JP7174413B2 - Method for synthesizing saponite-type clay mineral - Google Patents

Method for synthesizing saponite-type clay mineral Download PDF

Info

Publication number
JP7174413B2
JP7174413B2 JP2019076847A JP2019076847A JP7174413B2 JP 7174413 B2 JP7174413 B2 JP 7174413B2 JP 2019076847 A JP2019076847 A JP 2019076847A JP 2019076847 A JP2019076847 A JP 2019076847A JP 7174413 B2 JP7174413 B2 JP 7174413B2
Authority
JP
Japan
Prior art keywords
aqueous solution
saponite
mol
clay mineral
type clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019076847A
Other languages
Japanese (ja)
Other versions
JP2020176016A (en
Inventor
陽子 三好
正哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019076847A priority Critical patent/JP7174413B2/en
Publication of JP2020176016A publication Critical patent/JP2020176016A/en
Application granted granted Critical
Publication of JP7174413B2 publication Critical patent/JP7174413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、サポナイト型粘土鉱物の合成方法に関するものである。 The present invention relates to a method for synthesizing a saponite-type clay mineral.

粘土鉱物は、一般に層状のケイ酸塩であり、その層間に水や金属イオン、そして有機物も取り込むことができることから、イオン交換、触媒、湿度調整など、機能性材料として幅広い分野で用いられている。中でも、ケイ素、アルミニウム、マグネシウム、ナトリウム、酸素、水素から構成される3八面体型の層状ケイ酸塩であるサポナイトは、油類の吸着性能に優れており、洗剤の補助剤としても用いられている。
粘土鉱物の利用においては、天然品を精製して純度を高くして用いる場合と、高純度な合成品を用いる場合があるが、合成品は高純度であるものの価格が高いため、さらなる低コストで合成できることが求められている。
Clay minerals are generally layered silicates, and because they can incorporate water, metal ions, and organic matter between the layers, they are used in a wide range of fields as functional materials such as ion exchange, catalysts, and humidity control. . Among them, saponite, which is a trioctahedral layered silicate composed of silicon, aluminum, magnesium, sodium, oxygen, and hydrogen, has excellent oil adsorption performance and is also used as an auxiliary agent for detergents. there is
In the use of clay minerals, there are cases where natural products are refined to a higher degree of purity, and there are cases where highly pure synthetic products are used. It is required to be able to synthesize with

上記背景の中、サポナイトの合成に関しても開発が行われ、種々の合成方法が提案されている。 Against this background, developments have also been made on the synthesis of saponite, and various synthesis methods have been proposed.

サポナイトの合成方法の1つとして、固体原料を用いて加熱溶融する方法が挙げられる。
例えば、特許文献1には、シリカ原料、アルミナ原料、マグネシウム原料、ナトリウムおよび/またはリチウム原料とフッ化物原料を、固相状態で790~930℃により加熱溶融し、合成サポナイトを製造することが記載されている。
One method for synthesizing saponite is a method of heating and melting solid raw materials.
For example, Patent Document 1 describes that a silica raw material, an alumina raw material, a magnesium raw material, a sodium and/or lithium raw material, and a fluoride raw material are heated and melted at 790 to 930° C. in a solid state to produce a synthetic saponite. It is

また、他の方法として、原料水溶液を用いて水熱合成する方法がある。
例えば、特許文献2には、水ガラス、マグネシウム塩、アルミニウム塩の混合液から過剰のアルカリ、特にアンモニア水和ゲルを沈殿させ、副生溶解質を水洗除去した後、一価あるいは二価の陽イオン及びフッ素イオンを添加し、これを300℃程度の水熱反応によって合成することが記載されている。
As another method, there is a method of hydrothermal synthesis using a raw material aqueous solution.
For example, in Patent Document 2, excess alkali, especially ammonia hydrated gel is precipitated from a mixed solution of water glass, magnesium salt, and aluminum salt, and after washing and removing by-product solutes, monovalent or divalent positive It is described that ions and fluorine ions are added and synthesized by a hydrothermal reaction at about 300°C.

また、特許文献3では、水ガラス、塩化マグネシウム、塩化アルミニウムを原料として用い、アンモニアを添加して洗浄後300℃で水熱処理を行い、サポナイトに類似した粘土鉱物を合成している。なお、該特許文献では、フッ素イオンは特に添加しなくとも合成できるとしている。 Further, in Patent Document 3, water glass, magnesium chloride, and aluminum chloride are used as raw materials, and after washing with ammonia, hydrothermal treatment is performed at 300° C. to synthesize a clay mineral similar to saponite. The patent document states that the compound can be synthesized without adding fluorine ions.

さらに、特許文献4では、塩基性炭酸マグネシウム、ケイ酸ナトリウム、アルミン酸ナトリウムの混合液を水熱処理することで膨潤性合成サポナイト型粘土鉱物を製造している。この合成方法では、マグネシウム成分として塩基性炭酸マグネシウムを用いることにより、従来のサポナイト合成において必須成分であったフッ素イオンを含有することなく、また低温での水熱条件(100~300℃、0.5~20時間)にてサポナイトの合成を可能とした。 Furthermore, in Patent Document 4, a swelling synthetic saponite-type clay mineral is produced by hydrothermally treating a mixture of basic magnesium carbonate, sodium silicate, and sodium aluminate. In this synthesis method, by using basic magnesium carbonate as a magnesium component, it does not contain fluorine ions, which are essential components in the conventional saponite synthesis, and hydrothermal conditions at low temperatures (100 to 300° C., 0.00 to 100° C.). 5 to 20 hours) made it possible to synthesize saponite.

特開平1-160817号公報JP-A-1-160817 特公昭63-6486号公報Japanese Patent Publication No. 63-6486 特公平6-62290号公報Japanese Patent Publication No. 6-62290 特開平2-48411号公報JP-A-2-48411

上記のように、これまでに種々の方法でサポナイトが合成されている。
しかし、特許文献1に記載された方法においては、固相状態で溶融反応を行っているため加熱溶融に必要な700℃以上という高い温度条件で行なわれており、また、フッ化物原料を必要とするという問題があった。
また、特許文献2、3に記載された方法は、マグネシウム原料に硫酸マグネシウムや塩化マグネシウムなどの安価な酸性マグネシウムを用いて水熱合成により合成するものであって、特許文献1に記載の方法に比べて低温で合成できる。しかし、特許文献2に記載の方法は、反応操作が複数段階あること、多量のアンモニアまたはアルカリを用いることから多量の副生塩を生じる。また、特許文献2,3に記載の方法ではいずれも、原料に水ガラス(ケイ酸ナトリウム(NaSiO)の濃水溶液)を用いており、水ガラスではSiO四面体が複雑に重合しているため、300℃程度の高温での合成が行われていた。
これに対し、特許文献4に記載された方法では、原料にケイ酸ナトリウムを用いており、低温での水熱条件(100~300℃)が可能である。しかし、この方法では、マグネシウム成分として用いる塩基性炭酸マグネシウムとして、炭酸マグネシウムや水酸化マグネシウムあるいはこれらの混合物を用いると、サポナイトを高収率及び高純度で得ることができないため、高価なハイドロマグネサイトを用いるのが特に望ましいとされている。
As described above, saponite has been synthesized by various methods.
However, in the method described in Patent Document 1, since the melting reaction is performed in a solid phase state, it is performed under a high temperature condition of 700° C. or higher, which is necessary for heating and melting, and a fluoride raw material is required. There was a problem of
In addition, the methods described in Patent Documents 2 and 3 are synthesized by hydrothermal synthesis using inexpensive acidic magnesium such as magnesium sulfate and magnesium chloride as magnesium raw materials, and the method described in Patent Document 1 It can be synthesized at a relatively low temperature. However, the method described in Patent Literature 2 produces a large amount of by-product salts due to the multistage reaction operation and the use of a large amount of ammonia or alkali. In addition, in both the methods described in Patent Documents 2 and 3, water glass (a concentrated aqueous solution of sodium silicate (Na 2 SiO 3 )) is used as a raw material, and in water glass, SiO 4 tetrahedrons are polymerized in a complicated manner. Therefore, synthesis was performed at a high temperature of about 300°C.
On the other hand, in the method described in Patent Document 4, sodium silicate is used as a raw material, and hydrothermal conditions at low temperatures (100 to 300° C.) are possible. However, in this method, if magnesium carbonate, magnesium hydroxide, or a mixture thereof is used as the basic magnesium carbonate used as the magnesium component, saponite cannot be obtained in a high yield and high purity, so hydromagnesite is expensive. It is particularly desirable to use

本発明は、以上のような事情に鑑みてなされたものであり、アンモニアやフッ素を用いることなく、従来よりも低温で、しかも低コストでの合成が可能な、サポナイトの合成方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and provides a method for synthesizing saponite, which can be synthesized at a lower temperature and at a lower cost than before, without using ammonia or fluorine. It is intended for

本発明者らは、上記目的を達成すべく検討したところ、ケイ酸原料としてオルトケイ酸ナトリウム(NaSiO)を用いることにより解決しうるという知見を得た。該知見に基づき、更に検討を重ねた結果、原料に、酸性マグネシウム塩、オルトケイ酸ナトリウム、及びアルミニウム塩を用い、これらの水溶液を混合後、pHを調製し、脱塩処理を行った後、130~200℃にて水熱合成することによって合成できることを見出した。以下、合成により得られたサポナイトを「サポナイト型粘土鉱物」ということとする。 The inventors of the present invention have made studies to achieve the above object, and have found that the problem can be solved by using sodium orthosilicate (Na 4 SiO 4 ) as a raw material for silicic acid. Based on this knowledge, as a result of further investigation, acidic magnesium salt, sodium orthosilicate, and aluminum salt were used as raw materials, and after mixing these aqueous solutions, pH was adjusted, and after desalting, 130 We found that it can be synthesized by hydrothermal synthesis at ~200°C. The saponite obtained by synthesis is hereinafter referred to as "saponite-type clay mineral".

本発明は、これらの知見に基づいて完成に至ったものであり、以下の通りである。
[1]原料として、酸性マグネシウム塩、オルトケイ酸ナトリウム、及びアルミニウム塩を用い、これらの水溶液を混合後、pHを9~12に調整し、脱塩処理を行った後、130~200℃で加熱することにより、X線源としてCu用いた粉末X線回折図形において、2θ=5.2~6.5°付近と2θ=60.5°付近にピークを有するとともに、2θ=5.2~6.5°のピークがエチレングリコール処理によって2θ=4.3~5.1にシフトすることを特徴とするサポナイト型粘土鉱物を合成する方法。
[2]酸性マグネシウム塩の水溶液、オルトケイ酸ナトリウムの水溶液、及びアルミニウム塩の水溶液を、Mg:Si:Alのモル比が、5.0~6.0:6.8~7.5:0.5~1.2となるように混合することを特徴とする[1]に記載の方法。
The present invention has been completed based on these findings, and is as follows.
[1] Using acidic magnesium salt, sodium orthosilicate, and aluminum salt as raw materials, mixing these aqueous solutions, adjusting the pH to 9 to 12, desalting, and heating at 130 to 200 ° C. By doing so, in the powder X-ray diffraction pattern using Cu as the X-ray source, there are peaks near 2θ = 5.2 to 6.5 ° and 2θ = 60.5 °, and 2θ = 5.2 to 6 A method for synthesizing a saponite-type clay mineral, characterized in that the peak at 0.5° is shifted to 2θ=4.3-5.1 by ethylene glycol treatment.
[2] An aqueous solution of an acidic magnesium salt, an aqueous solution of sodium orthosilicate, and an aqueous solution of an aluminum salt were mixed in a molar ratio of Mg:Si:Al of 5.0-6.0:6.8-7.5:0. The method according to [1], characterized in that the mixing ratio is from 5 to 1.2.

本発明によれば、原料として酸性マグネシウム塩、オルトケイ酸ナトリウム、及びアルミニウム塩を用いることにより、アンモニアやフッ素を用いることなく、130~200℃の低温で、しかも簡便で安価にサポナイト型粘土鉱物を合成できる方法を提供できる。 According to the present invention, by using acidic magnesium salt, sodium orthosilicate, and aluminum salt as raw materials, a saponite-type clay mineral can be easily and inexpensively produced at a low temperature of 130 to 200° C. without using ammonia or fluorine. We can provide a synthetic method.

実施例1で得られた生成物の粉末X線回折図形。1 is a powder X-ray diffraction pattern of the product obtained in Example 1. FIG. 実施例2で得られた生成物の粉末X線回折図形。Powder X-ray diffraction pattern of the product obtained in Example 2. 実施例3で得られた生成物の粉末X線回折図形。Powder X-ray diffraction pattern of the product obtained in Example 3. 比較例で得られた生成物の粉末X線回折図形。Powder X-ray diffraction pattern of the product obtained in Comparative Example.

次に、本発明について更に詳細に説明する。
本発明のサポナイト型粘土鉱物は、主な構成元素をケイ素(Si)、アルミニウム(Al)、マグネシウム(Mg)、ナトリウム(Na)、酸素(O)及び水素(H)とし、Si四面体からなる四面体層とAlおよびMgからなる八面体層の組み合わせから形成された3八面体型の層状ケイ酸塩粘土鉱物である。
Next, the present invention will be described in more detail.
The saponite-type clay mineral of the present invention has silicon (Si), aluminum (Al), magnesium (Mg), sodium (Na), oxygen (O) and hydrogen (H) as main constituent elements, and is composed of Si tetrahedrons. It is a trioctahedral type layered silicate clay mineral formed from a combination of tetrahedral layers and octahedral layers composed of Al and Mg.

本発明では、この層状ケイ酸塩粘土鉱物の合成原料に、酸性マグネシウム塩、オルトケイ酸ナトリウム、及びアルミニウム塩を用い、これらの水溶液から水熱反応により、Si四面体からなる四面体層とAlおよびMgからなる八面体層を形成することによって合成するものである。
そしてこの層状ケイ酸塩粘土鉱物は、酸性マグネシウム塩の水溶液、オルトケイ酸ナトリウムの水溶液、及びアルミニウム塩の水溶液を、Mg:Si:Alのモル比が、5.0~6.0:6.8~7.5:0.5~1.2となるように混合し、酸にてpHを9~12に調整し、その後脱塩処理したものを130~200℃にて加熱することにより人工的に得ることが可能である。
In the present invention, acidic magnesium salt, sodium orthosilicate, and aluminum salt are used as raw materials for synthesizing this layered silicate clay mineral. It is synthesized by forming an octahedral layer made of Mg.
This layered silicate clay mineral is obtained by mixing an acidic magnesium salt aqueous solution, a sodium orthosilicate aqueous solution, and an aluminum salt aqueous solution with a Mg:Si:Al molar ratio of 5.0 to 6.0:6.8. ~7.5: 0.5 ~ 1.2 by mixing, adjusting the pH to 9 ~ 12 with acid, then desalting and heating at 130 ~ 200 ° C. artificially It is possible to obtain

酸性マグネシウム塩としては、具体的には、例えば、塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウム等が好適なものとして挙げられる。
またケイ素源としてオルトケイ酸ナトリウムが用いられる。
さらにアルミニウム塩としては、アルミニウムイオンであればよく、具体的には、例えば、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム及びアルミン酸ナトリウム等のアルミニウム化合物が挙げられる。これらのケイ素源及びアルミニウム源は、上記の化合物に限定されるものではなく、それらと同効のものであれば同様に使用することができる。
Specific examples of acidic magnesium salts include magnesium chloride, magnesium nitrate, magnesium sulfate, and the like, which are suitable.
Also sodium orthosilicate is used as a silicon source.
Furthermore, aluminum salts may be aluminum ions, and specific examples thereof include aluminum compounds such as aluminum chloride, aluminum nitrate, aluminum sulfate, and sodium aluminate. These silicon sources and aluminum sources are not limited to the above-mentioned compounds, and can be used similarly as long as they have the same effect.

これらの原料を適切な水溶液に溶解させ、所定の濃度の溶液を調製する。本目的であるサポナイト型粘土鉱物を合成するには、Mg、Si、Alモル比が5.0~6.0:6.8~7.5:0.5~1.2となるように混合することが必要である。溶液中の酸性マグネシウム塩の水溶液の濃度は0.1~1mol/L、オルトケイ酸ナトリウムの水溶液の濃度は0.1~1mol/L、アルミニウム塩の水溶液の濃度は0.01~0.1mol/Lであるが、好適な濃度としては、0.1~0.6mol/Lの酸性マグネシウム塩の水溶液と、0.1~0.6mol/Lのオルトケイ酸ナトリウムの水溶液と、0.01~0.06mol/Lのアルミニウム塩の水溶液を混合することが好ましい。これらの比率及び濃度に基づいて、オルトケイ酸ナトリウムの水溶液に、酸性マグネシウム塩とアルミニウム塩を溶解させた溶液を混合し、酸又はアルカリを添加してpHを9~12に調整して、前駆体を形成した後、遠心分離、濾過、膜分離等により、溶液中の共存イオンを取り除く。この脱塩処理を行った後に回収した固形分を純水中に分散させ、再度脱塩処理によって固形分を回収し、この固形分を純水中に分散させたものが、サポナイト型粘土鉱物となる前駆体物質を含む懸濁液である。 These raw materials are dissolved in an appropriate aqueous solution to prepare a solution with a predetermined concentration. In order to synthesize the saponite-type clay mineral for this purpose, Mg, Si, and Al are mixed so that the molar ratio is 5.0 to 6.0: 6.8 to 7.5: 0.5 to 1.2. It is necessary to. The concentration of the acidic magnesium salt aqueous solution in the solution is 0.1 to 1 mol/L, the concentration of the sodium orthosilicate aqueous solution is 0.1 to 1 mol/L, and the concentration of the aluminum salt aqueous solution is 0.01 to 0.1 mol/L. L, but suitable concentrations include 0.1 to 0.6 mol/L aqueous solution of acidic magnesium salt, 0.1 to 0.6 mol/L aqueous solution of sodium orthosilicate, and 0.01 to 0 It is preferable to mix an aqueous solution of aluminum salt at 0.06 mol/L. Based on these ratios and concentrations, an aqueous solution of sodium orthosilicate is mixed with a solution of acidic magnesium salt and aluminum salt, and an acid or alkali is added to adjust the pH to 9 to 12 to obtain a precursor. After forming, the coexisting ions in the solution are removed by centrifugation, filtration, membrane separation, or the like. The solid content recovered after the desalting treatment is dispersed in pure water, the solid content is recovered again by desalting treatment, and the solid content dispersed in the pure water is the saponite-type clay mineral. is a suspension containing a precursor material.

この前駆体物質を含む懸濁液を、130~200℃で加熱することにより、サポナイト型粘土鉱物を得ることができる。 A saponite-type clay mineral can be obtained by heating a suspension containing this precursor substance at 130 to 200°C.

次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例1)
MgおよびAl源として、塩化マグネシウムと塩化アルミニウムを純水に溶解させ、Mg濃度0.34mol/LおよびAl濃度0.047mol/Lの水溶液175mLを用いた。またSi源として、オルトケイ酸ナトリウムを純水に溶解させSi濃度0.41mol/Lの水溶液175mLを用いた。オルトケイ酸ナトリウム水溶液に、塩化マグネシウムと塩化アルミニウムを溶解させた水溶液を添加し、溶液が均質になるまで600rpmの速さで撹拌子を回転させ撹拌を約2時間行った。撹拌後の溶液の約半分に対してpHが10.1になるまで、1mol/LのHClを48mL添加し、一晩撹拌した。
一晩撹拌後、遠心分離によって固液を分離する。回収した固形分に純水を加え10分間撹拌を行う。再度遠心分離により固液を分離し、回収した固形分に純水を加え、溶液の総量が200mLとなるようにした後、さらに一晩撹拌した。
撹拌後、懸濁液の約18mLをテフロン(登録商標)カップに入れ、200℃にて7日間加熱を行った。11000rpmの速さで加熱後遠心分離により固液分離を行い、回収した固形分の一部をスライドガラスにペーストした後、残りの固形分を60℃にて1日以上乾燥した。
EXAMPLES Next, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited by the following Examples.
(Example 1)
As Mg and Al sources, magnesium chloride and aluminum chloride were dissolved in pure water, and 175 mL of an aqueous solution with a Mg concentration of 0.34 mol/L and an Al concentration of 0.047 mol/L was used. As a Si source, 175 mL of an aqueous solution of sodium orthosilicate dissolved in pure water and having a Si concentration of 0.41 mol/L was used. An aqueous solution in which magnesium chloride and aluminum chloride were dissolved was added to the sodium orthosilicate aqueous solution, and the mixture was stirred by rotating a stirrer at a speed of 600 rpm for about 2 hours until the solution became homogeneous. 48 mL of 1 mol/L HCl was added until the pH was 10.1 for about half of the stirred solution and stirred overnight.
After stirring overnight, the solid liquid is separated by centrifugation. Pure water is added to the collected solids and stirred for 10 minutes. The solid-liquid was again separated by centrifugation, pure water was added to the recovered solid content to make the total volume of the solution 200 mL, and the mixture was further stirred overnight.
After stirring, about 18 mL of the suspension was placed in a Teflon (registered trademark) cup and heated at 200° C. for 7 days. After heating at a speed of 11,000 rpm, solid-liquid separation was performed by centrifugation. A part of the collected solid content was pasted on a slide glass, and the remaining solid content was dried at 60° C. for one day or longer.

実施例1にて得られた生成物について、蛍光X線による生成物の組成分析を行った。得られた生成物の化学組成は以下の結果であった。
Mg5.7 (Si7.5, Al0.5) O20(OH)4
The composition of the product obtained in Example 1 was analyzed by fluorescent X-rays. The chemical composition of the product obtained was as follows.
Mg5.7 ( Si7.5 , Al0.5 ) O20 (OH) 4

実施例1にて得られた生成物について、粉末X線回折測定を行った。
図1に得られた生成物の粉末X線回折図形を示す。図1(a)に見られるように、2θ=6.0°にピークが見られ、このピークはエチレングリコール処理によって2θ=5.0°に移動した。また、図1(b)に見られるように、2θ=60.7°にピークが見られた。
化学組成および粉末X線回折の結果から、実施例1の物質はサポナイト型粘土鉱物であることが確認された。
The product obtained in Example 1 was subjected to powder X-ray diffraction measurement.
FIG. 1 shows the powder X-ray diffraction pattern of the product obtained. As seen in FIG. 1(a), a peak was observed at 2θ=6.0°, which was shifted to 2θ=5.0° by ethylene glycol treatment. Moreover, as seen in FIG. 1(b), a peak was observed at 2θ=60.7°.
From the chemical composition and powder X-ray diffraction results, it was confirmed that the substance of Example 1 was a saponite-type clay mineral.

(実施例2)
MgおよびAl源として、塩化マグネシウムと塩化アルミニウムを純水に溶解させ、Mg濃度0.34mol/LおよびAl濃度0.047mol/Lの水溶液175mLを用いた。またSi源として、オルトケイ酸ナトリウムを純水に溶解させSi濃度0.41mol/Lの水溶液175mLを用いた。オルトケイ酸ナトリウム水溶液に、塩化マグネシウムと塩化アルミニウムを溶解させた水溶液を添加し、溶液が均質になるまで600rpmの速さで撹拌子を回転させ撹拌を約2時間行った。撹拌後の溶液の約半分に対してpHが10.1になるまで、1mol/LのHClを48mL添加し、一晩撹拌した。
一晩撹拌後、遠心分離によって固液を分離する。回収した固形分に純水を加え10分間撹拌を行う。再度遠心分離により固液を分離し、回収した固形分に純水を加え、溶液の総量が200mLとなるようにした後、さらに一晩撹拌した。
撹拌後、懸濁液の約18mLをテフロンカップに入れ、200℃にて2日間加熱を行った。11000rpmの速さで加熱後遠心分離により固液分離を行い、回収した固形分の一部をスライドガラスにペーストした後、残りの固形分を60℃にて1日以上乾燥した。
(Example 2)
As Mg and Al sources, magnesium chloride and aluminum chloride were dissolved in pure water, and 175 mL of an aqueous solution with a Mg concentration of 0.34 mol/L and an Al concentration of 0.047 mol/L was used. As a Si source, 175 mL of an aqueous solution of sodium orthosilicate dissolved in pure water and having a Si concentration of 0.41 mol/L was used. An aqueous solution in which magnesium chloride and aluminum chloride were dissolved was added to the sodium orthosilicate aqueous solution, and the mixture was stirred by rotating a stirrer at a speed of 600 rpm for about 2 hours until the solution became homogeneous. 48 mL of 1 mol/L HCl was added until the pH was 10.1 for about half of the stirred solution and stirred overnight.
After stirring overnight, the solid liquid is separated by centrifugation. Pure water is added to the collected solids and stirred for 10 minutes. The solid-liquid was again separated by centrifugation, pure water was added to the recovered solid content to make the total volume of the solution 200 mL, and the mixture was further stirred overnight.
After stirring, about 18 mL of the suspension was placed in a Teflon cup and heated at 200° C. for 2 days. After heating at a speed of 11,000 rpm, solid-liquid separation was performed by centrifugation. A part of the collected solid content was pasted on a slide glass, and the remaining solid content was dried at 60° C. for one day or more.

実施例2にて得られた生成物について、蛍光X線による生成物の組成分析を行った。得られた生成物の化学組成は以下の結果であった。
Mg5.7 (Si7.5, Al0.5) O20(OH)4
The composition of the product obtained in Example 2 was analyzed by fluorescent X-rays. The chemical composition of the product obtained was as follows.
Mg5.7 ( Si7.5 , Al0.5 ) O20 (OH) 4

実施例2にて得られた生成物について、粉末X線回折測定を行った。
図2に得られた生成物の粉末X線回折図形を示す。図2(a)に見られるように、2θ=6.0°にピークが見られ、このピークはエチレングリコール処理によって2θ=5.0°に移動した。また、図2(b)に見られるように2θ=60.7°にピークが見られた。
化学組成および粉末X線回折の結果から、実施例2の物質はサポナイト型粘土鉱物であることが確認された。
The product obtained in Example 2 was subjected to powder X-ray diffraction measurement.
FIG. 2 shows the powder X-ray diffraction pattern of the product obtained. As seen in FIG. 2(a), a peak was observed at 2θ=6.0°, which was shifted to 2θ=5.0° by ethylene glycol treatment. Moreover, as seen in FIG. 2(b), a peak was observed at 2θ=60.7°.
From the chemical composition and powder X-ray diffraction results, it was confirmed that the material of Example 2 was a saponite-type clay mineral.

(実施例3)
MgおよびAl源として、塩化マグネシウムと塩化アルミニウムを純水に溶解させ、Mg濃度0.34mol/LおよびAl濃度0.047mol/Lの水溶液175mLを用いた。またSi源として、オルトケイ酸ナトリウムを純水に溶解させSi濃度0.41mol/Lの水溶液175mLを用いた。オルトケイ酸ナトリウム水溶液に、塩化マグネシウムと塩化アルミニウムを溶解させた水溶液を添加し、溶液が均質になるまで600rpmの速さで撹拌子を回転させ撹拌を約2時間行った。撹拌後の溶液の約6分の1に対して、撹拌後pHが12.0になるまで、1mol/LのHClを13.5mL添加し、一晩撹拌した。
一晩撹拌後、遠心分離によって固液を分離する。回収した固形分に純水を加え10分間撹拌を行う。再度遠心分離により固液を分離し、回収した固形分に純水を加え、溶液の総量が200mLとなるようにした後、さらに一晩撹拌した。
撹拌後、懸濁液の約18mLをテフロンカップに入れ、130℃にて7日間加熱を行った。11000rpmの速さで加熱後遠心分離により固液分離を行い、回収した固形分の一部をスライドガラスにペーストした後、残りの固形分を60℃にて1日以上乾燥した。
(Example 3)
As Mg and Al sources, magnesium chloride and aluminum chloride were dissolved in pure water, and 175 mL of an aqueous solution with a Mg concentration of 0.34 mol/L and an Al concentration of 0.047 mol/L was used. As a Si source, 175 mL of an aqueous solution of sodium orthosilicate dissolved in pure water and having a Si concentration of 0.41 mol/L was used. An aqueous solution in which magnesium chloride and aluminum chloride were dissolved was added to the sodium orthosilicate aqueous solution, and the mixture was stirred by rotating a stirrer at a speed of 600 rpm for about 2 hours until the solution became homogeneous. To about one-sixth of the stirred solution, 13.5 mL of 1 mol/L HCl was added until the stirred pH was 12.0, and stirred overnight.
After stirring overnight, the solid liquid is separated by centrifugation. Pure water is added to the collected solids and stirred for 10 minutes. The solid-liquid was again separated by centrifugation, pure water was added to the recovered solid content to make the total volume of the solution 200 mL, and the mixture was further stirred overnight.
After stirring, about 18 mL of the suspension was placed in a Teflon cup and heated at 130° C. for 7 days. After heating at a speed of 11,000 rpm, solid-liquid separation was performed by centrifugation. A part of the collected solid content was pasted on a slide glass, and the remaining solid content was dried at 60° C. for one day or longer.

実施例3にて得られた生成物について、蛍光X線による生成物の組成分析を行った。得られた生成物の化学組成は以下の結果であった。
Mg5.7 (Si7.5, Al0.5) O20(OH)4
The composition of the product obtained in Example 3 was analyzed by fluorescent X-rays. The chemical composition of the product obtained was as follows.
Mg5.7 ( Si7.5 , Al0.5 ) O20 (OH) 4

実施例3にて得られた生成物について、粉末X線回折測定を行った。
図3に得られた生成物の粉末X線回折図形を示す。図3(a)、(b)に見られるように、2θ=5.3°にピークが見られ、このピークはエチレングリコール処理によって2θ=4.5°に移動した。また、図3(c)に見られるように、2θ=60.5°にピークが見られた。
化学組成および粉末X線回折の結果から、実施例3の物質はサポナイト型粘土鉱物であることが確認された。
The product obtained in Example 3 was subjected to powder X-ray diffraction measurement.
FIG. 3 shows the powder X-ray diffraction pattern of the product obtained. As seen in FIGS. 3(a) and (b), a peak was observed at 2θ=5.3°, and this peak was shifted to 2θ=4.5° by ethylene glycol treatment. Moreover, as seen in FIG. 3(c), a peak was observed at 2θ=60.5°.
From the chemical composition and powder X-ray diffraction results, it was confirmed that the material of Example 3 was a saponite-type clay mineral.

(比較例)
MgおよびAl源として、塩化マグネシウムと塩化アルミニウムを純水に溶解させ、Mg濃度0.34mol/LおよびAl濃度0.047mol/Lの水溶液175mLを用いた。またSi源として、オルトケイ酸ナトリウムを純水に溶解させSi濃度0.41mol/Lの水溶液175mLを用いた。オルトケイ酸ナトリウム水溶液に、塩化マグネシウムと塩化アルミニウムを溶解させた水溶液を添加し、溶液が均質になるまで600rpmの速さで撹拌子を回転させ撹拌を約2時間行った。撹拌後の溶液の約6分の1に対して、撹拌後pHが8.9となるように、1mol/LのHClを16.5mLと1mol/LのNaOHを0.6mL添加し、一晩撹拌した。
一晩撹拌後、遠心分離によって固液を分離する。回収した固形分に純水を加え10分間撹拌を行う。再度遠心分離により固液を分離し、回収した固形分に純水を加え、溶液の総量が80mLとなるようにした後、さらに一晩撹拌した。
撹拌後、懸濁液の約18mLをテフロンカップに入れ、200℃にて7日間加熱を行った。11000rpmの速さで加熱後遠心分離により固液分離を行い、回収した固形分の一部をスライドガラスにペーストした後、残りの固形分を60℃にて1日以上乾燥した。
(Comparative example)
As Mg and Al sources, magnesium chloride and aluminum chloride were dissolved in pure water, and 175 mL of an aqueous solution with a Mg concentration of 0.34 mol/L and an Al concentration of 0.047 mol/L was used. As a Si source, 175 mL of an aqueous solution of sodium orthosilicate dissolved in pure water and having a Si concentration of 0.41 mol/L was used. An aqueous solution in which magnesium chloride and aluminum chloride were dissolved was added to the sodium orthosilicate aqueous solution, and the mixture was stirred by rotating a stirrer at a speed of 600 rpm for about 2 hours until the solution became homogeneous. To about one sixth of the stirred solution, add 16.5 mL of 1 mol/L HCl and 0.6 mL of 1 mol/L NaOH to a pH of 8.9 after stirring overnight. Stirred.
After stirring overnight, the solid liquid is separated by centrifugation. Pure water is added to the collected solids and stirred for 10 minutes. The solid-liquid was again separated by centrifugation, and pure water was added to the recovered solid to make the total volume of the solution 80 mL, and the mixture was further stirred overnight.
After stirring, about 18 mL of the suspension was placed in a Teflon cup and heated at 200° C. for 7 days. After heating at a speed of 11,000 rpm, solid-liquid separation was performed by centrifugation. A part of the collected solid content was pasted on a slide glass, and the remaining solid content was dried at 60° C. for one day or more.

比較例にて得られた生成物について、粉末X線回折測定を行った。図4に得られた生成物の粉末X線回折図形を示す。
図4に見られるように、粉末X線回折図形によってピークが確認できなかったため、サポナイト型粘土鉱物が合成されていないことが確認された。
A powder X-ray diffraction measurement was performed on the product obtained in the comparative example. FIG. 4 shows the powder X-ray diffraction pattern of the product obtained.
As shown in FIG. 4, no peaks were observed in the powder X-ray diffraction pattern, confirming that no saponite-type clay mineral was synthesized.

(実施例4)
次にサポナイト型粘土鉱物が生成する加熱時のpHの範囲を調べるため、以下の実験を行った。
MgおよびAl源として、塩化マグネシウムと塩化アルミニウムを純水に溶解させ、Mg濃度0.34mol/LおよびAl濃度0.047mol/Lの水溶液175mLを用いた。またSi源として、オルトケイ酸ナトリウムを純水に溶解させSi濃度0.41mol/Lの水溶液175mLを用いた。オルトケイ酸ナトリウム水溶液に、塩化マグネシウムと塩化アルミニウムを溶解させた水溶液を添加し、溶液が均質になるまで600rpmの速さで撹拌子を回転させ撹拌を約2時間行った。撹拌後の溶液をいくつかのビーカーに分け、それぞれに異なる量の1mol/LのHClと1mol/LのNaOHを加え、pHを2.8、8.3、8.9、9.3、9.8、10.1、11.4、12.0、13.1とし、一晩撹拌した。
一晩撹拌後、遠心分離によって固液を分離する。回収した固形分に純水を加え10分間撹拌を行う。再度遠心分離により固液を分離し、回収した固形分に純水を加え、溶液の総量が80~230mLとなるようにした後、さらに一晩撹拌した。
撹拌後、懸濁液の約18mLをテフロンカップに入れ、200℃にて7日間加熱を行った。加熱後11000rpmの速さで遠心分離により固液分離を行い、回収した固形分の一部をスライドガラスにペーストした後、残りの固形分を60℃にて1日以上乾燥した。
(Example 4)
Next, the following experiment was conducted in order to investigate the pH range during heating in which the saponite-type clay mineral is formed.
As Mg and Al sources, magnesium chloride and aluminum chloride were dissolved in pure water, and 175 mL of an aqueous solution with a Mg concentration of 0.34 mol/L and an Al concentration of 0.047 mol/L was used. As a Si source, 175 mL of an aqueous solution of sodium orthosilicate dissolved in pure water and having a Si concentration of 0.41 mol/L was used. An aqueous solution in which magnesium chloride and aluminum chloride were dissolved was added to the sodium orthosilicate aqueous solution, and the mixture was stirred by rotating a stirrer at a speed of 600 rpm for about 2 hours until the solution became homogeneous. The stirred solution was divided into several beakers, and different amounts of 1 mol/L HCl and 1 mol/L NaOH were added to each, and the pH was adjusted to 2.8, 8.3, 8.9, 9.3, 9. .8, 10.1, 11.4, 12.0, 13.1 and stirred overnight.
After stirring overnight, the solid liquid is separated by centrifugation. Pure water is added to the collected solids and stirred for 10 minutes. The solid-liquid was again separated by centrifugation, and pure water was added to the recovered solid to make the total volume of the solution 80 to 230 mL, and the mixture was further stirred overnight.
After stirring, about 18 mL of the suspension was placed in a Teflon cup and heated at 200° C. for 7 days. After heating, solid-liquid separation was performed by centrifugation at a speed of 11,000 rpm, a portion of the collected solid content was pasted on a slide glass, and the remaining solid content was dried at 60° C. for 1 day or more.

得られた生成物について、それぞれ粉末X線回折測定を行った。その結果、pHが9.3、9.8、10.1、11.4、12.0ではサポナイト型粘土鉱物が生成していたが、pHが2.8、8.3、8.9、13.1のときにはサポナイト型粘土鉱物は生成していなかった。
この結果より、溶液を混合した際にサポナイト型粘土鉱物が生成するpHの範囲は9~12であることが示された。
Powder X-ray diffraction measurement was performed on each of the obtained products. As a result, saponite-type clay minerals were formed at pH values of 9.3, 9.8, 10.1, 11.4, and 12.0, but at pH values of 2.8, 8.3, 8.9, No saponite-type clay mineral was formed at 13.1.
From this result, it was shown that the pH range at which the saponite-type clay mineral is formed when the solutions are mixed is 9-12.

(実施例5)
さらにサポナイト型粘土鉱物が生成する加熱時の温度の範囲を調べるため、以下の実験を行った。
MgおよびAl源として、塩化マグネシウムと塩化アルミニウムを純水に溶解させ、Mg濃度0.34mol/LおよびAl濃度0.047mol/Lの水溶液175mLを用いた。またSi源として、オルトケイ酸ナトリウムを純水に溶解させSi濃度0.41mol/Lの水溶液175mLを用いた。オルトケイ酸ナトリウム水溶液に、塩化マグネシウムと塩化アルミニウムを溶解させた水溶液を添加し、溶液が均質になるまで600rpmの速さで撹拌子を回転させ撹拌を約2時間行った。撹拌後の溶液をいくつかのビーカーに分けて、それぞれに1mol/LのHClを加えて、pHを10~12とし、一晩撹拌した。
一晩撹拌後、遠心分離によって固液を分離する。回収した固形分に純水を加え10分間撹拌を行う。再度遠心分離により固液を分離し、回収した固形分に純水を加え、溶液の総量が80~230mLとなるようにした後、さらに一晩撹拌した。
撹拌後、懸濁液の約18mLをテフロンカップに入れ、130~200℃にて7日間加熱を行った。加熱後11000rpmの速さで遠心分離により固液分離を行い、回収した固形分の一部をスライドガラスにペーストした後、残りの固形分を60℃にて1日以上乾燥した。
(Example 5)
Furthermore, the following experiments were conducted to investigate the temperature range during heating in which saponite-type clay minerals are formed.
As Mg and Al sources, magnesium chloride and aluminum chloride were dissolved in pure water, and 175 mL of an aqueous solution with a Mg concentration of 0.34 mol/L and an Al concentration of 0.047 mol/L was used. As a Si source, 175 mL of an aqueous solution of sodium orthosilicate dissolved in pure water and having a Si concentration of 0.41 mol/L was used. An aqueous solution in which magnesium chloride and aluminum chloride were dissolved was added to the sodium orthosilicate aqueous solution, and the mixture was stirred by rotating a stirrer at a speed of 600 rpm for about 2 hours until the solution became homogeneous. The stirred solution was divided into several beakers and 1 mol/L HCl was added to each to bring the pH to 10-12 and stirred overnight.
After stirring overnight, the solid liquid is separated by centrifugation. Pure water is added to the collected solids and stirred for 10 minutes. The solid-liquid was again separated by centrifugation, and pure water was added to the recovered solid to make the total volume of the solution 80 to 230 mL, and the mixture was further stirred overnight.
After stirring, about 18 mL of the suspension was placed in a Teflon cup and heated at 130-200° C. for 7 days. After heating, solid-liquid separation was performed by centrifugation at a speed of 11,000 rpm, a portion of the collected solid content was pasted on a slide glass, and the remaining solid content was dried at 60° C. for 1 day or longer.

得られた生成物について、それぞれ粉末X線回折測定を行った。その結果、温度が130、140、150、180、200℃ではサポナイト型粘土鉱物が生成していたが、温度が100、120℃ではサポナイト型粘土鉱物は生成していなかった。
この結果より、懸濁液を加熱した際にサポナイト型粘土鉱物が生成する温度の範囲は130~200℃であることが示された。
Powder X-ray diffraction measurement was performed on each of the obtained products. As a result, saponite-type clay minerals were formed at temperatures of 130, 140, 150, 180 and 200°C, but no saponite-type clay minerals were formed at temperatures of 100 and 120°C.
This result indicates that the temperature range at which the saponite-type clay mineral is formed when the suspension is heated is 130 to 200°C.

Claims (2)

原料として、酸性マグネシウム塩、オルトケイ酸ナトリウム及びアルミニウム塩を用い、これらの水溶液を混合後、pHを9~12に調整し、脱塩処理を行った後、130~200℃で加熱することにより、X線源としてCu用いた粉末X線回折図形において、2θ=5.2~6.5°付近と2θ=60.5°付近にピークを有するとともに、2θ=5.2~6.5°のピークがエチレングリコール処理によって2θ=4.3~5.1にシフトすることを特徴とするサポナイト型粘土鉱物を合成する方法。 Acidic magnesium salt, sodium orthosilicate and aluminum salt are used as raw materials, and after mixing these aqueous solutions, the pH is adjusted to 9 to 12, desalted, and then heated at 130 to 200 ° C. In the powder X-ray diffraction pattern using Cu as the X-ray source, there are peaks near 2θ = 5.2 to 6.5° and 2θ = 60.5°, and 2θ = 5.2 to 6.5°. A method for synthesizing a saponite-type clay mineral, characterized in that the peak is shifted to 2θ=4.3-5.1 by ethylene glycol treatment. 酸性マグネシウム塩の水溶液、オルトケイ酸ナトリウムの水溶液、及びアルミニウム塩の水溶液を、Mg:Si:Alのモル比が、5.0~6.0:6.8~7.5:0.5~1.2となるように混合することを特徴とする請求項1に記載の方法。 An aqueous solution of an acidic magnesium salt, an aqueous solution of sodium orthosilicate, and an aqueous solution of an aluminum salt were mixed in a molar ratio of Mg:Si:Al of 5.0-6.0:6.8-7.5:0.5-1. 2. A method according to claim 1, characterized by mixing to .2.
JP2019076847A 2019-04-15 2019-04-15 Method for synthesizing saponite-type clay mineral Active JP7174413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076847A JP7174413B2 (en) 2019-04-15 2019-04-15 Method for synthesizing saponite-type clay mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076847A JP7174413B2 (en) 2019-04-15 2019-04-15 Method for synthesizing saponite-type clay mineral

Publications (2)

Publication Number Publication Date
JP2020176016A JP2020176016A (en) 2020-10-29
JP7174413B2 true JP7174413B2 (en) 2022-11-17

Family

ID=72936794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076847A Active JP7174413B2 (en) 2019-04-15 2019-04-15 Method for synthesizing saponite-type clay mineral

Country Status (1)

Country Link
JP (1) JP7174413B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032380A1 (en) 2005-09-14 2007-03-22 National Institute For Materials Science Mixed-layered phyllosilicate and process for producing the same
JP2010058994A (en) 2008-09-01 2010-03-18 National Institute Of Advanced Industrial Science & Technology Silicate-coated titanium oxide material for decomposing volatile organic compound
JP2017190274A (en) 2016-04-15 2017-10-19 株式会社Inui Inorganic colloid-containing liquid, composition for inorganic fiber molded body and inorganic fiber molded body
JP2018067620A (en) 2016-10-19 2018-04-26 日立化成株式会社 Additive agent for electric double layer capacitors, and electric double layer capacitor
JP6485666B1 (en) 2018-09-28 2019-03-20 戸田工業株式会社 Amorphous aluminosilicate particle powder and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662290B2 (en) * 1986-06-10 1994-08-17 工業技術院長 Method for producing swellable silicate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032380A1 (en) 2005-09-14 2007-03-22 National Institute For Materials Science Mixed-layered phyllosilicate and process for producing the same
JP2010058994A (en) 2008-09-01 2010-03-18 National Institute Of Advanced Industrial Science & Technology Silicate-coated titanium oxide material for decomposing volatile organic compound
JP2017190274A (en) 2016-04-15 2017-10-19 株式会社Inui Inorganic colloid-containing liquid, composition for inorganic fiber molded body and inorganic fiber molded body
JP2018067620A (en) 2016-10-19 2018-04-26 日立化成株式会社 Additive agent for electric double layer capacitors, and electric double layer capacitor
JP6485666B1 (en) 2018-09-28 2019-03-20 戸田工業株式会社 Amorphous aluminosilicate particle powder and method for producing the same

Also Published As

Publication number Publication date
JP2020176016A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JPH10510236A (en) Method for producing alumino-silicate derivative
KR102227515B1 (en) Zeolite and manufaturing method of the same
Rozhkovskaya et al. Synthesis of high-quality zeolite LTA from alum sludge generated in drinking water treatment plants
EP2340230B1 (en) Method of preparing ssz-74
WO2019068135A1 (en) Synthesis of zeolites
KR102316889B1 (en) Manufaturing method of zeolite using lithium residue
Satokawa et al. Crystallization of single phase (K, Na)-clinoptilolite
EP1587755A1 (en) Process for the production of synthetic magnesium silicate compositions
JP7174413B2 (en) Method for synthesizing saponite-type clay mineral
JP4330182B2 (en) Synthesis method of carbonated hydrocalumite
US4226636A (en) Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite
KR102082873B1 (en) Method for manufacturing magnesium hydroxide
GB2031393A (en) Alkali Calcium Silicates and Process for Preparation Thereof
KR102271298B1 (en) Manufaturing method of zeolite using lithium residue
JP2000264626A (en) Production of calcium-aluminum-based layered double hydroxide
JPS636485B2 (en)
CN102452659B (en) Preparation method of MCM-22 zeolite
KR20210153196A (en) Zeolite x with execellent adsorption property and method of preparing the same
KR100748211B1 (en) Manufacturing method of hectorite from water glass
JPS6112848B2 (en)
JP2697037B2 (en) Crystalline metal silicate and method for producing the same
Su et al. Convenient hydrothermal synthesis of zeolite A from potassium-extracted residue of potassium feldspar
JP2814216B2 (en) Method for producing aluminosilicate
JP3611185B2 (en) Method for producing fine particle zeolite
CN107250042B (en) High surface area pentasil zeolites and methods for making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7174413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150