JP2020053641A - Photoelectric fiber structure and manufacturing method therefor - Google Patents

Photoelectric fiber structure and manufacturing method therefor Download PDF

Info

Publication number
JP2020053641A
JP2020053641A JP2018184298A JP2018184298A JP2020053641A JP 2020053641 A JP2020053641 A JP 2020053641A JP 2018184298 A JP2018184298 A JP 2018184298A JP 2018184298 A JP2018184298 A JP 2018184298A JP 2020053641 A JP2020053641 A JP 2020053641A
Authority
JP
Japan
Prior art keywords
fiber structure
photovoltaic
light
receiving surface
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018184298A
Other languages
Japanese (ja)
Inventor
直希 浅井
Naoki Asai
直希 浅井
悟 下村
Satoru Shimomura
悟 下村
典子 長井
Noriko Nagai
典子 長井
竹田 恵司
Keiji Takeda
恵司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018184298A priority Critical patent/JP2020053641A/en
Publication of JP2020053641A publication Critical patent/JP2020053641A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

To provide a photoelectric fiber structure which is a composite body of photovoltaic cell and fiber with high priority of appearance and external view and concretely to provide a photoelectric fiber structure and manufacturing method therefor, capable of achieving a high-class feeling, high flexibility, high deformability and further high added-value.SOLUTION: The photoelectric fiber structure includes a fiber structure and a photovoltaic cell. The photoelectric fiber structure is provided on both faces of a light-receiving face and a non-light receiving face of the photovoltaic cell, and the photovoltaic cell is sandwiched between fiber structures to be carried.SELECTED DRAWING: None

Description

本発明は、光発電繊維構造物、その製造方法に関する。 The present invention relates to a photovoltaic fiber structure and a method for producing the same.

太陽電池は、環境にやさしい電気エネルギー源であり、現在深刻さを増すエネルギー問題に対する有力なエネルギー源として注目されている。   2. Description of the Related Art Solar cells are environmentally friendly sources of electrical energy, and are currently attracting attention as a potential energy source for growing energy problems.

一方、電子機器は小型化、軽量化に伴い、電車や車での移動時に屋外に持ち出して、使用する事が多くなっている。これらの電子機器は、電池やバッテリーが切れると使用できなくなることから、電子機器を屋外で使用する場合には、屋外においても電力を確保できるようになることが望まれている。   On the other hand, as electronic devices become smaller and lighter, they are often taken out and used when traveling by train or car. Since these electronic devices cannot be used when the battery or the battery runs out, it is desired that when the electronic devices are used outdoors, power can be secured even outdoors.

例えば、太陽電池を上着や帽子等の衣類に取付け、屋外においても電力を確保できるようにする試みが行われている。
特許文献1には、可撓性基板上に推積されてなる薄膜太陽電池の裏面に衣服と着脱可能に取付けると共に、該薄膜太陽電池と衣服のポケット内部に設置された2次電池とをリード線で接続した構造をなす、太陽電池付き衣服が開示されている。
特許文献2には、衣類に透明なポケットを設け、太陽電池を着脱可能とし、着心地がよく、外観や見栄えに優れた太陽電池付き衣類が開示されている。
特許文献3には、鞄に透明なポケットを設け、メンテナンス性に優れ、外観及び見栄えの良好な太陽電池付き鞄が開示されている。
For example, attempts have been made to attach a solar cell to clothing such as outerwear and a hat so that power can be secured outdoors.
Patent Literature 1 discloses that a thin film solar cell stacked on a flexible substrate is detachably attached to a back surface of a thin film solar cell, and the thin film solar cell and a secondary battery installed in a pocket of the clothes are read. Disclosed is a garment with a solar cell having a structure connected by wires.
Patent Literature 2 discloses a garment with a solar cell, which is provided with a transparent pocket in the garment so that a solar cell can be attached and detached, has good comfort, and is excellent in appearance and appearance.
Patent Literature 3 discloses a bag with a solar cell, which is provided with a transparent pocket in the bag, is excellent in maintainability, and has good appearance and appearance.

実開平2−33211号公報Japanese Utility Model Publication No. 2-33321 特開2014−38980号公報JP 2014-38980 A 特開2014−36795号公報JP 2014-36995 A

太陽電池を衣服や鞄に取り付ける試みは、従来から行われているが、衣服にポケットを設置し、そのポケットにシート型太陽電池を取り付けるため、外観や見栄えに支障があるものであった。   Attempts to attach solar cells to clothes and bags have been made in the past, but since pockets are installed in the clothes and sheet-type solar cells are attached to the pockets, there has been a problem in appearance and appearance.

かかる状況に鑑み、本発明は外観や見栄えを重視した光起電力素子と繊維の複合体である光発電繊維構造物を提供することを課題とする。具体的には、高級感が有り、柔軟性に富み自由な形に変形が可能で、より付加価値の高い光発電繊維構造物とその製造方法を提供することを課題とする。   In view of such a situation, an object of the present invention is to provide a photovoltaic fiber structure that is a composite of a photovoltaic element and a fiber that emphasizes appearance and appearance. Specifically, it is an object of the present invention to provide a photovoltaic fiber structure that has a high-class feel, is flexible and can be freely deformed, and has a higher added value, and a method of manufacturing the same.

本発明は、光起電力素子の受光面と非受光面の両面に繊維構造物を設け、繊維構造物で光起電力素子を挟まれた構造にすることにより上記課題が解決できることを見出し、本発明に至った。
すなわち本発明は下記構成を有する。
The present invention provides a fiber structure on both the light-receiving surface and the non-light-receiving surface of a photovoltaic element, and finds that the above problem can be solved by a structure in which the photovoltaic element is sandwiched between the fiber structures. Invented the invention.
That is, the present invention has the following configuration.

(1)繊維構造物と光起電力素子からなり、該光起電力素子の受光面と非受光面の両面に繊維構造物を設けてなり、該繊維構造物で光起電力素子が挟まれ担持されている光発電繊維構造物。
(2) 該光起電力素子の受光面に設けられている繊維構造物の光透過率が10%以上98%以下である上記(1)に記載の光発電繊維構造物。
(3) 該光発電繊維構造物のKES測定で規定される曲げ剛性測定値が0.01×10−4N・m/m以上6×10−4N・m/m以下である上記(1)または(2)に記載の光発電繊維構造物。
(4)該光発電素子と繊維構造物の間に透明な接着剤が存在してなる上記(1)〜(3)のいずれかに記載の光発電繊維構造物。
(5) 繊維構造物と光起電力素子からなり、該光起電力素子の受光面と非受光面の両面に繊維構造物を設けてなり、該繊維構造物で光起電力素子が挟まれ担持されている光発電繊維構造物の製造方法。
(6)該光起電力素子の受光面に設けられている繊維構造物の光透過率が10%以上98%以下である上記(5)に記載の光発電繊維構造物の製造方法。
(7) 接着に透明な接着剤を用いる上記(5)または(6)記載の光発電繊維構造物の製造方法。
(1) A fibrous structure and a photovoltaic element, and a fibrous structure is provided on both the light receiving surface and the non-light receiving surface of the photovoltaic device. Photovoltaic fiber structures.
(2) The photovoltaic fiber structure according to (1), wherein the fiber structure provided on the light receiving surface of the photovoltaic element has a light transmittance of 10% or more and 98% or less.
(3) The bending rigidity measured by KES measurement of the photovoltaic fiber structure is 0.01 × 10 −4 N · m 2 / m or more and 6 × 10 −4 N · m 2 / m or less. The photovoltaic fiber structure according to (1) or (2).
(4) The photovoltaic fiber structure according to any one of the above (1) to (3), wherein a transparent adhesive is present between the photovoltaic element and the fiber structure.
(5) A fiber structure and a photovoltaic element, wherein a fiber structure is provided on both the light receiving surface and the non-light receiving surface of the photovoltaic element, and the photovoltaic element is sandwiched and supported by the fiber structure. Of producing a photovoltaic fiber structure.
(6) The method for producing a photovoltaic fiber structure according to (5), wherein the fiber structure provided on the light receiving surface of the photovoltaic element has a light transmittance of 10% or more and 98% or less.
(7) The method for producing a photovoltaic fiber structure according to (5) or (6), wherein a transparent adhesive is used for adhesion.

本発明の光発電繊維構造物は、外観や見栄えが良好であり、高級感が有り、柔軟性に富み自由な形に変形が可能で、より付加価値の高い素材を得られる光発電繊維構造物である。   The photovoltaic fiber structure of the present invention has a good appearance and appearance, has a high-class feel, is flexible and can be deformed into a free shape, and can provide a material with higher added value. It is.

また、本発明の光発電繊維構造物は、衣類に取り付けることにより、腕時計、携帯電話、エアーファン、エアーヒーター、ウェアラブルデバイスなどのバッテリーとして、好適に用いることができる。また、これらのバッテリーは携行容易であるので、非常用電源、山岳・海洋地帯の観測機器をはじめ、宇宙ステーション等の厳しい環境下でも好適に用いることができる。   The photovoltaic fiber structure of the present invention can be suitably used as a battery for a wristwatch, a mobile phone, an air fan, an air heater, a wearable device, or the like by being attached to clothing. In addition, since these batteries are easy to carry, they can be suitably used even under severe environments such as emergency power supplies, mountain and marine area observation equipment, and space stations.

本発明で用いる光電変換素子の一態様を示す模式図である。FIG. 2 is a schematic view illustrating one embodiment of a photoelectric conversion element used in the present invention. 本発明で用いる光電変換素子の別の態様を示す模式図である。It is a schematic diagram which shows another aspect of the photoelectric conversion element used by this invention.

次に、本発明にかかる光発電繊維構造物について詳細に説明する。   Next, the photovoltaic fiber structure according to the present invention will be described in detail.

本発明における繊維構造物としては、天然繊維、再生繊維、半合成繊維、合繊繊維のうち少なくとも一つからなるフィラメント、紡績糸、織物、編物、不織布、立毛体などを用いることができる。天然繊維としては綿、獣毛繊維、絹、麻など、再生繊維としてはセルロース系再生繊維のレーヨン(ビスコースレーヨン)、キュプラ(銅アンモニアレーヨン)など、半合成繊維としてはセルロース系半合成繊維としてアセテート(トリアセテート)など、また合成繊維としてはポリエステル、ナイロン、アクリル、アラミドなどの各種繊維を使用することができる。   As the fiber structure in the present invention, a filament, a spun yarn, a woven fabric, a knitted fabric, a nonwoven fabric, a raised body, or the like, which is made of at least one of natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers, can be used. Natural fibers include cotton, animal hair fibers, silk, hemp, etc. Regenerated fibers include cellulosic regenerated fibers such as rayon (viscose rayon) and cupra (copper ammonia rayon). Semi-synthetic fibers include cellulosic semi-synthetic fibers Various fibers such as acetate (triacetate) and the like and synthetic fibers such as polyester, nylon, acrylic and aramid can be used.

なかでも、汎用繊維の中で衣料や産業資材用途やインテリア材などに広い用途を持つ素材としてポリエステル系繊維が最も汎用性があるため、本発明ではポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系繊維構造物を用いることがより有効である。   Among them, polyester fibers are the most versatile materials that have a wide range of uses in clothing, industrial materials, interior materials, etc. among general-purpose fibers, and therefore, in the present invention, polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate are used. It is more effective to use a system fiber structure.

ポリエステル系繊維構造物としては、ポリエステル繊維のみからなるもの以外に、綿、羊毛などの天然繊維、アセテートなどの半合成繊維、レーヨンなどの再生繊維、ナイロンなどの合成繊維のうち少なくとも一つとポリエステル系繊維を混紡または交撚、交織、交編などしたものなどが含まれる。   As the polyester fiber structure, in addition to those composed of only polyester fibers, at least one of natural fibers such as cotton and wool, semi-synthetic fibers such as acetate, regenerated fibers such as rayon, and synthetic fibers such as nylon, and polyester-based fibers. Fibers obtained by blending, twisting, weaving, knitting and the like are included.

本発明において、光起電力素子の受光面に設けられている繊維構造物の目付は、500g/m以下であることが好ましい。500g/mより大きいと、光透過率が小さくなり、光エネルギーを十分に吸収することができない。より好ましくは、300g/m以下、さらに好ましくは、100g/m以下であり、下限としては、10g/m以上であることが好ましい。 In the present invention, it is preferable that the basis weight of the fiber structure provided on the light receiving surface of the photovoltaic element be 500 g / m 2 or less. If it is more than 500 g / m 2 , the light transmittance becomes small and the light energy cannot be sufficiently absorbed. More preferably, it is 300 g / m 2 or less, further preferably, 100 g / m 2 or less, and the lower limit is preferably 10 g / m 2 or more.

本発明の光起電力素子の受光面に設けられている繊維構造物の色相は、明度L* 値が100に近いほど光電変換効率高く、明度L値が0に近いほど光電変換効率は低くなる。光電変換効率を向上させるためには、明度L値が100に近い繊維構造物が好ましい、 The hue of the fiber structure provided on the light-receiving surface of the photovoltaic element of the present invention is higher as the lightness L * value is closer to 100, and lower as the lightness L * value is closer to 0. Become. In order to improve the photoelectric conversion efficiency, a fiber structure having a lightness L * value close to 100 is preferable.

本発明の光起電力素子の受光面に設けられている繊維構造物と非受光面に設けられている繊維構造物の色差ΔEは、小さいほど、理想的には0に近いほど光電力素子がわかりにくく、目立たなくなり、高級感がある光発電繊維構造物となる。通常5以下であれば、実用上目立ちにくい範囲となり、3以下であるとほぼ目立たなくなる点でより好ましい。   The smaller the color difference ΔE between the fiber structure provided on the light receiving surface and the fiber structure provided on the non-light receiving surface of the photovoltaic element of the present invention, the ideally closer to 0, the more the optical power element becomes. It is a photovoltaic fiber structure that is difficult to understand, is less noticeable, and has a sense of quality. Usually, when it is 5 or less, it is in a practically inconspicuous range, and when it is 3 or less, it is more preferable because it becomes almost inconspicuous.

上記において、色差ΔEは、下記式により求められる値である。
ΔEab={(ΔL+(Δa+(Δb1/2
ΔL:本発明の光起電力素子の受光面に設けられている繊維構造物の明度L
−本発明の光起電力素子の非受光面に設けられている繊維構造物の明度L
Δa:本発明の光起電力素子の受光面に設けられている繊維構造物の色度a
−本発明の光起電力素子の非受光面に設けられている繊維構造物の色度a
Δb* :本発明の光起電力素子の受光面に設けられている繊維構造物の色度b
−本発明の光起電力素子の非受光面に設けられている繊維構造物の色度b
In the above, the color difference ΔE is a value obtained by the following equation.
ΔE * ab = {(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 } 1/2
[Delta] L *: lightness L * value of the fiber structure is provided on the light receiving surface of the photovoltaic element of the present invention - the brightness of the fiber structure is provided on the non-light-receiving surface of the photovoltaic element of the present invention L * Value Δa * : chromaticity a * of the fiber structure provided on the light-receiving surface of the photovoltaic device of the present invention a * value-color of the fiber structure provided on the non-light-receiving surface of the photovoltaic device of the present invention Degree a * value Δb * : chromaticity b * value of the fiber structure provided on the light receiving surface of the photovoltaic device of the present invention—fiber structure provided on the non-light receiving surface of the photovoltaic device of the present invention Chromaticity b * value of object

〔光起電力素子〕
本発明において光起電力素子は、光エネルギーを電気に変換する素子のことを指す。本発明の光起電力素子は、少なくとも正極、光電変換層および負極をこの順に有するものである。図1は本発明の光電変換素子の一実施形態を示す模式図である。図1に示す実施形態は、基板(1)/正極(2)/光電変換層(3)/負極(4)の順で積層されてなる光電変換素子である。また、本発明の光電変換素子は、図2に示す実施形態のように、基板(1)/負極(4)/光電変換層(3)/正極(2)の順で積層されたものであってもよい。しかしながら、本発明の光電変換素子は、図1および図2に示す態様に限定されるものではない。また、本発明の光電変換素子は、少なくとも正極、光電変換層、および負極をこの順に有している限り、各層の間に他の層を有する態様を排除するものではない。
(Photovoltaic element)
In the present invention, a photovoltaic element refers to an element that converts light energy into electricity. The photovoltaic device of the present invention has at least a positive electrode, a photoelectric conversion layer, and a negative electrode in this order. FIG. 1 is a schematic diagram showing one embodiment of the photoelectric conversion element of the present invention. The embodiment shown in FIG. 1 is a photoelectric conversion element formed by stacking a substrate (1) / a positive electrode (2) / a photoelectric conversion layer (3) / a negative electrode (4) in this order. Further, the photoelectric conversion element of the present invention is, as in the embodiment shown in FIG. 2, laminated in the order of substrate (1) / negative electrode (4) / photoelectric conversion layer (3) / positive electrode (2). You may. However, the photoelectric conversion element of the present invention is not limited to the embodiments shown in FIGS. In addition, as long as the photoelectric conversion element of the present invention has at least a positive electrode, a photoelectric conversion layer, and a negative electrode in this order, an embodiment having another layer between each layer is not excluded.

〔基板〕
光電変換素子は、一般に、基板上に各層を形成することで作製される。基板は、光電変換層に用いられる材料の種類や用途に応じて、電極材料や有機半導体層が積層できる基板、例えば、無アルカリガラス、石英ガラス、アルミニウム、鉄、銅、およびステンレスなどの合金、等の無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレンポリメチルメタクリレート、エポキシ樹脂やフッ素系樹脂等の有機材料から任意の方法によって作製されたフィルムや板が使用可能である。また、基板側から光を入射して用いる場合は、上記に示した各基板に光透過性を持たせておくことが好ましく、特に20%以上の光透過性を持たせておくことがより好ましい。ここで、基板の光透過率とは、
[基板の透過光強度(W/m)/基板の入射光強度(W/m)]×100(%)
で与えられる値である。
〔substrate〕
The photoelectric conversion element is generally manufactured by forming each layer on a substrate. The substrate is a substrate on which an electrode material and an organic semiconductor layer can be laminated, for example, alkali-free glass, quartz glass, aluminum, iron, copper, and alloys such as stainless steel, depending on the type and use of the material used for the photoelectric conversion layer. Films and boards made by any method from organic materials such as inorganic materials such as polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene sulfide, polyparaxylene polymethyl methacrylate, epoxy resin and fluorine resin can be used. is there. In the case where light is incident from the substrate side, it is preferable that each of the above-described substrates has a light transmittance, and it is particularly preferable that the substrate has a light transmittance of 20% or more. . Here, the light transmittance of the substrate is
[Transmitted light intensity of substrate (W / m 2 ) / incident light intensity of substrate (W / m 2 )] × 100 (%)
Is the value given by

上記基板の光透過率を求めるために必要な基板の透過光強度は、任意の光源とその光強度を測定するディテクターを用い、光源とディテクター間距離を固定、その際の光強度を入射光強度、ディテクターへ入射する光全てが基板を通過するように、基板を光源とディテクター間に挿入した際の光強度を透過光強度としたものである。通常光強度はどのような光源を使うかで大きく変わる。本発明においては、ある波長(例えば500nm)の光透過性が20%を超えてさえいれば、その他ほぼ透過しなくても、基板として用いることができるので、光源、ディテクターについては、特に限定することを要しない。よってこれら光源、ディテクターについては、用途により適宜選択して用いればよい。これはある波長(例えば500nm)の光透過性が20%を超えてさえいれば、その他ほぼ透過しなくても、基板として用いることができるためである。   The transmitted light intensity of the substrate necessary for obtaining the light transmittance of the above substrate is determined by using an arbitrary light source and a detector for measuring the light intensity, fixing the distance between the light source and the detector, and determining the light intensity at that time by the incident light intensity. The light intensity when the substrate is inserted between the light source and the detector is defined as the transmitted light intensity so that all the light incident on the detector passes through the substrate. Normally, the light intensity varies greatly depending on what light source is used. In the present invention, as long as the light transmittance at a certain wavelength (for example, 500 nm) exceeds 20%, the light source and the detector are particularly limited because they can be used as a substrate even if they do not substantially transmit at all. You don't need to. Therefore, these light sources and detectors may be appropriately selected and used depending on the application. This is because, as long as the light transmittance at a certain wavelength (for example, 500 nm) exceeds 20%, the light can be used as a substrate even if the other light hardly transmits.

〔電極(正極・負極)〕
本発明において、光電変換素子の正極または負極は光透過性を有することが好ましい。正極または負極は、少なくともいずれか一方が光透過性を有すればよく、両方が光透過性を有してもよい。ここで光透過性を有するとは、光透過率が0%を超えることをいう。
[Electrode (Positive electrode / Negative electrode)]
In the present invention, the positive electrode or the negative electrode of the photoelectric conversion element preferably has light transmittance. At least one of the positive electrode and the negative electrode only needs to have optical transparency, and both may have optical transparency. Here, having light transmittance means that the light transmittance exceeds 0%.

光透過性を有する電極は、光電変換層に入射光が到達して起電力が発生する程度に光が透過すればよく、具体的には400nm以上900nm以下の全ての波長領域において光透過率が20〜100%であることが好ましく、より好ましくは60〜100%である。また、光透過性を有する電極の厚さは十分な導電性が得られればよく、材料によって異なるが、20nm〜300nmが好ましい。なお、光透過性を有しない電極は、導電性があれば十分であり、厚さも特に限定されない。   The electrode having a light-transmitting property only needs to transmit light to such an extent that incident light reaches the photoelectric conversion layer to generate an electromotive force. Specifically, the light transmittance of the electrode in all wavelength regions of 400 nm or more and 900 nm or less is sufficient. It is preferably from 20 to 100%, more preferably from 60 to 100%. The thickness of the light-transmitting electrode is not particularly limited as long as sufficient conductivity is obtained, and varies depending on the material, but is preferably 20 nm to 300 nm. Note that the electrode having no light transmittance is sufficient if it has conductivity, and the thickness is not particularly limited.

電極材料としては、金、白金、銀、銅、鉄、亜鉛、錫、アルミニウム、インジウム、クロム、ニッケル、コバルト、スカンジウム、バナジウム、イットリウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム、などの金属のほか、インジウム酸化物、スズ酸化物、モリブデン酸化物、ニッケル酸化物などの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アルミニウム亜鉛酸化物(AZO)、ガリウム亜鉛酸化物(GZO)など)が挙げられる。上記以外の金属として、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、ナトリウム、カリウム、カルシウム、ストロンチウム、バリウム、なども好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、グラファイト、グラファイト層間化合物、カーボンナノチューブ、グラフェン、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体を含む電極も好ましく用いられる。また、上記の電極は2種以上の材料から成る混合層であってもよく、異なる材料からなる2層以上の層が積層された積層構造を持つものであってもよい。   Electrode materials include metals such as gold, platinum, silver, copper, iron, zinc, tin, aluminum, indium, chromium, nickel, cobalt, scandium, vanadium, yttrium, cerium, samarium, europium, terbium, ytterbium, etc. , Indium oxide, tin oxide, molybdenum oxide, nickel oxide and other metal oxides, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO) , Gallium zinc oxide (GZO) and the like. As metals other than the above, alkali metals and alkaline earth metals, specifically, lithium, magnesium, sodium, potassium, calcium, strontium, barium, and the like are also preferably used. Further, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. Further, an electrode containing graphite, a graphite interlayer compound, carbon nanotube, graphene, polyaniline and its derivative, and polythiophene and its derivative is also preferably used. Further, the above-mentioned electrode may be a mixed layer composed of two or more materials, or may have a laminated structure in which two or more layers composed of different materials are laminated.

本発明において、正極に用いられる導電性材料は、光電変換層とオーミック接合するものであることが好ましい。後述する正孔輸送層を用いた場合においては、正極に用いられる導電性材料は正孔輸送層とオーミック接合するものであることが好ましい。   In the present invention, the conductive material used for the positive electrode preferably has ohmic junction with the photoelectric conversion layer. When a hole transport layer described later is used, the conductive material used for the positive electrode preferably has an ohmic junction with the hole transport layer.

また、負極に用いられる導電性材料は、電子輸送層とオーミック接合するものであることが好ましい。   In addition, the conductive material used for the negative electrode preferably has an ohmic junction with the electron transport layer.

〔正孔輸送層〕
本発明の有機起電力素子では、正極と光電変換層の間に正孔輸送層を設けてもよい。前記正孔輸送層を形成する材料としては、正孔輸送性材料、例えば、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体、ポリピロール重合体、ポリアニリン重合体、ポリフラン重合体、ポリピリジン重合体、ポリカルバゾール重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体、アセン系化合物(テトラセン、ペンタセンなど)などのp型半導体特性を示す低分子有機化合物、グラフェンや酸化グラフェンなどの炭素化合物、MoO3などの酸化モリブデン(MoO)、WOなどの酸化タングステン(WO)、NiOなどの酸化ニッケル(NiO)、Vなどの酸化バナジウム(VO)、ZrOなどの酸化ジルコニウム(ZrO)、CuOなどの酸化銅(CuO)、ヨウ化銅、RuOなどの酸化ルテニウム(RuO)、Reなどの酸化ルテニウム(ReO)などの無機材料が好ましく用いられる。中でも、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたもの(以下、PEDOT:PSSと記載する場合がある)、酸化モリブデン、酸化バナジウム、酸化タングステンがより好ましく用いられる。
(Hole transport layer)
In the organic electromotive element of the present invention, a hole transport layer may be provided between the positive electrode and the photoelectric conversion layer. Examples of the material for forming the hole transport layer include hole transport materials such as a polythiophene polymer, a poly-p-phenylene vinylene polymer, a polyfluorene polymer, a polypyrrole polymer, a polyaniline polymer, and a polyfuran. Conductive polymers such as polymers, polypyridine polymers and polycarbazole polymers, and p-type semiconductor properties such as phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.), porphyrin derivatives, acene compounds (tetracene, pentacene, etc.) , A carbon compound such as graphene or graphene oxide, a molybdenum oxide (MoO x ) such as MoO 3 , a tungsten oxide (WO x ) such as WO 3 , a nickel oxide (NiO x ) such as NiO, V 2 O vanadium oxide, such as 5 (VO x), acids such as ZrO 2 Zirconium (ZrO x), copper oxide such as Cu 2 O (CuO x), copper iodide, ruthenium oxide, such as RuO 4 (RuO x), inorganic materials such as ruthenium oxide (ReO x), such as Re 2 O 7 It is preferably used. Above all, polyethylene dioxythiophene (PEDOT) which is a polythiophene polymer or a material obtained by adding polystyrene sulfonate (PSS) to PEDOT (hereinafter sometimes referred to as PEDOT: PSS), molybdenum oxide, vanadium oxide, tungsten oxide Is more preferably used.

正孔輸送層を形成する材料のうち、無機材料を用いて正孔輸送層を形成する方法としては、その金属塩や金属アルコキシドなどの前駆体溶液を塗布した後、加熱して層を形成する方法や、ナノ粒子分散液を基板に塗布して層を形成する方法が挙げられる。このとき、前記無機材料は、加熱温度や時間、及びナノ粒子の合成条件により、完全には反応が進行しておらず、部分的に加水分解したり、部分的に縮合したりすることで、中間生成物となっていたり、前駆体と中間生成物、最終生成物などの混合物となっていても良い。   Among the materials for forming the hole transport layer, as a method for forming the hole transport layer using an inorganic material, a precursor solution such as a metal salt or a metal alkoxide is applied, and then heated to form a layer. And a method of applying a nanoparticle dispersion to a substrate to form a layer. At this time, the inorganic material is not completely reacted, depending on the heating temperature and time, and the synthesis conditions of the nanoparticles, and is partially hydrolyzed or partially condensed, It may be an intermediate product or a mixture of a precursor, an intermediate product, and a final product.

正孔輸送層は単独の化合物から成る層であっても良いし、2種以上の化合物から成る混合層、または積層構造であってもよい。また、前記正孔輸送層は光電変換層から電極への正孔輸送を著しく妨げない範囲において、正孔輸送性を有しない物質を含んでいても良い。例えば、塗布性、平滑性を向上させる界面活性剤、粘度調整剤、バインダー樹脂、フィラー等が挙げられる。   The hole transport layer may be a layer composed of a single compound, a mixed layer composed of two or more compounds, or a laminated structure. Further, the hole transport layer may contain a substance having no hole transport property as long as hole transport from the photoelectric conversion layer to the electrode is not significantly impaired. For example, a surfactant, a viscosity modifier, a binder resin, a filler, and the like for improving applicability and smoothness are exemplified.

前記正孔輸送層の厚さは0.1nm〜1000nmの厚さが好ましく、より好ましくは0.5nm〜100nm、さらに好ましくは5nm〜50nmである。   The thickness of the hole transport layer is preferably from 0.1 nm to 1000 nm, more preferably from 0.5 nm to 100 nm, and still more preferably from 5 nm to 50 nm.

〔光電変換層〕
次に、本発明で用いる光電変換素子における光電変換層としては特に限定しないが、光電変換素子の柔軟性を担保するために、1μm以下の薄膜であること、または、無機系アモルファス材料や有機系材料から形成されることが望ましい。
(Photoelectric conversion layer)
Next, the photoelectric conversion layer in the photoelectric conversion element used in the present invention is not particularly limited. However, in order to secure the flexibility of the photoelectric conversion element, it is a thin film of 1 μm or less, or an inorganic amorphous material or an organic amorphous material. Desirably, it is formed from a material.

有機系材料から成る光電変換層としては、後述する電子供与性有機材料および電子受容性有機材料を含むものが挙げられる。前記有機系材料から成る光電変換層について説明する。   Examples of the photoelectric conversion layer made of an organic material include those containing an electron-donating organic material and an electron-accepting organic material described below. The photoelectric conversion layer made of the organic material will be described.

光電変換層の構造として、例えば、電子供与性有機材料と電子受容性有機材料の混合物を含む層からなる構造、電子供与性有機材料からなる層と電子受容性有機材料からなる層を積層した構造、電子供与性有機材料からなる層と電子受容性有機材料からなる層の間に、これらの混合物からなる層を積層した構造などが挙げられる。   As the structure of the photoelectric conversion layer, for example, a structure composed of a layer containing a mixture of an electron donating organic material and an electron accepting organic material, a structure in which a layer composed of an electron donating organic material and a layer composed of an electron accepting organic material are laminated And a structure in which a layer made of a mixture thereof is stacked between a layer made of an electron donating organic material and a layer made of an electron accepting organic material.

これらのうち、電子供与性有機材料と電子受容性有機材料の混合物を含む層からなる構造がより好ましい。前記混合物の混合方法としては特に限定されるものではないが、所望の比率で溶媒に添加した後、加熱、撹拌、超音波照射などの方法を1種または複数種組み合わせて溶媒中に溶解させる方法が挙げられる。   Among these, a structure composed of a layer containing a mixture of an electron donating organic material and an electron accepting organic material is more preferable. The method of mixing the mixture is not particularly limited, but after adding to the solvent in a desired ratio, a method of heating, stirring, ultrasonic irradiation or the like and dissolving in the solvent by combining one or more methods. Is mentioned.

光電変換層は、電子供与性有機材料および/または電子受容性有機材料を2種以上含有してもよい。   The photoelectric conversion layer may contain two or more electron donating organic materials and / or electron accepting organic materials.

光電変換層における電子供与性有機材料と電子受容性有機材料の含有比率は特に限定されないが、電子供与性有機材料:電子受容性有機材料(ドナーアクセプター比)が、1:99〜99:1の範囲であることが好ましく、10:90〜90:10の範囲であることがより好ましく、20:80〜60:40の範囲であることがさらに好ましい。   The content ratio of the electron donating organic material to the electron accepting organic material in the photoelectric conversion layer is not particularly limited, but the ratio of the electron donating organic material to the electron accepting organic material (donor-acceptor ratio) is 1:99 to 99: 1. , Preferably in the range of 10:90 to 90:10, and more preferably in the range of 20:80 to 60:40.

なお、後述するように、光電変換素子用材料が一層の有機半導体層を形成する場合は、上述の含有比率はその一層に含まれる電子供与性有機材料と電子受容性有機材料の含有比率となり、光電変換層が二層以上の積層構造である場合は、有機半導体層全体における電子供与性有機材料と電子受容性有機材料の含有比率を意味する。   In addition, as described later, when the photoelectric conversion element material forms a single organic semiconductor layer, the above content ratio is the content ratio of the electron donating organic material and the electron accepting organic material contained in the one layer, When the photoelectric conversion layer has a stacked structure of two or more layers, it means the content ratio of the electron donating organic material to the electron accepting organic material in the entire organic semiconductor layer.

光電変換層は、本発明の目的を阻害しない範囲において、界面活性剤やバインダー樹脂、フィラー等の他の成分を含んでいてもよい。   The photoelectric conversion layer may contain other components such as a surfactant, a binder resin, and a filler as long as the object of the present invention is not impaired.

光電変換層の厚さは、電子供与性有機材料および電子受容性有機材料が光吸収によって光電変換を生じるのに十分な厚さであればよい。前記光電変換層の厚さは、材料によって異なるが、10nm〜1000nmが好ましく、50nm〜500nmがより好ましい。   The thickness of the photoelectric conversion layer may be sufficient if the electron donating organic material and the electron accepting organic material cause photoelectric conversion by light absorption. The thickness of the photoelectric conversion layer varies depending on the material, but is preferably from 10 nm to 1000 nm, more preferably from 50 nm to 500 nm.

電子供与性有機材料は、p型半導体特性を示す有機化合物であれば特に限定されない。例えば、ポリチオフェン系重合体、2,1,3−ベンゾチアジアゾール−チオフェン系共重合体、キノキサリン−チオフェン系共重合体、チオフェンーベンゾジチオフェン系共重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体、H2フタロシアニン(H2Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン(TPD)、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン(NPD)等のトリアリールアミン誘導体、4,4’−ジ(カルバゾール−9−イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物などが挙げられる。これらを2種以上用いてもよい。   The electron donating organic material is not particularly limited as long as it is an organic compound exhibiting p-type semiconductor characteristics. For example, polythiophene-based polymer, 2,1,3-benzothiadiazole-thiophene-based copolymer, quinoxaline-thiophene-based copolymer, thiophene-benzodithiophene-based copolymer, poly-p-phenylenevinylene-based polymer, Conjugated polymers such as poly-p-phenylene polymer, polyfluorene polymer, polypyrrole polymer, polyaniline polymer, polyacetylene polymer, polythienylenevinylene polymer, H2 phthalocyanine (H2Pc), Phthalocyanine derivatives such as copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc), porphyrin derivatives, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1 ' -Diamine (TPD), N, N'-dinaphthyl-N, N'-diphenyl Triarylamine derivatives such as 4,4'-diphenyl-1,1'-diamine (NPD), carbazole derivatives such as 4,4'-di (carbazol-9-yl) biphenyl (CBP), and oligothiophene derivatives Low-molecular-weight organic compounds such as thiophene, quarterthiophene, sexithiophene, and octithiophene. Two or more of these may be used.

ポリチオフェン系重合体とは、チオフェン骨格を主鎖に有する共役系重合体を指し、側鎖を有するものも含む。具体的には、ポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−デシルチオフェンなどのポリ−3−アルキルチオフェン、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェンなどのポリ−3−アルコキシチオフェン、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェンなどのポリ−3−アルコキシ−4−アルキルチオフェンなどが挙げられる。   The polythiophene-based polymer refers to a conjugated polymer having a thiophene skeleton in a main chain, and includes a polymer having a side chain. Specifically, poly-3-alkylthiophenes such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, and poly-3-decylthiophene; Poly-3-alkoxythiophenes such as 3-methoxythiophene, poly-3-ethoxythiophene, poly-3-dodecyloxythiophene, poly-3-methoxy-4-methylthiophene, poly-3-dodecyloxy-4-methylthiophene And poly-3-alkoxy-4-alkylthiophenes.

2,1,3−ベンゾチアジアゾール−チオフェン系共重合体とは、チオフェン骨格と2,1,3−ベンゾチアジアゾール骨格を主鎖に有する共役系共重合体を指す。2,1,3−ベンゾチアジアゾール−チオフェン系共重合体として、具体的には下記のような構造が挙げられる。下記式において、nは1〜1000の整数を示す。   The 2,1,3-benzothiadiazole-thiophene-based copolymer refers to a conjugated copolymer having a thiophene skeleton and a 2,1,3-benzothiadiazole skeleton in a main chain. Specific examples of the 2,1,3-benzothiadiazole-thiophene copolymer include the following structures. In the following formula, n shows the integer of 1-1000.

キノキサリン−チオフェン系共重合体とは、チオフェン骨格とキノキサリン骨格を主鎖に有する共役系共重合体を指す。キノキサリン−チオフェン系共重合体として、具体的には下記のような構造が挙げられる。下記式において、nは1〜1000の整数を示す。   The quinoxaline-thiophene copolymer refers to a conjugated copolymer having a thiophene skeleton and a quinoxaline skeleton in the main chain. Specific examples of the quinoxaline-thiophene copolymer include the following structures. In the following formula, n shows the integer of 1-1000.

チオフェン−ベンゾジチオフェン系重合体とは、チオフェン骨格とベンゾジチオフェン骨格を主鎖に有する共役系共重合体を指す。チオフェン−ベンゾジチオフェン系共重合体として、具体的には下記のような構造が挙げられる。下記式において、nは1〜1000の整数を示す。   The thiophene-benzodithiophene polymer refers to a conjugated copolymer having a thiophene skeleton and a benzodithiophene skeleton in a main chain. Specific examples of the thiophene-benzodithiophene copolymer include the following structures. In the following formula, n shows the integer of 1-1000.

ポリ−p−フェニレンビニレン系重合体とは、p−フェニレンビニレン骨格を主鎖に有する共役系重合体を指し、側鎖を有するものも含む。具体的には、ポリ[2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン]、ポリ[2−メトキシ−5−(3’,7’−ジメチルオクチルオキシ)−1,4−フェニレンビニレン]などが挙げられる。   The poly-p-phenylenevinylene-based polymer refers to a conjugated polymer having a p-phenylenevinylene skeleton in a main chain, and includes a polymer having a side chain. Specifically, poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene], poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1, 4-phenylenevinylene] and the like.

上記のように例示した電子供与性有機半導体の中でも、下記式(4)〜(6)のいずれかで表される骨格を有する共役系重合体は、1,8−ジヨードオクタンを添加剤に用いた際に、光電変換特性が向上することが多数報告されており(例えば、特許第05829734号公報、「アドヴァンスト マテリアルズ(Advanced Materials)」、2010年、22巻、E135−E138頁、「ジャーナル オブ ザ アメリカン ケミストリー(Journal of the American Chemistry)、2010年、132巻、7595−7597頁、」、「マクロモルキュールズ(Macromolecules)、2012年、45巻、6923−6929頁、」、「アドヴァンスト マテリアルズ(Advanced Materials)」、2011年、23巻、3315−3319頁など)、本発明の組成物の電子供与性有機半導体として含まれていると好ましい。   Among the electron-donating organic semiconductors exemplified above, a conjugated polymer having a skeleton represented by any of the following formulas (4) to (6) includes 1,8-diiodooctane as an additive. It has been reported that when used, the photoelectric conversion characteristics are improved (for example, Japanese Patent No. 058929734, "Advanced Materials", 2010, Vol. 22, E135-E138, " "Journal of the American Chemistry", 2010, 132, 7595-7597, "Macromolecules, 2012, 45, 6923-6929," "Advances." Materials (Adv etc., 2011, Vol. 23, pp. 3315-3319), and the composition of the present invention is preferably contained as an electron-donating organic semiconductor.

(上記式(4)中、Rはそれぞれ同じでも異なっていても良く、アルキル基、アルコキシ基、置換されていてもよいヘテロアリール基、置換されていてもよいアリール基またはチオアルコキシ基を示す。Xはそれぞれ同じでも異なっていてもよく、硫黄、セレンまたは酸素原子を表す。)
(上記式(5)中、Rはアルコキシカルボニル基またはアルカノイル基を表す。Yは水素原子またはハロゲンを表す。)
(上記式(6)中、Rはアルキル基、置換されていてもよいヘテロアリール基または置換されていてもよいアリール基を示す。)
(In the above formula (4), R 3 may be the same or different and each represents an alkyl group, an alkoxy group, an optionally substituted heteroaryl group, an optionally substituted aryl group or a thioalkoxy group. X 2 may be the same or different and each represents a sulfur, selenium or oxygen atom.)
(In the above formula (5), R 4 represents an alkoxycarbonyl group or an alkanoyl group; Y 2 represents a hydrogen atom or a halogen.)
(In the above formula (6), R 5 represents an alkyl group, an optionally substituted heteroaryl group, or an optionally substituted aryl group.)

上記の骨格構造を有する共役系重合体の中でも、広い光吸収波長領域と深いHOMO準位を有することから高い光電変換特性が得られる下記式(7)で表される共役系重合体が本発明の組成物の電子供与性有機半導体としてより好ましい。   Among the conjugated polymers having the above skeletal structure, the present invention relates to a conjugated polymer represented by the following formula (7), which has a wide light absorption wavelength region and a deep HOMO level and thus can obtain high photoelectric conversion characteristics. Is more preferable as the electron-donating organic semiconductor of the composition.

(上記式(7)中、R、R、X、Yは、上記式(4)および(5)と同様である。) (In the above formula (7), R 3 , R 4 , X 2 and Y 2 are the same as in the above formulas (4) and (5).)

本発明における光電変換層中に含まれる電子受容性有機材料は、n型半導体特性を示す有機物であれば特に限定されない。例えば、1,4,5,8−ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10−ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10−ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N’−ジオクチル−3,4,9,10−ナフチルテトラカルボキシジイミド(PTCDI−C8H)、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、2,5−ジ(1−ナフチル)−1,3,4−オキサジアゾール(BND)等のオキサゾール誘導体、3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール(TAZ)等のトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン誘導体、カーボンナノチューブ、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)などが挙げられる。これらを2種以上用いてもよい。安定でキャリア移動度の高いn型半導体であることから、フラーレン誘導体が好ましく用いられる。   The electron-accepting organic material contained in the photoelectric conversion layer in the present invention is not particularly limited as long as it is an organic substance having n-type semiconductor characteristics. For example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), 3,4,9,10-perylenetetracarboxylic Bisbenzimidazole (PTCBI), N, N'-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4-biphenylyl) -5- (4-t-butylphenyl) Oxazole derivatives such as -1,3,4-oxadiazole (PBD) and 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND), 3- (4-biphenylyl)- Triazole induction such as 4-phenyl-5- (4-t-butylphenyl) -1,2,4-triazole (TAZ) Body, phenanthroline derivatives, phosphine oxide derivatives, fullerene derivatives, carbon nanotubes, poly -p- phenylene vinylene-based polymer derivatives obtained by introducing cyano group into (CN-PPV) and the like. Two or more of these may be used. A fullerene derivative is preferably used because it is an n-type semiconductor that is stable and has high carrier mobility.

フラーレン誘導体の具体例として、C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニル C61 ブチリックアシッドメチルエステル([6,6]−C61−PCBM、または[60]PCBM)、[5,6]−フェニル C61 ブチリックアシッドメチルエステル、[6,6]−フェニル C61 ブチリックアシッドヘキシルエステル、[6,6]−フェニル C61 ブチリックアシッドドデシルエステル、フェニル C71 ブチリックアシッドメチルエステル([70]PCBM)を始めとする置換誘導体などが挙げられる。なかでも、60PCBM、70PCBMがより好ましい。 Specific examples of the fullerene derivative include unsubstituted ones such as C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 , and [6,6] -phenyl C 61 butyrate. Ric acid methyl ester ([6,6] -C 61 -PCBM or [60] PCBM), [5,6] -phenyl C 61 butyric acid methyl ester, [6,6] -phenyl C 61 butyric acid And substituted derivatives such as hexyl ester, [6,6] -phenyl C 61 butyric acid dodecyl ester, and phenyl C 71 butyric acid methyl ester ([70] PCBM). Among them, 60 PCBM and 70 PCBM are more preferable.

〔電子輸送層〕
本発明の光起電力素子は、有機半導体層3と負極4の間に電子輸送層を設けてもよい。電子輸送層を形成する材料として、特に限定されるものではないが、電子受容性有機材料(NTCDA、PTCDA、PTCDI−C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、ホスフィンスルフィド誘導体、キノリン誘導体、フラーレン化合物、CNT、CN−PPVなど)のようにn型半導体特性を示す有機材料が好ましく用いられる。また、イオン性の置換フルオレン系ポリマー(「アドバンスド マテリアルズ(Advanced Materials)」、2011年、23巻、4636−4643頁、「オーガニック エレクトロニクス(Organic Electronics)」、2009年、10巻、496−500頁)や、イオン性の置換フルオレン系ポリマーと置換チオフェン系ポリマーの組み合わせ(「ジャーナル オブ アメリカン ケミカル ソサイエティー(Journal of American Chemical Society)」、2011年、133巻、8416−8419頁)などのイオン性化合物、ポリエチレンオキサイド(「アドバンスド マテリアルズ(Advanced Materials)」、2007年、19巻、1835−1838頁)なども電子取出し層として用いることができる。また、イオン性の置換フルオレン系ポリマー(「アドバンスド マテリアルズ(Advanced Materials)」、2011年、23巻、4636−4643頁、「オーガニック エレクトロニクス(Organic Electronics)」、2009年、10巻、496−500頁)や、イオン性の置換フルオレン系ポリマーと置換チオフェン系ポリマーの組み合わせ(「ジャーナル オブ アメリカン ケミカル ソサイエティー(Journal of American Chemical Society)」、2011年、133巻、8416−8419頁)などのイオン性化合物、ポリエチレンオキサイド(「アドバンスド マテリアルズ(Advanced Materials)」、2007年、19巻、1835−1838頁)なども電子取出し層として用いることができる。
(Electron transport layer)
In the photovoltaic device of the present invention, an electron transport layer may be provided between the organic semiconductor layer 3 and the negative electrode 4. The material for forming the electron transport layer is not particularly limited, but may be an electron-accepting organic material (NTCDA, PTCDA, PTCDI-C8H, oxazole derivative, triazole derivative, phenanthroline derivative, phosphine oxide derivative, phosphine sulfide derivative, quinoline Organic materials exhibiting n-type semiconductor characteristics, such as derivatives, fullerene compounds, CNT, CN-PPV, etc.) are preferably used. In addition, ionic substituted fluorene-based polymers ("Advanced Materials", 2011, Vol. 23, pp. 4636-4643, "Organic Electronics", 2009, Vol. 10, pp. 496-500) And ionic compounds such as a combination of an ionic substituted fluorene-based polymer and a substituted thiophene-based polymer (“Journal of American Chemical Society”, 2011, 133, 8416-8419); Polyethylene oxide ("Advanced Materials", 2007, 19, 1835-183) Page), etc. can be also used as the electron extraction layer. In addition, ionic substituted fluorene-based polymers ("Advanced Materials", 2011, Vol. 23, pp. 4636-4643, "Organic Electronics", 2009, Vol. 10, pp. 496-500) And ionic compounds such as a combination of an ionic substituted fluorene-based polymer and a substituted thiophene-based polymer (“Journal of American Chemical Society”, 2011, 133, 8416-8419); Polyethylene oxide ("Advanced Materials", 2007, 19, 1835-183) Page), etc. can be also used as the electron extraction layer.

また、イオン性基を有する化合物、例えば、アンモニウム塩、アミン塩、ピリジニウム塩、イミダゾリウム塩、ホスホニウム塩、カルボン酸塩、スルホン酸塩、リン酸塩、硫酸エステル塩、リン酸エステル塩、硫酸塩、硝酸塩、アセトナート塩、オキソ酸塩、ならびに金属錯体なども電子輸送層として用いることができる。   Compounds having an ionic group, for example, ammonium salt, amine salt, pyridinium salt, imidazolium salt, phosphonium salt, carboxylate, sulfonate, phosphate, sulfate ester salt, phosphate ester salt, sulfate salt , Nitrates, acetonate salts, oxo acid salts, and metal complexes can also be used as the electron transport layer.

具体的には塩化アンモニウム、酢酸アンモニウム、リン酸アンモニウム、ヘキシルトリメチルアンモニウムブロミド、テトラブチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムブロミド、ヘキサデシルピリジニウムブロミド、1-ブチル-3-メチルイミダゾリウムブロミド、トリブチルヘキサデシルホスホニウムブロミド、ギ酸亜鉛、酢酸亜鉛、プロピオン酸亜鉛、酪酸亜鉛、シュウ酸亜鉛、ヘプタデカフルオロノナン酸ナトリウム、ミリスチン酸ナトリウム、安息香酸ナトリウム、1−ヘキサデカンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、リン酸モノドデシルナトリウム、亜鉛アセチルアセトナート、クロム酸アンモニウム、メタバナジン酸アンモニウム、モリブデン酸アンモニウム、六フッ化ジルコニウム酸アンモニウム、タングステン酸ナトリウム、テトラクロロ亜鉛酸アンモニウム、オルトチタン酸テトライソプロピル、ニッケル酸リチウム、過マンガン酸カリウム、銀フェナントロリン錯体、AgTCNQや特開2013−58714記載の電子輸送層に用いられる化合物などが挙げられる。   Specifically, ammonium chloride, ammonium acetate, ammonium phosphate, hexyltrimethylammonium bromide, tetrabutylammonium bromide, octadecyltrimethylammonium bromide, hexadecylpyridinium bromide, 1-butyl-3-methylimidazolium bromide, tributylhexadecylphosphonium bromide , Zinc formate, zinc acetate, zinc propionate, zinc butyrate, zinc oxalate, sodium heptadecafluorononanoate, sodium myristate, sodium benzoate, sodium 1-hexadecane sulfonate, sodium dodecyl sulfate, sodium monododecyl phosphate, Zinc acetylacetonate, ammonium chromate, ammonium metavanadate, ammonium molybdate, zirconate hexafluoride Monium, sodium tungstate, ammonium tetrachlorozincate, tetraisopropyl orthotitanate, lithium nickelate, potassium permanganate, silver phenanthroline complex, AgTCNQ and compounds used for the electron transport layer described in JP-A-2013-58714, and the like. Can be

また、TiOなどの酸化チタン(TiO)、ZnOなどの酸化亜鉛(ZnO)、SiOなどの酸化ケイ素(SiO)、SnOなどの酸化錫(SnO)、WOなどの酸化タングステン(WO)、Taなどの酸化タンタル(TaO)、BaTiOなどのチタン酸バリウム(BaTi)、BaZrOなどのジルコン酸バリウム(BaZr)、ZrOなどの酸化ジルコニウム(ZrO)、HfOなどの酸化ハフニウム(HfO)、Alなどの酸化アルミニウム(AlO)、Yなどの酸化イットリウム(YO)、ZrSiOなどのケイ酸ジルコニウム(ZrSi)のような金属酸化物、Siなどの窒化ケイ素(SiN)のような窒化物、CdSなどの硫化カドミウム(CdS)、ZnSeなどのセレン化亜鉛(ZnSe)、ZnSなどの硫化亜鉛(ZnS)、CdTeなどのテルル化カドミウム(CdTe)のような半導体などの無機材料も好ましく用いられる。 Further, titanium oxide (TiO x ) such as TiO 2 , zinc oxide (ZnO x ) such as ZnO, silicon oxide (SiO x ) such as SiO 2 , tin oxide (SnO x ) such as SnO 2, and oxidation such as WO 3 tungsten (WO x), tantalum oxide such as Ta 2 O 3 (TaO x) , barium titanate, such as BaTiO 3 (BaTi x O y) , barium zirconate, such as BaZrO 3 (BaZr x O y) , ZrO 2 , etc. Zirconium oxide (ZrO x ), hafnium oxide (HfO x ) such as HfO 2 , aluminum oxide (AlO x ) such as Al 2 O 3, yttrium oxide (YO x ) such as Y 2 O 3 , and silicon such as ZrSiO 4 metal oxides such as zirconium (ZrSi x O y), silicon nitride such as Si 3 N 4 of (SiN x) Nitrides such as, a semiconductor such as cadmium sulfide, such as CdS (CdS x), zinc selenide (ZnSe x) such as ZnSe, zinc sulfide (ZnS x) such as ZnS, cadmium telluride, such as CdTe (CdTe x) Inorganic materials such as are also preferably used.

上記無機材料で電子取出し層を形成する方法としては、その金属塩や金属アルコキシドなどの前駆体溶液を塗布した後、加熱して層を形成する方法や、ナノ粒子分散液を基板に塗布して層を形成する方法がある。このとき、加熱温度や時間、及びナノ粒子の合成条件により、完全には反応が進行しておらず、部分的に加水分解したり、部分的に縮合したりすることで、中間生成物となったり、前駆体と中間性生物、最終生成物などの混合物となったりしても良い。   As a method of forming an electron extraction layer with the inorganic material, a method of forming a layer by applying a precursor solution such as a metal salt or a metal alkoxide, and then heating, or a method of applying a nanoparticle dispersion to a substrate. There is a method of forming a layer. At this time, depending on the heating temperature and time, and the conditions for synthesizing the nanoparticles, the reaction does not completely proceed, and is partially hydrolyzed or partially condensed to form an intermediate product. Alternatively, it may be a mixture of a precursor and an intermediate product, a final product, or the like.

本発明の光電変換素子は、1つ以上の電荷再結合層を介して2層以上の光電変換層を積層(タンデム化)して直列接合を形成してもよい。例えば、基板/正極/第1の光電変換層/電荷再結合層/第2の光電変換層/負極という積層構成を挙げることができる。このように積層することにより、開放電圧をより高くすることができる。なお、正極と第1の光電変換層の間、および、電荷再結合層と第2の光電変換層の間に上述の正孔輸送層を設けてもよく、第1の光電変換層と電荷再結合層の間、および、第2の光電変換層と負極の間に上述の電子輸送層を設けてもよい。   In the photoelectric conversion element of the present invention, two or more photoelectric conversion layers may be stacked (tandemly formed) via one or more charge recombination layers to form a series junction. For example, a laminated structure of substrate / positive electrode / first photoelectric conversion layer / charge recombination layer / second photoelectric conversion layer / negative electrode can be given. By stacking in this manner, the open-circuit voltage can be further increased. Note that the above-described hole transport layer may be provided between the positive electrode and the first photoelectric conversion layer and between the charge recombination layer and the second photoelectric conversion layer. The above-described electron transport layer may be provided between the bonding layer and between the second photoelectric conversion layer and the negative electrode.

ここで用いられる電荷再結合層は、複数の光電変換層が光吸収できるようにするため、光透過性を有する必要がある。また、電荷再結合層は、十分に正孔と電子が再結合するように設計されていればよいので、必ずしも膜である必要は無く、例えば光電変換層上に一様に形成された金属クラスターであってもかまわない。   The charge recombination layer used here needs to have light transmittance so that a plurality of photoelectric conversion layers can absorb light. The charge recombination layer is not necessarily a film, as long as it is designed so that holes and electrons are sufficiently recombined. For example, a metal cluster formed uniformly on the photoelectric conversion layer It may be.

電荷再結合層には、金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどからなる数オングストロームから数十オングストローム程度の光透過性を有する非常に薄い金属膜や金属クラスター(合金を含む)、ITO、IZO、AZO、GZO、FTO、酸化チタンや酸化モリブデンなどの光透過性の高い金属酸化物膜およびクラスター、PEDOT:PSSなどの導電性有機材料膜、またはこれらの複合体等が用いられる。   The charge recombination layer includes a very thin metal film or metal cluster having a light transmittance of several Angstroms to several tens Angstroms made of gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, aluminum, etc. (Including alloys), ITO, IZO, AZO, GZO, FTO, metal oxide films and clusters with high light transmission such as titanium oxide and molybdenum oxide, conductive organic material films such as PEDOT: PSS, or composites thereof A body or the like is used.

本発明において、光起電力素子の受光面と非受光面の両面に繊維構造物を設けてなりとは、光発電力素子の表面と裏面に繊維構造物を配置することである。ここで光発電力素子の表面と裏面に繊維構造物を配置する形態としては、光起電力素子の両面に繊維構造物を設置、固定、接着などすればよい。光起電力素子の両面の繊維構造物は、両面同一の繊維構造物でもよいし、異なる繊維構造物でもよい。繊維構造物は、着色されていてもよい。着色する方法としては、染色、プリント、コーティング等既知の方法を用いる。繊維構造物と光起電力素子の間には、本発明の効果を妨げない範囲で、接着剤、接着材、空隙などが存在していてもよい。   In the present invention, the provision of the fiber structure on both the light receiving surface and the non-light receiving surface of the photovoltaic device means that the fiber structure is disposed on the front surface and the back surface of the photovoltaic device. Here, as a mode of arranging the fiber structure on the front surface and the back surface of the photovoltaic element, the fiber structure may be installed, fixed, adhered, or the like on both surfaces of the photovoltaic element. The fiber structures on both sides of the photovoltaic element may be the same fiber structures on both sides or different fiber structures. The fibrous structure may be colored. As a coloring method, a known method such as dyeing, printing, and coating is used. An adhesive, an adhesive, a void, and the like may exist between the fiber structure and the photovoltaic element as long as the effects of the present invention are not impaired.

本発明で光起電力素子と繊維構造物を接着する場合、その接着は光起電力素子あるいは繊維構造物の一部を溶融して接着する方式でもよいし、接着剤あるいは接着材を用いる方式でもよい。接着する場合は、接着剤あるいは接着材は透明であることが望ましい。   When the photovoltaic element and the fiber structure are bonded in the present invention, the bonding may be performed by melting and bonding a part of the photovoltaic element or the fiber structure, or by using an adhesive or an adhesive. Good. When bonding, it is desirable that the adhesive or the adhesive is transparent.

本発明の光起電力素子の受光面に設けられている繊維構造物は、光起電力素子に光エネルギーを十分に吸収できるよう、光起電力素子の受光面側に設けられた繊維構造物の光透過率が10%以上98%以下であることが望ましい。この理由は光透過率がこれより小さいと光が透過せず、光エネルギーを十分に吸収することができない。光透過率がこれより大きいと光起電力素子の存在が明らかになりすぎて十分な装飾性が得られにくくなる。ここで光透過率は、測色計(SIMAZU社製UV−3150など)を透過測定モードで使用し、布帛を設置しない場合と布帛を設置した場合の全波長積分強度の比から算出すればよい。   The fiber structure provided on the light receiving surface of the photovoltaic element of the present invention is a fiber structure provided on the light receiving surface side of the photovoltaic element so that the photovoltaic element can sufficiently absorb light energy. It is desirable that the light transmittance is 10% or more and 98% or less. The reason for this is that if the light transmittance is smaller than this, light will not be transmitted and light energy cannot be sufficiently absorbed. If the light transmittance is larger than this, the existence of the photovoltaic element becomes too obvious, and it becomes difficult to obtain sufficient decorativeness. Here, the light transmittance may be calculated using a colorimeter (such as UV-3150 manufactured by SIMAZU) in the transmission measurement mode, and from the ratio of the integrated intensity of all wavelengths when the fabric is not installed and when the fabric is installed. .

本発明の光発電構造物は、柔軟性に富み自由な形に変形することを可能とするために、繊維構造物の風合い測定システムとして一般的に用いられているKES(Kawabata Evaluation System)で規定される曲げ剛性測定値(B)が0.01×10−4N・m/m以上6×10−4N・m/m以下であることが望ましい。ここで、曲げ剛性測定値(B)の単位は10−4N・m/mとする。この理由は曲げ剛性がこれより大きいと、曲げ変形に必要な力が大きく自由な変形はできなくなるからで、曲げ剛性がこれより小さいものは素材や厚みが光起電力素子としての機能を果たすに十分な構成にできない傾向があるからである。本発明ではより柔軟性の高い複合体ほどデザインの自由度が高まるため、この曲げ剛性測定値は3×10−4N・m/m以下であるとより好ましい。 The photovoltaic structure of the present invention is specified by KES (Kawabata Evaluation System), which is generally used as a texture measuring system for a fiber structure, in order to be capable of being deformed into a flexible and free form. It is desirable that the measured bending stiffness value (B) be 0.01 × 10 −4 N · m 2 / m or more and 6 × 10 −4 N · m 2 / m or less. Here, the unit of the measured bending stiffness (B) is 10 −4 N · m 2 / m. The reason is that if the bending stiffness is larger than this, the force required for bending deformation is large and it is not possible to perform free deformation, and if the bending stiffness is smaller than this, the material and thickness will function as a photovoltaic element. This is because there is a tendency that a sufficient configuration cannot be obtained. In the present invention, the higher the flexibility of the composite, the higher the degree of freedom in design. Therefore, it is more preferable that the measured value of the bending stiffness is 3 × 10 −4 N · m 2 / m or less.

このような柔軟性を得るため、本発明の光起電力素子に用いる基板は厚みが80μm以下であることが望ましい。さらに60μm以下であることが望ましく、40μm以下であることがより望ましい。一方で、機械強度の観点から1μm以上であることが望ましい。さらに5μm以上であることが望ましく、10μm以上がより望ましい。   In order to obtain such flexibility, the substrate used for the photovoltaic element of the present invention preferably has a thickness of 80 μm or less. Further, the thickness is desirably 60 μm or less, and more desirably 40 μm or less. On the other hand, the thickness is preferably 1 μm or more from the viewpoint of mechanical strength. Further, the thickness is preferably 5 μm or more, more preferably 10 μm or more.

次に本発明の光発電構造物の製造方法について説明する。本発明では、光起電力素子と繊維構造物を接着する。ここで接着するとは、接着剤あるいは接着材を用いて光起電力素子と繊維構造物を接合することをいう。光起電力素子と繊維構造物の接合は、光起電力素子の受光面でも非受光面でも問題はない。光起電力素子の非受光面と接合することが好ましい。接着剤とは糊などのように化学物質で構成されて基材同士の接合を行うものの総称であり、接着材とはネジやピンやボタンなどのように物理的に基材同士の接合を行うものの総称である。   Next, a method for manufacturing the photovoltaic structure of the present invention will be described. In the present invention, the photovoltaic element and the fiber structure are bonded. Here, "to bond" means to bond the photovoltaic element and the fiber structure using an adhesive or an adhesive. There is no problem in joining the photovoltaic element and the fiber structure on the light receiving surface or the non-light receiving surface of the photovoltaic element. It is preferable to join with the non-light receiving surface of the photovoltaic element. Adhesive is a general term for the bonding of base materials composed of chemical substances such as glue, and the adhesive is the physical bonding of base materials like screws, pins, buttons, etc. It is a generic term for things.

本発明では接着剤、特に透明で低モジュラスである接着剤を用いることが望ましい。この理由は、透明な接着剤を用いることで、光発電構造物は、光をできるだけ多く吸収することができ、低モジュラス接着剤を用いることで光発電構造物は、柔軟性に富み、自由な形に変形が可能となるからである。透明な接着剤の例としてはエポキシ系、シアノアクリレート系、ウレタン系、メラミン系、アクリル系その他の種々の接着剤の中で透明性の高いものを用いればよい。特に透明性が高く、低モジュラスである接着剤が好ましい。接着剤のモジュラスは、10MPa以下が好ましく、もっとも好ましい5MPa以下である。   In the present invention, it is desirable to use an adhesive, particularly a transparent and low modulus adhesive. The reason is that by using a transparent adhesive, the photovoltaic structure can absorb as much light as possible, and by using a low-modulus adhesive, the photovoltaic structure is flexible and free. This is because the shape can be deformed. As an example of the transparent adhesive, an epoxy-based, cyanoacrylate-based, urethane-based, melamine-based, acrylic-based or other various adhesive having high transparency may be used. Particularly, an adhesive having high transparency and low modulus is preferable. The modulus of the adhesive is preferably 10 MPa or less, most preferably 5 MPa or less.

また、本発明で用いる接着剤のタイプとしては熱硬化型、湿気硬化型、ホットメルト型、光硬化型など、種々のタイプのものを用いることができる。   Further, as the type of the adhesive used in the present invention, various types such as a thermosetting type, a moisture setting type, a hot melt type, and a light setting type can be used.

接着剤の塗布はスクリーン印刷や各種コーティング装置などを用いて行い、光起電力素子および/または繊維構造物に塗布した後、圧着してそれぞれのタイプの接着剤に合わせた方法で接着剤を硬化させる。例えば、熱硬化型接着剤の場合は120〜150℃程度の温度で熱処理、加圧加熱処理を行えばよい。熱処理、加圧加熱処理方法は、特に限定されるものではないが、熱風通過などの熱処理、カレンダー加工、エンボス加工、ホットプレス加工などの加圧加熱処理などが挙げられる。   The adhesive is applied using screen printing or various coating equipment, applied to the photovoltaic element and / or fiber structure, and then pressed and cured to match the adhesive of each type. Let it. For example, in the case of a thermosetting adhesive, a heat treatment and a pressure and heat treatment may be performed at a temperature of about 120 to 150 ° C. The heat treatment and the pressure and heat treatment method are not particularly limited, and examples thereof include a heat treatment such as passing hot air, and a pressure and heat treatment such as calendering, embossing, and hot pressing.

本発明の光発電繊維構造物の光起電力素子の受光面と非受光面の両面の繊維構造物の固定、接着は、特に規定はなく、一般的に用いられる方法でよい。   The fixing and bonding of the fiber structure on both the light-receiving surface and the non-light-receiving surface of the photovoltaic element of the photovoltaic fiber structure of the present invention are not particularly limited, and may be a commonly used method.

本発明の光発電繊維構造物は、腕時計、携帯電話、エアーファン、エアーヒーター、ウェアラブルデバイスなどのバッテリーとして、また、非常用電源、山岳・海洋地帯の観測機器、宇宙ステーションまで好適に用いられる。   The photovoltaic fiber structure of the present invention is suitably used as a battery for a wristwatch, a mobile phone, an air fan, an air heater, a wearable device, and the like, as well as an emergency power supply, a mountain / marine zone observation device, and a space station.

<密度>
2010年度版JIS L1906記載の密度評価方法に準拠して測定した。
<Density>
It was measured according to the density evaluation method described in JIS L1906 for the 2010 edition.

<目付>
2010年度版JIS L1906記載の単位面積当たりの質量の密度評価方法に準拠して測定した。
<Weight>
It was measured according to the density evaluation method of mass per unit area described in JIS L1906 in the 2010 edition.

<色差ΔE*ab>
分光測色計(ミノルタ株式会社製:CM−3700d)を用いて、受光面側に用いた繊維構造物および非受講面側に用いた繊維構造物のそれぞれについてL* a* b* を測定し、次の式から色差ΔEabを算出した。
ΔEab={(ΔL+(Δa+(Δb1/2
ΔL:本発明の光起電力素子の受光面に設けられている繊維構造物の明度L
−本発明の光起電力素子の非受光面に設けられている繊維構造物の明度L
Δa:本発明の光起電力素子の受光面に設けられている繊維構造物の色度a
−本発明の光起電力素子の非受光面に設けられている繊維構造物の色度a
Δb:本発明の光起電力素子の受光面に設けられている繊維構造物の色度b
−本発明の光起電力素子の非受光面に設けられている繊維構造物の色度b
<Color difference ΔE * ab>
Using a spectrophotometer (manufactured by Minolta: CM-3700d), L * a * b * was measured for each of the fiber structure used on the light receiving surface side and the fiber structure used on the non-learning surface side. The color difference ΔE * ab was calculated from the following equation.
ΔE * ab = {(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 } 1/2
[Delta] L *: lightness L * value of the fiber structure is provided on the light receiving surface of the photovoltaic element of the present invention - the brightness of the fiber structure is provided on the non-light-receiving surface of the photovoltaic element of the present invention L * Value Δa * : chromaticity a * of the fiber structure provided on the light-receiving surface of the photovoltaic device of the present invention a * value-color of the fiber structure provided on the non-light-receiving surface of the photovoltaic device of the present invention Degree a * value Δb * : chromaticity b * value of the fiber structure provided on the light receiving surface of the photovoltaic device of the present invention—fiber structure provided on the non-light receiving surface of the photovoltaic device of the present invention Chromaticity b * value of object

<光発電素子の受光面に設けられた繊維構造物の光透過率>
受光面に設けた繊維構造物について、測色計(ミノルタ3700d)を透過測定モードで使用し、繊維構造物を設置しない場合と繊維構造物を設置した場合全波長積分強度の比から算出した。
<Light transmittance of fiber structure provided on light receiving surface of photovoltaic element>
With respect to the fiber structure provided on the light receiving surface, a colorimeter (Minolta 3700d) was used in the transmission measurement mode, and the calculation was performed from the ratio of the integrated intensity of the entire wavelength when the fiber structure was not installed and when the fiber structure was installed.

<光電変換効率>
光発電繊維構造物中の光起電力素子の正極と負極をケースレー社製2400シリーズソースメータに接続して、大気中でITO層側から擬似太陽光(分光計器株式会社製 OTENTO−SUNIII、スペクトル形状:AM1.5、強度:100mW/cm)を照射し、印加電圧を−1Vから+2Vまで変化させたときの電流値を測定した。得られた電流値より光電変換効率(η)を算出した。
<Photoelectric conversion efficiency>
The positive and negative electrodes of the photovoltaic element in the photovoltaic fiber structure were connected to a Keithley 2400 series source meter, and simulated sunlight (OTENTO-SUNIII, manufactured by Spectrometer Co., Ltd., spectrum shape) from the ITO layer side in the atmosphere. : AM 1.5, intensity: 100 mW / cm 2 ), and the current value when the applied voltage was changed from -1 V to +2 V was measured. The photoelectric conversion efficiency (η) was calculated from the obtained current value.

<曲げ剛性>
光発電繊維研構造物について、風合い計測システムKES(Kawabata Evaluation System)測定機(カトーテック社製)を用い、試料の曲げ剛性のたて、よこの平均値Bを測定した。
<Bending rigidity>
For the photovoltaic fiber lab structure, the average value B of the bending stiffness of the sample was measured using a texture measurement system KES (Kawabata Evaluation System) measuring machine (manufactured by Kato Tech).

なお、本発明は下記実施例に限定されるものではない。また実施例等で用いた化合物のうち、略語を使用しているものについて、以下に示す。
ITO:インジウム錫酸化物
PEDOT:ポリエチレンジオキシチオフェン(正孔輸送層を形成する材料)
PSS:ポリスチレンスルホネート
A−1:下記式で表される化合物(nは重合度)
Note that the present invention is not limited to the following examples. Further, among the compounds used in Examples and the like, those using abbreviations are shown below.
ITO: indium tin oxide PEDOT: polyethylene dioxythiophene (material forming a hole transport layer)
PSS: polystyrene sulfonate A-1: a compound represented by the following formula (n is the degree of polymerization)

[70]PCBM:フェニル C71 ブチリックアシッドメチルエステル(電子受容性有機材料)
THF:テトラヒドロフラン
n−BuLi:ノルマルブチルリチウム
[70] PCBM: phenyl C 71 butyric acid methyl ester (electron-accepting organic material)
THF: tetrahydrofuran n-BuLi: normal butyl lithium

[合成例1]
化合物A−1を式1に示す方法で合成した。なお、化合物(1−i)はジャーナルオブザアメリカンケミカルソサエティ(Journal of the American Chemical Society)、2009年、131巻、7792−7799頁に記載されている方法を参考に、化合物(1−p)はアンゲバンテケミ インターナショナルエディション(Angewandte Chem Internatioal Edition)、2011年、50巻、9697−9702頁に記載されている方法を参考にして合成した。
[Synthesis Example 1]
Compound A-1 was synthesized by the method shown in Formula 1. Compound (1-i) was prepared by referring to the method described in Journal of the American Chemical Society, 2009, vol. 131, pp. 7792-7799, and It was synthesized with reference to the method described in Angewandte Chem International Edition, 2011, Vol. 50, pp. 9697-9702.

メチル−2−チオフェンカルボキシレート(東京化成工業(株)製)38g(0.27mol)およびクロロメチルメチルエーテル(東京化成工業(株)製)108g(1.34mol)を0℃で撹拌しているところに、四塩化スズ(和光純薬工業(株)製)125g(0.48mol)を1時間かけて加え、その後室温で8時間撹拌した。撹拌終了後、水100mlを0℃でゆっくり加え、クロロホルムで3回抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで溶媒を乾燥後、溶媒を減圧除去した。得られた茶褐色固体をメタノールから再結晶することにより化合物(1−b)を薄黄色固体(24.8g、収率39%)として得た。化合物(1−b)のH−NMRの測定結果を以下に示す。なお、H−NMR測定にはFT−NMR装置((株)日本電子製JEOL JNM−EX270)を用いた。
H−NMR(270MHz,CDCl):7.71(s,1H),4.79(s,1H),4.59(s,1H),3.88(s,3H)ppm。
38 g (0.27 mol) of methyl-2-thiophene carboxylate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 108 g (1.34 mol) of chloromethyl methyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) are stirred at 0 ° C. Meanwhile, 125 g (0.48 mol) of tin tetrachloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added over 1 hour, and the mixture was stirred at room temperature for 8 hours. After completion of the stirring, 100 ml of water was slowly added at 0 ° C., and the mixture was extracted three times with chloroform. The organic layer was washed with brine, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The resulting brown solid was recrystallized from methanol to obtain a compound (1-b) as a pale yellow solid (24.8 g, yield 39%). The measurement results of 1 H-NMR of the compound (1-b) are shown below. In addition, an FT-NMR apparatus (JEOL JNM-EX270 manufactured by JEOL Ltd.) was used for the 1 H-NMR measurement.
1 H-NMR (270MHz, CDCl 3): 7.71 (s, 1H), 4.79 (s, 1H), 4.59 (s, 1H), 3.88 (s, 3H) ppm.

上記化合物(1−b)24.8g(0.10mmol)をメタノール(佐々木化学工業(株)製)1.2Lに溶解させ、60℃で撹拌しているところに硫化ナトリウム(アルドリッチ社製)8.9g(0.11mol)のメタノール溶液100mlを1時間かけて滴下し、さらに60℃で4時間撹拌した。反応終了後、溶媒を減圧除去し、クロロホルム200mlと水200mlを加え、不溶物をろ別した。有機層を水で2回、飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧除去した。粗精製物をシリカゲルカラムクロマトグラフィー(溶離液、クロロホルム)で精製することにより化合物(1−c)を白色固体(9.8g、収率48%)として得た。化合物(1−c)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):7.48(s,1H),4.19(t,J=3.0Hz,2H),4.05(t,J=3.0Hz,2H),3.87(s,3H)ppm。
24.8 g (0.10 mmol) of the above compound (1-b) was dissolved in 1.2 L of methanol (manufactured by Sasaki Chemical Industry Co., Ltd.), and sodium sulfide (manufactured by Aldrich) 8 was stirred at 60 ° C. A solution of 0.9 g (0.11 mol) in 100 ml of methanol was added dropwise over 1 hour, and the mixture was further stirred at 60 ° C. for 4 hours. After completion of the reaction, the solvent was removed under reduced pressure, 200 ml of chloroform and 200 ml of water were added, and insolubles were removed by filtration. The organic layer was washed twice with water and once with saturated saline, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (eluent, chloroform) to give compound (1-c) as a white solid (9.8 g, yield 48%). The results of 1 H-NMR measurement of compound (1-c) are shown below.
1 H-NMR (270MHz, CDCl 3): 7.48 (s, 1H), 4.19 (t, J = 3.0Hz, 2H), 4.05 (t, J = 3.0Hz, 2H), 3.87 (s, 3H) ppm.

上記化合物(1−c)9.8g(49mmol)に水100mlついで3M水酸化ナトリウム水溶液30mlを加え、80℃で4時間加熱撹拌した。反応終了後、濃塩酸15mlを0℃で加え、析出した固体をろ取し、水で数回洗浄した。得られた固体を乾燥し、化合物(1−d)を白色固体(8.9g、収率98%)として得た。
H−NMR(270MHz,DMSO−d):7.46(s,1H),4.18(t,J=3.2Hz,2H),4.01(t,J=3.2Hz,2H)ppm。
To 9.8 g (49 mmol) of the above compound (1-c), 100 ml of water and then 30 ml of a 3M aqueous sodium hydroxide solution were added, and the mixture was heated with stirring at 80 ° C. for 4 hours. After completion of the reaction, 15 ml of concentrated hydrochloric acid was added at 0 ° C., and the precipitated solid was collected by filtration and washed with water several times. The obtained solid was dried to obtain compound (1-d) as a white solid (8.9 g, yield 98%).
1 H-NMR (270 MHz, DMSO-d 6 ): 7.46 (s, 1 H), 4.18 (t, J = 3.2 Hz, 2 H), 4.01 (t, J = 3.2 Hz, 2 H) ) Ppm.

上記化合物(1−d)1.46g(7.8mmol)を脱水テトラヒドロフラン(和光純薬工業(株)製)60mlに溶解し、−78℃で撹拌しているところに、ノルマルブチルリチウムヘキサン溶液(1.6M、和光純薬工業(株)製)10.7ml(17.2mmol)を滴下し、−78℃で1時間攪拌した。次いでN−フルオロベンゼンスルホンイミド(東京化成工業(株)製)4.91g(15.6mmol)の乾燥テトラヒドロフラン溶液20mlを−78℃で10分間かけて滴下し、室温で12時間攪拌した。反応終了後、水50mlをゆっくり加えた。3M塩酸を加えて水層を酸性にした後、クロロホルムで3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、酢酸エチル)で副生成物を除去した後に酢酸エチルから再結晶することで化合物(1−e)を薄黄色粉末(980mg、収率61%)として得た。化合物(1−e)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,DMSO−d):13.31(brs,1H),4.20(t,J=3.0Hz,2H),4.03(t,J=3.0Hz,2H)ppm。
1.46 g (7.8 mmol) of the above compound (1-d) was dissolved in 60 ml of dehydrated tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), and stirred at -78 ° C. 10.7 ml (17.2 mmol) of 1.6 M, manufactured by Wako Pure Chemical Industries, Ltd. was added dropwise, and the mixture was stirred at -78 ° C for 1 hour. Next, 20 ml of a dry tetrahydrofuran solution of 4.91 g (15.6 mmol) of N-fluorobenzenesulfonimide (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise at -78 ° C over 10 minutes, and the mixture was stirred at room temperature for 12 hours. After completion of the reaction, 50 ml of water was slowly added. The aqueous layer was made acidic by adding 3M hydrochloric acid, and then extracted three times with chloroform. After the organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. After removing by-products by silica gel column chromatography (eluent, ethyl acetate), the product was recrystallized from ethyl acetate to obtain a compound (1-e) as a pale yellow powder (980 mg, yield 61%). The results of 1 H-NMR measurement of the compound (1-e) are shown below.
1 H-NMR (270MHz, DMSO -d 6): 13.31 (brs, 1H), 4.20 (t, J = 3.0Hz, 2H), 4.03 (t, J = 3.0Hz, 2H ) Ppm.

上記化合物(1−e)800mg(3.9mmol)の脱水ジクロロメタン(和光純薬工業(株)製)溶液10mlに、オキサリルクロリド(東京化成工業(株)製)1ml、次いでジメチルホルムアミド(和光純薬工業(株)製)1滴を加え、室温で3時間攪拌した。溶媒と過剰の塩化オキサリルを減圧除去することで、化合物(1−f)を黄色オイルとして得た。化合物(1−f)はそのまま次の反応に用いた。   To 10 ml of a solution of 800 mg (3.9 mmol) of the above compound (1-e) in dehydrated dichloromethane (manufactured by Wako Pure Chemical Industries, Ltd.), 1 ml of oxalyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), and then dimethylformamide (Wako Pure Chemical Industries, Ltd.) (Manufactured by Kogyo Co., Ltd.), and the mixture was stirred at room temperature for 3 hours. The solvent and excess oxalyl chloride were removed under reduced pressure to obtain compound (1-f) as a yellow oil. Compound (1-f) was used for the next reaction as it was.

上記化合物(1−f、粗精製物)のジクロロメタン溶液10mlを1−オクタノール(和光純薬工業(株)製)1.3g(10mmol)およびトリエチルアミン(和光純薬工業(株)製)800mg(8mmol)のジクロロメタン溶液15mlに室温で加え、6時間室温で撹拌した。反応溶液を1M塩酸で2回、水で1回、飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、クロロホルム)で精製することにより化合物(1−g)を薄黄色固体(1.12g、収率90%)として得た。化合物(1−g)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):4.27(t,J=6.7Hz,2H),4.16(t,J=3.0Hz,2H),4.01(t,J=3.0Hz,2H),1.72(m,2H),1.5−1.3(m,12H),0.88(t,J=7.0Hz,3H)ppm。
1.3 g (10 mmol) of 1-octanol (manufactured by Wako Pure Chemical Industries, Ltd.) and 800 mg (8 mmol) of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) were added to 10 ml of a dichloromethane solution of the above compound (1-f, partially purified product). )) At room temperature and stirred at room temperature for 6 hours. The reaction solution was washed twice with 1M hydrochloric acid, once with water and once with saturated saline, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The compound (1-g) was obtained as a pale yellow solid (1.12 g, yield 90%) by purifying by silica gel column chromatography (eluent, chloroform). The measurement results of 1 H-NMR of the compound (1-g) are shown below.
1 H-NMR (270 MHz, CDCl 3 ): 4.27 (t, J = 6.7 Hz, 2H), 4.16 (t, J = 3.0 Hz, 2H), 4.01 (t, J = 3) 0.0 Hz, 2H), 1.72 (m, 2H), 1.5-1.3 (m, 12H), 0.88 (t, J = 7.0 Hz, 3H) ppm.

上記化合物(1−g)1.1g(3.5mmol)の酢酸エチル溶液40mlに、メタクロロ安息香酸(ナカライテスク(株)製)630mg(3.6mmol)の酢酸エチル溶液10mlを0℃で滴下し、室温で5時間攪拌した。溶媒を減圧除去した後に無水酢酸30mlを加え、3時間加熱還流した。溶媒を再び減圧除去した後にシリカゲルカラムクロマトグラフィー(溶離液、ジクロロメタン:ヘキサン=1:1)で精製することにより化合物(1−h)を薄黄色オイル(1.03g、収率94%)として得た。化合物(1−h)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):7.65(d,J=2.7Hz,1H),7.28(dd,J=2.7Hz and 5.4Hz,1H),4.31(t,J=6.8Hz,2H),1.75(m,2H),1.42−1.29(m,12H),0.89(t,J=6.8Hz,3H)ppm。
To 40 ml of an ethyl acetate solution of 1.1 g (3.5 mmol) of the above compound (1-g), 10 ml of an ethyl acetate solution of 630 mg (3.6 mmol) of metachlorobenzoic acid (manufactured by Nacalai Tesque, Inc.) was added dropwise at 0 ° C. And stirred at room temperature for 5 hours. After removing the solvent under reduced pressure, 30 ml of acetic anhydride was added, and the mixture was heated under reflux for 3 hours. After removing the solvent again under reduced pressure, the residue was purified by silica gel column chromatography (eluent, dichloromethane: hexane = 1: 1) to obtain compound (1-h) as a pale yellow oil (1.03 g, yield 94%). Was. The results of 1 H-NMR measurement of compound (1-h) are shown below.
1 H-NMR (270 MHz, CDCl 3 ): 7.65 (d, J = 2.7 Hz, 1 H), 7.28 (dd, J = 2.7 Hz and 5.4 Hz, 1 H), 4.31 (t) , J = 6.8 Hz, 2H), 1.75 (m, 2H), 1.42-1.29 (m, 12H), 0.89 (t, J = 6.8 Hz, 3H) ppm.

上記化合物(1−h)1.0g(3.2mmol)のジメチルホルムアミド溶液20mlに、N−ブロモスクシンイミド(和光純薬工業(株)製)1.25g(7.0mmol)を室温で加え、3時間室温で撹拌した。反応終了後、5%チオ硫酸ナトリウム水溶液10mlを加え、5分間攪拌した。酢酸エチル80mlを加え、有機層を水で5回、飽和食塩水で1回洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、クロロホルム:ヘキサン=1:3)で精製することにより化合物(1−i)を薄黄色固体(1.2g、収率79%)として得た。化合物(1−i)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):4.32(t,J=6.5Hz,2H),1.75(m,2H),1.42−1.29(m,12H),0.89(t,J=6.8Hz,3H)ppm。
To a solution of 1.0 g (3.2 mmol) of the above compound (1-h) in 20 ml of dimethylformamide, 1.25 g (7.0 mmol) of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) was added at room temperature. Stirred at room temperature for hours. After completion of the reaction, 10 ml of a 5% aqueous sodium thiosulfate solution was added, and the mixture was stirred for 5 minutes. 80 ml of ethyl acetate was added, and the organic layer was washed five times with water and once with saturated saline, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The compound (1-i) was obtained as a pale yellow solid (1.2 g, yield 79%) by purification by silica gel column chromatography (eluent, chloroform: hexane = 1: 3). The results of 1 H-NMR measurement of compound (1-i) are shown below.
1 H-NMR (270 MHz, CDCl 3 ): 4.32 (t, J = 6.5 Hz, 2H), 1.75 (m, 2H), 1.42-1.29 (m, 12H), 0. 89 (t, J = 6.8 Hz, 3H) ppm.

ジエチルアミン(和光純薬工業(株)製)110g(1.5mol)のジクロロメタン溶液300mlに、3−チオフェンカルボニルクロリド(和光純薬工業(株)製)100g(0.68mol)を0℃で1時間かけて加え、室温で3時間攪拌した。撹拌終了後、水200mlを加え、有機層を水で3回、飽和食塩水で1回洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣を減圧蒸留することにより、化合物(1−k)を淡橙色液体(102g、収率82%)として得た。化合物(1−k)のH−NMRの測定結果を以下に示す。 To 300 ml of a dichloromethane solution of 110 g (1.5 mol) of diethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added 100 g (0.68 mol) of 3-thiophenecarbonyl chloride (manufactured by Wako Pure Chemical Industries, Ltd.) at 0 ° C. for 1 hour. And stirred at room temperature for 3 hours. After completion of the stirring, 200 ml of water was added, and the organic layer was washed three times with water and once with saturated saline. After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The residue was distilled under reduced pressure to obtain the compound (1-k) as a pale orange liquid (102 g, yield 82%). The results of 1 H-NMR measurement of compound (1-k) are shown below.

H−NMR(270MHz,CDCl):7.47(dd,J=3.2Hz and 1.0Hz,1H),7.32(dd,J=5.0Hz and 3.2Hz,1H),7.19(dd,J=5.0Hz and 1.0Hz,1H),3.43(brs,4H),1.20(t,J=6.5Hz,6H)ppm。 1 H-NMR (270 MHz, CDCl 3 ): 7.47 (dd, J = 3.2 Hz and 1.0 Hz, 1H), 7.32 (dd, J = 5.0 Hz and 3.2 Hz, 1H), 7 .19 (dd, J = 5.0 Hz and 1.0 Hz, 1H), 3.43 (brs, 4H), 1.20 (t, J = 6.5 Hz, 6H) ppm.

上記化合物(1−k)73.3g(0.40mol)の脱水テトラヒドロフラン(和光純薬工業(株)製)溶液400mlに、ノルマルブチルリチウムヘキサン溶液(1.6M、和光純薬工業(株)製)250ml(0.40mol)を0℃で30分間かけて滴下した。滴下終了後、室温で4時間攪拌した。撹拌終了後、水100mlをゆっくり加えしばらく撹拌した後、反応混合物を水800mlに注いだ。析出した固体をろ取し、水、メタノール、ついでヘキサンの順で洗浄することにより化合物(1−l)を黄色固体(23.8g、収率27%)として得た。化合物(1−l)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):7.69(d,J=4.9Hz,2H),7.64(d,J=4.9Hz,2H)ppm。
In a 400 ml solution of 73.3 g (0.40 mol) of the above compound (1-k) in dehydrated tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), a normal butyl lithium hexane solution (1.6 M, manufactured by Wako Pure Chemical Industries, Ltd.) ) 250 ml (0.40 mol) was added dropwise at 0 ° C over 30 minutes. After completion of the dropwise addition, the mixture was stirred at room temperature for 4 hours. After completion of the stirring, 100 ml of water was slowly added, and the mixture was stirred for a while, and then the reaction mixture was poured into 800 ml of water. The precipitated solid was collected by filtration, and washed with water, methanol, and then hexane in this order to obtain compound (1-1) as a yellow solid (23.8 g, yield 27%). The results of 1 H-NMR measurement of compound (1-1) are shown below.
1 H-NMR (270MHz, CDCl 3): 7.69 (d, J = 4.9Hz, 2H), 7.64 (d, J = 4.9Hz, 2H) ppm.

チオフェン42g(0.50mol)の脱水テトラヒドロフラン(和光純薬工業(株)製)溶液400mlに、ノルマルブチルリチウムヘキサン溶液(1.6M、和光純薬工業(株)製)250ml(0.40mol)を−78℃で30分間かけて滴下した。反応混合物を−78℃で1時間攪拌した後、2−エチルヘキシルブロミド(和光純薬工業(株)製)76.4g(0.40mol)を−78℃で15分間かけて滴下した。反応溶液を室温で30分間撹拌した後、60℃で6時間加熱撹拌した。撹拌終了後、反応溶液を室温まで冷却し、水200mlおよびジエチルエーテル200mlを加えた。有機層を水で2回、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣を減圧蒸留することで化合物(1−n)を無色液体(28.3g、36%)として得た。化合物(1−n)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):7.11(d,4.9Hz,1H),6.92(dd,4.9Hz and 3.2Hz,1H),6.76(d,J=3.2Hz,1H),2.76(d,J=6.8Hz,2H),1.62(m,1H),1.4−1.3(m,8H),0.88(m,6H)ppm。
To 400 ml of a solution of 42 g (0.50 mol) of thiophene in dehydrated tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was added 250 ml (0.40 mol) of a normal butyllithium hexane solution (1.6 M, manufactured by Wako Pure Chemical Industries, Ltd.). It was added dropwise at -78 ° C over 30 minutes. After the reaction mixture was stirred at -78 ° C for 1 hour, 76.4 g (0.40 mol) of 2-ethylhexyl bromide (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise at -78 ° C over 15 minutes. After stirring the reaction solution at room temperature for 30 minutes, it was heated and stirred at 60 ° C. for 6 hours. After completion of the stirring, the reaction solution was cooled to room temperature, and 200 ml of water and 200 ml of diethyl ether were added. The organic layer was washed twice with water and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was distilled under reduced pressure to obtain compound (1-n) as a colorless liquid (28.3 g, 36%). The results of 1 H-NMR measurement of compound (1-n) are shown below.
1 H-NMR (270MHz, CDCl 3): 7.11 (d, 4.9Hz, 1H), 6.92 (dd, 4.9Hz and 3.2Hz, 1H), 6.76 (d, J = 3 .2 Hz, 1H), 2.76 (d, J = 6.8 Hz, 2H), 1.62 (m, 1H), 1.4-1.3 (m, 8H), 0.88 (m, 6H) ) Ppm.

上記化合物(1−n)17.5g(89mmol)の脱水テトラヒドロフラン(和光純薬工業(株)製)溶液400mlに、ノルマルブチルリチウムヘキサン溶液(1.6M、和光純薬工業(株)製)57ml(89mmol)を0℃で30分間かけて滴下した。反応溶液を50℃で1時間撹拌した後、上記化合物(1−l)4.9g(22mmol)を50℃で加え、そのまま1時間撹拌した。撹拌終了後、反応溶液を0℃に冷却し、塩化すず二水和物(和光純薬工業(株)製)39.2g(175mmol)を10%塩酸80mlに溶かした溶液を加え、室温で1時間撹拌した。撹拌終了後、水200ml、ジエチルエーテル200mlを加え、有機層を水で2回、次いで飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(溶離液、ヘキサン)で精製することにより化合物(1−o)を黄色オイル(7.7g、収率59%)として得た。化合物(1−o)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):7.63(d,J=5.7Hz,1H),7.45(d,J=5.7Hz,1H),7.29(d,J=3.6Hz,1H),6.88(d,J=3.6Hz,1H),2.86(d,J=7.0Hz,2H),1.70−1.61(m,1H),1.56−1.41(m,8H),0.97−0.89(m,6H)ppm。
To a solution of 17.5 g (89 mmol) of the above compound (1-n) in 400 ml of dehydrated tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was added 57 ml of a normal butyllithium hexane solution (1.6 M, manufactured by Wako Pure Chemical Industries, Ltd.). (89 mmol) was added dropwise at 0 ° C. over 30 minutes. After stirring the reaction solution at 50 ° C. for 1 hour, 4.9 g (22 mmol) of the above compound (1-1) was added at 50 ° C., and the mixture was stirred as it was for 1 hour. After completion of the stirring, the reaction solution was cooled to 0 ° C., and a solution prepared by dissolving 39.2 g (175 mmol) of tin chloride dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 80 ml of 10% hydrochloric acid was added. Stirred for hours. After completion of the stirring, 200 ml of water and 200 ml of diethyl ether were added, and the organic layer was washed twice with water and then with saturated saline. After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The compound (1-o) was obtained as a yellow oil (7.7 g, yield 59%) by purifying by silica gel column chromatography (eluent, hexane). The results of 1 H-NMR measurement of compound (1-o) are shown below.
1 H-NMR (270MHz, CDCl 3): 7.63 (d, J = 5.7Hz, 1H), 7.45 (d, J = 5.7Hz, 1H), 7.29 (d, J = 3 6.6 Hz, 1H), 6.88 (d, J = 3.6 Hz, 1H), 2.86 (d, J = 7.0 Hz, 2H), 1.70-1.61 (m, 1H), 1 .56-1.41 (m, 8H), 0.97-0.89 (m, 6H) ppm.

上記化合物(1−o)870mg(1.5mmol)の脱水テトラヒドロフラン(和光純薬工業(株)製)溶液25mlに、ノルマルブチルリチウムヘキサン溶液(1.6M、和光純薬工業(株)製)2.0ml(3.3mmol)を−78℃でシリンジを用いて加え、−78℃で30分間、室温で30分間攪拌した。反応混合物を−78℃まで冷却した後、トリメチルスズクロリド(和光純薬工業(株)製)800mg(4.0mmol)を−78℃で一度に加え、室温で4時間撹拌した。撹拌終了後、ジエチルエーテル50mlおよび水50mlを加え5分間室温で撹拌した後、有機層を水で2回、次いで飽和食塩水で洗浄した。無水硫酸ナトリウムで溶媒を乾燥後、溶媒を減圧留去した。得られた橙色オイルをエタノールより再結晶することで、化合物(1−p)を薄黄色固体(710mg、収率52%)として得た。化合物(1−p)のH−NMRの測定結果を以下に示す。
H−NMR(270MHz,CDCl):7.68(s,2H),7.31(d,J=3.2Hz,2H),6.90(d,J=3.2Hz,2H),2.87(d,J=6.2Hz,4H),1.69(m,2H),1.40−1.30(m,16H),1.0−0.9(m,12H),0.39(s,18H)ppm。
In a 25 ml solution of 870 mg (1.5 mmol) of the above compound (1-o) in dehydrated tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), a hexane solution of normal butyl lithium (1.6 M, manufactured by Wako Pure Chemical Industries, Ltd.) 2 0.0 ml (3.3 mmol) was added at -78 ° C using a syringe, and the mixture was stirred at -78 ° C for 30 minutes and at room temperature for 30 minutes. After cooling the reaction mixture to −78 ° C., 800 mg (4.0 mmol) of trimethyltin chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added at once at −78 ° C., and the mixture was stirred at room temperature for 4 hours. After completion of the stirring, 50 ml of diethyl ether and 50 ml of water were added, and the mixture was stirred at room temperature for 5 minutes. Then, the organic layer was washed twice with water and then with saturated saline. After drying the solvent with anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The obtained orange oil was recrystallized from ethanol to give compound (1-p) as a pale yellow solid (710 mg, yield 52%). The results of 1 H-NMR measurement of compound (1-p) are shown below.
1 H-NMR (270 MHz, CDCl 3 ): 7.68 (s, 2H), 7.31 (d, J = 3.2 Hz, 2H), 6.90 (d, J = 3.2 Hz, 2H), 2.87 (d, J = 6.2 Hz, 4H), 1.69 (m, 2H), 1.40-1.30 (m, 16H), 1.0-0.9 (m, 12H), 0.39 (s, 18H) ppm.

化合物(1−i)71mg(0.15mmol)および化合物(1−p)136mg(0.15mmol)をトルエン(和光純薬工業(株)製)4mlおよびジメチルホルムアミド(和光純薬工業(株)製)1mlに溶解させたところに、テトラキストリフェニルホスフィンパラジウム(東京化成工業(株)製)5mgを加え、窒素雰囲気下、100℃で15時間撹拌した。次いで、ブロモベンゼン(東京化成工業(株)製)15mgを加え、100℃にて1時間撹拌した。次いで、トリブチル(2−チエニル)すず(東京化成工業(株)製)40mgを加え、100℃にてさらに1時間撹拌した。撹拌終了後、反応混合物を室温まで冷却し、メタノール100mlに注いだ。析出した固体をろ取し、メタノール、水、アセトンの順に洗浄した。次いでソックスレー抽出器を用いてアセトン、ヘキサンの順で洗浄した。次に、得られた固体をクロロホルムに溶解させ、セライト(ナカライテスク(株)製)、次いでシリカゲルカラム(遊離液、クロロホルム)に通した後、溶媒を減圧留去した。得られた固体を再度クロロホルムに溶解させた後、メタノールに再沈殿し、化合物A−1(85mg)を得た。重量平均分子量は25,000、数平均分子量は16,000であった。なお、平均分子量(数平均分子量、重量平均分子量)はGPC装置(クロロホルムを送液したTOSOH社製、高速GPC装置HLC−8320GPC)を用い、絶対検量線法によって算出した。重合度nは以下の式で算出した。
重合度n=[(重量平均分子量)/(繰り返しユニットの分子量)]
Compound (1-i) 71 mg (0.15 mmol) and compound (1-p) 136 mg (0.15 mmol) were dissolved in toluene (Wako Pure Chemical Industries, Ltd.) 4 ml and dimethylformamide (Wako Pure Chemical Industries, Ltd.) 5) Tetrakistriphenylphosphine palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) (5 mg) was added to the solution in 1 ml, and the mixture was stirred at 100 ° C. for 15 hours under a nitrogen atmosphere. Next, 15 mg of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 100 ° C. for 1 hour. Next, 40 mg of tributyl (2-thienyl) tin (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 100 ° C. for 1 hour. After completion of the stirring, the reaction mixture was cooled to room temperature, and poured into 100 ml of methanol. The precipitated solid was collected by filtration and washed with methanol, water, and acetone in this order. Then, using a Soxhlet extractor, washing was performed in the order of acetone and hexane. Next, the obtained solid was dissolved in chloroform, passed through Celite (manufactured by Nacalai Tesque, Inc.) and then through a silica gel column (free liquid, chloroform), and the solvent was distilled off under reduced pressure. After the obtained solid was dissolved again in chloroform, it was reprecipitated in methanol to obtain Compound A-1 (85 mg). The weight average molecular weight was 25,000 and the number average molecular weight was 16,000. The average molecular weight (number average molecular weight, weight average molecular weight) was calculated by an absolute calibration curve method using a GPC apparatus (manufactured by TOSOH, a high-speed GPC apparatus HLC-8320GPC which fed chloroform). The polymerization degree n was calculated by the following equation.
Degree of polymerization n = [(weight average molecular weight) / (molecular weight of repeating unit)]

(実施例1)
水5μLとエタノール溶媒(和光純薬工業(株)製)0.5mLを、酢酸亜鉛2水和物(和光純薬工業(株)製)10mgの入ったサンプル瓶の中に加え、ここに、さらにエタノールアミン(和光純薬工業(株)製)を5μL加えて熱溶解し、溶液Aを得た。
(Example 1)
5 μL of water and 0.5 mL of an ethanol solvent (manufactured by Wako Pure Chemical Industries, Ltd.) are added to a sample bottle containing 10 mg of zinc acetate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.). Further, 5 μL of ethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved by heating to obtain solution A.

電子供与性有機半導体として1,8−ジヨードオクタン(東京化成工業(株)製)を2体積%の割合で混合したクロロホルム溶媒0.2mLを、化合物A−1 0.9mg、[70]PCBM(ソレーヌ社製)1.1mgの入ったサンプル瓶の中に加え、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W)中で30分間超音波照射することにより溶液Bを得た。   0.2 mL of a chloroform solvent in which 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) was mixed at a ratio of 2% by volume as an electron-donating organic semiconductor, 0.9 mg of compound A-1 and [70] PCBM Solution B was added to a sample bottle containing 1.1 mg (manufactured by Solane) and irradiated with ultrasonic waves for 30 minutes in an ultrasonic cleaner (US-2, manufactured by Inuchi Seieido Co., Ltd., output: 120 W). Obtained.

上記においてドナーアクセプター比(化合物A-1(電子供与性有機半導体):[70]PCBM(電子受容性有機材料)=45:55であった。   In the above, the donor-acceptor ratio (compound A-1 (electron-donating organic semiconductor): [70] PCBM (electron-accepting organic material) = 45: 55).

PEDOT:PSS水溶液(CLEVIOS P VP AI4083)と水と2−プロパノール(和光純薬工業(株)製)とを40:35:25の体積%で混合し、溶液Cを得た。   A PEDOT: PSS aqueous solution (CLEVIOS PVP AI4083), water and 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed at a volume ratio of 40:35:25 to obtain a solution C.

ガラス基板上に離型剤(“Novec2702”(3M(株)製))をスピンコートした後、100℃、1分間加熱することで約50nmの剥離層を形成した。ここにポリイミドワニスをスピンコートし、焼成することでガラス基板上に10μm厚のポリイミドフィルムを形成した。   After a release agent ("Novec2702" (manufactured by 3M)) was spin-coated on the glass substrate, the film was heated at 100 ° C for 1 minute to form a release layer of about 50 nm. Here, a polyimide varnish was spin-coated and baked to form a 10 μm-thick polyimide film on the glass substrate.

このガラス基板にスパッタリング法により負極となるITO透明導電層を100nm堆積させ、ITOをフォトリソグラフィー法によりパターニングした。上記の溶液Aをガラス基板上に滴下し、スピンコートした後、ホットプレート上で150℃,30分間加熱することで、約30nm厚の電子輸送層を成膜した。   On this glass substrate, an ITO transparent conductive layer serving as a negative electrode was deposited to a thickness of 100 nm by a sputtering method, and ITO was patterned by a photolithography method. The solution A was dropped on a glass substrate, spin-coated, and then heated on a hot plate at 150 ° C. for 30 minutes to form an electron transport layer having a thickness of about 30 nm.

次に、溶液Bを電子輸送層上に滴下し、スピンコートした後、ホットプレート上で80℃,5分間加熱乾燥することで膜厚約130nmの光電変換層を形成した。   Next, the solution B was dropped on the electron transport layer, spin-coated, and dried by heating at 80 ° C. for 5 minutes on a hot plate to form a photoelectric conversion layer having a thickness of about 130 nm.

さらに、溶液Cを光電変換層上に滴下し、スピンコートした後、ホットプレート上で80℃,1分間加熱することで正孔輸送層を形成した。   Further, the solution C was dropped on the photoelectric conversion layer, spin-coated, and then heated on a hot plate at 80 ° C. for 1 minute to form a hole transport layer.

その後、基板と正極用マスクを真空蒸着装置内に設置して、装置内の真空度を1×10−3Pa以下になるまで排気し、抵抗加熱法によって正極となる銀層を200nmの厚さに蒸着した。 After that, the substrate and the mask for the positive electrode are placed in a vacuum evaporation apparatus, and the apparatus is evacuated until the degree of vacuum in the apparatus becomes 1 × 10 −3 Pa or less. Was deposited.

その後、フロリナートFC−43に3wt%の分量、AF1600X(米ケマーズ社製)を溶解させた溶液をスピンコートし、100℃30分間ホットプレートで加熱し、約300nmの保護膜を形成したのち、PET製バリアトップ04(東レフィルム加工(株)製)を接着バリアテープ(テサテープ(株)製)により貼り付け、封止層とした。   Thereafter, a solution prepared by dissolving AF1600X (manufactured by Kemmers, Inc.) in 3 wt% in Fluorinert FC-43 was spin-coated, heated at 100 ° C. for 30 minutes on a hot plate to form a protective film of about 300 nm, and then PET. Barrier top 04 (manufactured by Toray Film Processing Co., Ltd.) was adhered with an adhesive barrier tape (manufactured by Tessa Tape Co., Ltd.) to form a sealing layer.

その後、ガラス基板からポリイミドフィルムを剥離し、光起電力素子を得た。   Thereafter, the polyimide film was peeled off from the glass substrate to obtain a photovoltaic element.

このようにして作製された光起電力素子の正極と負極をケースレー社製2400シリーズソースメータに接続して、大気中でITO層側から擬似太陽光(分光計器株式会社製 OTENTO−SUNIII、スペクトル形状:AM1.5、強度:100mW/cm)を照射し、印加電圧を−1Vから+2Vまで変化させたときの電流値を測定した。得られた電流値より光電変換効率(η)を算出した。 The positive electrode and the negative electrode of the photovoltaic element thus manufactured were connected to a Keithley 2400 series source meter, and simulated sunlight (OTENTO-SUNIII, manufactured by Spectrometer Co., Ltd .; : AM 1.5, intensity: 100 mW / cm 2 ), and the current value when the applied voltage was changed from -1 V to +2 V was measured. The photoelectric conversion efficiency (η) was calculated from the obtained current value.

光起電力素子の非受光面に、熱硬化型接着剤(クリスボンOA360)を3g/m2の塗布量で塗布、120℃で熱処理を行い、ポリエステル織物(糸使い:経糸、緯糸とも総繊度84デシテックス−36マルチフィラメント、織密度:経120×緯90本/2.54cm、織組織:平、目付72g/m、色相:L*(D65)23.24、a*(D65)0.32、b*(D65)−1.25)に光起電力素子の非受光面を重ねて、ホットプレス加工で130℃15秒熱処理を行うことにより接着剤を硬化させた。 On the non-light-receiving surface of the photovoltaic element, a thermosetting adhesive (Chrisbon OA360) was applied at a coating amount of 3 g / m 2 , heat-treated at 120 ° C., and a polyester fabric (using yarn: warp and weft; Decitex-36 multifilament, woven density: 120 × 90, weft / 2.54 cm, woven structure: flat, basis weight 72 g / m 2 , hue: L * (D65) 23.24, a * (D65) 0.32 , B * (D65) -1.25), the non-light-receiving surface of the photovoltaic element was overlapped, and heat treatment was performed at 130 ° C. for 15 seconds by hot pressing to cure the adhesive.

光起電力素子の受光面にも非受光面と同様のポリエステル織物を取り付け、光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、高級感が有り、非常に柔軟で変形が容易であった。   The same polyester fabric as the non-light-receiving surface was also attached to the light-receiving surface of the photovoltaic element to obtain a photovoltaic fiber structure. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the photovoltaic fiber structure obtained was observed from the light-receiving surface, the internal photovoltaic element was inconspicuous, had a good appearance and appearance, had a high-grade feel, was very flexible, and was easily deformed.

(実施例2)
光起電力素子の非受光面側の繊維構造物を色相:L*(D65)74.56、a*(D65)4.2、b*(D65)−15.00のポリエステル織物に、受光面側の繊維構造物を光透過率53.8%のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、非常に柔軟で変形が容易であった。
(Example 2)
The fiber structure on the non-light-receiving surface side of the photovoltaic element was coated on a polyester fabric having a hue of L * (D65) 74.56, a * (D65) 4.2, b * (D65) -15.00, and a light-receiving surface. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the fiber structure on the side was changed to a polyester fabric having a light transmittance of 53.8%. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the inside photovoltaic element was inconspicuous, had a good appearance and appearance, was very flexible, and easily deformed.

(実施例3)
光起電力素子の非受光面側の繊維構造物を色相:L*(D65)70.23、a*(D65)−7.5、b*(D65)56.50のポリエステル織物に、受光面側の繊維構造物を光透過率46.2%のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 3)
The fiber structure on the non-light-receiving surface side of the photovoltaic element is converted into a light-receiving surface on a polyester fabric of hue: L * (D65) 70.23, a * (D65) -7.5, b * (D65) 56.50. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the fiber structure on the side was changed to a polyester fabric having a light transmittance of 46.2%. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例4)
光起電力素子の非受光面側の繊維構造物を色相:L*(D65)40.53、a*(D65)49.8、b*(D65)−0.61のポリエステル織物に、受光面側の繊維構造物を光透過率44.5%のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立ちにくく、外観がよく、柔軟性に富み自由な形に変形が可能であった。
(Example 4)
The fiber structure on the non-light-receiving surface side of the photovoltaic element is applied to a polyester fabric having a hue of L * (D65) 40.53, a * (D65) 49.8, b * (D65) -0.61 and a light-receiving surface. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the fiber structure on the side was changed to a polyester fabric having a light transmittance of 44.5%. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was less noticeable, had a good appearance, was flexible, and could be freely deformed.

(実施例5)
光起電力素子の非受光面側の繊維構造物を色相:L*(D65)38.25、a*(D65)0.9、b*(D65)−35.38のポリエステル織物に、受光面側の繊維構造物を光透過率47.9%のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 5)
The fiber structure on the non-light-receiving surface side of the photovoltaic element was coated on a polyester fabric having a hue of L * (D65) 38.25, a * (D65) 0.9, b * (D65) -35.38, and a light-receiving surface. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the fiber structure on the side was changed to a polyester fabric having a light transmittance of 47.9%. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例6)
光起電力素子の非受光面側の繊維構造物を色相:L*(D65)33.23、a*(D65)5.8、b*(D65)−9.75のポリエステル織物に、受光面側の繊維構造物を光透過率44.1%のポリエステル織物に変更した以外は実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 6)
The fiber structure on the non-light-receiving surface side of the photovoltaic element is applied to a polyester fabric of hue: L * (D65) 33.23, a * (D65) 5.8, b * (D65) -9.75, and a light-receiving surface. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the fiber structure on the side was changed to a polyester fabric having a light transmittance of 44.1%. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例7)
光起電力素子の非受光面側の繊維構造物を色相:L*(D65)17.12、a*(D65)0.33、b*(D65)−3.10)の羊毛織物に、受光面側の繊維構造物を光透過率22.0%の羊毛織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 7)
The fiber structure on the non-light-receiving surface side of the photovoltaic element is received on a wool fabric of hue: L * (D65) 17.12, a * (D65) 0.33, b * (D65) -3.10). A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the fiber structure on the surface side was changed to a wool fabric having a light transmittance of 22.0%. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例8)
光起電力素子の非受光面側の繊維構造物を色相:L*(D65)16.32、a*(D65)0.74、b*(D65)−2.5の羊毛/ポリエステル織物に、受光面側の繊維構造物を光透過率32.2%の羊毛/ポリエステル織物に変更した以外は実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 8)
The fiber structure on the non-light receiving surface side of the photovoltaic element is converted into a wool / polyester fabric having a hue: L * (D65) 16.32, a * (D65) 0.74, b * (D65) -2.5, A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the fiber structure on the light receiving surface side was changed to a wool / polyester fabric having a light transmittance of 32.2%. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例9)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)18.36、a*(D65)0.18、b*(D65)−1.23のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 9)
Hue: L * (D65) 18.36, a * (D65) 0.18, b * (D65) -1 for both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the polyester fabric was changed to 23. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例10)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)82.02、a*(D65)4.59、b*(D65)−15.11のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 10)
Hue: L * (D65) 82.02, a * (D65) 4.59, b * (D65) -15 for both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element. A photovoltaic fiber structure was obtained by performing the same process as in Example 1 except that the polyester fabric was changed to 11. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例11)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)19.83、a*(D65)−0.31、b*(D65)−1.40のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 11)
Hue: L * (D65) 19.83, a * (D65) -0.31, b * (D65) -1 for both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element. A photovoltaic fiber structure was obtained by performing the same processing as in Example 1 except that the polyester fabric was changed to .40. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例12)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)80.73、a*(D65)4.46、b*(D65)−14.53のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 12)
Hue: L * (D65) 80.73, a * (D65) 4.46, b * (D65) -14 for both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element. A photovoltaic fiber structure was obtained by performing the same process as in Example 1 except that the polyester fabric was changed to 53. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例13)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)23.17、a*(D65)−0.79、b*(D65)−1.50のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 13)
Hue: L * (D65) 23.17, a * (D65) -0.79, b * (D65) -1 for both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element. A photovoltaic fiber structure was obtained by performing the same process as in Example 1 except that the polyester fabric was changed to .50. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例14)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)46.48、a*(D65)1.81、b*(D65)−8.89のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、柔軟性に富み自由な形に変形が可能であった。
(Example 14)
Hue: L * (D65) 46.48, a * (D65) 1.81, b * (D65) -8 for both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element. A photovoltaic fiber structure was obtained by performing the same processing as in Example 1 except that the polyester fabric was changed to 89. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. When the obtained photovoltaic fiber structure was observed from the light-receiving surface, the internal photovoltaic element was not conspicuous, had good appearance and appearance, was flexible, and could be deformed into a free and flexible shape.

(実施例15)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)17.47、a*(D65)0.43、b*(D65)−3.22の羊毛織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、高級感が有り、柔軟性に富み自由な形に変形が可能であった。
(Example 15)
Both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element have hues: L * (D65) 17.47, a * (D65) 0.43, b * (D65) -3. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the wool fabric was changed to 22. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. The resulting photovoltaic fiber structure, when viewed from the light-receiving surface, has no noticeable internal photovoltaic elements, has a good appearance and appearance, has a high-class feel, is flexible and can be deformed into a free and flexible shape. there were.

(実施例16)
光起電力素子の受光面側の繊維構造物、非受光面側の繊維構造物ともに色相:L*(D65)17.61、a*(D65)0.8、b*(D65)−3.00のポリエステル織物に変更した以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。使用した材料および得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、受光面から観察したとき、内部の光起電力素子が目立たず、外観や見栄えがよく、高級感が有り、柔軟性に富み自由な形に変形が可能であった。
(Example 16)
Both the fiber structure on the light receiving surface side and the fiber structure on the non-light receiving surface side of the photovoltaic element have hues: L * (D65) 17.61, a * (D65) 0.8, b * (D65) -3. A photovoltaic fiber structure was obtained by performing the same treatment as in Example 1 except that the polyester fabric was changed to 00. The materials used and the properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. The resulting photovoltaic fiber structure, when viewed from the light-receiving surface, has no noticeable internal photovoltaic elements, has a good appearance and appearance, has a high-class feel, is flexible and can be deformed into a free and flexible shape. there were.

(比較例1)
実施例1の光起電力素子をSUNY00 solar lomited製太陽電池モジュール 0.5W SY−M 0.5wに変更し、受光面に繊維構造物を取り付けない以外は、実施例1と同じ処理を行って光発電繊維構造物を得た。得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、太陽電池が目立ち、外観や見栄えが悪く、柔軟性がないものであった。
(Comparative Example 1)
The same process as in Example 1 was performed except that the photovoltaic element of Example 1 was changed to a solar cell module 0.5W SY-M 0.5w made by SUNY00 solar limited, and a fiber structure was not attached to the light receiving surface. A photovoltaic fiber structure was obtained. The properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. The photovoltaic fiber structure obtained had noticeable solar cells, poor appearance and appearance, and lacked flexibility.

(比較例2)
比較例1の光起電力素子をアーテック社製光電池 1.7V8365に変更した以外は、比較例1と同じ処理を行って光発電繊維構造物を得た。得られた光透過率、光電変換効率、曲げ剛性の特性を表1〜3に示す。得られた光発電繊維構造物は、光電池が目立ち、外観や見栄えが悪く、柔軟性がないものであった。
(Comparative Example 2)
A photovoltaic fiber structure was obtained by performing the same process as in Comparative Example 1, except that the photovoltaic element of Comparative Example 1 was changed to a photovoltaic cell 1.7V8365 manufactured by Artec. The properties of the obtained light transmittance, photoelectric conversion efficiency, and bending rigidity are shown in Tables 1 to 3. The photovoltaic fiber structure obtained had a noticeable photovoltaic cell, poor appearance and appearance, and lacked flexibility.

1 基板
2 正極
3 光電変換層
4 負極
Reference Signs List 1 substrate 2 positive electrode 3 photoelectric conversion layer 4 negative electrode

Claims (7)

繊維構造物と光起電力素子からなり、該光起電力素子の受光面と非受光面の両面に繊維構造物を設けてなり、該繊維構造物で光起電力素子が挟まれ担持されている光発電繊維構造物。 It comprises a fiber structure and a photovoltaic element, and a fiber structure is provided on both the light receiving surface and the non-light receiving surface of the photovoltaic element, and the photovoltaic element is sandwiched and supported by the fiber structure. Photovoltaic fiber structure. 該光起電力素子の受光面に設けられている繊維構造物の光透過率が10%以上98%以下である請求項1に記載の光発電繊維構造物。 The photovoltaic fiber structure according to claim 1, wherein the fiber structure provided on the light receiving surface of the photovoltaic element has a light transmittance of 10% or more and 98% or less. 該光発電繊維構造物のKES測定で規定される曲げ剛性測定値が0.01×10−4N・m/m以上6×10−4N・m/m以下である請求項1または2に記載の光発電繊維構造物。 The bending rigidity measurement value defined by KES measurement of the photovoltaic fiber structure is 0.01 × 10 −4 N · m 2 / m or more and 6 × 10 −4 N · m 2 / m or less. 3. The photovoltaic fiber structure according to 2. 該光発電素子と繊維構造物の間に透明な接着剤が存在してなる請求項1〜3のいずれかに記載の光発電繊維構造物。 The photovoltaic fiber structure according to any one of claims 1 to 3, wherein a transparent adhesive is present between the photovoltaic element and the fiber structure. 繊維構造物と光起電力素子からなり、該光起電力素子の受光面と非受光面の両面に繊維構造物を設けてなり、該繊維構造物で光起電力素子が挟まれ担持されている光発電繊維構造物の製造方法。 It comprises a fiber structure and a photovoltaic element, and a fiber structure is provided on both the light receiving surface and the non-light receiving surface of the photovoltaic element, and the photovoltaic element is sandwiched and supported by the fiber structure. A method for producing a photovoltaic fiber structure. 該光起電力素子の受光面に設けられている繊維構造物の光透過率が10%以上98%以下である請求項5に記載の光発電繊維構造物の製造方法。 The method for producing a photovoltaic fiber structure according to claim 5, wherein the fiber structure provided on the light receiving surface of the photovoltaic element has a light transmittance of 10% or more and 98% or less. 接着に透明な接着剤を用いる請求項5または6に記載の光発電繊維構造物の製造方法。 The method for producing a photovoltaic fiber structure according to claim 5 or 6, wherein a transparent adhesive is used for adhesion.
JP2018184298A 2018-09-28 2018-09-28 Photoelectric fiber structure and manufacturing method therefor Pending JP2020053641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184298A JP2020053641A (en) 2018-09-28 2018-09-28 Photoelectric fiber structure and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184298A JP2020053641A (en) 2018-09-28 2018-09-28 Photoelectric fiber structure and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2020053641A true JP2020053641A (en) 2020-04-02

Family

ID=69994062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184298A Pending JP2020053641A (en) 2018-09-28 2018-09-28 Photoelectric fiber structure and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2020053641A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303299A (en) * 1999-04-23 2000-10-31 Toray Ind Inc Cloth for western style dress
JP2002217437A (en) * 2001-01-23 2002-08-02 Sony Corp Manufacture of thin-film semiconductor element
JP2002339119A (en) * 2001-05-09 2002-11-27 Toyobo Co Ltd Clothing for reducing stress
JP2009046795A (en) * 2007-08-15 2009-03-05 Toray Ind Inc Woven fabric and clothing using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303299A (en) * 1999-04-23 2000-10-31 Toray Ind Inc Cloth for western style dress
JP2002217437A (en) * 2001-01-23 2002-08-02 Sony Corp Manufacture of thin-film semiconductor element
JP2002339119A (en) * 2001-05-09 2002-11-27 Toyobo Co Ltd Clothing for reducing stress
JP2009046795A (en) * 2007-08-15 2009-03-05 Toray Ind Inc Woven fabric and clothing using the same

Similar Documents

Publication Publication Date Title
KR101573611B1 (en) Fullerene derivatives, organic solar cell using the same and fabricating method thereof
EP3260456B1 (en) Thiophene derivative and organic solar cell comprising same
KR20110117093A (en) Material for photovoltaic element, and photovoltaic element
KR101769665B1 (en) Heterocyclic compound and organic solar cell comprising the same
US9246110B2 (en) Organic material and photoelectric conversion element
Arrechea et al. New acceptor–π-porphyrin–π-acceptor systems for solution-processed small molecule organic solar cells
JP2016538272A (en) Monomolecule and organic solar cell containing the same
CN108701770A (en) Photovoltaic element
Kafourou et al. Near-IR absorbing molecular semiconductors incorporating cyanated benzothiadiazole acceptors for high-performance semitransparent n-type organic field-effect transistors
CN110114896B (en) Organic photodiode and organic image sensor including the same
CN110114360B (en) Compound and organic solar cell comprising same
CN107466295B (en) Compound and organic solar cell comprising same
TW201902981A (en) Compound and organic solar cell including the same
TW201833171A (en) Polymer and organic solar cell comprising the same
KR102410122B1 (en) Heterocyclic compound and organic solar cell comprising the same
EP3124519B1 (en) Copolymer and organic solar cell comprising same
EP3553063B1 (en) Compound and organic solar cell comprising same
JP2020053641A (en) Photoelectric fiber structure and manufacturing method therefor
KR101997972B1 (en) Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
CN108602942B (en) Copolymer and organic solar cell comprising same
JP2020053640A (en) Photovoltaic fiber structure and manufacturing method therefor
Huang et al. Synthesis and photovoltaic properties of phthalocyanine end-capped copolymers with conjugated dithienylbenzothiadiazole–vinylene side chains
CN110536917B (en) Polymer and organic solar cell comprising same
JP6051102B2 (en) Organic photoelectric conversion element and organic thin film solar cell
JP2020017611A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131