JP2015101960A - Cooling device of internal combustion engine - Google Patents

Cooling device of internal combustion engine Download PDF

Info

Publication number
JP2015101960A
JP2015101960A JP2013240750A JP2013240750A JP2015101960A JP 2015101960 A JP2015101960 A JP 2015101960A JP 2013240750 A JP2013240750 A JP 2013240750A JP 2013240750 A JP2013240750 A JP 2013240750A JP 2015101960 A JP2015101960 A JP 2015101960A
Authority
JP
Japan
Prior art keywords
cooling water
internal combustion
combustion engine
temperature
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013240750A
Other languages
Japanese (ja)
Inventor
公宏 麻畠
Kimihiro Asahata
公宏 麻畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2013240750A priority Critical patent/JP2015101960A/en
Publication of JP2015101960A publication Critical patent/JP2015101960A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To supply cooling water at a suitable temperature to each portion of an internal combustion engine while reducing the number of pumps and radiators.SOLUTION: A cooling device 5 of an internal combustion engine includes: one cooling water pump 53; one radiator 513 for radiating heat of cooling water; a first cooling water passage 51 having flow control valves 511 and 512 on an inlet side and an outlet side respectively and passing through a cylinder block 61, the radiator 513, and a portion 515 in the vicinity of an exhaust port in a cylinder head; a second cooling water passage 52 having flow control valves 521 and 522 on an inlet side and an outlet side respectively and passing through a heater 523 and a portion 524 in the vicinity of an intake port in the cylinder head; a heat exchanger 54 for exchanging heat between cooling water in the second cooling water passage 52 and the cooling water in the first cooling water passage 51; and a change-over valve 525 for switching between a state for exchanging and a state for not exchanging heat between the cooling water in the second cooling water passage 52 and the cooling water in the first cooling water passage 51.

Description

本発明は、水冷式(液冷式)内燃機関の冷却装置に関する。   The present invention relates to a cooling device for a water-cooled (liquid-cooled) internal combustion engine.

車両に搭載される水冷式の内燃機関では、循環する冷却水(冷却液)によってシリンダブロック、シリンダヘッドの吸気ポート及び排気ポート、EGR(Exhaust Gas Recirculation)クーラ等を冷却する。内燃機関の各所から受熱して高温化した冷却水は、ラジエータにおいて放熱させる。また、この冷却水を利用して、室内暖房用のヒータやトランスミッションフルード等を温めることも通例となっている。   2. Description of the Related Art In a water-cooled internal combustion engine mounted on a vehicle, a cylinder block, an intake port and an exhaust port of a cylinder head, an EGR (Exhaust Gas Recirculation) cooler, and the like are cooled by circulating cooling water (coolant). Cooling water that has received heat from various parts of the internal combustion engine and has been heated to heat is radiated by the radiator. It is also common to use this cooling water to heat heaters for interior heating, transmission fluids, and the like.

本来、内燃機関の各所に供給するべき冷却水の最適な温度は一律ではない。例えば、吸気ポートと排気ポートとでは、温度差が非常に大きい。にもかかわらず、双方に同等の温度の冷却水を供給すると、吸気ポートが徒に昇温して吸気の充填効率の低下を招く懸念がある。   Originally, the optimum temperature of the cooling water to be supplied to various parts of the internal combustion engine is not uniform. For example, the temperature difference between the intake port and the exhaust port is very large. Nevertheless, if cooling water having the same temperature is supplied to both the intake ports, there is a concern that the intake ports will rise in temperature and cause a reduction in the charging efficiency of the intake air.

そこで、下記特許文献に開示されているように、内燃機関の冷却水経路を複数に分けることが考えられる。さすれば、各々の経路を流れる冷却水の温度を異ならせることができ、内燃機関の各所に好適な温度の冷却水を配給することが容易になる。即ち、吸気ポート側には比較的低温の冷却水が流通する経路から冷却水を提供し、排気ポート側には比較的高温の冷却水が流通する経路から冷却水を提供するといったことが可能となる。   Therefore, as disclosed in the following patent document, it is conceivable to divide the cooling water path of the internal combustion engine into a plurality of parts. Then, the temperature of the cooling water flowing through each path can be made different, and it becomes easy to distribute the cooling water having a suitable temperature to each part of the internal combustion engine. That is, it is possible to provide cooling water from the path through which relatively low-temperature cooling water flows to the intake port side, and supply cooling water from the path through which relatively high-temperature cooling water flows to the exhaust port side. Become.

しかしながら、各冷却水経路にそれぞれポンプ及びラジエータを配備することで、総体として冷却装置が大形化してしまい、限られたエンジンルーム内にこれを収容することが難しくなる。無論、重量の増大やコストの高騰といった点も見過ごせない。加えて、複数個のラジエータをエンジンルーム内に点在させる結果、エンジンルームが全体的に昇温し、吸気通路を流れる吸気の温度が上昇して充填効率が低下するという副作用も発生する。   However, by disposing a pump and a radiator in each cooling water path, the cooling device becomes large as a whole, and it becomes difficult to accommodate it in a limited engine room. Of course, we cannot overlook the increase in weight and cost. In addition, as a result of the plurality of radiators being scattered in the engine room, there is also a side effect that the temperature of the engine room increases as a whole, the temperature of the intake air flowing through the intake passage rises, and the charging efficiency decreases.

特開2013−133747号公報JP 2013-133747 A

本発明は、ポンプ及びラジエータの個数を削減しながら、内燃機関の各所に好適な温度の冷却水を供給できるようにすることを所期の目的としている。   An object of the present invention is to make it possible to supply cooling water having a suitable temperature to various parts of an internal combustion engine while reducing the number of pumps and radiators.

上述した課題を解決するべく、本発明では、冷却水を吐出し圧送する一個のポンプと、冷却水を放熱させる一個のラジエータと、前記ポンプの吐出口に連なる入口側及び吸込口に連なる出口側の各々に流量制御弁が設けられ、シリンダブロック、前記ラジエータ及びシリンダヘッドにおける排気ポート近傍を経由する第一冷却水経路と、前記ポンプの吐出口に連なる入口側及び吸込口に連なる出口側の各々に流量制御弁が設けられ、ヒータ及びシリンダヘッドにおける吸気ポート近傍を経由する第二冷却水経路と、前記第二冷却水経路の冷却水を前記第一冷却水経路の冷却水と熱交換させるための熱交換器と、前記第二冷却水経路の冷却水と前記第一冷却水経路の冷却水との間で熱交換する状態と熱交換しない状態とを切り換えるための切換弁とを具備する内燃機関の冷却装置を構成した。   In order to solve the above-described problems, in the present invention, one pump that discharges and pumps cooling water, one radiator that dissipates the cooling water, an inlet side that is connected to the discharge port of the pump, and an outlet side that is connected to the suction port Each of which is provided with a flow control valve, each of a first cooling water path passing through the vicinity of an exhaust port in the cylinder block, the radiator and the cylinder head, an inlet side connected to the discharge port of the pump, and an outlet side connected to the suction port Is provided with a flow control valve for exchanging heat between the cooling water in the second cooling water path and the second cooling water path passing through the vicinity of the intake port in the heater and cylinder head and the cooling water in the first cooling water path. Switching for switching between a state in which heat is exchanged and a state in which heat is not exchanged between the cooling water in the second cooling water path and the cooling water in the first cooling water path To constitute a cooling apparatus for an internal combustion engine provided and.

本発明によれば、ポンプ及びラジエータの個数を削減しながら、内燃機関の各所に好適な温度の冷却水を供給できるようになる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to supply the cooling water of the suitable temperature to each place of an internal combustion engine, reducing the number of pumps and radiators.

本発明の一実施形態における内燃機関の概略構成を示す図。The figure which shows schematic structure of the internal combustion engine in one Embodiment of this invention. 同実施形態における車両の駆動系の構成を示す図。The figure which shows the structure of the drive system of the vehicle in the embodiment. 同実施形態の内燃機関の冷却装置の構成を示す図。The figure which shows the structure of the cooling device of the internal combustion engine of the embodiment.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine in the present embodiment is a spark ignition type four-stroke engine and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided. A spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode. The ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットル弁32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。   The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated by burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.

本実施形態の内燃機関には、外部EGR装置2が付帯している。EGR装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットル弁32の下流側とを連通するEGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGR弁23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットル弁32の下流の所定箇所、具体的にはサージタンク33に接続している。EGRクーラ22は、内燃機関の冷却水を利用してEGRガスを冷却し、以てEGRガスを混交した吸気の温度を抑制する。   An external EGR device 2 is attached to the internal combustion engine of the present embodiment. The EGR device 2 realizes a so-called high-pressure loop EGR, and an EGR passage 21 that connects the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3, and the EGR passage 21 The EGR cooler 22 provided and the EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of the EGR gas flowing through the EGR passage 21 are used as elements. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, specifically to a surge tank 33. The EGR cooler 22 cools the EGR gas using the cooling water of the internal combustion engine, and thereby suppresses the temperature of the intake air mixed with the EGR gas.

図2に、車両が備える駆動系の例を示す。この駆動系は、トルクコンバータ7及び自動変速機8、9を備えてなる。自動変速機8、9の構成要素としては、遊星歯車機構を利用した前後進切換装置8、及び無段変速機の一種であるベルト式CVT(Continuously Variable Transmission)9を採用している。   FIG. 2 shows an example of a drive system provided in the vehicle. This drive system includes a torque converter 7 and automatic transmissions 8 and 9. As components of the automatic transmissions 8 and 9, a forward / reverse switching device 8 using a planetary gear mechanism and a belt type CVT (Continuously Variable Transmission) 9 which is a type of continuously variable transmission are adopted.

内燃機関が出力する回転トルクは、内燃機関のクランクシャフトからトルクコンバータ7の入力側のポンプインペラ71に入力され、出力側のタービンランナ72に伝達される。タービンランナ72の回転は、前後進切換装置8を介してCVT9の駆動軸94に伝わり、CVT9における変速を経て従動軸95を回転させる。従動軸95の回転は、出力ギア101に伝達される。出力ギア101は、デファレンシャル装置のリングギア102と噛合し、デファレンシャル装置を介して車軸103及び駆動輪(図示せず)を回転させる。   The rotational torque output from the internal combustion engine is input from the crankshaft of the internal combustion engine to the pump impeller 71 on the input side of the torque converter 7 and transmitted to the turbine runner 72 on the output side. The rotation of the turbine runner 72 is transmitted to the drive shaft 94 of the CVT 9 via the forward / reverse switching device 8 and rotates the driven shaft 95 through a shift in the CVT 9. The rotation of the driven shaft 95 is transmitted to the output gear 101. The output gear 101 meshes with the ring gear 102 of the differential device, and rotates the axle 103 and the drive wheels (not shown) via the differential device.

走行レンジ(即ち、前進か、後退か、ニュートラルか)を切り換えるべくフォワードブレーキ84またはリバースクラッチ85に供給される作動液(作動油)、並びに、変速比を操作するべく液圧サーボ913、923に供給される作動液を吐出して圧送する液圧ポンプ(図示せず)は、内燃機関のクランクシャフトからトルクの伝達を受けて稼働する、既知の機械式(非電動式)のものである。この作動液は、トルクコンバータ7に用いられる流体と共通のトランスミッションフルード(CVTフルード)である。トランスミッションフルードは、冷間始動の際、フルードウォーマ(CVTウォーマ)514において、内燃機関の冷却水を利用して温められる。   The hydraulic fluid (hydraulic fluid) supplied to the forward brake 84 or the reverse clutch 85 to switch the travel range (ie, forward, reverse, or neutral) and the hydraulic servos 913 and 923 to operate the gear ratio A hydraulic pump (not shown) that discharges and pumps the supplied hydraulic fluid is a known mechanical (non-electric) type that operates by receiving torque transmitted from a crankshaft of an internal combustion engine. This hydraulic fluid is a transmission fluid (CVT fluid) common to the fluid used in the torque converter 7. The transmission fluid is warmed using a cooling water of the internal combustion engine in a fluid warmer (CVT warmer) 514 at the time of cold start.

図3に、本実施形態における内燃機関の冷却装置5の構成を模式的に示す。本実施形態の冷却装置5は、冷却水を吐出して圧送する一個の冷却水ポンプ53と、冷却水を放熱させる一個のラジエータ513と、比較的高温の冷却水を流通させる第一冷却水経路51と、比較的低温の冷却水を流通させる第二冷却水経路52と、第二冷却水経路52を流通する冷却水と第一冷却水経路51を流通する冷却水との間で熱交換させるための熱交換器54と、当該熱交換器54による熱交換を行う状態と行わない状態とを切り換えるための切換弁525とを具備する。   FIG. 3 schematically shows the configuration of the cooling device 5 for an internal combustion engine in the present embodiment. The cooling device 5 according to the present embodiment includes one cooling water pump 53 that discharges and pumps cooling water, one radiator 513 that radiates the cooling water, and a first cooling water path that distributes relatively high-temperature cooling water. 51, heat exchange between the cooling water flowing through the first cooling water path 51 and the cooling water flowing through the second cooling water path 52 and the second cooling water path 52 through which the relatively low-temperature cooling water flows. And a switching valve 525 for switching between a state of performing heat exchange by the heat exchanger 54 and a state of not performing the heat exchange.

ポンプ53は、内燃機関のクランクシャフトからトルクの伝達を受けて稼働する、既知の機械式(非電動式)のものである。ラジエータ513は、車両のエンジンルーム内におけるフロントグリルの後背に配置され、エンジンルームに吹き込む走行風を利用して冷却水を自然空冷したり、電動ファンが起こす風を利用して冷却水を強制空冷したりする。   The pump 53 is a known mechanical (non-electric) type that operates by receiving torque from the crankshaft of the internal combustion engine. The radiator 513 is arranged behind the front grille in the engine room of the vehicle, and naturally cools the cooling water by using running wind blown into the engine room, or forcibly cools the cooling water by using the wind generated by the electric fan. To do.

第一冷却水経路51は、ポンプ53の吐出口に連なる入口側から、複数の気筒1を内包しているシリンダブロック61、ラジエータ513及び/またはフルードウォーマ514、熱交換器54、シリンダヘッド62の排気ポート近傍の部位である排気ヘッド515を順次経由して、ポンプ53の吸込口に連なる出口側へと至る。第二冷却水経路52の入口側及び出口側にはそれぞれ、例えばリニアソレノイド弁等の流量制御弁511、512を設ける。   The first cooling water passage 51 is connected to the cylinder block 61, the radiator 513 and / or the fluid warmer 514, the heat exchanger 54, and the cylinder head 62 containing the plurality of cylinders 1 from the inlet side connected to the discharge port of the pump 53. The exhaust head 515 which is a part near the exhaust port is sequentially passed to the outlet side connected to the suction port of the pump 53. Flow rate control valves 511 and 512 such as linear solenoid valves are provided on the inlet side and the outlet side of the second cooling water passage 52, respectively.

シリンダブロック61の下流では、ラジエータ513を通過して熱交換器54に向かう流路と、フルードウォーマ514を通過して熱交換器54に向かう流路とに分岐する。ラジエータ513の上流及びフルードウォーマ514の上流にはそれぞれ、サーモスタット弁516、517を設ける。サーモスタット弁516、517はともに、周辺の冷却水の温度が閾値を超えたときに開弁し、閾値を超えないときに閉弁するものであるが、フルードウォーマ514の上流に所在するサーモスタット弁517は、ラジエータ513の上流に所在するサーモスタット弁516よりも低い水温で開く。   Downstream of the cylinder block 61, the flow branches to a flow path that passes through the radiator 513 toward the heat exchanger 54 and a flow path that passes through the fluid warmer 514 toward the heat exchanger 54. Thermostat valves 516 and 517 are provided upstream of the radiator 513 and upstream of the fluid warmer 514, respectively. The thermostat valves 516 and 517 are both opened when the temperature of the surrounding cooling water exceeds the threshold value and closed when the temperature does not exceed the threshold value, but the thermostat valve 517 located upstream of the fluid warmer 514. Open at a lower water temperature than the thermostat valve 516 located upstream of the radiator 513.

加えて、シリンダブロック61から下流に、ラジエータ513、フルードウォーマ514及び熱交換器54を迂回して排気ヘッド515に向かう流路を別途敷設している。サーモスタット弁516、517の両方が閉じている場合、冷却水はシリンダブロック61から当該流路に流入して直接排気ヘッド515に到達することとなる。   In addition, downstream from the cylinder block 61, a flow path that bypasses the radiator 513, the fluid warmer 514, and the heat exchanger 54 toward the exhaust head 515 is separately laid. When both the thermostat valves 516 and 517 are closed, the cooling water flows from the cylinder block 61 into the flow path and reaches the exhaust head 515 directly.

しかして、第一冷却水経路51における、排気ヘッド515から出口側に向かう流路上に、第一冷却水経路51を流れる冷却水の温度を検出する第一水温センサ518を設置する。   Accordingly, the first water temperature sensor 518 for detecting the temperature of the cooling water flowing through the first cooling water path 51 is installed on the flow path from the exhaust head 515 toward the outlet side in the first cooling water path 51.

第二冷却水経路52は、ポンプ53の吐出口に連なる入口側から、車両の室内の暖房用のヒータ(ヒータコア)523、熱交換器54、シリンダヘッド62の吸気ポート近傍の部位である吸気ヘッド524、EGRクーラ22を順次経由して、ポンプ53の吸込口に連なる出口側へと至る。第二冷却水経路52の入口側及び出口側にもそれぞれ、例えばリニアソレノイド弁等の流量制御弁521、522を設ける。   The second cooling water path 52 extends from the inlet side connected to the discharge port of the pump 53 to a heater (heater core) 523 for heating a vehicle interior, a heat exchanger 54, and an intake head that is a part near the intake port of the cylinder head 62. 524 and the EGR cooler 22 are sequentially passed to the outlet side connected to the suction port of the pump 53. Flow rate control valves 521 and 522 such as linear solenoid valves are also provided on the inlet side and the outlet side of the second cooling water passage 52, respectively.

ヒータ523の下流では、熱交換器54を通過して吸気ヘッド524に向かう流路と熱交換器54を迂回して吸気ヘッド524に向かう流路とに分岐する。そして、その分岐箇所に、切換弁525を設けている。切換弁525は、ヒータ523から流下した冷却水を熱交換器54に流入させるか、熱交換器54を迂回する流路に流入させる(即ち、熱交換器54に流入させずこれを迂回させる)かを選択的に切り換えることのできる、例えばソレノイドを用いた方向切換弁である。   Downstream of the heater 523, the flow branches to a flow path that passes through the heat exchanger 54 and goes to the intake head 524 and a flow path that bypasses the heat exchanger 54 and goes to the intake head 524. And the switching valve 525 is provided in the branch location. The switching valve 525 causes the cooling water flowing down from the heater 523 to flow into the heat exchanger 54 or to flow into a flow path that bypasses the heat exchanger 54 (that is, does not flow into the heat exchanger 54 and bypasses it). For example, a directional switching valve using a solenoid can be selectively switched.

しかして、第二冷却水経路52における、EGRクーラ22から出口側に向かう流路上に、第二冷却水経路52を流れる冷却水の温度を検出する第二水温センサ526を設置する。   Accordingly, the second water temperature sensor 526 that detects the temperature of the cooling water flowing through the second cooling water path 52 is installed on the flow path from the EGR cooler 22 toward the outlet side in the second cooling water path 52.

内燃機関の運転制御を司るECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。   An ECU (Electronic Control Unit) 0 that controls operation of the internal combustion engine is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットル弁32の開度をアクセル開度(いわば、要求負荷)として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、第一冷却水経路51上の冷却水温を検出する第一水温センサ518から出力される冷却水温信号e、第二冷却水経路52上の冷却水温を検出する第二水温センサ526から出力される冷却水温信号f、各気筒1を包有するシリンダブロック61の振動を検出するノックセンサから出力される振動信号g、吸気カムシャフトまたは排気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号h等が入力される。   The input interface includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle and engine speed of the crankshaft, and depression of an accelerator pedal. The accelerator opening signal c output from the sensor that detects the amount or the opening of the throttle valve 32 as the accelerator opening (so-called required load), the intake air temperature and the intake pressure in the intake passage 3 (particularly, the surge tank 33). Intake air temperature / intake pressure signal d output from the temperature / pressure sensor to be detected, cooling water temperature signal e output from the first water temperature sensor 518 for detecting the cooling water temperature on the first cooling water path 51, and the second cooling water path The cooling water temperature signal f output from the second water temperature sensor 526 that detects the cooling water temperature on 52, and the vibration of the cylinder block 61 that encloses each cylinder 1 Vibration signal g output from a knock sensor for detecting the cam angle signal h or the like to be output from the cam angle sensor is input in a plurality of cam angle of the intake camshaft or an exhaust camshaft.

出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットル弁32に対して開度操作信号k、EGR弁23に対して開度操作信号l、冷却装置5の流量制御弁511、512、521、522の各々に対して開度操作信号m、n、o、p、切換弁525に対して方向切換信号q等を出力する。   From the output interface, an ignition signal i for the igniter of the spark plug 12, a fuel injection signal j for the injector 11, an opening operation signal k for the throttle valve 32, and an opening operation signal l for the EGR valve 23. The opening operation signals m, n, o, and p are output to the flow control valves 511, 512, 521, and 522 of the cooling device 5, and the direction switching signal q is output to the switching valve 525.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、m、n、o、p、qを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine via the input interface, knows the engine speed, and is filled in the cylinder 1. Estimate the intake volume. Based on the engine speed, the intake air amount, and the like, various operating parameters such as required fuel injection amount, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, ignition timing, and the like are determined. . The ECU 0 applies various control signals i, j, k, l, m, n, o, p, q corresponding to the operation parameters via the output interface.

本実施形態において、ECU0は、冷却装置5の流量制御弁511、512、521、522の開度を操作し、かつ切換弁525による冷却水の流路の方向を操作することを通じて、内燃機関の各所に好適な温度の冷却水を供給する。以降、冷却装置5の制御に関して詳述する。   In the present embodiment, the ECU 0 operates the opening degree of the flow control valves 511, 512, 521, and 522 of the cooling device 5 and operates the direction of the flow path of the cooling water by the switching valve 525. Cooling water having a suitable temperature is supplied to each part. Hereinafter, the control of the cooling device 5 will be described in detail.

<1.内燃機関の暖機前>
第一水温センサ518が示す第一冷却水経路51上の冷却水温が比較的低温の所定値を下回る、及び/または、第二水温センサ526が示す第二冷却水経路52上の冷却水温が比較的低温の所定値を下回る(典型的には、冷間始動直後の時期)場合には、流量制御弁511、512を全閉して第一冷却水経路51における冷却水の循環を停止し、内燃機関の暖機即ち冷却水の温度上昇を促す。
冷却水温が低いことから、第一冷却水経路51上のサーモスタット弁516、517は閉じている。
機械式のポンプ53が吐出する冷却水は、第二冷却水経路52において循環させる。そのために、流量制御弁521、522は大きく開く。
また、第二冷却水経路52上の切換弁525は、熱交換器54に冷却水が流入する方向に操作し、第二冷却水経路52の冷却水と第一冷却水経路51の冷却水との間で熱交換可能な状態とする。
<1. Before warming up internal combustion engine>
The cooling water temperature on the first cooling water path 51 indicated by the first water temperature sensor 518 is lower than a relatively low predetermined value, and / or the cooling water temperature on the second cooling water path 52 indicated by the second water temperature sensor 526 is compared. When the temperature is lower than a predetermined value (typically, immediately after the cold start), the flow control valves 511 and 512 are fully closed to stop the circulation of the cooling water in the first cooling water path 51, The internal combustion engine is warmed up, that is, the temperature of the cooling water is increased.
Since the cooling water temperature is low, the thermostat valves 516 and 517 on the first cooling water passage 51 are closed.
The cooling water discharged from the mechanical pump 53 is circulated in the second cooling water passage 52. Therefore, the flow control valves 521 and 522 are opened greatly.
Further, the switching valve 525 on the second cooling water path 52 is operated in a direction in which the cooling water flows into the heat exchanger 54, and the cooling water in the second cooling water path 52 and the cooling water in the first cooling water path 51 are Heat exchange is possible between the two.

<2.内燃機関の暖機後、高温高負荷の運転領域>
第一冷却水経路51上の冷却水温が比較的高温の所定値を上回る、及び/または、第二冷却水経路52上の冷却水温が比較的高温の所定値を上回っており、なおかつアクセル開度が所定値以上に大きい(特に、全開または全開に近い)場合には、全ての流量制御弁511、512、521、522を大きく開き、第一冷却水経路51及び第二冷却水経路52における冷却水の循環を強め、冷却水の温度降下を促す。
冷却水温が高いことから、第一冷却水経路51上のサーモスタット弁516、517は開いている。
第二冷却水経路52上の切換弁525は、熱交換器54に冷却水が流入する方向に操作し、第二冷却水経路52の冷却水と第一冷却水経路51の冷却水との間で熱交換可能な状態とする。
<2. After warming up the internal combustion engine, high temperature and high load operating range>
The cooling water temperature on the first cooling water path 51 exceeds a relatively high predetermined value, and / or the cooling water temperature on the second cooling water path 52 exceeds a relatively high predetermined value, and the accelerator opening degree Is larger than a predetermined value (in particular, fully open or close to full open), all the flow control valves 511, 512, 521, 522 are opened widely, and cooling in the first cooling water passage 51 and the second cooling water passage 52 is performed. Strengthen water circulation and promote cooling water temperature drop.
Since the coolant temperature is high, the thermostat valves 516 and 517 on the first coolant passage 51 are open.
The switching valve 525 on the second cooling water path 52 is operated in a direction in which the cooling water flows into the heat exchanger 54, and between the cooling water in the second cooling water path 52 and the cooling water in the first cooling water path 51. Heat exchange is possible.

<3.内燃機関の暖機後、高温高負荷でない運転領域、第二冷却水経路52上の冷却水温が比較的低い>
上述の“1.内燃機関の暖機前”または“2.内燃機関の暖機後、高温高負荷の運転領域”の条件の何れも満たしておらず、第二冷却水経路52上の冷却水温が第一冷却水経路51上の冷却水温よりも低い場合には、流量制御弁521、522を大きく開く一方、流量制御弁511、512はそれよりも小さい開度に絞る。
第一冷却水経路51上のサーモスタット弁516、517は、第一冷却水経路51を流れる冷却水の温度に応じて、開いたり閉じたりする。
第二冷却水経路52上の冷却水温が第一冷却水経路51上の冷却水温よりも低いということは、ヒータ523や吸気ヘッド524、EGRクーラ22に比較的低温の冷却水を供給できている望ましい状況にあると評価できる。これを維持するべく、第二冷却水経路52上の切換弁525は、熱交換器54に冷却水が流入しない方向に操作して、第二冷却水経路52の冷却水と第一冷却水経路51の冷却水との間で熱交換不能な状態とする。
<3. After the internal combustion engine is warmed up, the operating region where there is no high temperature and high load, the coolant temperature on the second coolant passage 52 is relatively low>
None of the above-mentioned conditions of “1. Before warming up the internal combustion engine” or “2. After warming up the internal combustion engine and operating region of high temperature and high load” is satisfied, and the cooling water temperature on the second cooling water passage 52 Is lower than the cooling water temperature on the first cooling water passage 51, the flow control valves 521 and 522 are opened greatly, while the flow control valves 511 and 512 are throttled to a smaller opening.
The thermostat valves 516 and 517 on the first cooling water path 51 are opened and closed according to the temperature of the cooling water flowing through the first cooling water path 51.
The fact that the cooling water temperature on the second cooling water path 52 is lower than the cooling water temperature on the first cooling water path 51 means that relatively low-temperature cooling water can be supplied to the heater 523, the intake head 524, and the EGR cooler 22. It can be evaluated that the situation is desirable. In order to maintain this, the switching valve 525 on the second cooling water path 52 is operated in a direction in which the cooling water does not flow into the heat exchanger 54, so that the cooling water and the first cooling water path in the second cooling water path 52. The heat exchange with the 51 cooling water is impossible.

<4.内燃機関の暖機後、高温高負荷でない運転領域、第二冷却水経路52上の冷却水温が比較的低い>
上述の“1.内燃機関の暖機前”または“2.内燃機関の暖機後、高温高負荷の運転領域”の条件の何れも満たしておらず、第二冷却水経路52上の冷却水温が第一冷却水経路51上の冷却水温よりも高いか、ほぼこれに等しい場合には、流量制御弁511、512を大きく開く一方、流量制御弁521、522はそれよりも小さい開度に絞る。
第一冷却水経路51上のサーモスタット弁516、517は、第一冷却水経路51を流れる冷却水の温度に応じて、開いたり閉じたりする。
第二冷却水経路52上の冷却水温が第一冷却水経路51上の冷却水温よりも高い状況は、速やかに是正される必要がある。そこで、第二冷却水経路52上の切換弁525は、熱交換器54に冷却水が流入する方向に操作し、第二冷却水経路52の冷却水と第一冷却水経路51の冷却水との間で熱交換可能な状態とする。
<4. After the internal combustion engine is warmed up, the operating region where there is no high temperature and high load, the coolant temperature on the second coolant passage 52 is relatively low>
None of the above-mentioned conditions of “1. Before warming up the internal combustion engine” or “2. After warming up the internal combustion engine and operating region of high temperature and high load” is satisfied, and the cooling water temperature on the second cooling water passage 52 Is higher than or substantially equal to the cooling water temperature on the first cooling water passage 51, the flow control valves 511 and 512 are opened widely, while the flow control valves 521 and 522 are throttled to a smaller opening. .
The thermostat valves 516 and 517 on the first cooling water path 51 are opened and closed according to the temperature of the cooling water flowing through the first cooling water path 51.
The situation where the cooling water temperature on the second cooling water path 52 is higher than the cooling water temperature on the first cooling water path 51 needs to be corrected promptly. Therefore, the switching valve 525 on the second cooling water path 52 is operated in a direction in which the cooling water flows into the heat exchanger 54, and the cooling water in the second cooling water path 52 and the cooling water in the first cooling water path 51 are Heat exchange is possible between the two.

本実施形態では、冷却水を吐出し圧送する一個のポンプ53と、冷却水を放熱させる一個のラジエータ513と、前記ポンプ53の吐出口に連なる入口側及び吸込口に連なる出口側の各々に流量制御弁511、512が設けられ、シリンダブロック61、前記ラジエータ513及びシリンダヘッド62における排気ポート近傍515を経由する第一冷却水経路51と、前記ポンプ53の吐出口に連なる入口側及び吸込口に連なる出口側の各々に流量制御弁521、522が設けられ、ヒータ523及びシリンダヘッド62における吸気ポート近傍524を経由する第二冷却水経路52と、前記第二冷却水経路52の冷却水を前記第一冷却水経路51の冷却水と熱交換させるための熱交換器54と、前記第二冷却水経路52の冷却水と前記第一冷却水経路51の冷却水との間で熱交換する状態と熱交換しない状態とを切り換えるための切換弁525とを具備する内燃機関の冷却装置5を構成した。   In this embodiment, a flow rate is supplied to each of one pump 53 that discharges and pumps cooling water, one radiator 513 that dissipates the cooling water, and an outlet side that is connected to the discharge port of the pump 53 and an outlet side that is connected to the suction port. Control valves 511 and 512 are provided, and the first cooling water path 51 that passes through the vicinity of the exhaust port 515 in the cylinder block 61, the radiator 513, and the cylinder head 62, and the inlet side and the suction port connected to the discharge port of the pump 53 Flow rate control valves 521 and 522 are provided on each of the continuous outlet sides, and the second cooling water path 52 that passes through the vicinity of the intake port 524 in the heater 523 and the cylinder head 62, and the cooling water in the second cooling water path 52 are A heat exchanger 54 for exchanging heat with the cooling water in the first cooling water path 51; the cooling water in the second cooling water path 52; To constitute a cooling device 5 of the internal combustion engine and a switching valve 525 for switching between a state in which no state and heat exchanger for exchanging heat between the cooling water of 却水 path 51.

本実施形態によれば、ポンプ53及びラジエータ513の個数が一つずつで済むことから、冷却装置5の大形化及び重量化を避けることができ、コストの高騰も抑えられる。   According to the present embodiment, since only one pump 53 and one radiator 513 are required, it is possible to avoid an increase in size and weight of the cooling device 5 and to suppress an increase in cost.

その上で、内燃機関の各所に好適な温度の冷却水を配給することができる。特に、吸気ポート近傍524及びEGRクーラ22に、比較的低温の冷却水を供給することが可能となり、吸気ポート近傍524やEGR通路21を流れるEGRガスがよく冷やされ、気筒1に充填される吸気の温度の上昇が抑制されて充填効率を高く維持できる。しかも、実圧縮比を高めたいときや、ノッキングの発生が予想されるとき等に、第二冷却水経路52の冷却水と第一冷却水経路51の冷却水との間での熱交換を遮断し、第二冷却水経路52の冷却水が第一冷却水経路51の冷却水から受熱することを防ぐことができるため、実圧縮比の向上及びノッキングの予防に奏効する。   In addition, cooling water having a suitable temperature can be distributed to various parts of the internal combustion engine. In particular, it is possible to supply relatively low-temperature cooling water to the intake port vicinity 524 and the EGR cooler 22, and the EGR gas flowing in the intake port vicinity 524 and the EGR passage 21 is cooled well, and the intake air charged into the cylinder 1 is filled. The temperature rise is suppressed and the filling efficiency can be maintained high. Moreover, heat exchange between the cooling water in the second cooling water path 52 and the cooling water in the first cooling water path 51 is interrupted when it is desired to increase the actual compression ratio or when knocking is expected. And since it can prevent that the cooling water of the 2nd cooling water path 52 receives heat from the cooling water of the 1st cooling water path 51, it is effective in the improvement of an actual compression ratio, and prevention of knocking.

なお、本発明は以上に詳述した実施形態には限られない。各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関に適用することができる。   The present invention can be applied to an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
5…冷却装置
51…第一冷却水経路
511、512…流量制御弁
513…ラジエータ
515…排気ポート近傍(排気ヘッド)
52…第二冷却水経路
521、522…流量制御弁
523…ヒータ
524…吸気ポート近傍(吸気ヘッド)
525…切換弁
53…ポンプ
54…熱交換器
61…シリンダブロック
62…シリンダヘッド
0 ... Control unit (ECU)
DESCRIPTION OF SYMBOLS 5 ... Cooling device 51 ... 1st cooling water path 511, 512 ... Flow control valve 513 ... Radiator 515 ... Exhaust port vicinity (exhaust head)
52 ... Second cooling water path 521, 522 ... Flow rate control valve 523 ... Heater 524 ... Near intake port (intake head)
525 ... Switching valve 53 ... Pump 54 ... Heat exchanger 61 ... Cylinder block 62 ... Cylinder head

Claims (1)

冷却水を吐出し圧送する一個のポンプと、
冷却水を放熱させる一個のラジエータと、
前記ポンプの吐出口に連なる入口側及び吸込口に連なる出口側の各々に流量制御弁が設けられ、シリンダブロック、前記ラジエータ及びシリンダヘッドにおける排気ポート近傍を経由する第一冷却水経路と、
前記ポンプの吐出口に連なる入口側及び吸込口に連なる出口側の各々に流量制御弁が設けられ、ヒータ及びシリンダヘッドにおける吸気ポート近傍を経由する第二冷却水経路と、
前記第二冷却水経路の冷却水を前記第一冷却水経路の冷却水と熱交換させるための熱交換器と、
前記第二冷却水経路の冷却水と前記第一冷却水経路の冷却水との間で熱交換する状態と熱交換しない状態とを切り換えるための切換弁と
を具備する内燃機関の冷却装置。
One pump that discharges cooling water and pumps it,
One radiator that dissipates cooling water,
A flow rate control valve is provided on each of the inlet side connected to the discharge port of the pump and the outlet side connected to the suction port, and a first cooling water path passing through the vicinity of the exhaust port in the cylinder block, the radiator, and the cylinder head,
A flow rate control valve is provided on each of the inlet side connected to the discharge port of the pump and the outlet side connected to the suction port, and a second cooling water path passing through the vicinity of the intake port in the heater and the cylinder head,
A heat exchanger for exchanging heat of the cooling water of the second cooling water path with the cooling water of the first cooling water path;
A cooling device for an internal combustion engine, comprising: a switching valve for switching between a state in which heat is exchanged between the cooling water in the second cooling water path and the cooling water in the first cooling water path and a state in which heat is not exchanged.
JP2013240750A 2013-11-21 2013-11-21 Cooling device of internal combustion engine Pending JP2015101960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013240750A JP2015101960A (en) 2013-11-21 2013-11-21 Cooling device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240750A JP2015101960A (en) 2013-11-21 2013-11-21 Cooling device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2015101960A true JP2015101960A (en) 2015-06-04

Family

ID=53377891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240750A Pending JP2015101960A (en) 2013-11-21 2013-11-21 Cooling device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2015101960A (en)

Similar Documents

Publication Publication Date Title
CN103628968B (en) The independent cooling of cylinder cover and cylinder block
JP6272094B2 (en) Cooling device for internal combustion engine
CN105545534B (en) Exhaust system and method for efficient exhaust heat recovery
JP6378055B2 (en) Cooling control device for internal combustion engine
EP1475532A2 (en) Thermoelectric generating device
RU2628682C2 (en) Engine system for vehicle
JP6090138B2 (en) Engine cooling system
JP2011047305A (en) Internal combustion engine
JP2008232031A (en) Exhaust heat recovery device
US20090000779A1 (en) Single-loop cooling system having dual radiators
US10196960B2 (en) Cooling system having variable coolant flow paths for exhaust gas recirculation system
WO2016043229A1 (en) Cooling system control device and cooling system control method
JP5565283B2 (en) Cooling device for internal combustion engine
JP2008230422A (en) Cooling device of vehicle
JP6015378B2 (en) Engine exhaust gas recirculation system
JP6131937B2 (en) Cooling device for rotary piston engine
JP2015101960A (en) Cooling device of internal combustion engine
JP2006105105A (en) Engine cooling device
JP7184457B2 (en) Structure of cooling water system for internal combustion engine
JP7218050B2 (en) Control device for cooling water system of internal combustion engine
JP6099385B2 (en) Vehicle having an internal combustion engine
JP2012145008A (en) Internal combustion engine control device
US20150330285A1 (en) Vehicle driven by an internal combustion engine and provided with a liquid cooling system
JP6518757B2 (en) Internal combustion engine cooling system
JP6830376B2 (en) Transmission warmer device