for producing same
US9968917B2 (en) LEV-type zeolite and production method therefor
JP7207454B2 (en) Method for producing AEI zeolite
Tayebee et al. A new method for the preparation of 1, 3, 5-triarylbenzenes catalyzed by nanoclinoptilolite/HDTMA
KR102408127B1 (en) Composition including silicotitanate having sitinakite structure, and production method for same
JP6303841B2 (en) LEV-type zeolite and method for producing the same
JP2017014100A (en) Method for producing high silica chabazite-type zeolite and high silica chabazite-type zeolite
JP2020066564A (en) Rho type zeolite and manufacturing method therefor
JP5783527B2 (en) Method for producing aluminosilicate
JP5230109B2 (en) Crystalline aluminum phosphate porous structure and method for producing the same
CN111511685B (en) Beta zeolite and method for producing same
KR20150024818A (en) Silicoaluminophosphate, method for producing same, and solid acid catalyst comprising same
JP2018062450A (en) Kfi zeolite and method for producing the same
CN104936897B (en) The manufacture method of VET type zeolites
JP5609620B2 (en) New metallosilicate
JP5219021B2 (en) Method for producing crystalline microporous material
JP2024082136A (en) Amorphous aluminosilicate particle powder and method for producing the same
CN112551543A (en) Process for preparing IZM-2 zeolite in the presence of a mixture of nitrogen-containing organic structuring agent in the hydroxide and bromide form
KR102684359B1 (en) Monophasic Mordenite Zeolite, Monophasic Mordenite Zeolite Coated Absorbent and Manufacturing Method Thereof
WO2017217424A1 (en) Method for producing beta zeolite
JP2023103968A (en) Sheet-like crystalline aluminosilicate aggregate and manufacturing method thereof
JP6391986B2 (en) Beta-type zeolite and method for producing the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6485666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250