JP2020054982A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification Download PDF

Info

Publication number
JP2020054982A
JP2020054982A JP2018189365A JP2018189365A JP2020054982A JP 2020054982 A JP2020054982 A JP 2020054982A JP 2018189365 A JP2018189365 A JP 2018189365A JP 2018189365 A JP2018189365 A JP 2018189365A JP 2020054982 A JP2020054982 A JP 2020054982A
Authority
JP
Japan
Prior art keywords
earth metal
alkaline earth
exhaust gas
catalyst
gas purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018189365A
Other languages
Japanese (ja)
Other versions
JP6990161B2 (en
Inventor
省梧 河村
Shogo Kawamura
省梧 河村
智将 相川
Tomomasa Aikawa
智将 相川
功 内藤
Isao Naito
功 内藤
裕樹 二橋
Hiroki Futahashi
裕樹 二橋
信之 高木
Nobuyuki Takagi
信之 高木
健 信川
Ken Nobukawa
健 信川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2018189365A priority Critical patent/JP6990161B2/en
Priority to CN201980065477.9A priority patent/CN112789107A/en
Priority to EP19868631.3A priority patent/EP3854478A1/en
Priority to US17/276,505 priority patent/US11821349B2/en
Priority to PCT/JP2019/035399 priority patent/WO2020071059A1/en
Publication of JP2020054982A publication Critical patent/JP2020054982A/en
Application granted granted Critical
Publication of JP6990161B2 publication Critical patent/JP6990161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To provide a catalyst for exhaust gas purification by carrying an alkali earth metal on a porous carrier at high level dispersion state.SOLUTION: A catalyst layer of the catalyst for exhaust gas purification has an alkali earth metal carrying region having a porous carrier, Pt, and sulfate of at least one kind of alkali earth metal carried on the porous carrier, in which a Pearson's correlation coefficient Rvalue calculated by using α and β in each pixel obtained by conducting a surface analysis on a cross section of the region by FE-EPMA under a condition with pixel size of 0.34 μm×0.34 μm; measurement pixel number 256×256, and measuring intensity of a specific X ray of an element of the alkali earth metal (Ae) (α:cps) and intensity of a specific X ray of Pt (β:cps) on each pixel is 0.5 or more.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関の排気系に設けられる排ガス浄化用触媒に関する。詳しくは、触媒金属として白金(Pt)を含み、さらに助触媒成分としてバリウム(Ba)、ストロンチウム(Sr)等のアルカリ土類金属を含む排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst provided in an exhaust system of an internal combustion engine. More specifically, the present invention relates to an exhaust gas purifying catalyst containing platinum (Pt) as a catalyst metal and further containing an alkaline earth metal such as barium (Ba) and strontium (Sr) as a promoter component.

自動車エンジン等の内燃機関から排出される排ガスから炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)等の有害成分を酸化または還元反応によって除去するための排ガス浄化用触媒として、いわゆる三元触媒が用いられている。三元触媒としては、例えばアルミナ(Al)、ジルコニア(ZrO)等の無機酸化物からなる多孔質担体に、酸化触媒及び/又は還元触媒として機能する金属(典型的にはPt等の貴金属)を担持させたものが利用されている。
さらに、この種の排ガス浄化触媒には、排ガス浄化機能を向上させ得る助触媒成分が用いられている。例えば、以下の特許文献1,2には、触媒金属としてPtを、助触媒としてバリウム(Ba)、ストロンチウム(Sr)等のアルカリ土類金属を含む従来の排ガス浄化用触媒が記載されている。
Exhaust gas purifying catalyst for removing harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) from an exhaust gas discharged from an internal combustion engine such as an automobile engine by an oxidation or reduction reaction. A so-called three-way catalyst is used. As the three-way catalyst, for example, a metal (typically Pt or the like) which functions as an oxidation catalyst and / or a reduction catalyst is added to a porous support made of an inorganic oxide such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). Noble metal) is used.
Further, a co-catalyst component capable of improving an exhaust gas purifying function is used in this type of exhaust gas purifying catalyst. For example, the following Patent Documents 1 and 2 disclose a conventional exhaust gas purification catalyst containing Pt as a catalyst metal and an alkaline earth metal such as barium (Ba) or strontium (Sr) as a promoter.

特開平5−237390号公報JP-A-5-237390 特開平11−285639号公報JP-A-11-285639

ところで、上述したようなアルカリ土類金属の助触媒としての効果を発揮するには、排ガス浄化用触媒の触媒層中においてアルカリ土類金属がPtの近傍に存在していることが必要である。そしてまた、排ガス浄化用触媒の全体において助触媒としての効果を発揮するには、Ptとともにアルカリ土類触媒が高度に分散した状態で存在することが重要である。
しかしながら、従来の触媒層の形成技法によると、触媒層(アルカリ土類金属担持領域)中にアルカリ土類金属の偏在が生じており、高度な分散状態で多孔質担体の外表面および細孔内にアルカリ土類金属を担持させることができなかった。このことを換言すれば、触媒層(アルカリ土類金属担持領域)中において多孔質担体の外表面および細孔内に高度に分散した状態で担持されたPtの近傍に、アルカリ土類金属を同様に高分散状態で担持(固定)することができなかった。例えば、多孔質担体の外表面に大半のアルカリ土類金属が偏在するなどの不都合があった。
そこで本発明は、かかる従来の課題を解決するべく創出されたものであり、助触媒成分たるアルカリ土類金属を高度な分散状態で多孔質担体に担持させた排ガス浄化用触媒の提供と、そのような高分散な担持を実現し得る製法を提供することを目的とする。
By the way, in order to exhibit the effect of the alkaline earth metal as a cocatalyst as described above, it is necessary that the alkaline earth metal is present near Pt in the catalyst layer of the exhaust gas purifying catalyst. Further, in order to exhibit the effect as a promoter in the entire exhaust gas purifying catalyst, it is important that the alkaline earth catalyst is present in a highly dispersed state together with Pt.
However, according to the conventional catalyst layer forming technique, the alkaline earth metal is unevenly distributed in the catalyst layer (the alkaline earth metal supporting region), and the outer surface and the pores of the porous carrier are highly dispersed in a highly dispersed state. Could not support the alkaline earth metal. In other words, in the catalyst layer (alkaline earth metal supporting region), the alkaline earth metal is similarly placed near the Pt supported in a highly dispersed state on the outer surface and the pores of the porous carrier. Could not be supported (fixed) in a highly dispersed state. For example, there is a disadvantage that most of the alkaline earth metals are unevenly distributed on the outer surface of the porous carrier.
Accordingly, the present invention has been created in order to solve such a conventional problem, and provides an exhaust gas purification catalyst in which an alkaline earth metal as a promoter component is supported on a porous carrier in a highly dispersed state. It is an object of the present invention to provide a production method capable of realizing such highly dispersed support.

本発明者は、助触媒たるBa等のアルカリ土類金属の触媒層中における存在形態について詳細に検討した。そして、Ba等のアルカリ土類金属を原料段階から水に不溶性の硫酸塩として使用すると、触媒層においてアルカリ土類金属の偏在を招き、高度な分散状態を実現できないことが確認された。また、Baの硝酸塩のような水溶性化合物を含む原料スラリーを使用し、硫酸や硫酸アンモニウム溶液を当該スラリーに供給してBa等のアルカリ土類金属の硫酸塩(不溶体)を生成する場合には、その後の乾燥および焼成段階において当該原料スラリーのpHが変化して酸性に偏りすぎ、結果、高分散状態を維持できずにアルカリ土類金属の偏在が生じ、やはり高度な分散状態は実現できなかった。
そこで、本発明者は、Ba等のアルカリ土類金属の原料段階から検討し、アルカリ土類金属の水溶性化合物を、ある種のS含有水溶性有機化合物と共存させた原料を用いることにより、触媒層(アルカリ土類金属担持領域)中においてPtとともに高度な分散状態でBa等のアルカリ土類金属硫酸塩を多孔質担体に配置(担持)することができることを見出し、本発明を完成するに至った。
The present inventor has studied in detail the existence form of an alkaline earth metal such as Ba as a promoter in a catalyst layer. Then, it was confirmed that when an alkaline earth metal such as Ba was used as a sulfate insoluble in water from the raw material stage, the alkaline earth metal was unevenly distributed in the catalyst layer, and a high dispersion state could not be realized. When a raw slurry containing a water-soluble compound such as a nitrate of Ba is used, and a sulfuric acid or ammonium sulfate solution is supplied to the slurry to produce a sulfate (insoluble) of an alkaline earth metal such as Ba. In the subsequent drying and baking stages, the pH of the raw material slurry changes and is excessively biased toward the acidity. As a result, a highly dispersed state cannot be maintained, and the alkaline earth metal is unevenly distributed. Was.
Therefore, the present inventors studied from the raw material stage of alkaline earth metal such as Ba, by using a raw material in which a water-soluble compound of alkaline earth metal coexists with a certain S-containing water-soluble organic compound, It has been found that an alkaline earth metal sulfate such as Ba can be disposed (supported) on a porous carrier in a highly dispersed state together with Pt in a catalyst layer (alkaline earth metal supporting region). Reached.

本発明によって、内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒が提供される。
即ち、ここで開示される排ガス浄化用触媒は、基材と、当該基材上に形成された触媒層とを備えている。かかる触媒層は、
無機化合物から構成される多孔質担体と、
当該多孔質担体上に担持されたPtと、
当該多孔質担体上に担持された、少なくとも一種のアルカリ土類金属の硫酸塩と、
を備えるアルカリ土類金属担持領域を有している。
そして、ここで開示される排ガス浄化用触媒は、上記触媒層のアルカリ土類金属担持領域の断面について、
ピクセル(区画)サイズ 0.34μm×0.34μm;
測定ピクセル(区画)数 256×256:
の条件でFE−EPMAによる面分析を行い、前記アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)およびPtの特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出したピアソンの相関係数をRAe/Ptとしたとき、
当該RAe/Ptの値が0.5以上であることを特徴とする。
According to the present invention, there is provided an exhaust gas purifying catalyst which is disposed in an exhaust pipe of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine.
That is, the exhaust gas purifying catalyst disclosed herein includes a base material and a catalyst layer formed on the base material. Such a catalyst layer,
A porous carrier composed of an inorganic compound,
Pt supported on the porous carrier;
Supported on the porous carrier, at least one sulfate of an alkaline earth metal,
And an alkaline earth metal supporting region comprising:
And the exhaust gas purifying catalyst disclosed herein is a cross section of the alkaline earth metal supporting region of the catalyst layer,
Pixel (section) size 0.34 μm × 0.34 μm;
Number of measurement pixels (sections) 256 x 256:
The surface analysis by FE-EPMA is performed under the following conditions, and the characteristic X-ray intensity (α: cps) of the alkaline earth metal element (Ae) and the characteristic X-ray intensity (β: cps) of Pt are determined for each pixel. When the Pearson's correlation coefficient calculated using the measured and obtained α and β in each pixel is defined as RAe / Pt ,
The value of RAe / Pt is 0.5 or more.

ここで開示される排ガス浄化用触媒は、本発明によって提供される排ガス浄化用触媒製造方法(詳細は後述する。)により製造され得る触媒製品であり、上述のとおり、FE−EPMAによる面分析の結果に基づいて算出されたピアソンの相関係数(積率相関係数)であるRAe/Ptが0.5以上であることを特徴とする。
かかる相関係数RAe/Ptは、第1変数をFE−EPMAによる面分析におけるアルカリ土類金属元素(Ae)の特性X線強度(α)とし、第2変数を同じ面分析における多Ptの特性X線強度(β)としたとき、
Ae/Pt=(共分散)/(αの標準偏差×βの標準偏差)
で求められる相関係数である。
The exhaust gas purifying catalyst disclosed herein is a catalyst product that can be produced by the exhaust gas purifying catalyst production method provided by the present invention (details will be described later), and as described above, is obtained by surface analysis using FE-EPMA. R Ae / Pt, which is a Pearson's correlation coefficient (product moment correlation coefficient) calculated based on the result, is 0.5 or more.
The correlation coefficient R Ae / Pt is obtained by setting the first variable to the characteristic X-ray intensity (α) of the alkaline earth metal element (Ae) in the plane analysis by FE-EPMA, and the second variable to the multi-Pt of the same plane analysis. When the characteristic X-ray intensity (β) is used,
R Ae / Pt = (covariance) / (standard deviation of α × standard deviation of β)
Is the correlation coefficient obtained by

本構成の排ガス浄化用触媒では、触媒層のアルカリ土類金属担持領域において、Ptとアルカリ土類金属元素存在位置(分布)との間に高い相関があること、換言すれば、多孔質担体粒子の全体(即ち担体粒子の外表面および内部(細孔内)の両方)にわたって高度に分散した状態でアルカリ土類金属(硫酸塩)が存在していることを特徴とする。これにより、触媒層のアルカリ土類金属担持領域においてPt粒子の近傍に高頻度でアルカリ土類金属が存在し得るため、当該アルカリ土類金属の助触媒成分としての作用効果を高レベルに発揮させることができる。特に、アルカリ土類金属がPtと近接しているため、アルカリ土類金属からの電子供与によるPtのHC被毒抑制が起こり、Rich雰囲気時のHC浄化性能が向上する。   In the exhaust gas purifying catalyst of this configuration, in the alkaline earth metal supporting region of the catalyst layer, there is a high correlation between Pt and the location (distribution) of the alkaline earth metal element, in other words, the porous carrier particles. Is characterized in that the alkaline earth metal (sulfate) is present in a state of being highly dispersed throughout the whole (ie, both on the outer surface and inside (in pores) of the carrier particles). Thereby, since the alkaline earth metal can be frequently present in the vicinity of the Pt particles in the alkaline earth metal supporting region of the catalyst layer, the effect of the alkaline earth metal as a promoter component is exerted at a high level. be able to. In particular, since the alkaline earth metal is close to Pt, HC poisoning of Pt is suppressed by electron donation from the alkaline earth metal, and the HC purification performance in a Rich atmosphere is improved.

ここで開示される排ガス浄化用触媒の好適な他の一態様では、上記算出したピアソンの相関係数RAe/Ptの値が0.7以上であることを特徴とする。
Ae/Ptの値が0.7以上で示されるように、本構成の排ガス浄化用触媒は、アルカリ土類金属成分の分散性が高い。このため、助触媒成分としての性能(機能)を触媒層(アルカリ土類金属担持領域)中において高レベルに発揮させることができる。
In another preferred embodiment of the exhaust gas purifying catalyst disclosed herein, the calculated value of the Pearson correlation coefficient RAe / Pt is 0.7 or more.
As shown in the value of RAe / Pt of 0.7 or more, the exhaust gas purifying catalyst of this configuration has a high dispersibility of the alkaline earth metal component. For this reason, the performance (function) as a promoter component can be exhibited at a high level in the catalyst layer (alkaline earth metal supporting region).

多孔質担体に担持されたアルカリ土類金属硫酸塩のX線回折法に基づく平均粒径が30nm以下であることが特に好ましい。かかる微細な平均粒径のアルカリ土類金属成分は、助触媒成分として特に高い性能を発揮し得る。   It is particularly preferred that the alkaline earth metal sulfate supported on the porous carrier has an average particle size of 30 nm or less based on X-ray diffraction. Such an alkaline earth metal component having a fine average particle size can exhibit particularly high performance as a promoter component.

また、ここで開示される排ガス浄化用触媒の好適な一態様では、上記の触媒層の排ガスが流れる方向の下流側に、Rhを触媒金属とする触媒層をさらに有する。
このとき、Rhを触媒金属とする触媒層への流入HC量が減少することになるため、RhのHC被毒を抑制することができる。また、アルカリ土類金属が硫酸塩であり、固定されているため、RhとBa等のアルカリ土類金属(特にBa)とが接触することを防ぎ、BaによるRhのメタル化抑制を防止することができる。このため、排ガス浄化用触媒のRich雰囲気時の共存NOの浄化作用を向上させることができる。
In one preferred embodiment of the exhaust gas purifying catalyst disclosed herein, the catalyst layer further includes a catalyst layer containing Rh as a catalyst metal on the downstream side in the exhaust gas flowing direction.
At this time, since the amount of HC flowing into the catalyst layer using Rh as the catalyst metal decreases, HC poisoning of Rh can be suppressed. Further, since the alkaline earth metal is a sulfate and fixed, it is possible to prevent Rh from contacting with an alkaline earth metal such as Ba (especially Ba), and to prevent the Ba from being metallized by Ba. Can be. Therefore, it is possible to improve the purification effect of the coexistence NO x when Rich atmosphere of the exhaust gas-purifying catalyst.

また、ここで開示される排ガス浄化用触媒の好適な一態様では、上記アルカリ土類金属硫酸塩として少なくとも硫酸バリウム(BaSO)を有していることを特徴とする。
かかる構成の排ガス浄化用触媒によると、高度に分散したバリウム成分(硫酸バリウム)によって、NOを安定的に一時的に吸蔵することができるとともに、当該成分に一時的に吸蔵されたNO成分をPtにより効果的に還元浄化処理することができる。また、バリウム成分が高度に分散して担体に担持されることにより、NO還元作用を向上させることができる。したがって、本構成の排ガス浄化用触媒は、高性能なNO浄化触媒として好適に採用することができる。
In a preferred embodiment of the exhaust gas purifying catalyst disclosed herein, at least barium sulfate (BaSO 4 ) is included as the alkaline earth metal sulfate.
According to the exhaust gas purifying catalyst of this configuration, the highly dispersed barium component (barium sulfate), together with the NO x can be stably temporarily storing temporarily occluded NO x component in the component Can be effectively reduced and purified by Pt. Further, since the barium component is supported in a highly dispersed carrier, it can improve the the NO x reduction effect. Thus, the exhaust gas purifying catalyst of the present configuration can be suitably employed as a high-performance the NO x purification catalyst.

また、本発明は、上記目的を実現するべく、ここで開示される排ガス浄化用触媒を好適に製造し得る方法を提供する。即ち、ここで開示される製造方法は、
内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒を製造する方法であって、
基材上に、
無機化合物から構成される多孔質担体と、
当該多孔質担体に担持されたPtと、
当該多孔質担体に担持された少なくとも一種のアルカリ土類金属の硫酸塩と、
を備えるアルカリ土類金属担持領域を少なくとも一部に有する触媒層を形成する工程、および
上記触媒層が形成された基材を焼成する工程、
を包含する方法である。
そして、ここで開示される製造方法では、上記触媒層の形成工程において、
(1)以下の成分:
上記多孔質担体を構成する無機化合物粒子;
Pt粒子、または、Ptを析出させるための前駆物質;
上記アルカリ土類金属の水溶性化合物;および
構成元素としてSを含有し、上記アルカリ土類金属の硫酸塩を生成可能なS含有水溶性有機化合物;
を水系溶媒と混合し、原料懸濁物を調製すること、
(2)上記原料懸濁物を乾燥し、さらに焼成することによって、上記多孔質担体とPtとアルカリ土類金属の硫酸塩とが混在する粉末材料を調製すること、
(3)少なくとも上記粉末材料と水系溶媒を含むアルカリ土類金属担持領域形成用スラリーを調製すること、および
(4)上記スラリーを用いて上記基材上に上記アルカリ土類金属担持領域を形成すること、
を包含する。
Further, the present invention provides a method capable of suitably producing the exhaust gas purifying catalyst disclosed herein to achieve the above object. That is, the manufacturing method disclosed here is:
A method for producing an exhaust gas purifying catalyst that is disposed in an exhaust pipe of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine,
On the substrate,
A porous carrier composed of an inorganic compound,
Pt supported on the porous carrier;
A sulfate of at least one alkaline earth metal supported on the porous carrier,
Forming a catalyst layer having at least a portion of an alkaline earth metal-supported region comprising: and firing the substrate on which the catalyst layer is formed,
It is a method including.
Then, in the production method disclosed herein, in the step of forming the catalyst layer,
(1) The following components:
Inorganic compound particles constituting the porous carrier;
Pt particles or precursors for depositing Pt;
A water-soluble compound of the alkaline earth metal; and an S-containing water-soluble organic compound containing S as a constituent element and capable of forming a sulfate of the alkaline earth metal;
Is mixed with an aqueous solvent to prepare a raw material suspension,
(2) preparing a powder material in which the porous carrier, Pt, and a sulfate of an alkaline earth metal are mixed by drying and firing the raw material suspension;
(3) preparing a slurry for forming an alkaline earth metal-supporting region containing at least the powder material and an aqueous solvent; and (4) forming the alkaline-earth metal-supporting region on the substrate using the slurry. thing,
Is included.

かかる構成の排ガス浄化用触媒製造方法では、アルカリ土類金属の水溶性化合物と上記のように規定されるS含有水溶性有機化合物とを担体成分(無機化合物粒子)ならびに触媒金属成分(Pt粒子またはPtの前駆体である化合物)とともに混合させた原料(懸濁物)をアルカリ土類金属担持領域形成用途に使用する。
調製した原料懸濁物では、アルカリ土類金属水溶性化合物とS含有水溶性有機化合物とがともに水系溶媒に溶解している。このとき、S含有水溶性有機化合物は、原料懸濁物のpHを急激に低下(即ち懸濁液の酸性化)させることが無く、アルカリ土類金属水溶性化合物とS含有水溶性有機化合物は、ともに水溶性を保ったまま、担体成分である無機化合物粒子(二次粒子)の内部(細孔内)にまで行き渡ることができる。
そして、調製した原料懸濁物を乾燥させ、焼成する。その課程において、含有成分であるアルカリ土類金属の水溶性化合物と上記S含有水溶性有機化合物とが反応し、不溶性のアルカリ土類金属硫酸塩が無機化合物粒子の内部および外部において形成され、その存在部位において固定される。
したがって、本構成の製造方法によると、多孔質担体粒子の全体(即ち担体粒子の外表面および内部(細孔内)の両方)にわたって高度に分散した状態でアルカリ土類金属が存在していることを特徴とするアルカリ土類金属担持領域を触媒層の全体又は一部に有する排ガス浄化用触媒を、好適に製造することができる。
In the method for producing an exhaust gas purifying catalyst having such a configuration, the water-soluble compound of an alkaline earth metal and the S-containing water-soluble organic compound defined as described above are mixed with a carrier component (inorganic compound particles) and a catalyst metal component (Pt particles or The raw material (suspension) mixed with the compound which is a precursor of Pt) is used for forming an alkaline earth metal supporting region.
In the prepared raw material suspension, both the alkaline earth metal water-soluble compound and the S-containing water-soluble organic compound are dissolved in the aqueous solvent. At this time, the S-containing water-soluble organic compound does not rapidly lower the pH of the raw material suspension (that is, acidifies the suspension), and the alkaline-earth metal water-soluble compound and the S-containing water-soluble organic compound are In addition, it is possible to reach the inside (in the pores) of the inorganic compound particles (secondary particles) as the carrier component while maintaining the water solubility.
Then, the prepared raw material suspension is dried and fired. In the process, the water-soluble compound of the alkaline earth metal, which is the contained component, reacts with the S-containing water-soluble organic compound, and insoluble alkaline earth metal sulfate is formed inside and outside the inorganic compound particles. Fixed at the site of presence.
Therefore, according to the production method of this configuration, the alkaline earth metal is present in a state of being highly dispersed throughout the entire porous carrier particles (ie, both the outer surface and the inside (in the pores) of the carrier particles). An exhaust gas purifying catalyst having an alkaline earth metal-supporting region in the whole or a part of the catalyst layer, which is characterized by the above, can be preferably produced.

ここで開示される排ガス浄化用触媒製造方法の好適な一態様では、S含有水溶性有機化合物として、スルホ基(−SOH)、スルホニル基(−S(=O)−)およびスルフィニル基(−S(=O)−)のうちの少なくとも一つの官能基を有する水溶性有機物が使用されることを特徴とする。
かかるSを含む官能基を有する有機化合物は、上記原料懸濁物を調製するためのS含有水溶性有機化合物として好ましい。
In a preferred embodiment of the method for producing an exhaust gas purifying catalyst disclosed herein, as the S-containing water-soluble organic compound, a sulfo group (—SO 3 H), a sulfonyl group (—S (= O) 2 —), and a sulfinyl group A water-soluble organic substance having at least one functional group of (-S (= O)-) is used.
Such an organic compound having an S-containing functional group is preferable as the S-containing water-soluble organic compound for preparing the raw material suspension.

また、ここで開示される排ガス浄化用触媒製造方法の好適な他の一態様では、上記アルカリ土類金属の水溶性化合物として、Ba、SrおよびCaのうちから選択される何れかのアルカリ土類金属の酢酸塩、亜硝酸塩またはヨウ化物が使用されることを特徴とする。
かかる酢酸塩、亜硝酸塩またはヨウ化物は、良好な水溶性を有し、上記原料懸濁物を調製するためのアルカリ土類金属の水溶性化合物として好ましい。
In another preferred embodiment of the method for producing an exhaust gas purifying catalyst disclosed herein, as the water-soluble compound of an alkaline earth metal, any one of Ba, Sr and Ca is selected from the group consisting of alkaline earth metals. It is characterized in that metal acetates, nitrites or iodides are used.
Such acetate, nitrite or iodide has good water solubility and is preferred as a water-soluble alkaline earth metal compound for preparing the above-mentioned raw material suspension.

一実施形態に係る排ガス浄化用触媒を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an exhaust gas purifying catalyst according to one embodiment. 一実施形態に係る排ガス浄化用触媒の触媒層を模式的に示す断面図である。It is a sectional view showing typically a catalyst layer of an exhaust gas purifying catalyst concerning one embodiment. 実施例1で用いたPt含有粉末材料のFE−EPMAの面分析(256×256ピクセル)におけるBaとPtの元素マッピング結果を示す画像である。4 is an image showing element mapping results of Ba and Pt in a FE-EPMA surface analysis (256 × 256 pixels) of the Pt-containing powder material used in Example 1. 比較例1で用いたPt含有粉末材料のFE−EPMAの面分析(256×256ピクセル)におけるBaとPtの元素マッピング結果を示す画像である。6 is an image showing element mapping results of Ba and Pt in FE-EPMA surface analysis (256 × 256 pixels) of the Pt-containing powder material used in Comparative Example 1. 比較例2で用いたPt含有粉末材料のFE−EPMAの面分析(256×256ピクセル)におけるBaとPtの元素マッピング結果を示す画像である。9 is an image showing element mapping results of Ba and Pt in FE-EPMA surface analysis (256 × 256 pixels) of the Pt-containing powder material used in Comparative Example 2. 比較例3で用いたPt含有粉末材料のFE−EPMAの面分析(256×256ピクセル)におけるBaとPtの元素マッピング結果を示す画像である。9 is an image showing element mapping results of Ba and Pt in FE-EPMA surface analysis (256 × 256 pixels) of the Pt-containing powder material used in Comparative Example 3. 実施例1で用いたPt含有粉末材料のHC浄化性能を比較例1の排ガス浄化用触媒と比較したグラフである。3 is a graph comparing the HC purification performance of the Pt-containing powder material used in Example 1 with the exhaust gas purification catalyst of Comparative Example 1. 実施例1の排ガス浄化用触媒のHC浄化性能を比較例1の排ガス浄化用触媒と比較したグラフである。5 is a graph comparing the HC purification performance of the exhaust gas purifying catalyst of Example 1 with the exhaust gas purifying catalyst of Comparative Example 1. 実施例1の排ガス浄化用触媒のNO浄化性能を比較例1の排ガス浄化用触媒と比較したグラフである。Is a graph comparing the catalyst of Comparative Example 1 and the NO x purification performance of the exhaust gas purifying catalyst of Example 1.

以下、図面を適宜参照しつつ本発明の好適ないくつかの実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術知識とに基づいて実施することができる。なお、後述する図1〜図2は、本発明の内容を理解するために模式的に示したものであり、各図における寸法関係(長さ、幅、厚さなど)は、実際の寸法関係を反映するものではない。   Hereinafter, some preferred embodiments of the present invention will be described with reference to the drawings as appropriate. It should be noted that matters other than matters specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on conventional techniques in the relevant field. The present invention can be implemented based on the contents disclosed in this specification and technical knowledge in the relevant field. 1 and 2 described later are schematically shown for understanding the contents of the present invention, and the dimensional relationships (length, width, thickness, etc.) in the respective drawings are based on actual dimensional relationships. It does not reflect that.

ここで開示される排ガス浄化用触媒は、上述した性状でアルカリ土類金属の硫酸塩が触媒層の少なくとも一部(即ち、触媒層中における予め設計されたアルカリ土類金属担持領域)において高度に分散した状態で備えられていることで特徴づけられる排ガス浄化用触媒であり、その他の構成は特に限定されない。ここで開示される排ガス浄化用触媒は、後述する担体、基材の種類を適宜選択し、用途に応じて所望する形状に成形することによって種々の内燃機関、特に自動車エンジンの排気系(排気管)に配置することができる。
以下の説明では、主として本発明の排ガス浄化用触媒を自動車のガソリンエンジンの排気管に設けられる三元触媒に適用することを前提として説明しているが、ここで開示される排ガス浄化用触媒をかかる用途に限定することを意図したものではない。
In the exhaust gas purifying catalyst disclosed herein, the sulfate of the alkaline earth metal having the above-mentioned properties has a high degree of activity in at least a part of the catalyst layer (that is, a pre-designed alkaline earth metal supporting region in the catalyst layer). An exhaust gas purifying catalyst characterized by being provided in a dispersed state, and other configurations are not particularly limited. The exhaust gas purifying catalyst disclosed herein can be used in various types of internal combustion engines, in particular, automobile engine exhaust systems (exhaust pipes) by appropriately selecting the types of carriers and base materials described below and molding them into desired shapes according to the applications. ).
The following description has been made mainly on the assumption that the exhaust gas purifying catalyst of the present invention is applied to a three-way catalyst provided in an exhaust pipe of an automobile gasoline engine. It is not intended to be limited to such applications.

<基材>
ここで開示される排ガス浄化用触媒の骨格を構成する基材としては、従来この種の用途に用いられる種々の素材及び形態のものを採用することができる。例えば、高耐熱性を有するコージェライト、炭化ケイ素(SiC)等のセラミックスが好適である。或いは、合金(ステンレス鋼等)製の基材を使用することができる。形状についても従来の排ガス浄化用触媒と同様でよい。一例として図1に示す排ガス浄化用触媒10のように、外形が円筒形状であるハニカム基材1であって、その筒軸方向に排ガス流路としての貫通孔(セル)2が設けられ、各セル2を仕切る隔壁(リブ壁)4に排ガスが接触可能となっているものが挙げられる。基材1の形状はハニカム形状の他にフォーム形状、ペレット形状などとすることができる。或いは、排ガスが一方の入り側セルからセル隔壁を通過して他方の出側セルに流れていく所謂ウォールスルー型(ウォールフロー型ともいう。)の基材であってもよい。また、基材全体の外形については、円筒形に代えて楕円筒形、多角筒形を採用してもよい。
<Substrate>
As the base material constituting the skeleton of the exhaust gas purifying catalyst disclosed herein, various materials and forms conventionally used for this type of application can be adopted. For example, ceramics such as cordierite and silicon carbide (SiC) having high heat resistance are suitable. Alternatively, an alloy (such as stainless steel) base material can be used. The shape may be the same as that of a conventional exhaust gas purifying catalyst. As an example, as in an exhaust gas purifying catalyst 10 shown in FIG. 1, a honeycomb substrate 1 having a cylindrical outer shape is provided with through holes (cells) 2 as exhaust gas channels in the cylinder axis direction. One in which exhaust gas can contact a partition wall (rib wall) 4 that partitions the cell 2 can be used. The shape of the substrate 1 can be a foam shape, a pellet shape, or the like in addition to the honeycomb shape. Alternatively, a so-called wall-through type (also referred to as a wall-flow type) base material in which exhaust gas flows from one entry-side cell through a cell partition to the other exit-side cell may be used. Further, the outer shape of the entire base material may be an elliptical cylindrical shape or a polygonal cylindrical shape instead of the cylindrical shape.

<白金(Pt)>
ここで開示される排ガス浄化用触媒の触媒層に備えられる触媒金属として、Ptが用いられる。
Ptは、排ガスとの接触面積を高める観点から十分に小さい粒径の微粒子として使用されることが好ましい。典型的には平均粒径(例えばTEM観察により求められる粒径の平均値、或いは、X線回折法に基づく平均値であることが好ましい。)は1nm以上15nm以下程度であり、10nm以下、7nm以下、更には5nm以下であることが特に好ましい。
かかる触媒金属の担持率(担体を100質量%としたときのPt含有率)は、特に限定されないが、通常2質量%以下、例えば0.05質量%以上2質量%以下であることが適当であり、0.2質量%以上1質量%以下程度であることが好ましい。担持率が上記範囲より少なすぎると、Ptによる触媒効果が得られにくい。かかる担持率が上記範囲より多すぎるとコスト面で不利となる。
<Platinum (Pt)>
Pt is used as a catalyst metal provided in the catalyst layer of the exhaust gas purifying catalyst disclosed herein.
Pt is preferably used as fine particles having a sufficiently small particle size from the viewpoint of increasing the contact area with the exhaust gas. Typically, the average particle size (for example, the average value of the particle size obtained by TEM observation, or preferably the average value based on the X-ray diffraction method) is about 1 nm or more and 15 nm or less, and 10 nm or less and 7 nm or less. It is particularly preferable that the thickness be 5 nm or less.
The loading ratio of the catalyst metal (Pt content when the carrier is 100% by mass) is not particularly limited, but is usually 2% by mass or less, for example, 0.05% by mass or more and 2% by mass or less. Yes, it is preferable that it is about 0.2% by mass to 1% by mass. If the loading is less than the above range, it is difficult to obtain the catalytic effect of Pt. If the loading ratio is too large, the cost will be disadvantageous.

<担体>
触媒層を構成し、Ptならびにその他の成分(例えばアルカリ土類金属)を担持する多孔質担体としては、従来の排ガス浄化用触媒と同様の無機化合物が使用される。
比表面積(BET法により測定される比表面積。以下同じ。)がある程度大きい多孔質担体が好適に用いられる。好適なものとして、例えば、アルミナ(Al)、ジルコニア(ZrO)、セリア(CeO)、シリカ(SiO)、チタニア(TiO)、それらの固溶体(例えばセリア−ジルコニア複合酸化物(CZ複合酸化物)、或いはそれらの組み合わせが挙げられる。
<Carrier>
As the porous carrier that forms the catalyst layer and supports Pt and other components (for example, alkaline earth metal), the same inorganic compounds as those used in conventional exhaust gas purifying catalysts are used.
A porous support having a relatively large specific surface area (specific surface area measured by the BET method; the same applies hereinafter) is preferably used. Preferable examples include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), ceria (CeO 2 ), silica (SiO 2 ), titania (TiO 2 ), and solid solutions thereof (eg, ceria-zirconia composite oxide). (CZ composite oxide) or a combination thereof.

排ガス浄化用触媒の熱安定性を高めるという観点からは、耐熱性のよいアルミナ、ジルコニア等の無機化合物を担体若しくは非担持体(即ち、Ptやアルカリ土類金属を担持させていない触媒層の構成成分をいう。以下同じ。)として触媒層に含ませることが好ましい。
担体又は非担持体の粒子(例えばアルミナ粉末やCZ複合酸化物粉末)としては、比表面積が50〜500m/g(例えば200〜400m/g)であることが耐熱性、構造安定性の観点から好ましい。また、担体粒子のTEM観察に基づく平均粒径は、1nm以上500nm以下(より好ましくは5nm以上300nm以下)程度であることが好ましい。
また、このような無機化合物(セラミックス)を担体として使用する場合、好ましくは触媒容積が1Lあたりの触媒金属含有量が0.1〜5g/L程度が適当であり、0.2〜2g/L程度が好ましい。触媒金属含有量が多すぎるとコスト的に好ましくなく、少なすぎると排ガス浄化能が低いために好ましくない。なお、本明細書において触媒容積が1Lというときは、基材の純容積に加えて内部の空隙(セル)容積を含む(即ち当該空隙(セル)内に形成された触媒層を含む)嵩容積が1Lであることをいう。
From the viewpoint of improving the thermal stability of the exhaust gas purifying catalyst, a heat-resistant inorganic compound such as alumina or zirconia is used as a carrier or a non-supporting material (that is, the structure of the catalyst layer not supporting Pt or alkaline earth metal). It is preferable to include the catalyst component in the catalyst layer.
The particles of the carrier or the unsupported body (for example, alumina powder or CZ composite oxide powder) should have a specific surface area of 50 to 500 m 2 / g (for example, 200 to 400 m 2 / g) for heat resistance and structural stability. Preferred from a viewpoint. The average particle size of the carrier particles based on TEM observation is preferably about 1 nm or more and 500 nm or less (more preferably 5 nm or more and 300 nm or less).
When such an inorganic compound (ceramic) is used as a carrier, the catalyst metal content is preferably about 0.1 to 5 g / L per 1 L of the catalyst volume, and 0.2 to 2 g / L. The degree is preferred. If the catalyst metal content is too large, it is not preferable in terms of cost, and if it is too small, it is not preferable because the exhaust gas purification ability is low. In the present specification, when the catalyst volume is 1 L, the bulk volume includes the internal void (cell) volume (that is, includes the catalyst layer formed in the void (cell)) in addition to the pure volume of the base material. Is 1L.

<アルカリ土類金属担持領域>
基材上に形成される触媒層は、排ガスを浄化する場として、排ガス浄化用触媒の主体をなすものであるが、ここで開示される排ガス浄化用触媒においては、上記のとおり、触媒層の少なくとも一部(又は全部)が、アルカリ土類金属担持領域を構成する。
本明細書において「アルカリ土類金属担持領域」は、多孔質担体とPtとアルカリ土類金属硫酸塩(硫酸バリウム、硫酸ストロンチウム等)とを備える触媒層の一部又は全部をいう。ここで「触媒層の一部」とは、排ガス浄化用触媒として機能し得る一区画をいうのであって、例えば担体粒子数個〜数十個のような機能的に一区画と呼べないような微視的な一部を意味しない用語である。
<Alkaline earth metal loading area>
The catalyst layer formed on the base material, as a place for purifying the exhaust gas, is the main component of the exhaust gas purification catalyst, but in the exhaust gas purification catalyst disclosed herein, as described above, At least a part (or all) constitutes an alkaline earth metal supporting region.
In the present specification, the “alkaline earth metal supporting region” refers to a part or the whole of a catalyst layer including a porous carrier, Pt, and an alkaline earth metal sulfate (such as barium sulfate and strontium sulfate). Here, "part of the catalyst layer" refers to one section that can function as an exhaust gas purifying catalyst, such as a functionally one section such as several to several tens of carrier particles. This is a term that does not mean a microscopic part.

触媒層に担持されるPtの配置(分布)、等についてもアルカリ土類金属担持領域の決定と同様、種々の目的に応じて適宜設定することができる。例えば、図2に示す積層構造の触媒層6において、従来品と同様、上層6Aと下層6Bとで担体の種類や当該担体に担持される触媒金属の種類や含有割合を異ならせることができる。
具体的に例えば、一例として図2に示す触媒層6のように、基材1上に形成された相互に内容の異なる上下二層を有する積層構造タイプの触媒層6の場合、基材1に近接する下層6Bと触媒層6の表層部分を構成する上層6Aのうちのいずれか一層若しくは両方をアルカリ土類金属担持領域として形成することができる。或いは、図示されるような積層構造若しくは単層構造の触媒層において、その排ガスが流れる方向に沿って、上流側(又は下流側)の一部(例えば全体の10vol%以上)をアルカリ土類金属担持領域としてもよい。
ここで、アルカリ土類金属担持領域を有する触媒層の排ガスが流れる方の下流側に、Rhを触媒金属とする触媒層をさらに有する構成とすることが好ましい。このとき、Rhを触媒金属とする触媒層への流入HC量が減少することになるため、RhのHC被毒を抑制することができる。また、アルカリ土類金属が硫酸塩であり、固定されているため、RhとBa等のアルカリ土類金属(特にBa)とが接触することを防ぎ、BaによるRhのメタル化抑制を防止することができる。このため、排ガス浄化用触媒のRich雰囲気時の共存NOの浄化作用を向上させることができる。
The arrangement (distribution) and the like of Pt carried on the catalyst layer can be appropriately set according to various purposes, similarly to the determination of the alkaline earth metal carrying region. For example, in the catalyst layer 6 having a laminated structure shown in FIG. 2, the type of the carrier and the type and content ratio of the catalyst metal carried on the carrier can be different between the upper layer 6A and the lower layer 6B as in the conventional product.
More specifically, for example, as in the case of a catalyst layer 6 shown in FIG. 2, in the case of a catalyst layer 6 of a laminated structure having two upper and lower layers having different contents formed on the base material 1, Either one or both of the adjacent lower layer 6B and the upper layer 6A constituting the surface layer portion of the catalyst layer 6 can be formed as an alkaline earth metal supporting region. Alternatively, in a catalyst layer having a laminated structure or a single-layer structure as shown in the figure, a part of the upstream (or downstream) (for example, 10 vol% or more of the whole) is alkaline earth metal along the direction in which the exhaust gas flows. It may be a carrying area.
Here, it is preferable that a catalyst layer having Rh as a catalyst metal is further provided on the downstream side of the catalyst layer having the alkaline earth metal supporting region where exhaust gas flows. At this time, since the amount of HC flowing into the catalyst layer using Rh as the catalyst metal decreases, HC poisoning of Rh can be suppressed. Further, since the alkaline earth metal is a sulfate and fixed, it is possible to prevent Rh from contacting with an alkaline earth metal such as Ba (especially Ba), and to prevent the Ba from being metallized by Ba. Can be. Therefore, it is possible to improve the purification effect of the coexistence NO x when Rich atmosphere of the exhaust gas-purifying catalyst.

このような構成の例としては、上層6Aをアルカリ土類金属担持領域とし、Rhを、アルカリ土類金属担持領域ではない下層6B側に含ませる構成、単層構造または積層構造の触媒層において、排ガスが流れる方向の上流側の一部(例えば全体の10vol%以上)をアルカリ土類金属担持領域とし、残りの下流側の領域にRhを含有させる構成、上流側がアルカリ土類金属担持領域を含有する単層構造であり、下流側がRhを含有する上層とアルカリ土類金属担持領域を含有する下層の積層構造である構成等が挙げられる。   As an example of such a configuration, in a configuration in which the upper layer 6A is an alkaline-earth metal supporting region and Rh is included in the lower layer 6B which is not the alkaline-earth metal supporting region, in a catalyst layer having a single-layer structure or a laminated structure, A configuration in which part of the upstream side in the direction in which the exhaust gas flows (for example, 10 vol% or more of the whole) is an alkaline earth metal supporting region, and Rh is contained in the remaining downstream region, and the upstream side contains the alkaline earth metal supporting region. And the like, wherein the downstream side has a laminated structure of an upper layer containing Rh and a lower layer containing an alkaline earth metal supporting region.

なお、アルカリ土類金属担持領域に含ませる好適な硫酸塩を構成するアルカリ土類金属元素としては、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)が挙げられる。助触媒成分として高い機能を発揮させ得る観点から、BaおよびSrが好適であり、Baが特に好ましい。硫酸バリウム(BaSO)は、融点が極めて高く安定であり、さらには水への溶解度は極めて低いため、担体に担持させるアルカリ土類金属として好適である。 In addition, barium (Ba), strontium (Sr), and calcium (Ca) are mentioned as an alkaline earth metal element which constitutes a suitable sulfate contained in the alkaline earth metal supporting region. Ba and Sr are preferable, and Ba is particularly preferable, from the viewpoint of exhibiting a high function as a promoter component. Barium sulfate (BaSO 4 ) has a very high melting point and is stable, and further has a very low solubility in water, and thus is suitable as an alkaline earth metal to be supported on a carrier.

触媒層には、Pt、アルカリ土類金属の他に、種々の補助的成分を配置することができる。典型例として、酸素吸蔵放出成分(Oxygen Storage Component:OSC)が挙げられる。OSC材として、酸化ジルコニウム(ジルコニア)、酸化セリウム(セリア)、ゼオライト等の使用が好適である。また、高い耐熱性および吸蔵・放出速度の観点から、上記のセリア−ジルコニア複合酸化物(CZ複合酸化物)をOSC材として利用することが好ましい。   In the catalyst layer, various auxiliary components can be arranged in addition to Pt and the alkaline earth metal. A typical example is an oxygen storage / storage component (OSC). As the OSC material, use of zirconium oxide (zirconia), cerium oxide (ceria), zeolite, or the like is preferable. Further, from the viewpoint of high heat resistance and occlusion / release speed, it is preferable to use the above-mentioned ceria-zirconia composite oxide (CZ composite oxide) as an OSC material.

多孔質担体に担持されたアルカリ土類金属硫酸塩のX線回折法に基づく平均粒径が30nm以下であることが特に好ましい。かかる微細な平均粒径のアルカリ土類金属成分は、助触媒成分として特に高い性能を発揮し得る。   It is particularly preferred that the alkaline earth metal sulfate supported on the porous carrier has an average particle size of 30 nm or less based on X-ray diffraction. Such an alkaline earth metal component having a fine average particle size can exhibit particularly high performance as a promoter component.

<ピアソンの相関係数>
ここで開示される排ガス浄化用触媒のアルカリ土類金属担持領域におけるアルカリ土類金属の分散性に関し、触媒層6のアルカリ土類金属担持領域の断面について、
ピクセルサイズ 0.34μm×0.34μm;
測定ピクセル数 256×256;
の条件でFE−EPMAによる面分析を行い、前記アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)およびPtの特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出したピアソンの相関係数をRAe/Ptとしたとき、RAe/Ptの値が0.5以上である。
<Pearson's correlation coefficient>
Regarding the dispersibility of the alkaline earth metal in the alkaline earth metal supporting region of the exhaust gas purifying catalyst disclosed herein, regarding the cross section of the alkaline earth metal supporting region of the catalyst layer 6,
Pixel size 0.34 μm × 0.34 μm;
Number of measured pixels 256 × 256;
The surface analysis by FE-EPMA is performed under the following conditions, and the characteristic X-ray intensity (α: cps) of the alkaline earth metal element (Ae) and the characteristic X-ray intensity (β: cps) of Pt are determined for each pixel. measured, when Pearson's correlation coefficient was calculated using the α and β in the obtained each pixel was R Ae / Pt, the value of R Ae / Pt is 0.5 or more.

アルカリ土類金属が担体内部(特に担体二次粒子内部)に高度に分散して担持されると、Ptの存在位置とアルカリ土類金属の存在位置との間に相関関係が認められるほどに、Ptとアルカリ土類金属が近接化する。
アルカリ土類金属が担体内部(特に担体二次粒子内部)に高度に分散し、Ptとアルカリ土類金属が近接化した状態は、RAe/Ptの値が0.5以上であることにより得ることができる。
Ae/Ptの値が0.5以上である場合、アルカリ土類金属の助触媒成分としての作用効果を高レベルに発揮させることができる。特に、アルカリ土類金属がPtと近接しているため、アルカリ土類金属からの電子供与によるPtのHC被毒抑制が起こり、Rich雰囲気時のHC浄化性能が向上する。
When the alkaline earth metal is highly dispersed and supported inside the carrier (particularly, inside the secondary particles of the carrier), the correlation between the location of Pt and the location of the alkaline earth metal is so high that the correlation is recognized. Pt and the alkaline earth metal become closer.
A state in which the alkaline earth metal is highly dispersed inside the carrier (particularly inside the secondary particles of the carrier) and Pt and the alkaline earth metal are brought close to each other is obtained by the value of RAe / Pt being 0.5 or more. be able to.
When the value of RAe / Pt is 0.5 or more, the effect of the alkaline earth metal as a promoter component can be exhibited at a high level. In particular, since the alkaline earth metal is close to Pt, HC poisoning of Pt is suppressed by electron donation from the alkaline earth metal, and the HC purification performance in a Rich atmosphere is improved.

Ae/Ptの値は、高い方が、本構成の排ガス浄化用触媒におけるアルカリ土類金属成分の分散性が高い。したがって、助触媒成分としての性能(機能)を触媒層(アルカリ土類金属担持領域)中において高レベルに発揮させることができる。よって、RAe/Ptの値は、0.6以上が好ましく、0.7以上がより好ましい。 The higher the value of RAe / Pt , the higher the dispersibility of the alkaline earth metal component in the exhaust gas purifying catalyst of the present configuration. Therefore, the performance (function) as a promoter component can be exhibited at a high level in the catalyst layer (the alkaline earth metal-supporting region). Therefore, the value of RAe / Pt is preferably 0.6 or more, and more preferably 0.7 or more.

ピアソンの相関係数:RAe/ptは、FE−EPMAによる面分析を行い、アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)およびPtの特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出することができる。
FE(Field Emission)−EPMA(Electron Probe Micro Analysis)は、電界放出型電子線マイクロアナライザとも呼ばれる分析法であり、高い精度で試料の所定の領域における元素分析とマッピングを行うことができる。かかるFE−EPMAを採用して、排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)における上記αとβを所定のピクセル数で測定し、得られたデータを用いた計算によってRAe/Ptを求めることができる。
即ち、ピアソンの相関係数(積率相関係数)であるRAe/Ptは、
Ae/Pt=(共分散)/(αの標準偏差×βの標準偏差)であり、具体的には、以下の式(1)によって求めることができる。
Pearson's correlation coefficient: R Ae / pt was obtained by performing a surface analysis by FE-EPMA, and determining the characteristic X-ray intensity (α: cps) of the alkaline earth metal element (Ae) and the characteristic X-ray intensity of Pt (α). β: cps) can be measured for each pixel, and can be calculated using α and β at each obtained pixel.
FE (Field Emission) -EPMA (Electron Probe Micro Analysis) is an analysis method also called a field emission electron beam microanalyzer, and can perform element analysis and mapping in a predetermined region of a sample with high accuracy. By adopting such FE-EPMA, the above α and β in the catalyst layer (alkaline earth metal supporting region) of the exhaust gas purifying catalyst are measured with a predetermined number of pixels, and R Ae / Pt can be determined.
That is, R Ae / Pt which is the Pearson's correlation coefficient (product moment correlation coefficient) is
R Ae / Pt = (covariance) / (standard deviation of α × standard deviation of β), which can be specifically determined by the following equation (1).

かかる式(1)に基づく相関係数RAe/Ptの算出は、市販される一般的な表計算ソフトを用いることにより、特に難しい計算処理を手計算で行うことなく導き出すことができる。例えば、マイクロソフト社製品であるエクセル(商標)のCORREL 関数機能を利用することによって簡単に導き出すことができる。 The calculation of the correlation coefficient R Ae / Pt based on the equation (1) can be derived by using commercially available general spreadsheet software without performing particularly difficult calculation processing by hand. For example, it can be easily derived by using the CORREL function function of Excel (trademark) manufactured by Microsoft Corporation.

また、相関係数算出のためのデータ収集に関しては、FE−EPMAによる面分析を市販装置のマニュアルにしたがって操作することによって行うことができる。
概略すれば、先ず、面分析用の排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)を切り出して用いるか、或いは上記粉末材料の表面を研磨することで断面を出し、導電性物質(典型的には炭素)を蒸着させ、EPMA分析用試料とする。そして、市販の装置(例えば日本電子株式会社製の型式:JXA−8530F等の電子線マイクロアナライザ)を使用して、面分析を行う。
ここで、ピクセル(区画)サイズは0.34μm×0.34μmとし、測定ピクセル(区画)数は200×200以上、例えば256×256とすることができる。測定条件は、分析装置にもよるので特に限定しないが、典型的ないくつかの測定条件として、
加速電圧:10kV〜30kV(例えば20kV)、
照射電流:50nA〜500nA(例えば100nA)、
最小プローブ径:500nm以下(例えば100nm)、
単位測定時間:40ms〜100ms(例えば50ms)、
が挙げられる。
また、市販装置に添付のアプリケーション(コンピュータソフトウェア)を用いてFE−EPMAによる面分析の結果を元素マッピングとして表示することもできる(後述する図面参照)。
The data collection for calculating the correlation coefficient can be performed by operating the surface analysis by FE-EPMA according to the manual of a commercially available device.
Briefly, first, a catalyst layer (alkaline earth metal supporting region) of an exhaust gas purifying catalyst for surface analysis is cut out and used, or a cross section is formed by polishing the surface of the powder material to obtain a conductive material ( Typically, carbon) is vapor-deposited to obtain a sample for EPMA analysis. Then, surface analysis is performed using a commercially available device (for example, an electron beam microanalyzer such as JXA-8530F manufactured by JEOL Ltd.).
Here, the pixel (section) size can be 0.34 μm × 0.34 μm, and the number of measurement pixels (sections) can be 200 × 200 or more, for example, 256 × 256. The measurement conditions are not particularly limited because they depend on the analyzer, but as typical measurement conditions,
Acceleration voltage: 10 kV to 30 kV (for example, 20 kV),
Irradiation current: 50 nA to 500 nA (for example, 100 nA);
Minimum probe diameter: 500 nm or less (for example, 100 nm),
Unit measurement time: 40 ms to 100 ms (for example, 50 ms),
Is mentioned.
In addition, the results of surface analysis by FE-EPMA can be displayed as element mapping using an application (computer software) attached to a commercially available device (see the drawings described later).

本実施形態に係る排ガス浄化用触媒の製造方法は、基材上に、無機化合物から構成される多孔質担体と、当該多孔質担体に担持されたPtと、当該多孔質担体に担持された少なくとも一種のアルカリ土類金属の硫酸塩と、を備えるアルカリ土類金属担持領域を少なくとも一部に有する触媒層を形成する工程、および当該触媒層が形成された基材を焼成する工程、を包含する   The method for producing an exhaust gas purifying catalyst according to the present embodiment includes, on a substrate, a porous carrier composed of an inorganic compound, Pt supported on the porous carrier, and at least supported on the porous carrier. A step of forming a catalyst layer having at least a portion of an alkaline earth metal-supporting region comprising one kind of alkaline earth metal sulfate, and a step of firing the substrate on which the catalyst layer is formed.

ここで、当該触媒層の形成工程では、先ず、当該多孔質担体を構成する無機化合物粒子;Pt粒子またはPtを析出させるための前駆物質;当該アルカリ土類金属の水溶性化合物;および構成元素としてSを含有し、前記アルカリ土類金属の硫酸塩を生成可能なS含有水溶性有機化合物;を水系溶媒と混合し、原料懸濁物を調製する。
次いで、原料懸濁物を乾燥し、さらに焼成することによって、前記多孔質担体とPtとアルカリ土類金属の硫酸塩とが混在する粉末材料を調製する。
その後、少なくとも前記粉末材料と水系溶媒を含むアルカリ土類金属担持領域形成用スラリーを調製する。
その後、前記スラリーを用いて前記基材上に前記アルカリ土類金属担持領域を形成する。
Here, in the step of forming the catalyst layer, first, inorganic compound particles constituting the porous carrier; Pt particles or a precursor for precipitating Pt; a water-soluble compound of the alkaline earth metal; An S-containing water-soluble organic compound containing S and capable of forming a sulfate of the alkaline earth metal is mixed with an aqueous solvent to prepare a raw material suspension.
Next, the raw material suspension is dried and further calcined to prepare a powder material in which the porous carrier, Pt, and an alkaline earth metal sulfate are mixed.
Then, a slurry for forming an alkaline earth metal-supported region containing at least the powder material and an aqueous solvent is prepared.
Thereafter, the alkaline earth metal supporting region is formed on the base material using the slurry.

使用する材料について、多孔質担体を構成する無機化合物の例としては、上記と同様である。
Ptを析出させるための前駆物質としては、例えばPtの水溶性の錯体や塩が挙げられる。
アルカリ土類金属の水溶性化合物としては、種々の塩、例えばBa、SrまたはCaの水酸化物、ハロゲン化物、酢酸塩、硝酸塩、亜硝酸塩等が挙げられる。水に対する溶解度が高いもの(例えば、酢酸塩、亜硝酸塩、およびヨウ化物、特に、酢酸バリウム、亜硝酸バリウム、およびヨウ化バリウム)が特に好ましい。
S含有水溶性有機化合物としては、上記原料懸濁物を調製し、乾燥、焼成する過程においてアルカリ土類金属の硫酸塩を形成し得るものであれば特に制限はない。好適例として、タウリン(2−アミノエタンスルホン酸)、アミノベンゼンスルホン酸、アミノメタンスルホン酸、1−アミノ−2−ナフトール−4−スルホン酸、システイン酸、メチオニン、シスチン、硫酸ジメチル、ジメチルスルフィド、ジメチルトリスルフィド、2−メルカプトエタノール、ジフェニルスルフィド、ジチオトレイトール、二硫化アリル、スルホラン、フルフリルメルカプタン、ジプロピルジスルフィド、ジメチルスルホン、ジメチルスルホキシド、等が挙げられる。
これらのうち、分子内にスルホ基(−SOH)、スルホニル基(−S(=O)−)、スルフィニル基(−S(=O)−)のうちの何れか少なくとも一つの官能基を有する水溶性有機物の使用が硫酸塩の生成のための反応性がよく、好適である。
また、アミノ基(−NH)等の塩基性基を有するものは、原料懸濁物のpHの低下(即ち強酸性化)を防止する効果が高いため、好ましい。
また、劇物、毒物に指定されておらず扱いが容易であること、水に対する溶解度が特に高いこと、分子内にスルホン酸基とアミノ基とを有するために硫酸塩調製時のpH変動が特に小さいことから、タウリン(2−アミノエタンスルホン酸)、アミノベンゼンスルホン酸、アミノメタンスルホン酸、1−アミノ−2−ナフトール−4−スルホン酸、システイン酸、メチオニン、シスチンが特に好ましい。
Regarding the materials to be used, examples of the inorganic compound constituting the porous carrier are the same as those described above.
Examples of the precursor for depositing Pt include a water-soluble complex or salt of Pt.
Examples of the water-soluble compound of an alkaline earth metal include various salts, for example, hydroxides, halides, acetates, nitrates, and nitrites of Ba, Sr or Ca. Those with high water solubility (eg, acetates, nitrites, and iodides, particularly barium acetate, barium nitrite, and barium iodide) are particularly preferred.
The S-containing water-soluble organic compound is not particularly limited as long as it can form a sulfate of an alkaline earth metal in the process of preparing the above-mentioned raw material suspension, drying and baking. As preferred examples, taurine (2-aminoethanesulfonic acid), aminobenzenesulfonic acid, aminomethanesulfonic acid, 1-amino-2-naphthol-4-sulfonic acid, cysteic acid, methionine, cystine, dimethyl sulfate, dimethylsulfide, Examples include dimethyl trisulfide, 2-mercaptoethanol, diphenyl sulfide, dithiothreitol, allyl disulfide, sulfolane, furfuryl mercaptan, dipropyl disulfide, dimethyl sulfone, and dimethyl sulfoxide.
Among these, at least one functional group of a sulfo group (—SO 3 H), a sulfonyl group (—S (= O) 2 —), and a sulfinyl group (—S (= O) —) is present in the molecule. The use of a water-soluble organic substance having the following is preferred because of its high reactivity for the production of sulfate.
Further, those having a basic group such as an amino group (—NH 2 ) are preferable because they have a high effect of preventing a decrease in the pH of the raw material suspension (that is, strong acidification).
In addition, it is easy to handle because it is not specified as a deleterious substance or poison, has a particularly high solubility in water, and has a sulfonic acid group and an amino group in the molecule, so that pH fluctuation during the preparation of sulfate is particularly high. Due to their small size, taurine (2-aminoethanesulfonic acid), aminobenzenesulfonic acid, aminomethanesulfonic acid, 1-amino-2-naphthol-4-sulfonic acid, cysteic acid, methionine, and cystine are particularly preferred.

具体的な操作としては、上述した各種材料(無機化合物粒子、Pt粒子またはPtを析出させるための前駆物質、アルカリ土類金属の水溶性化合物、S含有水溶性有機化合物)を水系溶媒(典型的には水、例えば純水や脱イオン水)に添加し、攪拌機を用いてよく攪拌することにより、スラリー状の原料懸濁物を調製することができる。例えば、最初にPt粒子またはPtを析出させるための前駆物質を水に懸濁させ、得られた懸濁液に多孔質担体を構成する無機化合物粒子(粉末)を混合して攪拌し、さらにアルカリ土類金属の水溶性化合物を添加して所定時間(例えば10分〜60分間)よく攪拌し、その後、S含有水溶性有機化合物を添加して、90〜130℃程度の温度域で十分に(例えば6時間以上、好適には8時間以上)乾燥させ、さらに400〜600℃程度の温度域で数時間(例えば1〜3時間程度)かけて焼成する。
このようなプロセスによって、触媒層(アルカリ土類金属担持領域を含む)を形成する前段階で、多孔質担体粒子(二次粒子)の外表面および内部(細孔内)に高度に分散した状態でPtおよびアルカリ土類金属硫酸塩が担持(固定)された粉末材料を調製することができる。得られた粉末材料は、必要に応じて粉砕処理に供し、所望の粒子サイズ(例えば粒径が10μm以下)に調整することができる。
As a specific operation, the above-mentioned various materials (inorganic compound particles, Pt particles or a precursor for precipitating Pt, a water-soluble compound of an alkaline earth metal, a water-soluble organic compound containing S) are mixed with an aqueous solvent (typical). (Water, for example, pure water or deionized water), and sufficiently stirred using a stirrer to prepare a slurry-like raw material suspension. For example, first, Pt particles or a precursor for precipitating Pt are suspended in water, and the obtained suspension is mixed with inorganic compound particles (powder) constituting the porous carrier, stirred, and further mixed with alkali. The water-soluble compound of the earth metal is added and stirred well for a predetermined time (for example, 10 minutes to 60 minutes). Then, the S-containing water-soluble organic compound is added and sufficiently added in a temperature range of about 90 to 130 ° C. For example, drying is performed for 6 hours or more, preferably 8 hours or more), and firing is performed for several hours (for example, about 1 to 3 hours) in a temperature range of about 400 to 600 ° C.
By such a process, prior to the formation of the catalyst layer (including the alkaline earth metal-supported region), the porous carrier particles (secondary particles) are highly dispersed on the outer surface and inside (in the pores). Can prepare a powder material in which Pt and alkaline earth metal sulfate are supported (fixed). The obtained powder material can be subjected to a pulverizing treatment as needed to adjust to a desired particle size (for example, a particle size of 10 μm or less).

かかるプロセスによると、多孔質担体粒子の外表面および細孔内に担持されるアルカリ土類金属硫酸塩の粒径を従来よりも極めて小さいものとすることができる。
典型的には、ここで開示される技術によると、X線回折法に基づく平均粒径が30nm以下(例えば10nm以上30nm以下)、好ましくは20nm以下であるような微細なアルカリ土類金属硫酸塩(例えば硫酸バリウム)粒子を、多孔質担体粒子の外表面および細孔内に高度な分散状態で担持させることができる。
そして、上記プロセスによると、上記相関係数:RAe/Ptが0.5以上、さらには0.6以上、またさらには0.7以上であるような、高度な分散状態を実現することができる。
According to such a process, the particle size of the alkaline earth metal sulfate carried on the outer surface and in the pores of the porous carrier particles can be made much smaller than before.
Typically, according to the technology disclosed herein, fine alkaline earth metal sulfates having an average particle size based on X-ray diffraction of 30 nm or less (for example, 10 nm or more and 30 nm or less), preferably 20 nm or less. (For example, barium sulfate) particles can be supported in a highly dispersed state on the outer surface and in the pores of the porous carrier particles.
According to the above process, it is possible to realize a highly dispersed state in which the correlation coefficient: R Ae / Pt is 0.5 or more, further 0.6 or more, and further 0.7 or more. it can.

次に、得られた上記粉末材料(適宜に粉砕処理を施したもの)を用いて、触媒層(アルカリ土類金属担持領域)形成用のスラリーを調製する。かかるスラリーの調製は、従来の排ガス浄化用触媒の触媒層を形成する場合と同様でよく、特別な制限はない。
例えば、図2に示すような上下二層構造タイプの触媒層6の構成が相互に異なる排ガス浄化用触媒10の基材1上にアルカリ土類金属担持領域である上層6Aを形成する場合、所望の触媒金属成分(Pt以外の触媒金属イオン(例、Rh)を含む溶液)と、所望の担体粉末(アルミナ、ジルコニア、CZ複合酸化物からなるOSC材、等)とを含む下層形成用スラリーをウォッシュコート法等によってハニカム基材1にコートする。
次いで、上記調製した粉末材料と、さらに必要に応じて、アルカリ土類金属が担持されていない担体粉末(例えば、アルミナやジルコニア、或いはCZ複合酸化物等のOSC材)と、を含むアルカリ土類金属担持領域形成用スラリーを公知のウォッシュコート法等によって下層6Bの表面に積層コートする。
或いは、このような一度の焼成プロセスに代えて、下層形成用スラリーをハニカム基材1にコートした後、所定の温度及び時間で乾燥し焼成することによって、先ず下層を形成し、次いで、アルカリ土類金属担持領域形成用スラリーを下層の表面にコートして乾燥及び焼成を行って触媒層の上層を形成する二段階の焼成を行うプロセスでもよい。
Next, a slurry for forming a catalyst layer (alkaline earth metal supporting region) is prepared using the obtained powder material (which has been appropriately pulverized). The preparation of such a slurry may be the same as the case of forming a catalyst layer of a conventional exhaust gas purifying catalyst, and there is no particular limitation.
For example, when the upper layer 6A, which is an alkaline-earth metal supporting region, is formed on the base material 1 of the exhaust gas purifying catalyst 10 in which the structure of the upper and lower two-layer structure type catalyst layer 6 shown in FIG. And a lower layer forming slurry containing a catalyst metal component (a solution containing a catalyst metal ion other than Pt (eg, Rh)) and a desired carrier powder (alumina, zirconia, OSC material composed of CZ composite oxide, etc.) The honeycomb substrate 1 is coated by a wash coat method or the like.
Next, an alkaline earth containing the powder material prepared above and, if necessary, a carrier powder not supporting an alkaline earth metal (for example, an OSC material such as alumina, zirconia, or CZ composite oxide). The surface of the lower layer 6B is laminated and coated with the slurry for forming the metal supporting region by a known wash coating method or the like.
Alternatively, instead of such a one-time baking process, the lower layer forming slurry is coated on the honeycomb substrate 1 and then dried and fired at a predetermined temperature and time to form the lower layer first, and then the alkaline earth A process in which the slurry for forming a metal-like supporting region is coated on the surface of the lower layer, followed by drying and firing to form an upper layer of the catalyst layer, and a two-stage firing process may be employed.

ウォッシュコートされたスラリーの焼成条件は基材または担体の形状及びサイズによっても変動するので特に限定しないが、典型的には400〜1000℃程度で約1〜5時間程度の焼成を行うことによって、目的のアルカリ土類金属担持領域および他の領域の触媒層を形成することができる。また、焼成前の乾燥条件については特に限定されるものではないが、80〜300℃の温度で1〜12時間程度の乾燥が好ましい。
また、触媒層6をウォッシュコート法により形成する場合、基材1の表面、さらに積層構造触媒層の場合には下層6Bの表面にスラリーを好適に密着させるため、スラリーにはバインダーを含有させることが好ましい。かかる目的のバインダーとしては、例えばアルミナゾル、シリカゾル等の使用が好ましい。なお、スラリーの粘度は当該スラリーが基材(例えばハニカム基材)1のセル2内へ容易に流入し得るように適宜調整するとよい。
The firing conditions of the wash-coated slurry are not particularly limited because they vary depending on the shape and size of the base material or the carrier, but typically, by firing at about 400 to 1000 ° C. for about 1 to 5 hours, It is possible to form the catalyst layer in the target alkaline earth metal supporting region and other regions. The drying conditions before firing are not particularly limited, but drying at a temperature of 80 to 300 ° C. for about 1 to 12 hours is preferable.
When the catalyst layer 6 is formed by the wash coat method, a binder should be contained in the slurry so that the slurry can be appropriately adhered to the surface of the base material 1 and, in the case of a laminated catalyst layer, to the surface of the lower layer 6B. Is preferred. As the binder for this purpose, for example, use of alumina sol, silica sol or the like is preferable. The viscosity of the slurry may be appropriately adjusted so that the slurry can easily flow into the cells 2 of the base material (for example, the honeycomb base material) 1.

以下、本発明に関するいくつかの実施例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to the specific examples.

<試験例1:排ガス浄化用触媒の作製>
本試験例では、図1に示すような直径:103mm、全長:105mmである円筒形状のハニカム基材(即ち触媒容積が0.875Lのコージェライト製ハニカム基材)を使用し、図2に示すような二層構造触媒層を備える排ガス浄化用触媒を以下のとおり作製した。
<Test Example 1: Preparation of exhaust gas purifying catalyst>
In this test example, a cylindrical honeycomb substrate having a diameter of 103 mm and a total length of 105 mm as shown in FIG. 1 (that is, a cordierite honeycomb substrate having a catalyst volume of 0.875 L) is used and shown in FIG. An exhaust gas purifying catalyst having such a two-layer catalyst layer was produced as follows.

(実施例1)
Pt量で17.5gのジニトロジアンミン白金を純水1Lに添加し、撹拌して懸濁液を作製した。この懸濁液にアルミナ740gを添加した後、酢酸バリウム72gを添加して、攪拌した。その後、タウリン70gを添加し、撹拌してスラリー状の原料懸濁物を作製した。
この原料懸濁物を、110℃で8時間以上乾燥し、続いて500℃で2時間焼成した。その後、粒径が10μm以下になるまで適当な粉砕処理を施すことにより、Pt含有粉末材料を作製した。
(Example 1)
17.5 g of dinitrodiammineplatinum in Pt amount was added to 1 L of pure water and stirred to prepare a suspension. After adding 740 g of alumina to this suspension, 72 g of barium acetate was added and stirred. Thereafter, 70 g of taurine was added and stirred to prepare a slurry-like raw material suspension.
This raw material suspension was dried at 110 ° C. for 8 hours or more, and subsequently calcined at 500 ° C. for 2 hours. Thereafter, a suitable pulverizing treatment was performed until the particle diameter became 10 μm or less, thereby producing a Pt-containing powder material.

次に、上記作製したPt含有粉末材料と、Ceの含有量が30重量%であるCZ複合酸化物粉末1800gと、アルミナバインダー87gとを、純水3.6Lに添加し、磁性ボールミルを用いて湿式粉砕を行うことによって、上層形成用スラリーを調製した。
一方、Rh量で5.6gの硝酸ロジウムを純水0.9Lに懸濁させた。得られた懸濁液に、ジルコニア粉末803gを添加し、乾燥し、続いて500℃で2時間焼成した。その後、粒径が10μm以下になるまで適当な粉砕処理を施すことにより、Rh含有粉末材料を作製した。このRh含有粉末材料に対して、アルミナ粉末415gと、Ceの含有量が20重量%であるCZ複合粉末413gと、アルミナバインダー61gとを純水2.3Lに添加し、磁性ボールミルを用いて湿式粉砕を行うことによって、下層形成用スラリーを調製した。
Next, the above-prepared Pt-containing powder material, 1800 g of a CZ composite oxide powder having a Ce content of 30% by weight, and 87 g of an alumina binder were added to 3.6 L of pure water, and the mixture was added using a magnetic ball mill. The slurry for upper layer formation was prepared by performing wet grinding.
On the other hand, 5.6 g of rhodium nitrate in Rh amount was suspended in 0.9 L of pure water. To the obtained suspension, 803 g of zirconia powder was added, dried, and subsequently calcined at 500 ° C. for 2 hours. Thereafter, an appropriate pulverization treatment was performed until the particle diameter became 10 μm or less, thereby producing a Rh-containing powder material. To this Rh-containing powder material, 415 g of alumina powder, 413 g of CZ composite powder having a Ce content of 20% by weight, and 61 g of alumina binder were added to 2.3 L of pure water, and wet-processed using a magnetic ball mill. By grinding, a slurry for forming a lower layer was prepared.

先ず下層形成用スラリーを用いて基材に対してウォッシュコートを施し、150℃で1時間ほど乾燥することにより、基材の表面(セル内のリブ壁面)に下層(非焼成コート層)を形成した。次いで、上層形成用スラリーを用いて基材に対してウォッシュコートを施し、150℃で1時間ほど乾燥することにより下層の表面に上層(非焼成コート層)を積層形成した。その後、500℃で1時間の焼成を行い、上下二層からなる触媒層(コート量は上下層あわせて220g/Lとした)が形成された排ガス浄化用触媒を得た。   First, a wash coat is applied to the base material using the slurry for forming the lower layer, and dried at 150 ° C. for about 1 hour to form a lower layer (non-fired coat layer) on the surface of the base material (the rib wall surface in the cell). did. Next, a wash coat was applied to the substrate using the slurry for forming an upper layer, and dried at 150 ° C. for about 1 hour to form an upper layer (non-fired coat layer) on the surface of the lower layer. Thereafter, baking was performed at 500 ° C. for 1 hour to obtain an exhaust gas purifying catalyst on which a catalyst layer composed of upper and lower layers (coat amount was 220 g / L for both upper and lower layers) was formed.

(実施例2)
Pt含有粉末材料を作製する際に、原料懸濁物を110℃で8時間以上乾燥する代わりに30℃で48時間乾燥した以外は実施例1と同様にして排ガス浄化用触媒を得た。
(Example 2)
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the raw material suspension was dried at 30 ° C. for 48 hours instead of drying the raw material suspension at 110 ° C. for 8 hours or more when producing the Pt-containing powder material.

(比較例1)
Pt含有粉末材料を作製する際に、Ba源として酢酸バリウム72gの代わりに硫酸バリウム66gを使用し、Ba固定化材であるタウリンを添加しなかった以外は実施例1と同様にして排ガス浄化用触媒を得た。
(Comparative Example 1)
When producing a Pt-containing powder material, for purifying exhaust gas in the same manner as in Example 1, except that 66 g of barium sulfate was used instead of 72 g of barium acetate as a Ba source, and taurine as a Ba fixing material was not added. A catalyst was obtained.

(比較例2)
Pt含有粉末材料を作製する際に、Ba固定化材であるタウリン70gの代わりに無機化合物である硫酸アンモニウム74gを使用した以外は実施例1と同様にして排ガス浄化用触媒を得た。
(Comparative Example 2)
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that when preparing the Pt-containing powder material, 74 g of ammonium sulfate as an inorganic compound was used instead of 70 g of taurine as a Ba fixing material.

(比較例3)
Pt含有粉末材料を作製する際に、Ba固定化材であるタウリンを添加しなかった以外は実施例1と同様にして排ガス浄化用触媒を得た。
(Comparative Example 3)
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that Taurine, which was a Ba fixing material, was not added when producing the Pt-containing powder material.

<試験例2:Pt含有粉末材料のFE−EPMAによる硫酸バリウムの分散性の確認>
日本電子株式会社製のFE−EPMA装置(JXA−8530F)をマニュアルどおりに使用し、試験例1で作製した各Pt含有粉末材料について面分析を行った。
即ち、所定量の各粉末材料の表面を研磨して断面を出し、市販のカーボンコーター(株式会社真空デバイス製品:VC−100W)を使用して導電性物質としての炭素を蒸着した。そして、炭素蒸着面のうちのPt含有粉末材料に該当する領域を適宜定め、かかる領域に対してFE−EPMAによる面分析を行った。測定条件は、
ピクセルサイズ:0.34μm×0.34μm、
測定ピクセル数:256×256、
加速電圧:20kV、
照射電流:100nA、
プローブ径:当該測定条件における最小に設定、
単位測定時間:50ms/1ピクセル、
測定倍率:×1000
とした。そして、ピクセル毎にBa元素の特性X線の強度(α:cps)およびPtの特性X線の強度(β:cps)を測定した。
なお、かかる面分析において、1ピクセル(区域)あたりのX線強度の閾値をBaでは15cps、Ptでは5cpsと設定し、閾値以下の強度を示したピクセルは、相関係数の算出のためのデータから除外した。
<Test Example 2: Confirmation of barium sulfate dispersibility of Pt-containing powder material by FE-EPMA>
Using a FE-EPMA device (JXA-8530F) manufactured by JEOL Ltd. according to the manual, surface analysis was performed on each Pt-containing powder material produced in Test Example 1.
That is, the surface of each powder material of a predetermined amount was polished to obtain a cross section, and carbon as a conductive substance was deposited using a commercially available carbon coater (Vacuum Device Co., Ltd .: VC-100W). Then, a region corresponding to the Pt-containing powder material on the carbon vapor-deposited surface was appropriately determined, and the region was subjected to surface analysis by FE-EPMA. The measurement conditions are
Pixel size: 0.34 μm × 0.34 μm,
Measurement pixels: 256 × 256,
Acceleration voltage: 20 kV,
Irradiation current: 100 nA,
Probe diameter: set to the minimum under the relevant measurement conditions,
Unit measurement time: 50 ms / 1 pixel,
Measurement magnification: × 1000
And The characteristic X-ray intensity of Ba element (α: cps) and the characteristic X-ray intensity of Pt (β: cps) were measured for each pixel.
In this surface analysis, the threshold value of the X-ray intensity per pixel (area) is set to 15 cps for Ba and 5 cps for Pt, and the pixels showing the intensity lower than the threshold value are data for calculating the correlation coefficient. Excluded from.

こうして面分析を行い、得られたデータを表計算ソフト「エクセル」のCORREL関数機能を用いて相関係数RBa/Ptを求めた。結果を表1に示す。
また、実施例1の試料、および比較例1〜2の試料については、BaとSの元素マッピングについてのデータ(画像)を図3〜6に示す。
The surface analysis was performed in this manner, and the obtained data was used to determine a correlation coefficient RBa / Pt using the CORREL function function of spreadsheet software "Excel". Table 1 shows the results.
FIGS. 3 to 6 show data (images) on element mapping of Ba and S for the sample of Example 1 and the samples of Comparative Examples 1 and 2. FIG.

<試験例3:Ba溶出性試験>
試験例1で作製した各Pt含有粉末材料を、純水に懸濁させ、酸を添加したときのBaの溶出量を、アジレント社製ICP発光分光分析装置(Agilent5110 ICP−OES)により測定し、Ba溶出率を求めた。結果を表1に示す。
<Test Example 3: Ba dissolution test>
Each Pt-containing powder material produced in Test Example 1 was suspended in pure water, and the amount of Ba eluted when an acid was added was measured by an ICP emission spectrometer (Agilent 5110 ICP-OES) manufactured by Agilent. The Ba elution rate was determined. Table 1 shows the results.

表1および図3〜6の結果より、比較例1および2では、Baが担体二次粒子の外部に凝集しているのに対して、実施例1では担体二次粒子内部にBaが高度に分散して担持されていることがわかる。
相関係数の値が0.5以上では強い相関、0.7以上では特に強い相関があると解釈されるが、実施例1では、相関係数RBa/Ptの値が0.798であり、Ptの存在位置とBaの存在位置に特に強い相関があることが認められる。
一方、比較例1および比較例2では、相関係数RBa/Ptの値はそれぞれ−0.128、0.060であり、PtとBaの存在位置に相関関係は認められない。
このことから、比較例1および2に比べて実施例1では、Baが高度に分散しているだけでなく、PtとBaが近接していることがわかる。
比較例3では、相関係数RBa/Ptの値が0.720と、PtとBaの存在位置に強い相関が認められるが、Ba溶出率が70%であり、Baを固定化することができなかった。
From the results of Table 1 and FIGS. 3 to 6, in Comparative Examples 1 and 2, Ba was agglomerated outside the secondary particles of the carrier, whereas in Example 1, Ba was highly concentrated inside the secondary particles of the carrier. It can be seen that they are dispersed and supported.
If the value of the correlation coefficient is 0.5 or more, it is interpreted that there is a strong correlation, and if the value of the correlation coefficient is 0.7 or more, it is interpreted that there is a particularly strong correlation. In Example 1, the value of the correlation coefficient RBa / Pt is 0.798. , Pt and the position of Ba have a particularly strong correlation.
On the other hand, in Comparative Examples 1 and 2, the values of the correlation coefficient RBa / Pt are -0.128 and 0.060, respectively, and there is no correlation between the positions of Pt and Ba.
From this, it can be seen that in Example 1, as compared with Comparative Examples 1 and 2, Ba is not only highly dispersed but also Pt and Ba are close to each other.
In Comparative Example 3, the value of the correlation coefficient RBa / Pt was 0.720, and a strong correlation was observed between the positions of Pt and Ba. However, the Ba elution rate was 70%, and Ba was immobilized. could not.

<試験例4:Pt含有粉末材料のHC浄化率測定>
実施例1および比較例1で用いたPt含有粉末材料のペレットを作製し、管状炉を用いてRich/Lean耐久を行った。その後、ベスト測機社製活性評価装置(CATA5000)を用いて空燃比をLeanからRichに切り替えてから3分後のHC浄化率を測定した。結果を図7に示す。
<Test Example 4: HC purification rate measurement of Pt-containing powder material>
Pellets of the Pt-containing powder material used in Example 1 and Comparative Example 1 were prepared, and subjected to Rich / Lean durability using a tubular furnace. Thereafter, the HC purification rate was measured 3 minutes after the air-fuel ratio was switched from Lean to Rich using an activity evaluation device (CATA5000) manufactured by Best Sokki Co., Ltd. FIG. 7 shows the results.

図7が示すように、実施例1で用いたPt含有粉末材料の方がはるかに高いHC浄化率を示した。
実施例1では、Baが担体二次粒子に高分散担持されており、PtとBaの存在位置に相関が認められるほどにPtとBaが近接化されている。このため、Ptに対するBaの電子供与によりHC被毒抑制が起こり、Rich雰囲気時のHC浄化性能が向上したものと考えられる。
As shown in FIG. 7, the Pt-containing powder material used in Example 1 showed a much higher HC purification rate.
In Example 1, Ba is highly dispersed and supported on the carrier secondary particles, and Pt and Ba are brought close to each other so that a correlation is found between the positions of Pt and Ba. For this reason, it is considered that HC poisoning was suppressed by the electron donation of Ba to Pt, and the HC purification performance in the Rich atmosphere was improved.

<試験例5:Rh含有触媒層のFE−EPMAによる評価>
実施例1で作製した排ガス浄化用触媒の上層触媒層と下層触媒層の積層部を切り出し、断面を研磨した。断面に市販のカーボンコーター(株式会社真空デバイス製品:VC−100W)を使用して導電性物質としての炭素を蒸着した。この断面について、上記のFE−EPMA装置(JXA−8530F)を用いて、面分析を行った。測定条件は、
ピクセルサイズ:0.85μm×0.85μm、
測定ピクセル数:256×256、
加速電圧:20kV、
照射電流:100nA、
プローブ径:当該測定条件における最小に設定、
単位測定時間:50ms/1ピクセル、
測定倍率:×400
とした。そして、ピクセル毎にBa元素の特性X線の強度(α:cps)およびRhの特性X線の強度(β:cps)を測定した。
なお、かかる面分析において、1ピクセル(区域)あたりのX線強度の閾値をBaでは15cps、Rhでは5cpsと設定し、閾値以下の強度を示したピクセルは、相関係数の算出のためのデータから除外した。
得られたデータを表計算ソフト「エクセル」のCORREL関数機能を用いて相関係数RBa/Rhを求めた。
その結果、相関係数RBa/Rhは、0.023であり、BaとRhの触媒中における存在位置に相関関係は認められなかった。このことから、実施例1の排ガス浄化用触媒では、Ptを含有するアルカリ土類金属担持領域である上層においてBaが固定化されていることにより、上層に存在するBaと下層に存在するRhとの接触を防止できていることがわかる。
<Test Example 5: Evaluation of Rh-containing catalyst layer by FE-EPMA>
The laminated portion of the upper catalyst layer and the lower catalyst layer of the exhaust gas purifying catalyst produced in Example 1 was cut out and the cross section was polished. Carbon as a conductive material was vapor-deposited on the cross section using a commercially available carbon coater (Vacuum Device Co., Ltd .: VC-100W). This cross section was subjected to surface analysis using the above-mentioned FE-EPMA apparatus (JXA-8530F). The measurement conditions are
Pixel size: 0.85 μm × 0.85 μm,
Measurement pixels: 256 × 256,
Acceleration voltage: 20 kV,
Irradiation current: 100 nA,
Probe diameter: set to the minimum under the relevant measurement conditions,
Unit measurement time: 50 ms / 1 pixel,
Measurement magnification: × 400
And Then, the intensity of the characteristic X-ray of the Ba element (α: cps) and the intensity of the characteristic X-ray of Rh (β: cps) were measured for each pixel.
In this surface analysis, the threshold value of the X-ray intensity per pixel (area) is set to 15 cps for Ba and 5 cps for Rh, and the pixels showing the intensity lower than the threshold value are the data for calculating the correlation coefficient. Excluded from.
The correlation coefficient RBa / Rh of the obtained data was determined using the CORREL function function of spreadsheet software "Excel".
As a result, the correlation coefficient RBa / Rh was 0.023, and no correlation was found between the positions of Ba and Rh in the catalyst. From this, in the exhaust gas purifying catalyst of Example 1, Ba is fixed in the upper layer which is the alkaline earth metal supporting region containing Pt, so that Ba present in the upper layer and Rh present in the lower layer are reduced. It can be seen that the contact of the object was prevented.

<試験例6:排ガス浄化用触媒の浄化率測定>
実施例1および比較例1で作製した排ガス浄化用触媒をエンジンの排気系に設置し、エンジンを稼働させ耐久を行った。
かかる耐久試験後、その触媒を用いてエンジンに供給する混合ガスの空燃比をLeanからRichに切り替えてから3分後のHC浄化率およびNO浄化率を測定した。結果を図8および図9に示す。
<Test Example 6: Measurement of Purification Rate of Exhaust Gas Purification Catalyst>
The exhaust gas purifying catalysts produced in Example 1 and Comparative Example 1 were installed in an exhaust system of an engine, and the engine was operated to perform durability.
After such durability test were measured HC purification ratio and the NO x purification ratio after 3 minutes after switching on Rich fuel ratio of the gas mixture supplied to the engine from the Lean using the catalyst. The results are shown in FIGS.

図8および図9の結果が示すように、実施例1の排ガス浄化用触媒は、比較例1の排ガス浄化用触媒よりもはるかに高いHC浄化率およびNO浄化率を示した。この理由は次のように考えられる。
実施例1では、Baが担体二次粒子に高分散担持されているため、PtとBaの存在位置に相関が認められるほどにPtとBaとが近接化されている。このため、Ptに対するBaの電子供与によりHC被毒抑制が起こり、Rich雰囲気時のHC浄化性能が向上する。さらにBaが固定化されていることにより、BaとRhとの接触が防止されており、これにより、BaによるRhのメタル化抑制が防止されている。さらに、上流のPt含有触媒層のHC浄化作用が向上することによって下流のRh含有触媒層へ流入するHC量が減少することにより、Rhの被毒が抑制される。以上のことから共存NOの浄化性能も向上する。
As shown in the results of FIG. 8 and FIG. 9, the exhaust gas purifying catalyst of Example 1 showed much higher HC purification ratio and the NO x purification rate than the exhaust gas purifying catalyst of Comparative Example 1. The reason is considered as follows.
In Example 1, since Ba is highly dispersed and supported on the carrier secondary particles, Pt and Ba are brought close to each other such that a correlation is found between the positions of Pt and Ba. For this reason, HC poisoning is suppressed by the electron donation of Ba to Pt, and the HC purification performance in the Rich atmosphere is improved. Further, since Ba is immobilized, contact between Ba and Rh is prevented, and thereby, suppression of metalization of Rh by Ba is prevented. Furthermore, the poisoning of Rh is suppressed by reducing the amount of HC flowing into the downstream Rh-containing catalyst layer by improving the HC purification action of the upstream Pt-containing catalyst layer. Also improves purification performance of coexistence NO x from the above.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

1 基材
2 セル
4 隔壁
6 触媒層
6A 上層
6B 下層
10 排ガス浄化用触媒
DESCRIPTION OF SYMBOLS 1 Base material 2 Cell 4 Partition wall 6 Catalyst layer 6A Upper layer 6B Lower layer 10 Exhaust gas purification catalyst

Claims (8)

内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒であって、
基材と、
当該基材上に形成された触媒層と、
を備えており、
前記触媒層は、
無機化合物から構成される多孔質担体と、
前記多孔質担体に担持されたPtと、
前記多孔質担体に担持された、少なくとも一種のアルカリ土類金属の硫酸塩と、
を備えるアルカリ土類金属担持領域を有しており、
ここで、前記触媒層のアルカリ土類金属担持領域の断面について、
ピクセルサイズ 0.34μm×0.34μm;
測定ピクセル数 256×256;
の条件でFE−EPMAによる面分析を行い、前記アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)およびPtの特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出したピアソンの相関係数をRAe/Ptとしたとき、
当該RAe/Ptの値が0.5以上であることを特徴とする、排ガス浄化用触媒。
An exhaust gas purifying catalyst disposed in an exhaust pipe of an internal combustion engine to purify exhaust gas discharged from the internal combustion engine,
A substrate,
A catalyst layer formed on the substrate,
With
The catalyst layer,
A porous carrier composed of an inorganic compound,
Pt supported on the porous carrier;
Supported on the porous carrier, at least one sulfate of an alkaline earth metal,
Having an alkaline earth metal carrying region comprising
Here, regarding the cross section of the alkaline earth metal supporting region of the catalyst layer,
Pixel size 0.34 μm × 0.34 μm;
Number of measured pixels 256 × 256;
The surface analysis by FE-EPMA is performed under the following conditions, and the characteristic X-ray intensity (α: cps) of the alkaline earth metal element (Ae) and the characteristic X-ray intensity (β: cps) of Pt are determined for each pixel. When the Pearson's correlation coefficient calculated using the measured and obtained α and β in each pixel is defined as RAe / Pt ,
An exhaust gas purifying catalyst, wherein the value of R Ae / Pt is 0.5 or more.
前記相関係数RAe/Ptの値が0.7以上である、請求項1に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1, wherein the value of the correlation coefficient RAe / Pt is 0.7 or more. 前記多孔質担体に担持されたアルカリ土類金属硫酸塩のX線回折法に基づく平均粒径が、30nm以下である、請求項1または2に記載の排ガス浄化用触媒。   3. The exhaust gas purifying catalyst according to claim 1, wherein the alkaline earth metal sulfate supported on the porous carrier has an average particle size based on an X-ray diffraction method of 30 nm or less. 4. 前記触媒層の排ガスが流れる方向の下流側に、Rhを触媒金属とする触媒層をさらに有する、請求項1〜3のいずれか1項に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, further comprising a catalyst layer containing Rh as a catalyst metal on a downstream side of the catalyst layer in a direction in which the exhaust gas flows. 前記アルカリ土類金属硫酸塩として少なくとも硫酸バリウム(BaSO)を有している、請求項1〜4のいずれか1項に記載の排ガス浄化用触媒。 At least it has a barium sulfate (BaSO 4) as the alkaline earth metal sulfate, an exhaust gas purifying catalyst according to any one of claims 1 to 4. 内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒を製造する方法であって、
基材上に、
無機化合物から構成される多孔質担体と、
当該多孔質担体に担持されたPtと、
当該多孔質担体に担持された少なくとも一種のアルカリ土類金属の硫酸塩と、
を備えるアルカリ土類金属担持領域を少なくとも一部に有する触媒層を形成する工程、および
前記触媒層が形成された基材を焼成する工程、
を包含し、
ここで、前記触媒層の形成工程は、
以下の成分:
前記多孔質担体を構成する無機化合物粒子;
Pt粒子またはPtを析出させるための前駆物質;
前記アルカリ土類金属の水溶性化合物;および
構成元素としてSを含有し、前記アルカリ土類金属の硫酸塩を生成可能なS含有水溶性有機化合物;
を水系溶媒と混合し、原料懸濁物を調製すること、
前記原料懸濁物を乾燥し、さらに焼成することによって、前記多孔質担体とPtとアルカリ土類金属の硫酸塩とが混在する粉末材料を調製すること、
少なくとも前記粉末材料と水系溶媒を含むアルカリ土類金属担持領域形成用スラリーを調製すること、および
前記スラリーを用いて前記基材上に前記アルカリ土類金属担持領域を形成すること、
を包含する、排ガス浄化用触媒の製造方法。
A method for producing an exhaust gas purifying catalyst that is disposed in an exhaust pipe of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine,
On the substrate,
A porous carrier composed of an inorganic compound,
Pt supported on the porous carrier;
A sulfate of at least one alkaline earth metal supported on the porous carrier,
Forming a catalyst layer having at least a portion of an alkaline earth metal supporting region comprising: and firing the substrate on which the catalyst layer is formed,
,
Here, the step of forming the catalyst layer includes:
The following ingredients:
Inorganic compound particles constituting the porous carrier;
Pt particles or precursors for depositing Pt;
A water-soluble compound of the alkaline earth metal; and an S-containing water-soluble organic compound containing S as a constituent element and capable of forming a sulfate of the alkaline earth metal;
Is mixed with an aqueous solvent to prepare a raw material suspension,
Drying the raw material suspension and further baking to prepare a powder material in which the porous carrier and Pt and a sulfate of an alkaline earth metal are mixed,
Preparing a slurry for forming an alkaline earth metal supporting region containing at least the powder material and an aqueous solvent, and forming the alkaline earth metal supporting region on the base material using the slurry,
A method for producing an exhaust gas purifying catalyst, comprising:
前記S含有水溶性有機化合物として、スルホ基(−SOH)、スルホニル基(−S(=O)−)およびスルフィニル基(−S(=O)−)のうちの少なくとも一つの官能基を有する水溶性有機物が使用される、請求項6に記載の排ガス浄化用触媒の製造方法。 As the S-containing water-soluble organic compound, at least one functional group of a sulfo group (—SO 3 H), a sulfonyl group (—S (= O) 2 —) and a sulfinyl group (—S (= O) —) The method for producing an exhaust gas purifying catalyst according to claim 6, wherein a water-soluble organic substance having the following formula is used. 前記アルカリ土類金属の水溶性化合物として、Ba、SrおよびCaのうちから選択される何れかのアルカリ土類金属の酢酸塩、亜硝酸塩またはヨウ化物が使用される、請求項6または7に記載の排ガス浄化用触媒の製造方法。   8. The alkaline earth metal water-soluble compound used in the present invention is an alkaline earth metal acetate, nitrite or iodide selected from Ba, Sr and Ca. Method for producing an exhaust gas purifying catalyst.
JP2018189365A 2018-10-04 2018-10-04 Exhaust gas purification catalyst Active JP6990161B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018189365A JP6990161B2 (en) 2018-10-04 2018-10-04 Exhaust gas purification catalyst
CN201980065477.9A CN112789107A (en) 2018-10-04 2019-09-09 Catalyst for exhaust gas purification
EP19868631.3A EP3854478A1 (en) 2018-10-04 2019-09-09 Exhaust gas purification catalyst
US17/276,505 US11821349B2 (en) 2018-10-04 2019-09-09 Exhaust gas purification catalyst
PCT/JP2019/035399 WO2020071059A1 (en) 2018-10-04 2019-09-09 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189365A JP6990161B2 (en) 2018-10-04 2018-10-04 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2020054982A true JP2020054982A (en) 2020-04-09
JP6990161B2 JP6990161B2 (en) 2022-02-15

Family

ID=70054933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189365A Active JP6990161B2 (en) 2018-10-04 2018-10-04 Exhaust gas purification catalyst

Country Status (5)

Country Link
US (1) US11821349B2 (en)
EP (1) EP3854478A1 (en)
JP (1) JP6990161B2 (en)
CN (1) CN112789107A (en)
WO (1) WO2020071059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126689A1 (en) 2020-10-19 2022-04-21 Cataler Corporation EMISSION CONTROL DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017258A1 (en) * 2021-08-13 2023-02-16 Johnson Matthey Public Limited Company Sulfur-containing organic compound assisted metal nanoparticle synthesis for three-way catalysis application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137658A1 (en) * 2009-05-27 2010-12-02 株式会社 キャタラー Catalyst for purification of exhaust gas, and process for production thereof
WO2010147163A1 (en) * 2009-06-16 2010-12-23 株式会社 キャタラー Exhaust gas purifying catalyst, powder material, and method for producing exhaust gas purifying catalyst
WO2011030831A1 (en) * 2009-09-10 2011-03-17 株式会社 キャタラー Catalyst for exhaust gas purification
WO2018190300A1 (en) * 2017-04-11 2018-10-18 株式会社キャタラー Catalyst for exhaust gas purification

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932309A (en) 1974-06-05 1976-01-13 W. R. Grace & Co. Auto exhaust catalysts prepared from sulfite treated platinum and palladium salt solutions
JPH0826808B2 (en) 1988-05-09 1996-03-21 国産電機株式会社 Speed control device for internal combustion engine
JP3272019B2 (en) 1992-02-28 2002-04-08 株式会社日本触媒 Exhaust gas purification catalyst
JP3812132B2 (en) 1998-04-03 2006-08-23 松下電器産業株式会社 Exhaust gas purification catalyst and method for producing the same
DE19847008A1 (en) 1998-10-13 2000-04-20 Degussa Nitrogen oxide storage catalytic converter
JP2001232208A (en) 2000-02-25 2001-08-28 Toyota Motor Corp Catalyst for cleaning exhaust gas and method of manufacturing it
JP4200768B2 (en) 2003-01-22 2008-12-24 マツダ株式会社 Three way catalyst for exhaust gas purification
JP5322526B2 (en) 2008-07-17 2013-10-23 エヌ・イーケムキャット株式会社 Honeycomb structure type catalyst for purifying exhaust gas discharged from automobile, method for manufacturing the same, and method for purifying exhaust gas using the catalyst
CN102448606B (en) * 2009-05-27 2014-03-26 株式会社科特拉 Catalyst for purification of exhaust gas
JP2014161771A (en) * 2013-02-22 2014-09-08 Toyota Motor Corp Manufacturing method of exhaust gas purification catalyst and exhaust gas purification catalyst
JP6272303B2 (en) * 2013-03-28 2018-01-31 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and method for producing the same, and exhaust gas purification catalyst using the same
JP5994808B2 (en) * 2014-03-05 2016-09-21 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP6611906B2 (en) 2016-03-01 2019-12-04 株式会社キャタラー Exhaust gas purification catalyst
CN109790994A (en) 2017-04-28 2019-05-21 日立江森自控空调有限公司 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137658A1 (en) * 2009-05-27 2010-12-02 株式会社 キャタラー Catalyst for purification of exhaust gas, and process for production thereof
WO2010147163A1 (en) * 2009-06-16 2010-12-23 株式会社 キャタラー Exhaust gas purifying catalyst, powder material, and method for producing exhaust gas purifying catalyst
WO2011030831A1 (en) * 2009-09-10 2011-03-17 株式会社 キャタラー Catalyst for exhaust gas purification
WO2018190300A1 (en) * 2017-04-11 2018-10-18 株式会社キャタラー Catalyst for exhaust gas purification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126689A1 (en) 2020-10-19 2022-04-21 Cataler Corporation EMISSION CONTROL DEVICE
JP2022066935A (en) * 2020-10-19 2022-05-02 トヨタ自動車株式会社 Exhaust gas purification apparatus
JP7317787B2 (en) 2020-10-19 2023-07-31 トヨタ自動車株式会社 Exhaust gas purifier
US11759769B2 (en) 2020-10-19 2023-09-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device

Also Published As

Publication number Publication date
EP3854478A4 (en) 2021-07-28
WO2020071059A1 (en) 2020-04-09
US20210277814A1 (en) 2021-09-09
US11821349B2 (en) 2023-11-21
JP6990161B2 (en) 2022-02-15
EP3854478A1 (en) 2021-07-28
CN112789107A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
JP7062642B2 (en) Exhaust gas purification catalyst
JP3274688B2 (en) Catalyst composition containing separated platinum and rhodium components
JP4858463B2 (en) Exhaust gas purification catalyst and method for producing the same
WO2014034524A1 (en) Exhaust gas purifying catalyst
JP6822890B2 (en) Exhaust gas purification catalyst, exhaust gas purification method, and exhaust gas purification system
KR20180125611A (en) Oxidation catalyst for lean compressed natural gas engine
KR20150131017A (en) Catalytic article with segregated washcoat and methods of making same
WO2020071059A1 (en) Exhaust gas purification catalyst
JP2005000829A (en) Catalyst for purifying exhaust gas and production method therefor
JP6204023B2 (en) Exhaust gas purification catalyst
US20150174555A1 (en) Exhaust gas purifying catalyst and method for producing same
JP2009142789A (en) Catalytic carrier for cleaning exhaust gas, its manufacturing method, catalyst for cleaning exhaust gas and honeycomb catalyst structure for cleaning exhaust gas
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP5589320B2 (en) Exhaust gas purification catalyst and method for producing the same
CN111867723A (en) Exhaust gas purifying composition, exhaust gas purifying catalyst comprising same, and exhaust gas purifying catalyst structure
JP7278518B2 (en) Exhaust gas purifying catalyst composition and exhaust gas purifying catalyst
JP6273859B2 (en) Three-way catalyst and exhaust gas purification method using the same
WO2024014409A1 (en) Catalyst composition for exhaust-gas purification, catalyst for exhaust-gas purification, and exhaust-gas purification system
CN117098602A (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JP2005021878A (en) Exhaust gas purification catalyst and its production method
JP2024517672A (en) Platinum-containing three-way catalysts for close-coupled engine applications.
JP2023545787A (en) Three-way conversion catalyst composition containing a bimetallic component of platinum-rhodium
JP2006223949A (en) Catalyst for cleaning exhaust gas and its production method
JP2007268472A (en) Method for manufacturing catalyst for purifying exhaust gas and catalyst for purifying exhaust gas
JP2008259991A (en) Method for manufacturing catalyst for exhaust gas treatment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211203

R150 Certificate of patent or registration of utility model

Ref document number: 6990161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150