JP2020053642A - Manufacturing method of light-emitting device - Google Patents

Manufacturing method of light-emitting device Download PDF

Info

Publication number
JP2020053642A
JP2020053642A JP2018184316A JP2018184316A JP2020053642A JP 2020053642 A JP2020053642 A JP 2020053642A JP 2018184316 A JP2018184316 A JP 2018184316A JP 2018184316 A JP2018184316 A JP 2018184316A JP 2020053642 A JP2020053642 A JP 2020053642A
Authority
JP
Japan
Prior art keywords
light emitting
wavelength conversion
conversion member
light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018184316A
Other languages
Japanese (ja)
Inventor
真之 金子
Masayuki Kaneko
真之 金子
規晃 本庄
Noriaki Honjo
規晃 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2018184316A priority Critical patent/JP2020053642A/en
Publication of JP2020053642A publication Critical patent/JP2020053642A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a manufacturing method of a light-emitting device capable of manufacturing a light-emitting device having a small size and a reduced light-emitting area in a relatively simple process.SOLUTION: A manufacturing method of a light-emitting device 1 according to an embodiment of the present invention includes a step of installing one plate-shaped wavelength conversion member 30 on a plurality of light emitting elements 20, a step of covering the side surfaces of the plurality of light emitting elements 20 and the outer edge of the upper surface and the side surface of the wavelength conversion member 30 with a resin 51 having fluidity at once by screen printing, and a step of curing the resin 51 to form a light reflecting member 50, and the resin 51 is pressure-discharged onto a mask 70 having openings 71 that are distributed in a ring shape, and the resin 51 that has passed through the openings 71 covers the side surfaces of the light emitting element 20 and the outer edge of the upper surface and the side surface of the wavelength conversion member.SELECTED DRAWING: Figure 3

Description

本発明は、発光装置の製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device.

従来の発光装置として、発光素子とその上に設置された蛍光体を含む波長変換部材の側面が光反射部材で覆われたものが知られている(例えば、特許文献1、2参照)。   2. Description of the Related Art As a conventional light emitting device, there is known a light emitting device in which a side surface of a wavelength conversion member including a phosphor disposed thereon is covered with a light reflecting member (for example, see Patent Documents 1 and 2).

特許文献1に記載の発光装置においては、発光面積を小さくするために、発光素子よりも面積の小さい波長変換部材が用いられており、発光素子の波長変換部材に覆われていない部分から発せられた光を光反射部材によって波長変換部材へ導いている。   In the light-emitting device described in Patent Literature 1, a wavelength conversion member having a smaller area than the light-emitting element is used in order to reduce the light-emitting area, and light is emitted from a portion of the light-emitting element that is not covered by the wavelength conversion member. The reflected light is guided to the wavelength conversion member by the light reflection member.

特許文献2に記載の発光装置においては、波長変換部材の上面の外縁部が光反射部材に覆われている。このため、発光素子から発せられた光が波長変換部材の外縁部から直接取り出されることを防ぎ、発光装置の発光の色むらを抑えることができる。   In the light emitting device described in Patent Literature 2, the outer edge of the upper surface of the wavelength conversion member is covered with the light reflecting member. For this reason, it is possible to prevent light emitted from the light emitting element from being directly extracted from the outer edge of the wavelength conversion member, and to suppress color unevenness of light emission of the light emitting device.

特許6164038号公報Japanese Patent No. 6164038 特許5915483号公報Japanese Patent No. 5915483

特許文献1に記載の発光装置においては、発光素子は環状のダムに囲まれており、波長変換部材は、ダムの内側に液体の状態で注入され、硬化することにより形成される。しかしながら、ダムの専有面積は発光素子の面積と比べて大きいため、特許文献1に記載の発光装置を小型化することは困難である。   In the light emitting device described in Patent Literature 1, the light emitting element is surrounded by an annular dam, and the wavelength conversion member is formed by being injected in a liquid state inside the dam and hardening. However, since the area occupied by the dam is larger than the area of the light emitting element, it is difficult to reduce the size of the light emitting device described in Patent Document 1.

また、特許文献2に記載の発光装置においては、光反射部材は、発光素子とその上の波長変換部材の側方を覆う第1の層と、その上に設けられる波長変換部材の上面の外縁部を覆う第2の層から構成され、スクリーン印刷などにより形成される。しかしながら、2つの層で構成される光反射部材の製造工程は複雑であり、また、通常のスクリーン印刷ではあまり粘度の高い樹脂は扱えないため、形状の制御が難しく、特に、光反射部材を薄く形成することは困難である。   Further, in the light emitting device described in Patent Document 2, the light reflecting member includes a light emitting element and a first layer that covers the side of the wavelength conversion member thereon, and an outer edge of an upper surface of the wavelength conversion member provided thereon. It is composed of a second layer covering the portion, and is formed by screen printing or the like. However, the manufacturing process of the light reflecting member composed of two layers is complicated, and the resin cannot be handled with a high viscosity by ordinary screen printing, so that it is difficult to control the shape. It is difficult to form.

本発明の目的の一つは、サイズが小さく、かつ発光面積が縮小された発光装置を比較的簡素な工程で製造することができる、発光装置の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a light-emitting device that can manufacture a light-emitting device having a small size and a reduced light-emitting area by relatively simple steps.

本発明の一態様は、上記目的を達成するために、下記[1]〜[5]の発光装置の製造方法を提供する。   One embodiment of the present invention provides a method for manufacturing a light-emitting device according to the following [1] to [5] to achieve the above object.

[1]基板上に複数の発光素子を実装する工程と、上面視において前記複数の発光素子を覆うように、前記複数の発光素子上に1枚の板状の波長変換部材を設置する工程と、スクリーン印刷により、前記複数の発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を、流動性を有する樹脂で一度に覆う工程と、前記樹脂を硬化させて、光反射部材を形成する工程と、を含み、前記発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を、流動性を有する樹脂で一度に覆う工程において、環状に分布する開口部を有するマスクを、前記波長変換部材の上面の外縁部及び前記波長変換部材の周りの所定の幅を有する周辺領域の真上に前記開口部が位置するように設置した状態で、前記樹脂を前記マスク上に加圧吐出し、前記開口部を通過させた前記樹脂で前記発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を覆う、発光装置の製造方法。
[2]前記樹脂の粘度が、150Pa・s以上、500Pa・s以下である、上記[1]に記載の発光装置の製造方法。
[3]前記波長変換部材の上面視における長手方向の前記所定の幅が、0.2mm以上、0.4mm以下である、上記[1]又は[2]に記載の発光装置の製造方法。
[4]前記波長変換部材の上面視における長手方向の前記所定の幅が、前記波長変換部材の上面視における短手方向の前記所定の幅よりも小さい、上記[1]〜[3]のいずれか1項に記載の発光装置の製造方法。
[5]前記発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を、流動性を有する樹脂で一度に覆う工程において、前記スクリーン印刷の印刷方向を、前記波長変換部材の上面視における短手方向に一致させる、上記[1]〜[4]のいずれか1項に記載の発光装置の製造方法。
[1] A step of mounting a plurality of light emitting elements on a substrate, and a step of installing one plate-shaped wavelength conversion member on the plurality of light emitting elements so as to cover the plurality of light emitting elements when viewed from above. Covering the outer edges and side surfaces of the side surfaces of the plurality of light emitting elements and the upper surface of the wavelength conversion member with a resin having fluidity at a time by screen printing, and curing the resin to form a light reflecting member And the step of covering the outer edge and the side surface of the side surface of the light emitting element and the upper surface of the wavelength conversion member at once with a resin having fluidity, wherein the mask having annularly distributed openings, The resin is pressurized and discharged onto the mask in a state where the opening is located right above an outer edge of the upper surface of the wavelength conversion member and a peripheral region having a predetermined width around the wavelength conversion member. And said Covering the side surface and the outer edge and side of the upper surface of the wavelength conversion member of the light emitting element in the resin having passed through the mouth, the method of manufacturing the light emitting device.
[2] The method for manufacturing a light emitting device according to [1], wherein the viscosity of the resin is 150 Pa · s or more and 500 Pa · s or less.
[3] The method for manufacturing a light emitting device according to [1] or [2], wherein the predetermined width in the longitudinal direction of the wavelength conversion member in a top view is 0.2 mm or more and 0.4 mm or less.
[4] Any of the above [1] to [3], wherein the predetermined width in the longitudinal direction of the wavelength conversion member in a top view is smaller than the predetermined width in the short direction of the wavelength conversion member in a top view. 9. The method for manufacturing a light emitting device according to claim 1.
[5] In the step of simultaneously covering the side surface of the light emitting element and the outer edge and the side surface of the upper surface of the wavelength conversion member with a resin having fluidity, the printing direction of the screen printing may be changed in a top view of the wavelength conversion member. The method for manufacturing a light-emitting device according to any one of the above [1] to [4], wherein the light-emitting device is aligned in a lateral direction.

本発明によれば、サイズが小さく、かつ発光面積が縮小された発光装置を比較的簡素な工程で製造することができる、発光装置の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a light-emitting device that can manufacture a light-emitting device having a small size and a reduced light-emitting area in a relatively simple process.

図1(a)は、第1の実施の形態に係る発光装置の上面図である。図1(b)は、光反射部材の図示を省略した発光装置の上面図である。FIG. 1A is a top view of the light emitting device according to the first embodiment. FIG. 1B is a top view of the light emitting device in which the light reflecting member is not shown. 図2(a)、(b)は、それぞれ図1(a)の線分A−Aで示される位置、線分B−Bで示される位置で切断された発光装置の垂直断面図である。FIGS. 2A and 2B are vertical cross-sectional views of the light emitting device taken along a line AA and a line BB in FIG. 1A, respectively. 図3(a)〜(d)は、第1の実施の形態に係る発光装置の製造工程を示す垂直断面図である。FIGS. 3A to 3D are vertical cross-sectional views illustrating manufacturing steps of the light emitting device according to the first embodiment. 図4(a)〜(d)は、第1の実施の形態に係る発光装置の製造工程で用いられるスクリーン印刷用のマスクの説明図である。FIGS. 4A to 4D are explanatory views of a screen printing mask used in the manufacturing process of the light emitting device according to the first embodiment. 図5は、スクリーン印刷工程の詳細を示す垂直断面図である。FIG. 5 is a vertical sectional view showing details of the screen printing process. 図6は、第2の実施の形態に係る発光装置の上面図である。FIG. 6 is a top view of the light emitting device according to the second embodiment. 図7は、図6の線分D−Dで示される位置で切断された発光装置の垂直断面図である。FIG. 7 is a vertical cross-sectional view of the light emitting device taken along a line indicated by line DD in FIG. 図8は、第3の実施の形態に係る発光装置の上面図である。FIG. 8 is a top view of the light emitting device according to the third embodiment.

〔第1の実施の形態〕
(発光装置の構成)
図1(a)は、第1の実施の形態に係る発光装置1の上面図である。図1(b)は、光反射部材50の図示を省略した発光装置1の上面図である。図1(a)においては、光反射部材50の下に位置する波長変換部材30と配線12の輪郭が点線で示されている。図1(b)においては、光反射部材50の輪郭と、波長変換部材30の下に位置する発光素子20の輪郭が点線で示されている。
[First Embodiment]
(Configuration of light emitting device)
FIG. 1A is a top view of the light emitting device 1 according to the first embodiment. FIG. 1B is a top view of the light emitting device 1 in which the light reflecting member 50 is not shown. In FIG. 1A, the outlines of the wavelength conversion member 30 and the wiring 12 located below the light reflection member 50 are indicated by dotted lines. In FIG. 1B, the outline of the light reflecting member 50 and the outline of the light emitting element 20 located below the wavelength conversion member 30 are indicated by dotted lines.

図2(a)、(b)は、それぞれ図1(a)の線分A−Aで示される位置、線分B−Bで示される位置で切断された発光装置1の垂直断面図である。   FIGS. 2A and 2B are vertical cross-sectional views of the light-emitting device 1 taken along a position indicated by a line AA and a position indicated by a line BB in FIG. 1A, respectively. .

発光装置1は、配線12が基板11の表面に設けられた配線基板10と、配線基板10上にフェイスダウン実装された複数の発光素子20と、複数の発光素子20上に設置された一枚の板状の波長変換部材30と、波長変換部材30を発光素子20に接着する接着材40と、波長変換部材30及び発光素子20を覆う光反射部材50を有する。   The light emitting device 1 includes a wiring board 10 having wirings 12 provided on a surface of a substrate 11, a plurality of light emitting elements 20 face-down mounted on the wiring board 10, and a single light emitting element mounted on the plurality of light emitting elements 20. And a light reflecting member 50 that covers the wavelength conversion member 30 and the light emitting element 20.

発光素子20は、例えば、素子基板21と、発光層及びそれを挟むクラッド層を含む発光機能層22と、発光機能層22に接続された素子電極23を有するフリップチップ型のLEDチップである。また、発光素子20は、フェイスアップ型の素子であってもよい。発光素子20の平面形状は、例えば、一辺の長さが0.5〜8.0mmの正方形又は長方形であり、厚さは、例えば、0.05〜0.3mmである。   The light emitting element 20 is, for example, a flip chip type LED chip having an element substrate 21, a light emitting function layer 22 including a light emitting layer and a cladding layer sandwiching the light emitting layer, and a device electrode 23 connected to the light emitting function layer 22. Further, the light emitting element 20 may be a face-up type element. The planar shape of the light emitting element 20 is, for example, a square or a rectangle having one side length of 0.5 to 8.0 mm, and the thickness is, for example, 0.05 to 0.3 mm.

発光装置1に含まれる発光素子20の数は特に限定されないが、例えば、2〜100素子である。図1(a)、(b)、図2に示される例では、一方向に配列された複数の発光素子20が直列に接続されている。   The number of light emitting elements 20 included in the light emitting device 1 is not particularly limited, but is, for example, 2 to 100 elements. In the examples shown in FIGS. 1A, 1B and 2, a plurality of light emitting elements 20 arranged in one direction are connected in series.

発光素子20の素子電極23は、配線基板10の配線12に接続される。配線基板10と発光素子20の間にアンダーフィルが充填されていてもよい。   The element electrode 23 of the light emitting element 20 is connected to the wiring 12 of the wiring board 10. An underfill may be filled between the wiring substrate 10 and the light emitting element 20.

基板11は、例えば、Al基板、AlN基板等のセラミック基板、表面が絶縁膜で覆われたAl基板やCu基板等の金属基板、又はガラスエポキシ基板であり、配線12は、Cu等の導電材料からなる。また、基板11は、樹脂基板や紙基板であってもよい。基板11の平面形状は、例えば、一辺の長さが2〜50mmの正方形又は長方形であり、厚さは、例えば、0.2〜2.0mmである。 The substrate 11 is, for example, a ceramic substrate such as an Al 2 O 3 substrate or an AlN substrate, a metal substrate such as an Al substrate or a Cu substrate whose surface is covered with an insulating film, or a glass epoxy substrate. Of a conductive material. Further, the substrate 11 may be a resin substrate or a paper substrate. The planar shape of the substrate 11 is, for example, a square or a rectangle having a side length of 2 to 50 mm, and the thickness is, for example, 0.2 to 2.0 mm.

波長変換部材30は、発光素子20から発せられる光を吸収して異なる波長の光を発する部材であり、例えば、蛍光体の焼結体、蛍光物質と無機物との焼結体、蛍光体粒子を分散させたガラスからなる。波長変換部材30は、板状の部材であり、例えば、0.05〜0.3mmの厚さを有する。   The wavelength conversion member 30 is a member that absorbs light emitted from the light emitting element 20 and emits light of different wavelengths. For example, a sintered body of a phosphor, a sintered body of a fluorescent substance and an inorganic substance, and a phosphor particle are used. Consists of dispersed glass. The wavelength conversion member 30 is a plate-shaped member and has a thickness of, for example, 0.05 to 0.3 mm.

波長変換部材30に含まれる蛍光体の種類や蛍光色は特に限定されない。発光素子20は、波長変換部材30に含まれる蛍光体の励起光源として機能し、発光素子20の発光色と波長変換部材30の発光色の混色が発光装置1の発光色になる。例えば、発光素子20の発光色が青色であり、波長変換部材30の発光色が黄色である場合、発光装置1の発光色は白色になる。   The type and fluorescent color of the phosphor contained in the wavelength conversion member 30 are not particularly limited. The light emitting element 20 functions as an excitation light source for the phosphor contained in the wavelength conversion member 30, and a mixed color of the emission color of the light emission element 20 and the emission color of the wavelength conversion member 30 becomes the emission color of the light emitting device 1. For example, when the emission color of the light emitting element 20 is blue and the emission color of the wavelength conversion member 30 is yellow, the emission color of the light emitting device 1 is white.

発光装置1は、複数の発光素子20を有し、その複数の発光素子20の上面を1枚の波長変換部材30が覆っている。また、波長変換部材30の面積は複数の発光素子20の面積よりも大きく、図1(b)に示されるように、上面視において、複数の発光素子20は波長変換部材30に覆われる。   The light emitting device 1 includes a plurality of light emitting elements 20, and one wavelength conversion member 30 covers upper surfaces of the plurality of light emitting elements 20. In addition, the area of the wavelength conversion member 30 is larger than the area of the plurality of light emitting elements 20, and the plurality of light emitting elements 20 are covered with the wavelength conversion member 30 in a top view as shown in FIG.

接着材40は、発光素子20と波長変換部材30を接着するための接着材である。接着材40は、例えば、シリコーン系樹脂やエポキシ系樹脂等の透光性の熱硬化樹脂からなる。   The adhesive 40 is an adhesive for bonding the light emitting element 20 and the wavelength conversion member 30. The adhesive 40 is made of, for example, a translucent thermosetting resin such as a silicone resin or an epoxy resin.

発光素子20と波長変換部材30の接着後、接着材40は、発光素子20の側方に、発光素子20の側面と波長変換部材30の下面を覆うようにして残り、その表面は、発光素子20の側面から波長変換部材30の下面まで続く傾斜面41を形成する。この傾斜面41は、発光素子20から側方に発せられた光を反射する光反射面として機能する。   After the light emitting element 20 and the wavelength conversion member 30 are bonded, the adhesive 40 remains on the side of the light emitting element 20 so as to cover the side surface of the light emitting element 20 and the lower surface of the wavelength conversion member 30, and the surface thereof is An inclined surface 41 that extends from the side surface of the wavelength conversion member 20 to the lower surface of the wavelength conversion member 30 is formed. The inclined surface 41 functions as a light reflecting surface that reflects light emitted laterally from the light emitting element 20.

光反射部材50は、発光素子20から発せられる光を反射する性質を有し、例えば、酸化チタン、酸化珪素、窒化ホウ素、窒化アルミニウムなどの反射フィラーを含むシリコーン系樹脂やエポキシ系樹脂等の光透過性樹脂からなる。光反射部材50の発光素子20から発せられる光の反射率は、80%以上であることが好ましい。   The light reflecting member 50 has a property of reflecting light emitted from the light emitting element 20, and is, for example, a light of silicone-based resin or epoxy-based resin containing a reflective filler such as titanium oxide, silicon oxide, boron nitride, and aluminum nitride. It is made of a transparent resin. It is preferable that the reflectance of light emitted from the light emitting element 20 of the light reflecting member 50 be 80% or more.

光反射部材50は、発光素子20から発せられる光が波長変換部材30を通らずに漏れることがないように、発光素子20の側面、波長変換部材30の上面の外縁部と側面、及び接着材40を覆っている。   The light reflecting member 50 includes a side surface of the light emitting element 20, an outer edge portion and a side surface of an upper surface of the wavelength conversion member 30, and an adhesive so that light emitted from the light emitting element 20 does not leak without passing through the wavelength conversion member 30. It covers 40.

図1(a)、(b)に示されるx方向とy方向は、それぞれ波長変換部材30の上面視における長手方向と短手方向を示す。図1(a)、(b)、図2(a)、(b)に示されるWは、x方向の波長変換部材30の側面からの光反射部材50の幅である。図1(a)、(b)、図2(a)、(b)に示されるWは、y方向の波長変換部材30の側面からの光反射部材50の幅である。 The x direction and the y direction shown in FIGS. 1A and 1B respectively indicate the longitudinal direction and the lateral direction of the wavelength conversion member 30 as viewed from above. Figure 1 (a), (b) , FIG. 2 (a), W x which (b), the the width of the light reflecting member 50 from the side of the wavelength conversion member 30 in the x-direction. Figure 1 (a), (b) , FIG. 2 (a), W y of (b), the the width of the light reflecting member 50 from the side of the wavelength conversion member 30 in the y-direction.

光反射部材50は、後述するように、粘度の高い樹脂を用いて形成することができるため、スキージを用いるスクリーン印刷やポッティングなどの比較的粘度の低い樹脂を用いる従来の方法を用いる場合と比べて、小さい幅で形成することができる。このため、例えば、幅Wと幅Wを従来のダムを用いた発光装置では困難な0.4mm以下とすることができる。ただし、光の透過を防ぐため、幅Wと幅Wを0.2mm以上とすることが好ましい。 Since the light reflecting member 50 can be formed by using a resin having a high viscosity as described later, compared with a case where a conventional method using a resin having a relatively low viscosity such as screen printing or potting using a squeegee is used. Therefore, it can be formed with a small width. Thus, for example, it may be less difficult 0.4mm in light-emitting device using a conventional dam width W x and the width W y. However, to prevent transmission of light, it is preferable that the width W x and the width W y or more 0.2 mm.

光反射部材50の幅を小さくすることにより、発光装置1を小型化することができる。また、光反射部材50の幅が小さいと、温度が上昇した際の膨張量が小さくなるため、割れにくい。このため、発光素子20から発せられた光が漏れることによる、発光装置1の発光色のずれを防ぐことができる。   By reducing the width of the light reflecting member 50, the light emitting device 1 can be downsized. Also, if the width of the light reflecting member 50 is small, the amount of expansion when the temperature rises is small, so that it is difficult to break. For this reason, it is possible to prevent the emission color of the light emitting device 1 from shifting due to leakage of light emitted from the light emitting element 20.

また、幅Wと幅Wが小さいほど発光装置1を小型化することができるが、一方で、スクリーン印刷による光反射部材50の形成が困難になる。このため、発光装置1の小型化のために特に小さくすることが求められる幅Wを小さくして、光反射部材50の形成を容易にするために幅Wを幅Wよりも大きくすることが好ましい。 Further, the smaller the width Wx and the width Wy , the smaller the light emitting device 1 can be. However, it is more difficult to form the light reflecting member 50 by screen printing. Therefore, by reducing the width W x which is required to be particularly small in order to reduce the size of the light emitting device 1 is made larger than the width W x width W y in order to facilitate the formation of the light reflecting member 50 Is preferred.

以上の理由から、一例として、幅Wを0.2mm以上、0.4mm以下とし、幅Wを幅Wよりも大きくすることが好ましい。 For these reasons, as an example, more than 0.2mm of width W x, and 0.4mm or less, it is preferably larger than the width W x width W y.

光反射部材50は、波長変換部材30の上面の外縁部を覆うため、発光装置1の発光面積を縮小することができる。そして、光反射部材50が波長変換部材30の上面を覆う面積を調整することにより、発光装置1の発光面積を調整することができる。波長変換部材30の小型化により発光面積を縮小する場合と異なり、発光面積に応じた波長変換部材30の加工が必要ない。また、発光素子20のチップサイズを小さくすることにより発光面積を縮小する場合と異なり、チップサイズの低下による明るさの低下がない。   Since the light reflecting member 50 covers the outer edge of the upper surface of the wavelength conversion member 30, the light emitting area of the light emitting device 1 can be reduced. Then, by adjusting the area where the light reflecting member 50 covers the upper surface of the wavelength conversion member 30, the light emitting area of the light emitting device 1 can be adjusted. Unlike the case where the light emitting area is reduced by downsizing the wavelength converting member 30, it is not necessary to process the wavelength converting member 30 according to the light emitting area. Further, unlike the case where the light emitting area is reduced by reducing the chip size of the light emitting element 20, there is no reduction in brightness due to the reduction in chip size.

また、光反射部材50は、粘度の高い樹脂を用いてスクリーン印刷により形成することができるため、スクリーン印刷に用いられるマスクの開口部の格子パターンが上面に転写されている。すなわち、光反射部材50の上面が、格子状に連続した凹部と、その凹部により区画された領域の各々に位置する凹部から構成される凹凸を有する。   Further, since the light reflecting member 50 can be formed by screen printing using a resin having a high viscosity, the lattice pattern of the opening of the mask used for screen printing is transferred to the upper surface. That is, the upper surface of the light reflecting member 50 has irregularities formed of concave portions continuous in a lattice shape and concave portions located in each of the regions partitioned by the concave portions.

そして、凹凸を有することにより表面積が増えるため、放熱性が向上する。このため、光反射部材50に放熱性の高いAlN(ウィスカー)、BN、グラフェンなどの放熱フィラーを含めることにより、上面の凹凸による表面積の増加との相乗効果で、光反射部材50の放熱性が大きく向上する。   In addition, since the surface area is increased by having the unevenness, the heat radiation property is improved. Therefore, by including a heat radiation filler such as AlN (whisker), BN, or graphene with high heat radiation in the light reflection member 50, the heat radiation of the light reflection member 50 is improved by a synergistic effect with an increase in surface area due to unevenness on the upper surface. Greatly improved.

また、光反射部材50は、全ての部分がスクリーン印刷により一度に形成されるため、単層構造を有し、剥がれの原因となるような境界面を有さない。   In addition, since the light reflecting member 50 is formed all at once by screen printing, the light reflecting member 50 has a single-layer structure and does not have a boundary surface that causes peeling.

発光装置1は、ツェナーダイオードなどの保護素子を有してもよい。   The light emitting device 1 may include a protection element such as a Zener diode.

(発光装置の製造方法)
以下に、第1の実施の形態に係る発光装置1の製造方法の一例について述べる。
(Method of manufacturing light emitting device)
Hereinafter, an example of a method for manufacturing the light emitting device 1 according to the first embodiment will be described.

図3(a)〜(d)は、第1の実施の形態に係る発光装置1の製造工程を示す垂直断面図である。図4(a)〜(d)は、第1の実施の形態に係る発光装置1の製造工程で用いられるスクリーン印刷用のマスク70の説明図である。図4(a)はマスク70の上面図であり、図4(b)は図4(a)の線分C−Cで示される位置で切断されたマスク70の垂直断面図であり、図4(c)はマスク70の下面図である。   FIGS. 3A to 3D are vertical cross-sectional views illustrating manufacturing steps of the light emitting device 1 according to the first embodiment. FIGS. 4A to 4D are explanatory diagrams of a screen printing mask 70 used in the manufacturing process of the light emitting device 1 according to the first embodiment. FIG. 4A is a top view of the mask 70, and FIG. 4B is a vertical cross-sectional view of the mask 70 cut at a position indicated by a line CC in FIG. (C) is a bottom view of the mask 70.

まず、図3(a)に示されるように、配線基板10上に複数の発光素子20を実装する。発光素子20の素子電極23と配線基板10の配線12とを超音波接合、金属ペースト接合、共晶はんだ接合などにより接合する。   First, as shown in FIG. 3A, a plurality of light emitting elements 20 are mounted on the wiring board 10. The element electrode 23 of the light emitting element 20 and the wiring 12 of the wiring board 10 are bonded by ultrasonic bonding, metal paste bonding, eutectic solder bonding, or the like.

次に、図3(b)に示されるように、発光素子20上に波長変換部材30を設置する。このとき、上面視において複数の発光素子20を覆うように、複数の発光素子20上に1枚の板状の波長変換部材30を設置する。   Next, as shown in FIG. 3B, the wavelength conversion member 30 is provided on the light emitting element 20. At this time, one plate-shaped wavelength conversion member 30 is provided on the plurality of light emitting elements 20 so as to cover the plurality of light emitting elements 20 when viewed from above.

波長変換部材30は、接着材40により、発光素子20に接着される。発光素子20と波長変換部材30の接着後、接着材40は、発光素子20の側方に、発光素子20の側面と波長変換部材30の下面を覆うようにして残り、傾斜面41を形成する。   The wavelength conversion member 30 is adhered to the light emitting element 20 by an adhesive 40. After the light emitting element 20 and the wavelength conversion member 30 are bonded, the adhesive 40 remains on the side of the light emitting element 20 so as to cover the side surface of the light emitting element 20 and the lower surface of the wavelength conversion member 30 to form the inclined surface 41. .

次に、図3(c)に示されるように、スクリーン印刷用のマスク70を配線基板10上に設置する。   Next, as shown in FIG. 3C, a mask 70 for screen printing is set on the wiring board 10.

図4(a)に示されるように、マスク70は、環状に分布する複数の開口部71を有する。開口部71は、スクリーン印刷の際に樹脂が通過する領域である。マスク70は、例えば、微細な孔の集合体を開口部71として有するメタルマスクや、メッシュを開口部71として有するスクリーンマスクである。マスク70の複数の開口部71は、開口部71が分布する領域及びそれに囲まれる領域を保持するために、四角格子などの格子パターンを有する。   As shown in FIG. 4A, the mask 70 has a plurality of openings 71 that are annularly distributed. The opening 71 is an area through which the resin passes during screen printing. The mask 70 is, for example, a metal mask having an aggregate of fine holes as the opening 71 or a screen mask having a mesh as the opening 71. The plurality of openings 71 of the mask 70 have a grid pattern such as a square grid in order to hold a region where the openings 71 are distributed and a region surrounded by the regions.

マスク70の開口部71の環状の分布領域は、光反射部材50の形成領域に対応する。また、環状に分布する開口部71に囲まれた開口していない領域73は、波長変換部材30の上面の光反射部材50に覆われない領域に対応する。   The annular distribution area of the opening 71 of the mask 70 corresponds to the formation area of the light reflecting member 50. An unopened area 73 surrounded by the annularly distributed openings 71 corresponds to an area of the upper surface of the wavelength conversion member 30 that is not covered by the light reflecting member 50.

マスク70は、領域73の裏面に、スクリーン印刷時に波長変換部材30の上面に当接する当接部72を有する。図4(b)に示されるように、当接部72は開口部71よりも厚く、マスク70の裏側に突出している。この当接部72は開口部71の厚さの差(段差)により、光反射部材50の波長変換部材30の上面の外縁部を覆う部分が形成される。   The mask 70 has, on the back surface of the region 73, a contact portion 72 that contacts the upper surface of the wavelength conversion member 30 during screen printing. As shown in FIG. 4B, the contact portion 72 is thicker than the opening 71 and protrudes from the back side of the mask 70. The contact portion 72 forms a portion that covers the outer edge of the upper surface of the wavelength conversion member 30 of the light reflecting member 50 due to the thickness difference (step) of the opening 71.

当接部72は、図4(b)、(c)に示されるように、領域73の裏面の外縁部にのみ設けられていることが好ましい。これは、スクリーン印刷時に波長変換部材30と当接部72の界面を通って樹脂が波長変換部材30の中央部近傍まで浸入することを防ぐためである。   The contact portion 72 is preferably provided only on the outer edge of the back surface of the region 73 as shown in FIGS. This is to prevent the resin from entering the vicinity of the center of the wavelength conversion member 30 through the interface between the wavelength conversion member 30 and the contact portion 72 during screen printing.

図3(c)に示される工程では、光反射部材50を形成する領域、すなわち波長変換部材30の上面の外縁部及び波長変換部材30の周りの所定の幅を有する周辺領域の真上に、環状に分布する開口部71が位置するようにマスク70を設置する。   In the step illustrated in FIG. 3C, a region where the light reflecting member 50 is formed, that is, an outer edge of the upper surface of the wavelength conversion member 30 and a peripheral region having a predetermined width around the wavelength conversion member 30, The mask 70 is set so that the openings 71 distributed in a ring shape are located.

上述の波長変換部材30の周辺領域の所定の幅は、波長変換部材30の側面からの光反射部材50の幅に対応する。このため、光反射部材50の幅Wを幅Wよりも大きくするためには、x方向(波長変換部材30の上面視における長手方向)の所定の幅をy方向(波長変換部材30の上面視における短手方向)の所定の幅よりも小さくする。また、例えば、光反射部材50の幅Wを0.2mm以上、0.4mm以下にするためには、x方向の所定の幅を0.2mm以上、0.4mm以下にする。 The above-mentioned predetermined width of the peripheral region of the wavelength conversion member 30 corresponds to the width of the light reflecting member 50 from the side surface of the wavelength conversion member 30. Therefore, in order to be larger than the width W y the width W x of the light reflecting member 50, a predetermined width in the x direction (longitudinal direction in the top view of the wavelength conversion member 30) in the y-direction (the wavelength converting member 30 (Shorter direction in top view). Further, for example, the width W x of 0.2mm or more light reflecting member 50, in order to 0.4mm or less, more 0.2mm a predetermined width in the x direction, to 0.4mm or less.

次に、図3(d)に示されるように、スクリーン印刷により発光素子20の側面並びに波長変換部材30の上面の外縁部及び側面を樹脂51で一度に覆う。   Next, as shown in FIG. 3D, the side surface of the light emitting element 20 and the outer edge and side surface of the upper surface of the wavelength conversion member 30 are covered with the resin 51 at a time by screen printing.

図5は、スクリーン印刷工程の詳細を示す垂直断面図である。光反射部材50の材料である流動性を有する樹脂51は、スクリーン印刷機のカートリッジ60を用いて、マスク70上に加圧吐出される。マスク70上に加圧吐出され、開口部71を通過した樹脂51は、発光素子20の側面並びに波長変換部材30の上面の外縁部及び側面を覆う。   FIG. 5 is a vertical sectional view showing details of the screen printing process. The resin 51 having fluidity, which is a material of the light reflecting member 50, is discharged under pressure onto the mask 70 by using a cartridge 60 of a screen printing machine. The resin 51 that has been pressed and discharged onto the mask 70 and has passed through the opening 71 covers the side surface of the light emitting element 20 and the outer edge and side surface of the upper surface of the wavelength conversion member 30.

樹脂51の粘度は、150Pa・s以上、500Pa・s以下であることが好ましい。樹脂51の粘度が150Pa・sに満たない場合、樹脂51が硬化するまでに形が崩れやすく、幅が小さい(例えば、幅Wが0.4mm以下の)光反射部材50を形成することが困難になる。一方で、樹脂51の粘度が500Pa・sを超えると、樹脂51のカートリッジ60からの吐出や印刷が困難になる。 The viscosity of the resin 51 is preferably 150 Pa · s or more and 500 Pa · s or less. If the viscosity of the resin 51 is less than 150 Pa · s, the shape tends to collapse until the resin 51 is cured, a small width to form a (e.g., width W x of the following 0.4 mm) light reflecting member 50 It becomes difficult. On the other hand, if the viscosity of the resin 51 exceeds 500 Pa · s, it becomes difficult to discharge or print the resin 51 from the cartridge 60.

なお、150Pa・s以上という高い粘度の樹脂51を扱う場合、従来のスキージを用いる方法では、樹脂51に加わる下方向の圧力が足りず、印刷を行うことが困難である。   When handling the resin 51 having a high viscosity of 150 Pa · s or more, the conventional method using a squeegee does not have enough downward pressure applied to the resin 51, so that it is difficult to perform printing.

マスク70の開口部71下の空間に精度よく樹脂51を注入するために、印刷方向、すなわちカートリッジ60の移動方向を、y方向(波長変換部材30の上面視における短手方向)にすることが好ましい。特に、光反射部材50の幅Wを幅Wよりも大きくし、印刷方向をy方向とすることにより、マスク70の開口部71下の空間により精度よく樹脂51を注入することができる。 In order to accurately inject the resin 51 into the space below the opening 71 of the mask 70, the printing direction, that is, the moving direction of the cartridge 60, should be in the y direction (the short direction in the top view of the wavelength conversion member 30). preferable. In particular, the width W y of the light reflecting member 50 is larger than the width W x, the printing direction by the y-direction, can be injected accurately resin 51 by the space under the opening 71 of the mask 70.

カートリッジ60の樹脂51を吐出するための開口部61は長方形であり、その短手方向を印刷方向に一致させて印刷を行う。開口部61の長手方向の幅が印刷領域の幅よりも大きければ(例えば、印刷方向がy方向である場合は、長手方向の幅が光反射部材50のx方向の幅よりも大きければ)、一回の印刷で光反射部材50を形成することができる。   The opening 61 for discharging the resin 51 of the cartridge 60 is rectangular, and printing is performed with the short side direction of the opening 61 corresponding to the printing direction. If the width of the opening 61 in the longitudinal direction is larger than the width of the printing area (for example, if the printing direction is the y direction, if the width in the longitudinal direction is larger than the width of the light reflecting member 50 in the x direction), The light reflecting member 50 can be formed by one printing.

印刷条件は、例えば、開口部61の短手方向の幅が3mmのときは、樹脂51の粘度を250Pa・s、カートリッジ60への樹脂の充填圧力を0.5N、印刷速度(カートリッジ60の移動速度)を21mm/sとする。また、開口部61の短手方向の幅が10mmのときは、樹脂51の粘度を250Pa・s、カートリッジ60への樹脂51の充填圧力を0.5N、印刷速度を45mm/sとする。   The printing conditions include, for example, when the width of the opening 61 in the short direction is 3 mm, the viscosity of the resin 51 is 250 Pa · s, the filling pressure of the resin into the cartridge 60 is 0.5 N, and the printing speed (movement of the cartridge 60). Speed) is set to 21 mm / s. When the width of the opening 61 in the short direction is 10 mm, the viscosity of the resin 51 is set to 250 Pa · s, the filling pressure of the resin 51 into the cartridge 60 is set to 0.5 N, and the printing speed is set to 45 mm / s.

その後、発光素子20の側面並びに波長変換部材30の上面の外縁部及び側面を覆った樹脂51を加熱処理により硬化させて、光反射部材50を形成する。   After that, the resin 51 covering the side surface of the light emitting element 20 and the outer edge and side surface of the upper surface of the wavelength conversion member 30 is cured by a heat treatment to form the light reflecting member 50.

〔第2の実施の形態〕
第2の実施の形態は、光反射部材50の形状において第1の実施の形態と異なる。なお、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
[Second embodiment]
The second embodiment differs from the first embodiment in the shape of the light reflecting member 50. The description of the same points as in the first embodiment will be omitted or simplified.

(発光装置の構成)
図6は、第2の実施の形態に係る発光装置2の上面図である。図7は、図6の線分D−Dで示される位置で切断された発光装置2の垂直断面図である。
(Configuration of light emitting device)
FIG. 6 is a top view of the light emitting device 2 according to the second embodiment. FIG. 7 is a vertical cross-sectional view of the light emitting device 2 taken along a position indicated by a line segment DD in FIG.

発光装置2においては、発光素子20の各々に対して、1つずつ波長変換部材30が設けられている。この構造によれば、接着材40の厚さの均一性が向上し、放熱性の低下を抑えることができる。   In the light emitting device 2, one wavelength conversion member 30 is provided for each of the light emitting elements 20. According to this structure, the uniformity of the thickness of the adhesive material 40 is improved, and a decrease in heat dissipation can be suppressed.

また、発光装置2においては、波長変換部材30が分離されており、かつ、分離された波長変換部材30の間の空間は光反射部材50で埋められている。このため、ある特定の発光素子20の上に設置された波長変換部材30が、隣接する発光素子20から発せられた光により発光すること(疑似点灯)がない。また、波長変換部材30の内部導光による光取出効率の減少を抑制できる。発光装置2も、第1の実施の形態に係る発光装置1と同様の方法により製造することができる。   Further, in the light emitting device 2, the wavelength conversion member 30 is separated, and the space between the separated wavelength conversion members 30 is filled with the light reflection member 50. Therefore, the wavelength conversion member 30 installed on a specific light emitting element 20 does not emit light (pseudo lighting) by light emitted from the adjacent light emitting element 20. In addition, it is possible to suppress a decrease in light extraction efficiency due to internal light guide of the wavelength conversion member 30. The light emitting device 2 can also be manufactured by the same method as the light emitting device 1 according to the first embodiment.

〔第3の実施の形態〕
第3の実施の形態は、発光素子20の数と配列、及び光反射部材50の形状において第1、第2の実施の形態と異なる。なお、第1、第2の実施の形態と同様の点については、説明を省略又は簡略化する。
[Third Embodiment]
The third embodiment is different from the first and second embodiments in the number and arrangement of the light emitting elements 20 and the shape of the light reflecting member 50. The description of the same points as those in the first and second embodiments will be omitted or simplified.

(発光装置の構成)
図8は、第3の実施の形態に係る発光装置3の上面図である。
(Configuration of light emitting device)
FIG. 8 is a top view of the light emitting device 3 according to the third embodiment.

発光装置3においては、複数の発光素子20が、一列ではなく複数列に渡って、すなわちマトリクス状に配置される。このように、より多くの光を取り出すために、多くの発光素子20を面状に配置する場合であっても、本発明の効果を得ることができる。発光装置3も、第1の実施の形態に係る発光装置1と同様の方法により製造することができる。   In the light emitting device 3, the plurality of light emitting elements 20 are arranged not in one row but in a plurality of rows, that is, in a matrix. Thus, the effect of the present invention can be obtained even when many light emitting elements 20 are arranged in a plane to extract more light. The light emitting device 3 can also be manufactured by the same method as the light emitting device 1 according to the first embodiment.

(実施の形態の効果)
上記第1〜第3の実施の形態によれば、サイズが小さく、かつ発光面積が縮小された発光装置を比較的簡素な工程で得ることができる。
(Effects of Embodiment)
According to the first to third embodiments, a light-emitting device having a small size and a small light-emitting area can be obtained by a relatively simple process.

以上、本発明の実施の形態を説明したが、本発明は、上記の実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. Further, the components of the above embodiments can be arbitrarily combined without departing from the gist of the invention.

また、上記の実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   The above embodiments do not limit the invention according to the claims. Also, it should be noted that not all combinations of the features described in the embodiments are necessarily indispensable for means for solving the problems of the invention.

1、2、3 発光装置
10 配線基板
20 発光素子
30 波長変換部材
40 接着材
41 傾斜面
50 光反射部材
51 樹脂
60 カートリッジ
61 開口部
70 マスク
71 開口部
72 当接部
1, 2, 3 Light-emitting device 10 Wiring board 20 Light-emitting element 30 Wavelength conversion member 40 Adhesive material 41 Inclined surface 50 Light reflection member 51 Resin 60 Cartridge 61 Opening 70 Mask 71 Opening 72 Contact part

Claims (5)

基板上に複数の発光素子を実装する工程と、
上面視において前記複数の発光素子を覆うように、前記複数の発光素子上に1枚の板状の波長変換部材を設置する工程と、
スクリーン印刷により、前記複数の発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を、流動性を有する樹脂で一度に覆う工程と、
前記樹脂を硬化させて、光反射部材を形成する工程と、
を含み、
前記発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を、流動性を有する樹脂で一度に覆う工程において、環状に分布する開口部を有するマスクを、前記波長変換部材の上面の外縁部及び前記波長変換部材の周りの所定の幅を有する周辺領域の真上に前記開口部が位置するように設置した状態で、前記樹脂を前記マスク上に加圧吐出し、前記開口部を通過させた前記樹脂で前記発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を覆う、
発光装置の製造方法。
Mounting a plurality of light emitting elements on a substrate,
Installing a single plate-shaped wavelength conversion member on the plurality of light emitting elements so as to cover the plurality of light emitting elements in a top view;
By screen printing, a step of covering the outer edges and side surfaces of the side surfaces of the plurality of light emitting elements and the upper surface of the wavelength conversion member at once with a resin having fluidity,
Curing the resin to form a light reflecting member,
Including
In the step of simultaneously covering the side surface of the light emitting element and the outer edge and the side surface of the upper surface of the wavelength conversion member with a resin having fluidity, a mask having an annularly distributed opening is formed on the outer edge of the upper surface of the wavelength conversion member. The resin is pressurized and discharged onto the mask in a state where the opening is located right above a peripheral region having a predetermined width around the portion and the wavelength conversion member, and passes through the opening. The resin covers the side surface of the light emitting element and the outer edge and side surface of the upper surface of the wavelength conversion member,
A method for manufacturing a light emitting device.
前記樹脂の粘度が、150Pa・s以上、500Pa・s以下である、
請求項1に記載の発光装置の製造方法。
The viscosity of the resin is 150 Pa · s or more and 500 Pa · s or less,
A method for manufacturing the light emitting device according to claim 1.
前記波長変換部材の上面視における長手方向の前記所定の幅が、0.2mm以上、0.4mm以下である、
請求項1又は請求項2に記載の発光装置の製造方法。
The predetermined width in the longitudinal direction in the top view of the wavelength conversion member is 0.2 mm or more, 0.4 mm or less,
A method for manufacturing the light emitting device according to claim 1.
前記波長変換部材の上面視における長手方向の前記所定の幅が、前記波長変換部材の上面視における短手方向の前記所定の幅よりも小さい、
請求項1〜3のいずれか1項に記載の発光装置の製造方法。
The predetermined width in the longitudinal direction in the top view of the wavelength conversion member is smaller than the predetermined width in the short direction in the top view of the wavelength conversion member,
A method for manufacturing the light emitting device according to claim 1.
前記発光素子の側面並びに前記波長変換部材の上面の外縁部及び側面を、流動性を有する樹脂で一度に覆う工程において、前記スクリーン印刷の印刷方向を、前記波長変換部材の上面視における短手方向に一致させる、
請求項1〜4のいずれか1項に記載の発光装置の製造方法。
In the step of simultaneously covering the outer edge and the side surface of the side surface of the light emitting element and the upper surface of the wavelength conversion member with a resin having fluidity, the printing direction of the screen printing is changed in a short direction in a top view of the wavelength conversion member. To match,
A method for manufacturing the light emitting device according to claim 1.
JP2018184316A 2018-09-28 2018-09-28 Manufacturing method of light-emitting device Pending JP2020053642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184316A JP2020053642A (en) 2018-09-28 2018-09-28 Manufacturing method of light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184316A JP2020053642A (en) 2018-09-28 2018-09-28 Manufacturing method of light-emitting device

Publications (1)

Publication Number Publication Date
JP2020053642A true JP2020053642A (en) 2020-04-02

Family

ID=69994064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184316A Pending JP2020053642A (en) 2018-09-28 2018-09-28 Manufacturing method of light-emitting device

Country Status (1)

Country Link
JP (1) JP2020053642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640840A (en) * 2020-06-17 2020-09-08 鸿利智汇集团股份有限公司 LED vacuum packaging process and vacuum pressing device
US11409029B2 (en) 2020-08-28 2022-08-09 Nichia Corporation Light-emitting device
US11664356B2 (en) 2020-03-26 2023-05-30 Nichia Corporation Light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11664356B2 (en) 2020-03-26 2023-05-30 Nichia Corporation Light emitting device
CN111640840A (en) * 2020-06-17 2020-09-08 鸿利智汇集团股份有限公司 LED vacuum packaging process and vacuum pressing device
US11409029B2 (en) 2020-08-28 2022-08-09 Nichia Corporation Light-emitting device
US11644608B2 (en) 2020-08-28 2023-05-09 Nichia Corporation Light-emitting device

Similar Documents

Publication Publication Date Title
US9583682B2 (en) Light-emitting device and method of manufacturing the same
US9576941B2 (en) Light-emitting device and method of manufacturing the same
US10461065B2 (en) Method of manufacturing light emitting device
JP6733646B2 (en) Light emitting device and manufacturing method thereof
JP6213428B2 (en) Light emitting device and manufacturing method thereof
US9305903B2 (en) Light-emitting device and method of manufacturing the same
JP5736203B2 (en) Light emitting device
JP4238681B2 (en) Light emitting device
JP6299176B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE EQUIPPED WITH THE LIGHT EMITTING DEVICE
JP6673410B2 (en) LED module
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
TWI649899B (en) Light emitting device and method of manufacturing the same
JP6086738B2 (en) LED device
JP2012114284A (en) Led module and illuminating device
JP3725413B2 (en) Semiconductor light emitting device
JP2020053642A (en) Manufacturing method of light-emitting device
JP2005311395A (en) Manufacturing method of semiconductor light-emitting device
US20160276553A1 (en) Light-emitting device
US20210036051A1 (en) Chip-scale linear light-emitting device
JP6652025B2 (en) Light emitting device and method of manufacturing the same
JP6116228B2 (en) Semiconductor light emitting device and manufacturing method thereof
US9812620B2 (en) Light emitting device and method of manufacturing the light emitting device
JP2012044034A (en) Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method
JP2020053643A (en) Light-emitting device
JP2020107837A (en) Light-emitting device and manufacturing method thereof