JP2020051387A - Control device for cooling water system for internal combustion engine - Google Patents

Control device for cooling water system for internal combustion engine Download PDF

Info

Publication number
JP2020051387A
JP2020051387A JP2018183785A JP2018183785A JP2020051387A JP 2020051387 A JP2020051387 A JP 2020051387A JP 2018183785 A JP2018183785 A JP 2018183785A JP 2018183785 A JP2018183785 A JP 2018183785A JP 2020051387 A JP2020051387 A JP 2020051387A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
internal combustion
combustion engine
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018183785A
Other languages
Japanese (ja)
Other versions
JP7218050B2 (en
Inventor
裕隆 片山
Hirotaka Katayama
裕隆 片山
健太 杉山
Kenta Sugiyama
健太 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018183785A priority Critical patent/JP7218050B2/en
Publication of JP2020051387A publication Critical patent/JP2020051387A/en
Application granted granted Critical
Publication of JP7218050B2 publication Critical patent/JP7218050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

To improve fuel efficiency of a vehicle at low cost by using a simple configuration.SOLUTION: In a cooling water system for a water-cooled type internal combustion engine mounted to a vehicle, a control device is configured to control whether or not cooling water is caused to flow in a heater core for exchanging heat with air in a cabin and a heat exchanger for exchanging heat with fluid in accordance with a current cooling water temperature, an outside air temperature and a temperature of the fluid used for a transmission of a vehicle drive system. Due to the fine control in accordance with the current cooling water temperature, the outside air temperature and the fluid temperature, fuel efficiency of the vehicle can be improved.SELECTED DRAWING: Figure 3

Description

本発明は、車両に搭載される水冷式内燃機関の冷却水系統に関する。   The present invention relates to a cooling water system for a water-cooled internal combustion engine mounted on a vehicle.

内燃機関が搭載されている車両の車室内の空調、特に暖房には、温熱源として内燃機関の冷却水を利用することが通例である。即ち、内燃機関からヒータコアに熱せられた冷却水を導入し、ヒータコアにおいて空気との間で熱交換を行うことで、暖かい空気を車室内に供給する。   It is customary to use the cooling water of the internal combustion engine as a heat source for air conditioning in a vehicle cabin of a vehicle equipped with the internal combustion engine, particularly for heating. That is, heated water is introduced into the heater core from the internal combustion engine, and heat exchange is performed between the heater core and air, thereby supplying warm air into the vehicle interior.

加えて、近時の車両では、内燃機関の冷却水系統に、変速機に用いられるフルード(いわゆるATFまたはCVTF)との間で熱交換を行う熱交換器が設けられるようになっている(例えば、下記特許文献を参照)。この熱交換器は、冷間始動時にフルードを早期に昇温させ、変速機における機械的損失(フリクションロスを含む)を低減させる作用を営む。   In addition, in recent vehicles, a heat exchanger that exchanges heat with a fluid (so-called ATF or CVTF) used for a transmission is provided in a cooling water system of an internal combustion engine (for example, for example). And the following patent documents). This heat exchanger serves to raise the temperature of the fluid at an early stage at the time of a cold start and to reduce mechanical loss (including friction loss) in the transmission.

特開2002−340161号公報JP-A-2002-340161

フルード用の熱交換器を流通する冷却水が流れる流路上には、当該熱交換器に冷却水を流入させるか否かの切り換えを行うために、ワックスペレットサーモスタット、ベローズサーモスタット、バイメタルサーモスタット、または形状記憶合金サーモスタットが設置される。この種のサーモスタットは、部品点数が多いが機能は単純であり、冷却水温が設定値よりも高くなったら開弁しさもなくば閉弁するのみであって、費用対効果が低い。   On the flow path of the cooling water flowing through the heat exchanger for fluid, a wax pellet thermostat, a bellows thermostat, a bimetal thermostat, or a shape is used in order to switch whether or not the cooling water flows into the heat exchanger. A memory alloy thermostat is installed. This type of thermostat has a large number of parts, but has a simple function. If the cooling water temperature becomes higher than a set value, the thermostat is not opened or only closed, and is not cost-effective.

また、既存のシステムは、内燃機関からヒータコアへの冷却水の流入を全く制御しないものが多く、冷却水ポンプが稼働している限り冷却水がヒータコアを循環し続ける。冷間始動時には、可及的速やかに内燃機関を暖機して内燃機関における機械的損失を低減させることが望ましいが、ヒータコアにおいて熱が奪われるために暖機が遅れ、燃費性能面での不利を招く。   Also, many existing systems do not control the flow of cooling water from the internal combustion engine to the heater core at all, and the cooling water continues to circulate through the heater core as long as the cooling water pump operates. At the time of cold start, it is desirable to warm up the internal combustion engine as soon as possible to reduce the mechanical loss in the internal combustion engine. However, since the heat is taken from the heater core, the warming-up is delayed, and there is a disadvantage in fuel efficiency performance. Invite.

本発明は、簡易な構成により低コストで車両の燃費性能の向上を実現しようとするものである。   An object of the present invention is to improve the fuel efficiency of a vehicle at a low cost with a simple configuration.

本発明では、車両に搭載される水冷式内燃機関の冷却水系統において、現在の冷却水温、外気温及び車両の駆動系の変速機に用いられるフルードの温度に応じて、車室内の空気との間で熱交換を行うヒータコア及び前記フルードとの間で熱交換を行う熱交換器に冷却水を流通させるか否かを制御する制御装置を構成した。   According to the present invention, in the cooling water system of the water-cooled internal combustion engine mounted on the vehicle, the current of the cooling water, the outside air temperature, and the temperature of the fluid used for the transmission of the drive system of the vehicle are adjusted according to the temperature in the vehicle interior. A control device is configured to control whether or not the coolant flows through a heater core that exchanges heat between the heat exchanger and the heat exchanger that exchanges heat with the fluid.

本発明によれば、簡易な構成により低コストで車両の燃費性能の向上を実現し得る。   ADVANTAGE OF THE INVENTION According to this invention, the improvement of the fuel consumption performance of a vehicle can be implement | achieved at low cost with a simple structure.

本発明の一実施形態において車両に搭載される内燃機関及び制御装置の構成を示す図。FIG. 1 is a diagram illustrating a configuration of an internal combustion engine and a control device mounted on a vehicle according to an embodiment of the present invention. 同実施形態における内燃機関の冷却水系統の構成を示す図。The figure which shows the structure of the cooling water system of the internal combustion engine in the embodiment. 同実施形態の制御装置が実施する制御の内容を説明する図。The figure explaining the content of the control which the control device of the embodiment performs.

本発明の一実施形態を、図面を参照して説明する。図1に、車両に搭載される水冷式内燃機関の概要を示す。図示例の内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of a water-cooled internal combustion engine mounted on a vehicle. The illustrated internal combustion engine is a spark ignition type four-stroke gasoline engine, and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). An injector 11 for injecting fuel is provided near an intake port of each cylinder 1. An ignition plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 is adapted to generate a spark discharge between the center electrode and the ground electrode by receiving the induction voltage generated by the ignition coil.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。   An intake passage 3 for supplying intake air takes in air from the outside and guides it to an intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   An exhaust passage 4 for discharging exhaust gas guides exhaust gas generated as a result of burning fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. On the exhaust passage 4, an exhaust manifold 42 and a three-way catalyst 41 for purifying exhaust gas are arranged.

外部EGR(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通するEGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。   The external EGR (Exhaust Gas Recirculation) device 2 realizes a so-called high-pressure loop EGR, and includes an EGR passage 21 communicating between an upstream side of the catalyst 41 in the exhaust passage 4 and a downstream side of the throttle valve 32 in the intake passage 3. , An EGR cooler 22 provided on the EGR passage 21, and an EGR valve 23 that opens and closes the EGR passage 21 and controls a flow rate of EGR gas flowing through the EGR passage 21. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined portion of the intake passage 3 downstream of the throttle valve 32, specifically, to a surge tank 33.

車両の駆動源となる内燃機関と、車両の車軸及び駆動輪とを繋ぐ駆動系には、変速機が実装される。変速機は、例えば既知のトルクコンバータ及び自動変速機6である。自動変速機6は、無段変速機の一種であるベルト式CVT(Continuously Variable Transmission)であることがある。その場合、トルクコンバータとベルト式CVTとの間には、遊星歯車機構を利用した前後進切換装置が介在する。   A transmission is mounted on a drive system that connects the internal combustion engine, which is a drive source of the vehicle, to the axle and drive wheels of the vehicle. The transmission is, for example, a known torque converter and automatic transmission 6. The automatic transmission 6 may be a belt-type CVT (Continuously Variable Transmission), which is a type of a continuously variable transmission. In that case, a forward / reverse switching device using a planetary gear mechanism is interposed between the torque converter and the belt type CVT.

そして、トルクコンバータ、前後進切換装置及びベルト式CVTには、共通のトランスミッションフルード(CVTF)が用いられる。このフルードは、駆動力の伝達、クラッチの締結圧力の供給、ベルトの挟圧力の供給、潤滑等を担う。フルードを吸込んで吐出するオイルポンプは、トルクコンバータと前後進切換装置との間に所在し、内燃機関の出力軸であるクランクシャフトから駆動力の伝達を受けて稼働する。   A common transmission fluid (CVTF) is used for the torque converter, the forward / reverse switching device, and the belt type CVT. The fluid is responsible for transmission of driving force, supply of clutch engagement pressure, supply of belt clamping pressure, lubrication, and the like. The oil pump that sucks and discharges fluid is located between the torque converter and the forward / reverse switching device, and operates by receiving a driving force transmitted from a crankshaft that is an output shaft of the internal combustion engine.

図2に、本実施形態における内燃機関の冷却水系統を示す。冷却水を吸込んで吐出する冷却水ポンプ51は、内燃機関のクランクシャフトからトルクの伝達を受けて稼働する。尤も、冷却水ポンプ51として電動ポンプを採用してもよいことは言うまでもない。冷却水ポンプ51が吐出した冷却水は、まず内燃機関のシリンダブロック52に流入し、次いでシリンダヘッド53に流入する。そして、シリンダヘッド53から、CVTFウォーマ55、ヒータコア54、EGRクーラ22、スロットルバルブ32を内包するスロットルボディ320、EGRバルブ23を内包するバルブハウジング230、ラジエータ56といった各所に向けて送り出される。   FIG. 2 shows a cooling water system of the internal combustion engine in the present embodiment. The cooling water pump 51 that sucks and discharges cooling water operates by receiving torque transmitted from the crankshaft of the internal combustion engine. Needless to say, an electric pump may be used as the cooling water pump 51. The cooling water discharged from the cooling water pump 51 first flows into the cylinder block 52 of the internal combustion engine, and then flows into the cylinder head 53. Then, the air is sent out from the cylinder head 53 toward the CVTF warmer 55, the heater core 54, the EGR cooler 22, the throttle body 320 including the throttle valve 32, the valve housing 230 including the EGR valve 23, and the radiator 56.

CVTFウォーマ55は、内燃機関の冷却水と、トルクコンバータ及び自動変速機6に用いられるフルードとの間で熱交換を行う熱交換器である。CVTFウォーマ55は、冷間始動時にフルードを早期に昇温させるとともに、フルードが過剰な高温、例えば100℃以上となることを抑制する。   The CVTF warmer 55 is a heat exchanger that performs heat exchange between cooling water of the internal combustion engine and fluid used for the torque converter and the automatic transmission 6. The CVTF warmer 55 quickly raises the temperature of the fluid at the time of a cold start and suppresses the temperature of the fluid from becoming excessively high, for example, 100 ° C. or more.

ヒータコア54は、冷却水と車室内の空気との間で熱交換を行い、車室内の空調、特に暖房のために働く。   The heater core 54 exchanges heat between the cooling water and the air in the vehicle compartment, and works for air conditioning in the vehicle compartment, particularly for heating.

EGRクーラ22は、冷却水とEGRガスとの間で熱交換を行い、吸気通路3に流入するEGRガスの温度を低下させる。   The EGR cooler 22 performs heat exchange between the cooling water and the EGR gas, and lowers the temperature of the EGR gas flowing into the intake passage 3.

スロットルボディ320及びバルブハウジング230に冷却水を供給するのは、冷間始動時に各バルブ32、23を早期に昇温させ、またバルブ32、23の凍結を防止する意図である。   The purpose of supplying the cooling water to the throttle body 320 and the valve housing 230 is to raise the temperature of each of the valves 32 and 23 at an early stage during a cold start and to prevent the valves 32 and 23 from freezing.

シリンダヘッド53からCVTFウォーマ55及びヒータコア54に向かう冷却水は当初同一の流路を流れており、後に分岐してCVTFウォーマ55及びヒータコア54の各々に流入する。本実施形態では、CVTFウォーマ55に流入する冷却水とヒータコア54に流入する冷却水とが合流している流路上に、当該流路を開閉するためのFSV(Flow Shut Valve、またはFlow Shutter Valve)57を設置している。FSV57は、制御信号mを受けて開閉する開閉弁、またはその開度を変化させる流量制御弁であって、例えばソレノイドバルブである。図示例では、FSV57を、CVTFウォーマ55及びヒータコア54の上流、即ちCVTFウォーマ55に流入する冷却水とヒータコア54に流入する冷却水とが分岐する前に合流している流路上に設けている。が、FSV57を、CVTFウォーマ55及びヒータコア54の下流、即ちCVTFウォーマ55を通過した冷却水とヒータコア54を通過した冷却水とが再合流する流路上に設けてもよいことは言うまでもない。   The cooling water flowing from the cylinder head 53 toward the CVTF warmer 55 and the heater core 54 initially flows through the same flow path, and thereafter branches off and flows into each of the CVTF warmer 55 and the heater core 54. In the present embodiment, an FSV (Flow Shut Valve or Flow Shutter Valve) for opening and closing the flow path is provided on a flow path where the cooling water flowing into the CVTF warmer 55 and the cooling water flowing into the heater core 54 join. 57 are installed. The FSV 57 is an on-off valve that opens and closes in response to the control signal m, or a flow control valve that changes the opening thereof, and is, for example, a solenoid valve. In the illustrated example, the FSV 57 is provided upstream of the CVTF warmer 55 and the heater core 54, that is, on a flow path where the cooling water flowing into the CVTF warmer 55 and the cooling water flowing into the heater core 54 join before branching. However, it goes without saying that the FSV 57 may be provided downstream of the CVTF warmer 55 and the heater core 54, that is, on the flow path where the cooling water passing through the CVTF warmer 55 and the cooling water passing through the heater core 54 rejoin.

CVTFウォーマ55を流通した冷却水及びヒータコア54を流通した冷却水は再び合流し、EGRクーラ22へと向かう。さらに、スロットルボディ320及びバルブハウジング230を流通した冷却水が、その流れに加わる。EGRクーラ22を流通した冷却水は、シリンダブロック52に向けて流下し、再び冷却水ポンプ51に吸込まれる。   The cooling water flowing through the CVTF warmer 55 and the cooling water flowing through the heater core 54 join again and head toward the EGR cooler 22. Further, the cooling water flowing through the throttle body 320 and the valve housing 230 is added to the flow. The cooling water flowing through the EGR cooler 22 flows down to the cylinder block 52 and is sucked into the cooling water pump 51 again.

ラジエータ56は、冷却水を自然空冷または強制空冷してその温度を低下させる放熱器である。ラジエータ56とシリンダブロック52とを連絡する冷却水還流路上には、当該還流路を開閉するためのサーモスタット58を設置する。サーモスタット58は、冷却水の温度が設定値以上の高温となったときに開弁し、それ未満の温度であるときには閉弁する。   The radiator 56 is a radiator that lowers the temperature of the cooling water by natural or forced air cooling. A thermostat 58 for opening and closing the cooling water return path is provided on the cooling water return path connecting the radiator 56 and the cylinder block 52. The thermostat 58 opens when the temperature of the cooling water becomes higher than a set value, and closes when the temperature is lower than the set value.

本実施形態における制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラがCAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。   An ECU (Electronic Control Unit) 0 as a control device in the present embodiment is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The ECU 0 may be a configuration in which a plurality of ECUs or controllers are communicably connected to each other via an electric communication line such as a CAN (Controller Area Network).

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関のクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、内燃機関に対する要求負荷率)として検出するセンサから出力されるアクセル開度信号c、外気の温度を検出する外気温センサから出力される外気温信号d、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号e、内燃機関の温度を示唆する冷却水の温度を検出する水温センサから出力される冷却水温信号f、トランスミッションフルードの温度を検出する液温センサから出力されるフルード温信号g、内燃機関の吸気カムシャフトまたは排気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号h等が入力される。   The input interface of the ECU 0 includes a vehicle speed signal a output from a vehicle speed sensor for detecting the actual vehicle speed of the vehicle, a crank angle signal b output from a crank angle sensor for detecting the rotation angle of the crankshaft of the internal combustion engine and the engine speed. An accelerator opening signal c output from a sensor for detecting the amount of depression of an accelerator pedal or the opening of a throttle valve 32 as an accelerator opening (in other words, a required load factor for an internal combustion engine), and an outside air temperature sensor for detecting the temperature of outside air. , An intake air temperature / intake pressure signal e output from a temperature / pressure sensor for detecting the intake air temperature and intake pressure in the intake passage 3 (particularly, the surge tank 33), and an internal combustion engine temperature. Detects the cooling water temperature signal f output from the water temperature sensor that detects the suggested cooling water temperature, and detects the temperature of the transmission fluid That the liquid temperature fluid temperature signal g outputted from the sensor, a cam angle signal h or the like to be output from the cam angle sensor at a plurality of cam angle of the intake camshaft or an exhaust camshaft of the internal combustion engine is input.

ECU0の出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、FSV57に対して開閉制御信号m等を出力する。   From the output interface of the ECU 0, an ignition signal i for the igniter of the ignition plug 12, a fuel injection signal j for the injector 11, an opening operation signal k for the throttle valve 32, and an opening operation for the EGR valve 23. An open / close control signal m and the like are output in response to the signal 1 and the FSV 57.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR率(または、EGRガス量)、トルクコンバータのロックアップを行うか否か、自動変速機の変速比、FSV57の開閉またはその開度、等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、mを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine through an input interface, obtains the engine speed, and charges the cylinder 1. Estimate intake volume. The required fuel injection amount, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR) Various operating parameters such as the amount of gas), whether or not to lock up the torque converter, the gear ratio of the automatic transmission, the opening and closing of the FSV 57 or its opening degree, are determined. The ECU 0 applies various control signals i, j, k, l, m corresponding to the operation parameters via an output interface.

しかして、ECU0は、現在の内燃機関の冷却水温、外気温、及びトランスミッションフルードの温度に応じて、ヒータコア54及びCVTFウォーマ55に冷却水を流通させるか否かを決定し、FSV57を開閉操作する。   Thus, the ECU 0 determines whether or not to flow the cooling water through the heater core 54 and the CVTF warmer 55 according to the current cooling water temperature, the outside air temperature, and the temperature of the transmission fluid of the internal combustion engine, and opens and closes the FSV 57. .

上述の通り、本実施形態では、内燃機関の冷却水系統に随時操作可能な一個のFSV57を設置しており、このFSV57によりヒータコア54への冷却水の流入及びCVTFウォーマ55への冷却水の流入の双方を制御することができる。言うまでもなく、FSV57を開弁すればヒータコア54及びCVTFウォーマ55に冷却水が流入し、FSV57を閉弁すればヒータコア54及びCVTFウォーマ55に冷却水が流入しなくなる。   As described above, in the present embodiment, one FSV 57 that can be operated at any time is installed in the cooling water system of the internal combustion engine, and the FSV 57 causes the cooling water to flow into the heater core 54 and the cooling water to flow into the CVTF warmer 55. Can be controlled. Needless to say, when the FSV 57 is opened, the cooling water flows into the heater core 54 and the CVTF warmer 55, and when the FSV 57 is closed, the cooling water does not flow into the heater core 54 and the CVTF warmer 55.

図3に、ECU0によるFSV57の開閉のパターンを示している。図中、網点を付して表している領域がFSV57を閉弁する領域であり、それ以外の領域がFSV57を開弁する領域である。原則として、ECU0は、外気温がβ未満の低温である環境下では、冷却水温やフルード温如何によらず、FSV57を開弁して内燃機関の冷却水をヒータコア54に流入させる。これは、車室内の暖房性能を維持するためである。   FIG. 3 shows an opening / closing pattern of the FSV 57 by the ECU 0. In the figure, the area indicated by adding a halftone dot is an area where the FSV 57 is closed, and the other area is an area where the FSV 57 is opened. In principle, the ECU 0 opens the FSV 57 and allows the coolant of the internal combustion engine to flow into the heater core 54 regardless of the coolant temperature or the fluid temperature in an environment where the outside air temperature is a low temperature less than β. This is to maintain the heating performance of the vehicle interior.

並びに、冷却水温がα以上に高いときには、FSV57を開弁して冷却水をCVTFウォーマ55に流入させる。これは、既に内燃機関がある程度以上暖機されており、FSV57を閉弁して内燃機関の昇温を促進する必要がなく、寧ろトランスミッションフルードを昇温させることが求められるからである。   When the cooling water temperature is higher than α, the FSV 57 is opened to flow the cooling water into the CVTF warmer 55. This is because the internal combustion engine has already been warmed up to a certain degree or more, and it is not necessary to close the FSV 57 to accelerate the temperature rise of the internal combustion engine, but rather to raise the temperature of the transmission fluid.

また、フルード温がγを超えて過剰に高温化しているときには、FSV57を開弁して冷却水をCVTFウォーマ55に流入させる。これは、トランスミッションフルードのそれ以上の昇温を抑止し、さらにはフルードの温度降下を促すためである。   When the fluid temperature exceeds γ and becomes excessively high, the FSV 57 is opened to allow the cooling water to flow into the CVTF warmer 55. This is to prevent the temperature of the transmission fluid from rising further, and to further promote the temperature drop of the fluid.

外気温がβ以上、フルード温がγ以下であり、冷却水温がαよりも低いときには、基本的には、FSV57を閉弁して冷却水のヒータコア54及びCVTFウォーマ55への流入を停止してよい。典型的には、寒冷環境下以外での冷間始動の直後の時期がこれに該当するが、FSV57を閉弁することでヒータコア54及びCVTFウォーマ55に温熱が奪われることがなくなり、内燃機関の暖機を早めることができる。   When the outside air temperature is equal to or more than β, the fluid temperature is equal to or less than γ, and the cooling water temperature is lower than α, basically, the FSV 57 is closed to stop the flow of the cooling water into the heater core 54 and the CVTF warmer 55. Good. Typically, this corresponds to the time immediately after the cold start except in a cold environment. However, by closing the FSV 57, the heat is not deprived to the heater core 54 and the CVTF warmer 55, and the internal combustion engine Warm-up can be accelerated.

但し、冷却水温がα以下かつフルード温がγ以下であって、冷却水の温度もトランスミッションフルードの温度も低い状況においては、FSV57を閉弁することで冷却水温が高まる代わりにフルード温が上昇せず、FSV57を開弁することでフルード温が上昇する分だけ冷却水から熱が奪われるというトレードオフが存在する。冷却水温の上昇とフルード温の上昇とのどちらを優先するべきかは、一意には決定できない。   However, in a situation where the cooling water temperature is equal to or less than α and the fluid temperature is equal to or less than γ, and the temperature of the cooling water and the temperature of the transmission fluid are low, closing the FSV 57 increases the fluid temperature instead of increasing the cooling water temperature. However, there is a trade-off in that opening the FSV 57 removes heat from the cooling water as much as the fluid temperature rises. It cannot be uniquely determined whether to give priority to an increase in the cooling water temperature or an increase in the fluid temperature.

一例として、(外気温がβ以上であることを前提として)冷却水温がα以下かつフルード温がγ以下の状況では、冷却水温が所定未満の低温である場合には内燃機関の暖機を優先してFSV57を閉弁する一方、冷却水温がそれ以上である場合にはフルード温が閾値よりも低いことを条件としてFSV57を開弁することとし、その閾値を現在の冷却水温が高いほど引き上げる(冷却水温が低いほど引き下げる)ことが考えられる。   As an example, in a situation where the cooling water temperature is equal to or lower than α and the fluid temperature is equal to or lower than γ (assuming that the outside air temperature is equal to or higher than β), if the cooling water temperature is lower than a predetermined temperature, priority is given to warming up the internal combustion engine. While the FSV 57 is closed, if the coolant temperature is higher than that, the FSV 57 is opened on condition that the fluid temperature is lower than the threshold value, and the threshold value is raised as the current coolant temperature is higher ( The lower the cooling water temperature, the lower the cooling water temperature).

本実施形態では、車両に搭載される水冷式内燃機関の冷却水系統において、車室内の空気との間で熱交換を行うヒータコア54を流通する冷却水、及び車両の駆動系の変速機に用いられるフルードとの間で熱交換を行う熱交換器55を流通する冷却水がともに流れる流路上に、現在の冷却水の温度によらず任意に開閉操作が可能な一個のバルブ57を設け、このバルブ57により前記ヒータコア54及び前記熱交換器55に冷却水を流通させるか否かを制御することとした。   In the present embodiment, in the cooling water system of the water-cooled internal combustion engine mounted on the vehicle, the cooling water flowing through the heater core 54 that exchanges heat with the air in the vehicle cabin and the transmission of the drive system of the vehicle are used. A single valve 57 that can be opened and closed arbitrarily irrespective of the current temperature of the cooling water is provided on a flow path through which the cooling water flowing through the heat exchanger 55 that performs heat exchange with the fluid is supplied. The valve 57 controls whether or not cooling water flows through the heater core 54 and the heat exchanger 55.

本実施形態の制御装置0は、現在の冷却水温、外気温及び車両の駆動系の変速機に用いられるフルードの温度に応じて、ヒータコア54及び熱交換器55に冷却水を流通させるか否かを制御する。本実施形態によれば、簡易な構成により車両の燃費性能の向上を実現し得る。サーモスタットと異なり、制御バルブ57は柔軟に開閉操作することができ、現在の冷却水温、外気温及びフルード温に応じたきめ細かな制御を実現することが可能である。しかも、本実施形態の冷却水系統の構造では、制御バルブ57の個数を徒に増やす必要がなく、コスト増を招かずに済む。   The control device 0 according to the present embodiment determines whether or not to flow the cooling water through the heater core 54 and the heat exchanger 55 according to the current cooling water temperature, the outside air temperature, and the temperature of the fluid used for the transmission of the drive system of the vehicle. Control. According to the present embodiment, it is possible to improve the fuel efficiency of the vehicle with a simple configuration. Unlike the thermostat, the control valve 57 can be opened and closed flexibly, and it is possible to realize fine control according to the current cooling water temperature, outside air temperature and fluid temperature. Moreover, in the structure of the cooling water system according to the present embodiment, it is not necessary to increase the number of the control valves 57, and the cost does not increase.

なお、本発明は以上に詳述した実施形態に限られるものではない。まず、制御バルブたるFSV57は、電磁ソレノイドバルブに限定されない。制御装置たるECU0が適時開閉操作できるものであればよく、液圧回路を通じて作動液圧を供給することにより開閉駆動する態様のバルブを採用しても構わない。   Note that the present invention is not limited to the embodiment described in detail above. First, the control valve FSV 57 is not limited to the electromagnetic solenoid valve. Any valve may be used as long as the control device ECU0 can open and close as needed, and a valve that opens and closes by supplying a hydraulic pressure through a hydraulic circuit may be employed.

また、上記実施形態では、一個のFSV57により、ヒータコア54に冷却水を流通させるか否か、並びに熱交換器たるCVTFウォーマ55に冷却水を流通させるか否かを同時に制御していた。これに対し、ヒータコア54を流通する冷却水が流れる流路と、この流路とは異なりCVTFウォーマ55に流通する冷却水が流れる流路とにそれぞれ、現在の冷却水の温度によらずECU0が任意に開閉操作可能なFSVを個別に設置し、前者の流路の開閉と後者の流路の開閉とを独立して制御できるようにしてもよい。   Further, in the above-described embodiment, one FSV 57 simultaneously controls whether the coolant flows through the heater core 54 and whether the coolant flows through the CVTF warmer 55 as the heat exchanger. On the other hand, the ECU 0 is provided in the flow path through which the cooling water flows through the heater core 54 and the flow path through which the cooling water flows through the CVTF warmer 55, which is different from the flow path, regardless of the current cooling water temperature. FSVs that can be arbitrarily opened and closed may be individually installed so that opening and closing of the former channel and opening and closing of the latter channel can be controlled independently.

その場合には、冷却水がヒータコア54にもCVTFウォーマ55にも流入しない状態、冷却水がヒータコア54に流入するがCVTFウォーマ55には流入しない状態、冷却水がCVTFウォーマ55に流入するがヒータコア54には流入しない状態、冷却水がヒータコア54にもCVTFウォーマ55にも流入する状態の四つの状態を具現できる。   In this case, the cooling water does not flow into the heater core 54 and the CVTF warmer 55, the cooling water flows into the heater core 54 but does not flow into the CVTF warmer 55, and the cooling water flows into the CVTF warmer 55 but the heater core does not flow. Four states can be realized: a state in which the cooling water does not flow into the heater core 54 and a state in which the cooling water flows into the heater core 54 and the CVTF warmer 55.

そして、ECU0は、現在の冷却水温、外気温及び車両の駆動系の変速機に用いられるフルードの温度に応じて、それらのうちの何れの状態をとるかを選択することになる。例えば、外気温がβ未満の低温である環境下では、ヒータコア54に冷却水を流入させるが、CVTFウォーマ55に冷却水を流入させるかどうかは冷却水温やフルード温に応じて可変とすることができる。即ち、冷却水温がα以上に高いときやフルード温がγを超えて高温化しているときには冷却水をCVTFウォーマ55に流入させるが、そうでなければ冷却水をCVTFウォーマ55に流入させないことができる。   Then, the ECU 0 selects which of these states to take depending on the current cooling water temperature, the outside air temperature, and the temperature of the fluid used for the transmission of the drive system of the vehicle. For example, in an environment where the outside air temperature is a low temperature less than β, the cooling water flows into the heater core 54, but whether the cooling water flows into the CVTF warmer 55 can be made variable according to the cooling water temperature or the fluid temperature. it can. That is, when the cooling water temperature is higher than α or when the fluid temperature is higher than γ, the cooling water flows into the CVTF warmer 55; otherwise, the cooling water can be prevented from flowing into the CVTF warmer 55. .

あるいは、冷間始動直後の冷却水温やフルード温が低い状況において、冷却水をCVTFウォーマ55には流入させるがヒータコア54には流入させないようにすることもできる。   Alternatively, in a situation where the cooling water temperature or the fluid temperature immediately after the cold start is low, the cooling water may be caused to flow into the CVTF warmer 55 but not into the heater core 54.

その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両に搭載される水冷式内燃機関の冷却水系統及びその制御に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a cooling water system of a water-cooled internal combustion engine mounted on a vehicle and its control.

0…制御装置(ECU)
54…ヒータコア
55…熱交換器(CVTFウォーマ)
57…制御バルブ(FSV)
d…外気温信号
f…冷却水温信号
g…フルード温信号
m…バルブの開閉制御信号
0 ... Control device (ECU)
54: Heater core 55: Heat exchanger (CVTF warmer)
57 ... Control valve (FSV)
d: outside temperature signal f: cooling water temperature signal g: fluid temperature signal m: valve opening / closing control signal

Claims (1)

車両に搭載される水冷式内燃機関の冷却水系統において、
現在の冷却水温、外気温及び車両の駆動系の変速機に用いられるフルードの温度に応じて、車室内の空気との間で熱交換を行うヒータコア及び前記フルードとの間で熱交換を行う熱交換器に冷却水を流通させるか否かを制御する制御装置。
In a cooling water system of a water-cooled internal combustion engine mounted on a vehicle,
A heater core for exchanging heat with the air in the vehicle compartment and heat for exchanging heat with the fluid in accordance with the current cooling water temperature, the outside air temperature, and the temperature of the fluid used for the transmission of the drive system of the vehicle. A control device that controls whether cooling water is allowed to flow through the exchanger.
JP2018183785A 2018-09-28 2018-09-28 Control device for cooling water system of internal combustion engine Active JP7218050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018183785A JP7218050B2 (en) 2018-09-28 2018-09-28 Control device for cooling water system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018183785A JP7218050B2 (en) 2018-09-28 2018-09-28 Control device for cooling water system of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2020051387A true JP2020051387A (en) 2020-04-02
JP7218050B2 JP7218050B2 (en) 2023-02-06

Family

ID=69996320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018183785A Active JP7218050B2 (en) 2018-09-28 2018-09-28 Control device for cooling water system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP7218050B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122478A (en) * 2010-12-07 2012-06-28 Hyundai Motor Co Ltd Heat management system of vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122478A (en) * 2010-12-07 2012-06-28 Hyundai Motor Co Ltd Heat management system of vehicle

Also Published As

Publication number Publication date
JP7218050B2 (en) 2023-02-06

Similar Documents

Publication Publication Date Title
CN105545534B (en) Exhaust system and method for efficient exhaust heat recovery
RU2628682C2 (en) Engine system for vehicle
GB2429763A (en) Cooling system comprising heat exchangers for motor vehicle cold start operation
US10060326B2 (en) Cooling apparatus for internal combustion engine
JP2011047305A (en) Internal combustion engine
US20160090896A1 (en) Cooling system for engine
JP7192172B2 (en) engine cooling system
WO2016043229A1 (en) Cooling system control device and cooling system control method
US10794260B2 (en) Coolant pump for vehicle, cooling system provided with the same and control method for the same
JP7218050B2 (en) Control device for cooling water system of internal combustion engine
JP7184457B2 (en) Structure of cooling water system for internal combustion engine
KR102451921B1 (en) Coolant flow control device, cooling system provided with the same and control method for the same
JP2004204823A (en) Cooling water circulating apparatus of internal combustion engine
JP2015105604A (en) Control device of internal combustion engine
JP2006105105A (en) Engine cooling device
JP2014070501A (en) Oil cooling structure
JP7192173B2 (en) engine cooling system
US11125143B2 (en) Methods and systems for a cooling arrangement
JP7230664B2 (en) engine cooling system
JP6830376B2 (en) Transmission warmer device
JP2015101960A (en) Cooling device of internal combustion engine
JP6548148B2 (en) Vehicle control device
JP2008157102A (en) Cooling device for internal combustion engine
JP2020176581A (en) Engine control device
JP2014152701A (en) Vehicle including internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230124

R150 Certificate of patent or registration of utility model

Ref document number: 7218050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150