JP2020055387A - Flight device - Google Patents

Flight device Download PDF

Info

Publication number
JP2020055387A
JP2020055387A JP2018186341A JP2018186341A JP2020055387A JP 2020055387 A JP2020055387 A JP 2020055387A JP 2018186341 A JP2018186341 A JP 2018186341A JP 2018186341 A JP2018186341 A JP 2018186341A JP 2020055387 A JP2020055387 A JP 2020055387A
Authority
JP
Japan
Prior art keywords
air
air outlet
flying device
airframe
fan shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018186341A
Other languages
Japanese (ja)
Other versions
JP7025316B2 (en
Inventor
勇二 石塚
Yuji Ishizuka
勇二 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018186341A priority Critical patent/JP7025316B2/en
Publication of JP2020055387A publication Critical patent/JP2020055387A/en
Application granted granted Critical
Publication of JP7025316B2 publication Critical patent/JP7025316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

To improve a flight device so that air for air-cooling can be taken into an interior of an airframe sufficiently.SOLUTION: A flight device 10 has: an airframe 12; and a lift generating device 50 attached to the airframe 12. The lift generating device 50 includes: a toric fan shroud 52; and electric fans 56, 58, 62, 64 disposed at a center of the fan shroud 52. The airframe 12 includes: an air intake port for taking air from an airframe exterior to an airframe interior and an air exhaust port for exhausting air from the airframe interior to the airframe exterior; and ducts 80, each of which includes one end forming a connection port connected to the air exhaust port and the other end forming an air outlet opening to the center of the fan shroud 52.SELECTED DRAWING: Figure 1

Description

本発明は飛翔装置に関し、更に詳細には空冷機能を有する飛翔装置に関する。   The present invention relates to a flying device, and more particularly, to a flying device having an air cooling function.

マルチコプタ等の飛翔装置として、機体と、機体に取り付けられた複数の回転翼による揚力発生装置とを有し、回転翼の回転により生じる気流の上流側と下流側との気圧差によって機体内部に外気を取り込み、外気により機体内部の電気機器を冷却する空冷機能を有する飛翔装置が知られている(例えば、特許文献1)。   As a flying device such as a multi-copter, it has a fuselage and a lift generating device with a plurality of rotors attached to the fuselage, and the outside air enters the fuselage due to the pressure difference between the upstream side and the downstream side of the airflow generated by the rotation of the rotor. 2. Description of the Related Art A flying device having an air-cooling function of taking in air and cooling an electric device inside an airframe by outside air is known (for example, Patent Document 1).

特開2016−175489号公報JP-A-2006-175489

上述の従来の飛翔装置では、回転翼の回転により生じる気流の上流側と下流側との気圧差によって外気を機体内部に取り込んでいるだけであるから、機体内部に十分な流量の外気を取り込むことが難しい。   In the above-mentioned conventional flying device, since only the outside air is taken into the inside of the fuselage by the pressure difference between the upstream side and the downstream side of the airflow generated by the rotation of the rotor, it is necessary to take in a sufficient amount of outside air into the inside of the body. Is difficult.

本発明が解決しようとする課題は、飛翔装置において、空冷のための空気を機体内部に十分に取り込むことができるように改善することである。   The problem to be solved by the present invention is to improve the flying device so that air for air cooling can be sufficiently taken into the inside of the fuselage.

本発明の一つの実施形態による飛翔装置は、機体(12)と、前記機体(12)に取り付けられた少なくとも1個の揚力発生装置(50、100)とを有する飛翔装置(10)であって、前記揚力発生装置(50、100)は円環状のファンシュラウド(52)及び前記ファンシュラウド(52)の中心に配置された電動ファン(56、58、62、64)を含み、前記機体(12)は機体外部から機体内部(19)に空気を取り入れる空気取入口(68)及び機体内部(19)から機体外部に空気を排出する空気排出口(70)を含み、更に、前記空気排出口(70)に接続する接続口(82)をなす一端及び前記ファンシュラウド(52)の径方向内方に向けて開口して前記電動ファン(56、58、62、64)が発生する気流により負圧になる空気出口(84)をなす他端を備えたダクト(80)を有する。   A flying device according to one embodiment of the present invention is a flying device (10) having a fuselage (12) and at least one lift generating device (50, 100) attached to the fuselage (12). The lift generator (50, 100) includes an annular fan shroud (52) and an electric fan (56, 58, 62, 64) disposed at the center of the fan shroud (52). ) Includes an air inlet (68) for taking in air from outside the machine to the inside of the machine (19) and an air outlet (70) for discharging air from the inside of the machine to the outside of the machine (19). An airflow generated by the electric fans (56, 58, 62, 64) which opens toward one end forming a connection port (82) connected to the fan shroud (52) and radially inward of the fan shroud (52). Having a duct (80) having a second end forming an air outlet (84) comprising a pressure.

この構成によれば、電動ファン(56、58、62、64)の気流により空気出口(84)に生じる負圧と大気圧との差によって機体内部(19)に空気が取り入れられるので、空冷のための外気を機体内部(19)に十分に取り込むことができる。   According to this configuration, the air is taken into the airframe interior (19) by the difference between the negative pressure generated at the air outlet (84) and the atmospheric pressure due to the airflow of the electric fans (56, 58, 62, 64). Outside air can be sufficiently taken into the inside of the fuselage (19).

上記飛翔装置(10)において、好ましくは、前記ダクト(80)は前記接続口(82)から前記空気出口(84)に向かうに従って流路面積が小さくなる先細形状である。   In the above-mentioned flying device (10), preferably, the duct (80) has a tapered shape in which a flow passage area decreases from the connection port (82) toward the air outlet (84).

この構成によれば、空気出口(84)に向かうほどダクト(80)内の空気の流速が速まり、空冷のための外気を機体内部(19)に十分に取り込むことができる。   According to this configuration, the flow velocity of the air in the duct (80) increases as it goes to the air outlet (84), and the outside air for air cooling can be sufficiently taken into the inside of the body (19).

上記飛翔装置(10)において、好ましくは、垂直方向に昇降可能な飛翔装置であり、前記ファンシュラウド(52)は平面視で円環状をなして上下方向に開口しており、前記空気出口(84)は前記ファンシュラウドの上方に配置されている。   In the above-mentioned flying device (10), preferably, it is a flying device that can move up and down in the vertical direction, wherein the fan shroud (52) has an annular shape in plan view and is open in the vertical direction, and the air outlet (84) ) Is located above the fan shroud.

この構成によれば、空気出口(84)が電動ファン(56、58、62、64)の気流に良好に曝され、空冷のための外気を機体内部(19)に十分に取り込むことができる。   According to this configuration, the air outlet (84) is well exposed to the airflow of the electric fans (56, 58, 62, 64), and the outside air for air cooling can be sufficiently taken into the inside of the body (19).

上記飛翔装置(10)において、好ましくは、前記空気排出口(70)は前記機体(12)の縦壁(16A、18A)に設けられており、前記空気排出口(70)の下縁(70A)は前記接続口(82)の下縁(82A)より高い位置にある。   In the flying device (10), preferably, the air outlet (70) is provided on a vertical wall (16A, 18A) of the body (12), and a lower edge (70A) of the air outlet (70) is provided. ) Is located higher than the lower edge (82A) of the connection port (82).

この構成によれば、接続口(82)において水の堰き止め作用が得られ、空気排出口(70)から機体内部(19)に雨水等が侵入し難くなる。   According to this configuration, a water blocking effect is obtained at the connection port (82), and it is difficult for rainwater or the like to enter the inside of the body (19) from the air discharge port (70).

上記飛翔装置(10)において、好ましくは、前記ダクト(80)は水の排出を行うドレン孔(88)を有する。   In the flying device (10), preferably, the duct (80) has a drain hole (88) for discharging water.

この構成によれば、ダクト(80)内に侵入した雨水等がダクト(80)内に溜まることがない。   According to this configuration, rainwater or the like that has entered the duct (80) does not accumulate in the duct (80).

上記飛翔装置(10)において、好ましくは、前記機体(12)は内部に電気機器(66)を収容しており、前記空気取入口(68)及び前記空気排出口(70)は前記電気機器(66)が前記空気取入口(68)から前記空気排出口(70)へ流れる空気の流れに曝されるべく設けられている。   In the flying device (10), preferably, the airframe (12) houses an electric device (66) therein, and the air inlet (68) and the air outlet (70) are connected to the electric device (66). 66) are provided to be exposed to the flow of air flowing from the air inlet (68) to the air outlet (70).

この構成によれば、機体(12)に収容された電気機器(66)の冷却が効果的に行われる。   According to this configuration, the electric device (66) housed in the body (12) is effectively cooled.

本発明による飛翔装置によれば、空冷のための外気を機体内部に十分に取り込むことができる。   ADVANTAGE OF THE INVENTION According to the flying device by this invention, the outside air for air cooling can be fully taken in an airframe.

本発明による飛翔装置の一つの実施形態を示す斜視図1 is a perspective view showing an embodiment of a flying device according to the present invention. 本実施形態による飛翔装置の平面図Plan view of the flying device according to the present embodiment 本実施形態による飛翔装置の要部の部分断面の拡大正面図Enlarged front view of a partial cross section of a main part of the flying device according to the present embodiment 本実施形態による飛翔装置の要部の拡大斜視図An enlarged perspective view of a main part of the flying device according to the present embodiment. 本実施形態による飛翔装置の要部の拡大断面斜視図An enlarged sectional perspective view of a main part of the flying device according to the present embodiment.

以下に、本発明による飛翔装置の一つの実施形態を、図1〜図5を参照して説明する。   An embodiment of a flying device according to the present invention will be described below with reference to FIGS.

本実施形態による飛翔装置10は、垂直方向に昇降可能(離着陸可能)なマルチコプタであり、図1及び図2に示されているように、機体12は、前後に長い直方形状の箱状の主部機体14と、主部機体14の前端から前方に延出し、前方に向かうに従って横幅が小さくなる切頭四角錘形状の箱状の前部機体16と、主部機体14の後端から後方に延出し、後方に向かうに従って横幅が小さくなる切頭四角錘形状の箱状の後部機体18と、前後に長い直方体箱状をなして主部機体14の左側に連接して設けられた左側機体20と、前後に長い直方体箱状をなして主部機体14の右側に連接して設けられた右側機体22とを有する。   The flying device 10 according to the present embodiment is a multicopter that can move up and down (take off and land) in the vertical direction. As shown in FIGS. 1 and 2, the airframe 12 has a rectangular box-shaped main body that is long in front and back. A part body 14, a truncated quadrangular pyramid-shaped box-shaped front body 16 extending forward from the front end of the main body body 14, and having a width decreasing toward the front, and a rear part from the rear end of the main body 14. A truncated quadrangular pyramid-shaped box-shaped rear body 18 that extends and becomes smaller in width as it goes rearward, and a left body 20 that is formed in a rectangular box shape that is long in the front and back and is provided to be connected to the left side of the main body 14. And a right body 22 which is formed in a rectangular parallelepiped box shape which is long in the front and back and is provided to be connected to the right side of the main body 14.

前部機体16と後部機体18とは主部機体14の前後方向に延在する中心線に沿って設けられた前後対称の配置である。左側機体20と右側機体22とは、主部機体14の左右両側にあって主部機体14の高さの略1/2の高さを有し、左右対称の配置である。   The front body 16 and the rear body 18 are arranged symmetrically in the front-rear direction provided along a center line extending in the front-rear direction of the main body 14. The left body 20 and the right body 22 are located on both left and right sides of the main body 14 and have a height approximately half the height of the main body 14, and are symmetrically arranged.

主部機体14、左側機体20及び右側機体22は、箱状をなしていて、内部に電源バッテリ(不図示)が収納されている。   The main body 14, the left body 20, and the right body 22 are box-shaped, and house a power supply battery (not shown) therein.

主部機体14上には箱状の座席台24が取り付けられている。座席台24には乗員用座席26が前向きに取り付けられている。座席台24の前部には乗員用座席26に着座した乗員のための左右のグリップ28を含む固定ハンドル30が取り付けられている。固定ハンドル30或いは乗員用座席26の近傍には飛行操縦装置(不図示)が設けられている。   A box-shaped seat stand 24 is mounted on the main body 14. An occupant seat 26 is attached to the seat stand 24 in a forward direction. A fixed handle 30 including left and right grips 28 for an occupant seated on an occupant seat 26 is attached to a front portion of the seat stand 24. A flight control device (not shown) is provided near the fixed handle 30 or the passenger seat 26.

座席台24には、3軸のジャイロセンサ32、3軸の加速度センサ34、飛行制御装置36及び自律飛行制御装置38が取り付けられている。ジャイロセンサ32は、機体12の姿勢制御が容易且つ適切に行われるべく、平面視で機体12の重心G或いは重心Gに近い位置に配置されている。   The seat base 24 is provided with a three-axis gyro sensor 32, a three-axis acceleration sensor 34, a flight control device 36, and an autonomous flight control device 38. The gyro sensor 32 is disposed at the center of gravity G of the body 12 or at a position close to the center of gravity G in plan view so that the attitude control of the body 12 is easily and appropriately performed.

機体12の下部には前後方向に長いそり構造の脚体40が取り付けられている。   A leg 40 having a sled structure that is long in the front-rear direction is attached to a lower portion of the body 12.

飛翔装置10は、図2に示されているように、機体12の重心Gを略中心とする半径R1による第1同心円C1上にあって機体12の前部及び後部に各々左右対称に配置され且つ機体12に取り付けられた揚力発生装置である4個の第1揚力発生装置(ダクテットファン装置)50と、機体12の重心Gを略中心とする第1同心円C1より大径、つまり半径R1により大きい半径R2による第2同心円C2上且つ機体12の前後方向に延在する中心軸線X上にあって機体12の前方及び後方に配置され且つ機体12に取り付けられた揚力発生装置である2個の第2揚力発生装置100とを有する。   As shown in FIG. 2, the flying device 10 is symmetrically arranged on the first concentric circle C1 with a radius R1 about the center of gravity G of the body 12 and at the front and rear of the body 12. Also, four first lift generators (dactet fan devices) 50, which are lift generators attached to the body 12, and a diameter larger than a first concentric circle C1 about the center of gravity G of the body 12, that is, a radius R1. Two lift concentrators which are arranged on the second concentric circle C2 with the larger radius R2 and on the center axis X extending in the front-rear direction of the fuselage 12, in front of and behind the fuselage 12, and attached to the fuselage 12. And the second lift generator 100.

各第1揚力発生装置50は、図1に示されているように、上下に互いに同心に配置された2重反転翼によるものであり、ブラケット51(図4参照)によって機体12に取り付けられた平面視で円環状をなす上下開放の円環形状のファンシュラウド52と、複数の上側アーム54によってファンシュラウド52の中心に配置された上側電動機56と、上側電動機56の回転軸に下向きに取り付けられて上側電動機56によって回転駆動される上側回転翼58と、複数の下側アーム60によって上側電動機56と同心配置の下側電動機62と、下側電動機62の回転軸に上向きに取り付けられて下側電動機62によって回転駆動される下側回転翼64とを有する。上側回転翼58と下側回転翼64とは、同心配置で、上下に間隔をおいて互いに対向し、互いに反対方向に回転する。上側電動機56及び上側回転翼58と、下側電動機62及び下側回転翼64とが各々電動ファンをなす。各ファンシュラウド52は、上側が略半円形のアーチ形の横断面形状の中空構造であり、上部円弧面52A(図3〜図5参照)を含む。   As shown in FIG. 1, each of the first lift generators 50 is constituted by double inverted wings which are arranged concentrically with each other vertically, and is attached to the body 12 by brackets 51 (see FIG. 4). A ring-shaped fan shroud 52 which is open and closed in a plan view, an upper motor 56 disposed at the center of the fan shroud 52 by a plurality of upper arms 54, and is attached downward to a rotating shaft of the upper motor 56. An upper rotating blade 58 driven by an upper motor 56, a lower motor 62 concentrically arranged with the upper motor 56 by a plurality of lower arms 60, and a lower motor 62 mounted upwardly on the rotating shaft of the lower motor 62. A lower rotating blade 64 driven to rotate by an electric motor 62. The upper rotating blade 58 and the lower rotating blade 64 are concentrically arranged, face each other at an interval vertically, and rotate in opposite directions. The upper motor 56 and the upper rotary blade 58 and the lower motor 62 and the lower rotary blade 64 each form an electric fan. Each fan shroud 52 is a hollow structure having an arcuate cross-sectional shape with a substantially semicircular upper side, and includes an upper arc surface 52A (see FIGS. 3 to 5).

前部機体16及び後部機体18の内部には各上側電動機56及び各下側電動機62の速度制御を行う電気機器である複数のESC(Electronic Speed Controller)66(図3参照)が設けられている。各ESC66は上側電動機56及び下側電動機62毎の個別のものであり、図3に示されているように、前部機体16及び後部機体18の左右の側壁16A、18Aの内面に取り付けられている。   A plurality of ESCs (Electronic Speed Controllers) 66 (see FIG. 3), which are electric devices for controlling the speeds of the upper motor 56 and the lower motor 62, are provided inside the front body 16 and the rear body 18. . Each ESC 66 is an individual motor for the upper motor 56 and the lower motor 62, and is attached to the inner surfaces of the left and right side walls 16A, 18A of the front body 16 and the rear body 18 as shown in FIG. I have.

第2揚力発生装置100は第1揚力発生装置50と実質的に同一の構造であるので、第2揚力発生装置100の説明は省略する。   Since the second lift generator 100 has substantially the same structure as the first lift generator 50, the description of the second lift generator 100 is omitted.

次に、ESC66の空冷機構を、図3〜図5を参照して説明する。   Next, the air cooling mechanism of the ESC 66 will be described with reference to FIGS.

前部機体16及び後部機体18の底壁16B、18Bには機体外部から機体内部19に外気を取り入れる略矩形の空気取入口68が形成されている。前部機体16及び後部機体18の左右の側壁16A、18A(縦壁)の各々の上部には機体内部19から機体外部に空気を排出する略矩形の空気排出口70が形成されている。この空気取入口68、空気排出口70及びESC66の配置により、ESC66は空気取入口68から空気排出口70へ向けて流れる空気の流れに曝される。   The bottom walls 16B and 18B of the front body 16 and the rear body 18 are formed with a substantially rectangular air inlet 68 for taking in outside air from outside the body to the inside 19 of the body. A substantially rectangular air discharge port 70 for discharging air from the inside 19 of the fuselage to the outside of the fuselage is formed at an upper portion of each of the left and right side walls 16A and 18A (vertical wall) of the front fuselage 16 and the rear fuselage 18. Due to the arrangement of the air inlet 68, the air outlet 70, and the ESC 66, the ESC 66 is exposed to a flow of air flowing from the air inlet 68 to the air outlet 70.

前部機体16及び後部機体18の左右の側壁16A、18Aの各々の外面にはダクト80が取り付けられている。各ダクト80は、略四角筒状であり、空気排出口70に接続する接続口82をなす一端及びファンシュラウド52の中心に向けて開口した空気出口84をなす他端を備え、接続口82から空気出口84に向かうに従って流路面積が小さくなる先細のノズル形状である。空気出口84は、ファンシュラウド52の上方にあり、ファンシュラウド52の上部円弧面52Aより上方においてファンシュラウド52の径方向内方に向けて横向き(水平方向)に開口し、上側回転翼58及び下側回転翼64の回転により発生する気流により負圧による部位に配置されている。この空気出口84の配置はダクト80の長さ及び流路形状により設計の自由度が高い。   Ducts 80 are attached to the outer surfaces of the left and right side walls 16A, 18A of the front body 16 and the rear body 18, respectively. Each duct 80 has a substantially rectangular cylindrical shape, and has one end forming a connection port 82 connected to the air discharge port 70 and the other end forming an air outlet 84 opened toward the center of the fan shroud 52. It has a tapered nozzle shape in which the flow path area decreases toward the air outlet 84. The air outlet 84 is located above the fan shroud 52, opens laterally (in the horizontal direction) radially inward of the fan shroud 52 above the upper arc surface 52 </ b> A of the fan shroud 52, and has the upper rotor 58 and the lower It is arranged at a position where a negative pressure is generated by an air current generated by rotation of the side rotor 64. The arrangement of the air outlet 84 has a high degree of freedom in design depending on the length of the duct 80 and the flow path shape.

空気排出口70の下縁70Aは、図5に示されているように、接続口82の下縁82A、換言すると、ダクト80の底面80Aより高い位置にある。これにより、側壁16A、18Aは、空気排出口70の下縁70Aと接続口82の下縁82Aとの間に水止め堰86を形成する。ダクト80の底面80Aには雨水等をダクト80外に排出を行うドレン孔88が形成されている。   The lower edge 70A of the air outlet 70 is located higher than the lower edge 82A of the connection port 82, in other words, the bottom surface 80A of the duct 80, as shown in FIG. As a result, the side walls 16A and 18A form a weir 86 between the lower edge 70A of the air discharge port 70 and the lower edge 82A of the connection port 82. A drain hole 88 for discharging rainwater or the like out of the duct 80 is formed in the bottom surface 80A of the duct 80.

上側回転翼58及び下側回転翼64の回転が回転すると、図3及び図4に示されているように、ファンシュラウド52内を上方から下方に向かう空気の流れ(気流A)及びファンシュラウド52の外面に沿って上方から下方に向かう空気の流れ(気流B)が発生する。これらの気流A、Bは機体12に揚力として作用し、飛翔装置10が垂直に上昇する。   When the rotations of the upper rotor 58 and the lower rotor 64 rotate, as shown in FIGS. 3 and 4, the air flow (airflow A) and the fan shroud 52 in the fan shroud 52 from above to below. A flow of air (airflow B) from the upper side to the lower side along the outer surface of is generated. These airflows A and B act on the airframe 12 as lift, and the flying device 10 rises vertically.

ダクト80の空気出口84はファンシュラウド52の中心に向けて略水平方向に開口しているから、気流Cによって霧吹きのベンチュリ効果と同等の効果が空気出口84に生じ、ダクト80の空気出口84の圧力が低下する。ダクト80は接続口82から空気出口84に向かうに従って流路面積が小さくなる先細のノズル形状であるから、空気出口84に向かうほど流速が速まり、ベンチュリ効果が向上する。また、空気出口がファンシュラウド52の上部円弧面52A上に配置されていることにより、空気出口84が気流Cに良好に曝され、良好なベンチュリ効果が得られる。   Since the air outlet 84 of the duct 80 opens substantially in the horizontal direction toward the center of the fan shroud 52, an effect equivalent to the Venturi effect of mist blowing is generated at the air outlet 84 by the airflow C, and the air outlet 84 of the duct 80 The pressure drops. Since the duct 80 has a tapered nozzle shape in which the flow path area decreases from the connection port 82 toward the air outlet 84, the flow velocity increases toward the air outlet 84, and the venturi effect is improved. Further, since the air outlet is disposed on the upper arc surface 52A of the fan shroud 52, the air outlet 84 is well exposed to the airflow C, and a good venturi effect is obtained.

これにより、ダクト80の空気出口84付近が負圧になり、大気圧と負圧との差圧力によって空気取入口68から前部機体16及び後部機体18の機体内部19に空気(外気)が取り入れられ、機体内部19を通過して空気排出口70からダクト80を介して機体外部に排出される。この空気は機体内部19を通過する際にESC66の冷却(空冷)を行う。   As a result, a negative pressure is generated in the vicinity of the air outlet 84 of the duct 80, and air (outside air) is taken into the front body 16 and the inside 19 of the rear body 18 from the air intake 68 due to a differential pressure between the atmospheric pressure and the negative pressure. After passing through the inside 19 of the airframe, the air is discharged from the air outlet 70 through the duct 80 to the outside of the airframe. The air cools (air cools) the ESC 66 when passing through the interior 19 of the airframe.

この機体内部19を通過する空気の流量は、外気圧とダクト80の空気出口84の負圧との差圧により決まり、この差圧は上側回転翼58及び下側回転翼64の上流側と下流側との差圧より大きい。これにより、本実施形態では、上側回転翼58及び下側回転翼64の上流側と下流側との差圧によって空冷のための空気を得るものに比して大流量の冷却用空気が機体内部19に取り込まれ、機体内部19を接続口82から空気出口84に向う空気の流れCによってESC66の冷却が十分に行われる。   The flow rate of the air passing through the interior 19 of the airframe is determined by the pressure difference between the outside air pressure and the negative pressure at the air outlet 84 of the duct 80, and this pressure difference is upstream and downstream of the upper rotor 58 and the lower rotor 64. Greater than the differential pressure with the side. Thus, in the present embodiment, a larger flow rate of cooling air is supplied to the inside of the fuselage than in a case where air for air cooling is obtained by a differential pressure between the upstream side and the downstream side of the upper rotor 58 and the lower rotor 64. The ESC 66 is sufficiently cooled by the air flow C flowing from the connection port 82 to the air outlet 84 in the airframe interior 19.

ダクト80の空気出口84の負圧は上側回転翼58及び下側回転翼64の回転数の増大に応じて増大するから、上側回転翼58及び下側回転翼64の回転数の増大に応じて機体内部19に取り込まれる空気量、つまり冷却用空気の流量が増大する。このため、ESC66の発熱が上側回転翼58及び下側回転翼64の回転数の増大に応じて増大してもESC66の冷却が適切に行われる。   Since the negative pressure at the air outlet 84 of the duct 80 increases as the rotational speeds of the upper rotor 58 and the lower rotor 64 increase, the negative pressure at the air outlet 84 increases as the rotational speeds of the upper rotor 58 and the lower rotor 64 increase. The amount of air taken into the airframe interior 19, that is, the flow rate of the cooling air increases. For this reason, even if the heat generation of the ESC 66 increases as the rotation speeds of the upper rotor 58 and the lower rotor 64 increase, the ESC 66 is appropriately cooled.

ESC66の発熱によって昇温した機体内部19の熱い空気は対流によって自然に機体内部19の上部に流れ、機体内部19の上部に開口している空気排出口70から気流Bによって機体外部に吸引され、ESC66は空気取入口68から空気排出口へ流れる空気の流れCに曝されるので、このことによってもESC66の冷却が十分に行われる。   The hot air inside the fuselage interior 19 heated by the heat generated by the ESC 66 naturally flows to the upper part of the fuselage interior 19 by convection, and is sucked out of the fuselage by the airflow B from the air discharge port 70 opened at the upper part of the fuselage interior 19, Since the ESC 66 is exposed to the air flow C flowing from the air inlet 68 to the air outlet, this also sufficiently cools the ESC 66.

ダクト80の空気出口84では、負圧によって空気出口84からファンシュラウド52側に向かう空気の流れがあることにより、空気抵抗によりダクト80内を雨水や塵埃等が空気排出口70へ向かい難く、雨水や塵埃等が機体内部19に侵入し難い。これにより、機体内部19のESC66が雨水や塵埃等によって損傷を受け難くなる。このことは、ダクト80が接続口82から空気出口84に向かうに従って流路面積が小さくなる先細のノズル形状であることにより、顕著になる。   At the air outlet 84 of the duct 80, there is an air flow from the air outlet 84 toward the fan shroud 52 due to the negative pressure, so that rainwater, dust, and the like hardly flow toward the air outlet 70 inside the duct 80 due to air resistance. And dust and the like are unlikely to enter the interior 19 of the body. This makes it difficult for the ESC 66 inside the body 19 to be damaged by rainwater, dust, and the like. This is remarkable because the duct 80 has a tapered nozzle shape in which the flow passage area decreases as going from the connection port 82 to the air outlet 84.

ダクト80内に侵入して雨水等がダクト80の底面80Aを空気排出口70に向けて流れても、その流れは水止め堰86によって堰き止められ、雨水等が機体内部19に侵入し難くなる。このことによっても機体内部19のESC66が雨水等によって損傷を受け難くなる。   Even if rainwater or the like flows into the duct 80 and flows through the bottom surface 80 </ b> A of the duct 80 toward the air discharge port 70, the flow is blocked by the water stop weir 86, making it difficult for rainwater or the like to enter the inside 19 of the airframe. . This also makes it difficult for the ESC 66 inside the body 19 to be damaged by rainwater or the like.

ダクト80の底面80Aの雨水等はドレン孔88からダクト80外に排出されるので、ダクト80内に雨水等が溜まることがない。このことにより、ダクト80内の雨水等による水位が水止め堰86の上縁より高くなり難く、雨水等が機体内部19に侵入し難くなる。これらのことにより、機体内部19のESC66が雨水等によって損傷を受け難くなる。   Since rainwater or the like on the bottom surface 80A of the duct 80 is discharged from the drain hole 88 to the outside of the duct 80, rainwater or the like does not accumulate in the duct 80. As a result, the water level of the rainwater or the like in the duct 80 is unlikely to be higher than the upper edge of the water stop weir 86, and the rainwater or the like is less likely to enter the inside 19 of the body. As a result, the ESC 66 inside the fuselage 19 is less likely to be damaged by rainwater or the like.

以上、本発明を、その好適な実施形態について説明したが、本発明はこのような実施形態により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。例えば、ダクト80はファンシュラウド52の中心側に突き出ていてもよい。上記実施形態に示した構成要素は必ずしも全てが必須なものではなく、本発明の趣旨を逸脱しない限りにおいて適宜取捨選択することが可能である。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, the duct 80 may protrude toward the center of the fan shroud 52. All of the components shown in the above embodiments are not necessarily essential, and can be appropriately selected without departing from the spirit of the present invention.

10 :飛翔装置
12 :機体
14 :主部機体
16 :前部機体
16A :側壁
16B :底壁
18 :後部機体
18A :側壁
18B :底壁
19 :機体内部
20 :左側機体
22 :右側機体
24 :座席台
26 :乗員用座席
28 :グリップ
30 :固定ハンドル
32 :ジャイロセンサ
34 :加速度センサ
36 :飛行制御装置
38 :自律飛行制御装置
40 :脚体
50 :第1揚力発生装置
51 :ブラケット
52 :ファンシュラウド
52A :上部円弧面
54 :上側アーム
56 :上側電動機
58 :上側回転翼
60 :下側アーム
62 :下側電動機
64 :下側回転翼
66 :ESC(電気機器)
68 :空気取入口
70 :空気排出口
70A :下縁
80 :ダクト
80A :底面
82 :接続口
82A :下縁
84 :空気出口
86 :水止め堰
88 :ドレン孔
100 :第2揚力発生装置
10: flying device 12: body 14: main body 16: front body 16A: side wall 16B: bottom wall 18: rear body 18A: side wall 18B: bottom wall 19: inside body 20: left body 22: right body 24: seat Table 26: Seat 28 for passengers: Grip 30: Fixed handle 32: Gyro sensor 34: Acceleration sensor 36: Flight control device 38: Autonomous flight control device 40: Leg 50: First lift generator 51: Bracket 52: Fan shroud 52A: Upper arc surface 54: Upper arm 56: Upper motor 58: Upper rotor 60: Lower arm 62: Lower motor 64: Lower rotor 66: ESC (electric equipment)
68: air inlet 70: air outlet 70A: lower edge 80: duct 80A: bottom surface 82: connection port 82A: lower edge 84: air outlet 86: water stop weir 88: drain hole 100: second lift generator

Claims (6)

機体と、前記機体に取り付けられた少なくとも1個の揚力発生装置とを有し、
する飛翔装置であって、
前記揚力発生装置は円環状のファンシュラウド及び前記ファンシュラウドの中心に配置された電動ファンを含み、
前記機体は機体外部から機体内部に空気を取り入れる空気取入口及び機体内部から機体外部に空気を排出する空気排出口を含み、
更に、前記空気排出口に接続する接続口をなす一端及び前記ファンシュラウドの径方向内方に向けて開口して前記電動ファンが発生する気流により負圧になる空気出口をなす他端を備えたダクトを有する飛翔装置。
Having a fuselage and at least one lift generator attached to the fuselage;
Flying device,
The lift generating device includes an annular fan shroud and an electric fan disposed at the center of the fan shroud,
The aircraft includes an air intake that takes in air from inside the aircraft to the interior of the aircraft and an air outlet that exhausts air from the interior of the aircraft to the exterior of the aircraft,
Furthermore, one end forming a connection port connected to the air discharge port and the other end forming an air outlet which is opened radially inward of the fan shroud and becomes a negative pressure by an airflow generated by the electric fan is provided. A flying device with a duct.
前記ダクトは前記接続口から前記空気出口に向かうに従って流路面積が小さくなる先細形状である請求項1に記載の飛翔装置。   The flying device according to claim 1, wherein the duct has a tapered shape such that a flow passage area decreases from the connection port toward the air outlet. 垂直方向に昇降可能な飛翔装置であり、前記ファンシュラウドは平面視で円環状をなして上下方向に開口しており、
前記空気出口は前記ファンシュラウドの上部に配置されている請求項1又は2に記載の飛翔装置。
It is a flying device capable of ascending and descending in the vertical direction, wherein the fan shroud has an annular shape in plan view and is open in the up and down direction,
The flying device according to claim 1, wherein the air outlet is disposed above the fan shroud.
前記空気排出口は前記機体の縦壁に設けられており、前記空気排出口の下縁は前記接続口の下縁より高い位置にある請求項3に記載の飛翔装置。   The flying device according to claim 3, wherein the air outlet is provided on a vertical wall of the airframe, and a lower edge of the air outlet is located higher than a lower edge of the connection port. 前記ダクトは雨水の排出を行うドレン孔を有する請求項3又は4に記載の飛翔装置。   The flying device according to claim 3, wherein the duct has a drain hole for discharging rainwater. 前記機体は内部に電気機器を収容しており、前記空気取入口及び前記空気排出口は前記電気機器が前記空気取入口から前記空気排出口へ流れる空気の流れに曝されるべく設けられている請求項1から5の何れか一項に記載の飛翔装置。   The airframe houses electrical equipment therein, and the air inlet and the air outlet are provided so that the electrical equipment is exposed to a flow of air flowing from the air inlet to the air outlet. The flying device according to claim 1.
JP2018186341A 2018-10-01 2018-10-01 Flying device Active JP7025316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186341A JP7025316B2 (en) 2018-10-01 2018-10-01 Flying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186341A JP7025316B2 (en) 2018-10-01 2018-10-01 Flying device

Publications (2)

Publication Number Publication Date
JP2020055387A true JP2020055387A (en) 2020-04-09
JP7025316B2 JP7025316B2 (en) 2022-02-24

Family

ID=70106123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186341A Active JP7025316B2 (en) 2018-10-01 2018-10-01 Flying device

Country Status (1)

Country Link
JP (1) JP7025316B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112498672A (en) * 2020-11-03 2021-03-16 中国直升机设计研究所 Unmanned aerial vehicle
WO2023157189A1 (en) * 2022-02-17 2023-08-24 テトラ・アビエーション株式会社 Aircraft and rotor blade module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026296A (en) * 1992-06-22 2001-01-30 United Technol Corp <Utc> Integrated spline/control seat sub-assembly for unmanned aircraft
JP2016175489A (en) * 2015-03-19 2016-10-06 セコム株式会社 Flight device
US20180105268A1 (en) * 2016-10-18 2018-04-19 Kitty Hawk Corporation Ventilated rotor mounting boom for personal aircraft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026296A (en) * 1992-06-22 2001-01-30 United Technol Corp <Utc> Integrated spline/control seat sub-assembly for unmanned aircraft
JP2016175489A (en) * 2015-03-19 2016-10-06 セコム株式会社 Flight device
US20180105268A1 (en) * 2016-10-18 2018-04-19 Kitty Hawk Corporation Ventilated rotor mounting boom for personal aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112498672A (en) * 2020-11-03 2021-03-16 中国直升机设计研究所 Unmanned aerial vehicle
WO2023157189A1 (en) * 2022-02-17 2023-08-24 テトラ・アビエーション株式会社 Aircraft and rotor blade module

Also Published As

Publication number Publication date
JP7025316B2 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
ES2638778T3 (en) Electric propulsion set for an aircraft
JP2020055387A (en) Flight device
JP6469488B2 (en) Flight equipment
JP2005531719A (en) Duct blower
CN104121233B (en) Ram-air fan inlet shield
CN104374066B (en) Air-conditioner and air supply method for air-conditioner
JP6368616B2 (en) Power blower working machine
JP7182449B2 (en) Motor integrated fan and vertical take-off and landing aircraft
CN109969390A (en) Stack motor sub-assembly and aircraft
CN211442748U (en) Aircraft fuselage and aircraft
CN105864887A (en) Air-conditioner indoor unit
JP2009029400A (en) Flying unit
CN107521693A (en) A kind of courier packages transport unmanned plane
JP6979128B2 (en) Multicopter
CN108050104A (en) A kind of adjustable cylindrical air vortex air exhausting device of air-supply
JP2016074310A (en) Vehicle air conditioner
CN104875887B (en) A kind of vertical lift component and the fan rotor aircraft with it
JP3141207B2 (en) Artificial tornado type local exhaust system
CN106152439B (en) Air supply device and air regulator with the air supply device
JP2023092865A (en) Airflow guide structure and aircraft
JP2019035557A (en) Cooling device
JP4510602B2 (en) Windmill with diffuser
JP2001317785A (en) Ventilating device
JP6694633B2 (en) Suction device and drive device
JP2010071492A (en) Exhaust hood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220210

R150 Certificate of patent or registration of utility model

Ref document number: 7025316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150