JP2020051006A - Woven and knitted fabric - Google Patents

Woven and knitted fabric Download PDF

Info

Publication number
JP2020051006A
JP2020051006A JP2018184300A JP2018184300A JP2020051006A JP 2020051006 A JP2020051006 A JP 2020051006A JP 2018184300 A JP2018184300 A JP 2018184300A JP 2018184300 A JP2018184300 A JP 2018184300A JP 2020051006 A JP2020051006 A JP 2020051006A
Authority
JP
Japan
Prior art keywords
woven
fabric
yarn
water
knitted fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018184300A
Other languages
Japanese (ja)
Inventor
直希 浅井
Naoki Asai
直希 浅井
将太 竹下
Shota Takeshita
将太 竹下
竹田 恵司
Keiji Takeda
恵司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018184300A priority Critical patent/JP2020051006A/en
Publication of JP2020051006A publication Critical patent/JP2020051006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

To provide a fabric having high level of water repellency which is not obtained in the prior art and is accomplished by controlling unevenness on a fabric surface.SOLUTION: A woven and knitted fabric is obtained by fixing a water-repellent agent. The woven and knitted fabric has a contact angle of 140 degrees or more, and satisfies at least one of the following (1) to (3). (1) Structural water repellency parameter 1=H/(LW)≥0.15, where H is height of convex portions (μm) formed on the surface of the woven and knitted fabric, and (LW)is an interval between convex portions (μm). (2) A fiber constituting the convex portions formed on the surface of the woven and knitted fabric is a yarn containing a plurality of single filaments, and the yarn has a void ratio of S≥0.2. (3) The single filament has a modified cross-section ratio of M≥2.SELECTED DRAWING: None

Description

本発明は、織編物に関するものである。   The present invention relates to a woven or knitted fabric.

撥水剤の成分に頼らない撥水性向上の手法として、ロータス効果として知られる微小凹凸による撥水性向上が知られている。ハスの葉には、マイクロサイズオーダーの凹凸とさらに微小なナノサイズオーダーの凹凸がフラクタル構造のように形成されている。   As a method of improving water repellency without relying on the components of the water repellent, improvement of water repellency by minute irregularities known as a Lotus effect is known. On the lotus leaf, micro-sized irregularities and finer nano-sized irregularities are formed like a fractal structure.

この事象より着想し、フィルム等の基材に微粒子を付着させることで微細な凹凸を形成し、表面積を増大させた撥水材(特許文献1参照)が提案されている。   Inspired by this phenomenon, a water-repellent material has been proposed in which fine irregularities are formed by attaching fine particles to a substrate such as a film to increase the surface area (see Patent Document 1).

またフィルム等平滑な基材を変形させ、微細な溝を形成することで表面積を増大させた撥水材(特許文献2参照)が提案されている。また太繊度の糸と細繊度の糸を複合した混繊糸により布帛の表面粗さを増加させ、撥水性を向上させる手法(特許文献3、4参照)が提案されている。   Further, a water-repellent material has been proposed in which a smooth substrate such as a film is deformed to form fine grooves to increase the surface area (see Patent Document 2). In addition, there has been proposed a method of increasing the surface roughness of a fabric by using a mixed yarn in which a yarn with a fine size and a yarn with a fine size are combined (see Patent Documents 3 and 4).

特開2003−236955号公報JP-A-2003-236955 特開2003−147339号公報JP 2003-147339 A 特開2000−336545号公報JP 2000-336545 A 特開2012−122144号公報JP 2012-122144 A

しかしながら特許文献1に開示の基材に微粒子を付着させる方法はフィルム等を基材とするものであり、単に布帛に転用しても実用的な布帛は得られなかった。   However, the method disclosed in Patent Document 1 for attaching fine particles to a substrate uses a film or the like as a substrate, and a practical cloth cannot be obtained even if the method is simply diverted to a cloth.

また、特許文献2に開示の方法を単に転用しても実用的な布帛は得られなかった。さらに特許文献3、4に開示の方法によっても満足いく撥水性は得られていない。   Further, a practical fabric could not be obtained by simply diverting the method disclosed in Patent Document 2. Further, satisfactory water repellency has not been obtained by the methods disclosed in Patent Documents 3 and 4.

そこで本発明は織編組織や糸使いによって生地表面に様々なサイズのフラクタルな凹凸を形成することで、従来技術では得られなかった高いレベルの撥水性を有する布帛を提供することを課題とする。   Therefore, an object of the present invention is to provide a fabric having a high level of water repellency, which cannot be obtained by the conventional technology, by forming fractal irregularities of various sizes on the surface of the fabric by using a woven or knitted structure or yarn. .

本発明は、上記課題を解決するために、次のような手段を採用するものである。   The present invention employs the following means in order to solve the above problems.

1.撥水剤が固着されてなり、接触角が140°以上であり、かつ少なくとも下記(1)〜(3)のいずれかを満たす織編物。
(1)構造撥水パラメータ1=H/(LW)1/2≧0.15
H:織編物表面に形成される凸部高さ(μm)、
(LW)1/2:凸部―凸部間間隔(μm)
(2)織編物表面に形成される凸部を構成する繊維が複数の単繊維からなる糸条であり、かつ、その糸条の空隙率S≧0.2である。
(3)単繊維の異形断面度M≧2
2.下記(4)を満たす上記1に記載の織編物。
(4)構造撥水パラメータ2:H×S/(LW)1/2≧1×10−2
3.下記(5)を満たす上記1または2に記載の織編物。
(5)構造撥水パラメータ3::H×S×M/(LW)1/2≧0.1
1. A woven or knitted fabric having a water repellent fixed thereto, a contact angle of 140 ° or more, and satisfying at least one of the following (1) to (3).
(1) Structure water repellency parameter 1 = H / (LW) 1/2 ≧ 0.15
H: Height of protrusions (μm) formed on the surface of the woven or knitted fabric,
(LW) 1/2 : spacing between protrusions (μm)
(2) The fiber constituting the convex portion formed on the surface of the woven or knitted fabric is a yarn composed of a plurality of single fibers, and the porosity of the yarn is S ≧ 0.2.
(3) Degree of irregular cross section of single fiber M ≧ 2
2. 2. The woven or knitted fabric according to the above item 1, which satisfies the following (4).
(4) Structure water repellency parameter 2: H × S 2 / (LW) 1/2 ≧ 1 × 10 −2
3. 3. The woven or knitted fabric according to the above 1 or 2, which satisfies the following (5).
(5) Structural water-repellent parameter 3: H × S 2 × M / (LW) 1/2 ≧ 0.1

本発明によれば、織物表面の凹凸を制御することにより、従来技術では得られなかった高いレベルの撥水性を有する布帛を提供することができる。更に本発明の好ましい態様によれば、炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤や、フッ素原子を含まない撥水剤で加工しても、従来の炭素数が8以上のパーフルオロアルキル基を有するフッ素系撥水剤で加工した場合と同程度の撥水性を有する織編物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cloth which has the high level of water repellency which cannot be obtained by the prior art can be provided by controlling the unevenness of the fabric surface. Further, according to a preferred embodiment of the present invention, even when processed with a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms or a water-repellent containing no fluorine atom, the conventional carbon number of 8 or more can be obtained. And a woven or knitted fabric having water repellency comparable to that obtained by processing with a fluorine-based water repellent having a perfluoroalkyl group.

織編物が織物である場合における凸部の高さの測定法を説明するための概念図である。It is a conceptual diagram for demonstrating the measuring method of the height of a convex part when a woven or knitted fabric is a woven fabric. 空隙率Sの測定法を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining a method of measuring a porosity S. スリット形状の横断面を有する単繊維における異形断面度の測定法を説明するための概念図である。It is a conceptual diagram for demonstrating the measuring method of the irregular cross-section degree in the single fiber which has a cross section of a slit shape.

本発明においては、織編物表面の凹凸を制御することにより、空気−水のヘテロ界面を制御することが重要である。本発明では、凸部高さHと凸部―凸部間の最小平均間隔(LW)1/2から求められる構造撥水パラメータ1、空隙率S、単繊維の異形断面度Mという3種のパラメータのうちいずれかのパラメータを最適化することで高撥水素材を提供することができ、なかでも上記3種のうち2種以上のパラメータを最適化することが好ましく、上記3種全てのパラメータを最適化することがより好ましい。 In the present invention, it is important to control the air-water heterointerface by controlling the unevenness of the surface of the woven or knitted fabric. In the present invention, three types of structural water-repellent parameters 1, porosity S, and irregular cross-sectional degree M of a single fiber obtained from the height H of the convex portion and the minimum average interval (LW) 1/2 between the convex portions are provided. By optimizing any one of the parameters, a highly water-repellent material can be provided. Among them, it is preferable to optimize two or more of the above three parameters, and it is preferable to optimize all the above three parameters. Is more preferably optimized.

上記織編物は、織組織等の織編物を構成する組織や糸加工や単繊維形状を最適化することにより、得ることができる。   The woven or knitted fabric can be obtained by optimizing the structure of the woven or knitted fabric such as the woven structure, the thread processing, or the shape of a single fiber.

本発明における織編み物表面に形成される凸部高さHとは、織編物の構造に起因する凸部高さであり、織編物を構成する糸が表面に露出して形成される凸部の高さである。図1は、織編物が織物である場合における凸部の高さの測定法を説明するための概念図である。これを例にとり、具体的に説明する。図1に示すように、織物表面に経糸1ないし緯糸2が表面に露出した頂点から裏面までの距離をそれぞれ経糸の高さHa、緯糸の高さHbとしたとき、その差分の絶対値の高さを有する凸部が織物表面に形成される。すなわち表面に露出して形成される凸部の高さであり、以下の計算式から算出される。なお、上記経糸の高さ、緯糸の高さはそれぞれ不作為に選択した10箇所で測定し、その平均値から算出するものとする。凸部高さHが大きいほど高い撥水性が得られる。好ましくは、50μm以上、より好ましくは、80μm以上、さらに好ましくは100μm以上であることで、より高い撥水性を得られる。上限としては、風合いの観点から500μm以下であることが好ましい。
H=|Ha−Hb|
H:凸部高さ(μm)
Ha:経糸が形成する凸部の平均高さ(μm)
Hb:緯糸が形成する凸部の平均高さ(μm)
The height H of the convex portion formed on the surface of the woven or knitted fabric in the present invention is a height of the convex portion caused by the structure of the woven or knitted fabric. Height. FIG. 1 is a conceptual diagram for explaining a method of measuring the height of a convex portion when the woven or knitted fabric is a woven fabric. This will be described specifically as an example. As shown in FIG. 1, when the distance from the vertex where the warp 1 or the weft 2 is exposed on the surface of the woven fabric to the back is defined as the height Ha of the warp and the height Hb of the weft, respectively, the absolute value of the difference is high. A convex portion having a thickness is formed on the fabric surface. That is, it is the height of the convex portion formed to be exposed on the surface, and is calculated from the following formula. In addition, the height of the warp and the height of the weft are respectively measured at 10 points selected at random, and are calculated from their average values. Higher water repellency is obtained as the height H of the convex portion is larger. It is preferably at least 50 μm, more preferably at least 80 μm, further preferably at least 100 μm, whereby higher water repellency can be obtained. The upper limit is preferably 500 μm or less from the viewpoint of texture.
H = | Ha−Hb |
H: Height of protrusion (μm)
Ha: average height (μm) of convex portion formed by warp
Hb: average height (μm) of convex portion formed by weft

編物の場合、編成により形成されるループの凸部と凹部の平均高さをそれぞれHa、Hbとして求める。   In the case of a knit, the average heights of the convex and concave portions of the loop formed by knitting are determined as Ha and Hb, respectively.

本発明における凸部―凸部間の最小平均間隔(LW)1/2とは、織編物を構成する糸が表面に露出してなる凸部とそれと最も隣接した同一の高さの凸部との平均間隔のことである。ここで同一の高さとは厳密に同一でなくてもよいが、概ね同じであればよく、たとえばある凸部と、この凸部に隣接するこの凸部と同種の織編構造を有する凸部が該当する。同種の凸部とは、凸部が緯糸の上に交差する経糸である場合を例にとれば、それに隣接する緯糸の上に交差する経糸の凸部を意味する。 In the present invention, the minimum average distance (LW) 1/2 between the convex portions is the convex portion formed by exposing the yarn constituting the woven or knitted material on the surface and the convex portion having the same height as the convex portion closest to the convex portion. Means the average interval. Here, the same height may not be strictly the same, but may be substantially the same. For example, a certain convex portion and a convex portion having the same type of woven and knitted structure as the convex portion adjacent to the convex portion may be used. Applicable. The same kind of convex portion means, for example, in the case where the convex portion is a warp crossing over the weft, the convex portion of the warp crossing over the adjacent weft.

織物における凸部―凸部間の平均間隔は、経糸ないし緯糸が表面に露出してなる凸部とそれと最も隣接した同一の高さの凸部との平均間隔のことであり、例えば以下の計算式から算出される。2.54×10は、inch(2.54cm)単位からμm単位への換算するための係数で、Il、Iwは、経方向、緯方向の凸部―凸部間をなす糸の本数を示している。例えば、平織物において、凸部が、緯糸の上側を交差する経糸であり、それと最も隣接した同一の高さの凸部が、その隣の緯糸の上側を交差する経糸であるとすると、その2本の経糸間には緯糸の下側を交差する経糸が存在するので、凸部―凸部間の距離は、凸部―凸部間をなす糸の本数換算で経方向、緯方向ともに2本分となる。また、2/2ツイル織物において、凸部―凸部間の距離は、凸部―凸部間をなす糸の本数換算で経方向、緯方向ともに3本分となる。経方向、緯方向の経糸が並ぶ方向の凸部間間隔と緯糸が並ぶ方向の凸部間間隔の凸部をなす凸部―凸部間の最小平均間隔(LW)1/2が小さいほど、高い撥水性が得られ、好ましくは、700μm以下、より好ましくは、600μm以下、さらに好ましくは、500μm以下であることで、より高い撥水性を得られる。下限としては、製織性の観点から100μm以上であることが好ましい。
(LW)1/2={2.54×10/(Dl/Il)}×{2.54×10/(Dw/Iw)}1/2(μm)
(LW)1/2:凸部―凸部間の最小平均間隔(μm)
Dl:経糸密度(本/inch(2.54cm))
Dw:緯糸密度(本/inch(2.54cm))
Il: 経方向、緯方向で凸部―凸部間をなす糸の本数
Iw: 経方向、緯方向で凸部―凸部間をなす糸の本数
編物の場合も同様に、経糸密度をウェル、緯糸密度をコースとし、算出できる。
The average interval between convex portions in a woven fabric is the average interval between the convex portion where the warp or weft is exposed on the surface and the nearest adjacent convex portion of the same height. It is calculated from the formula. 2.54 × 10 4 is a coefficient for converting from the inch (2.54 cm) unit to the μm unit, and Il and Iw are the numbers of yarns between convex portions in the warp direction and the weft direction. Is shown. For example, in a plain woven fabric, if the convex portion is a warp crossing the upper side of the weft, and the convex portion having the same height closest to the convex portion is a warp crossing the upper side of the next weft, the second is. Since there is a warp crossing the lower side of the weft between the warp yarns, the distance between the protrusions is 2 in both the warp and weft directions in terms of the number of yarns forming the protrusions. Minutes. In the 2/2 twill fabric, the distance between the convex portions is three in both the warp direction and the weft direction in terms of the number of yarns forming the convex portions. The smaller the minimum average interval (LW) 1/2 between the convex-convex portions, which forms the convex portion between the convex portions in the warp direction and the warp direction, and between the convex portions in the weft direction, High water repellency is obtained, and preferably 700 μm or less, more preferably 600 μm or less, and still more preferably 500 μm or less, whereby higher water repellency can be obtained. The lower limit is preferably 100 μm or more from the viewpoint of weaving properties.
(LW) 1/2 = {2.54 × 10 4 /(D1/Il)}×{2.54×10 4 / (Dw / Iw)} 1/2 (μm)
(LW) 1/2 : minimum average distance between protrusions (μm)
Dl: Warp density (book / inch (2.54 cm))
Dw: Weft density (book / inch (2.54 cm))
Il: The number of yarns between convex portions and convex portions in the warp and weft directions Iw: The number of yarns between convex portions and convex portions in the warp and weft directions Similarly, in the case of a knitted fabric, the warp density is well, Using the weft density as a course, it can be calculated.

好ましい繊維構造の組織としては、織組織であり、なかでも好ましい織物としては、平織、ツイル、サテン、タッサ―等が挙げられる。なかでも糸の拘束が少なく、織編物のふくらみ(高さ)が出やすい組織であるツイル、タッサ―が好ましい。   The preferred structure of the fiber structure is a woven structure, and the particularly preferred woven fabric includes plain weave, twill, satin, tusser and the like. Among them, a twill or a tasser, which has a structure in which the restraint of the yarn is small and the bulging (height) of the woven or knitted fabric is easily generated, is preferable.

平織等その他の織組織であっても織密度、製織時の張力を調整し、自然な風合いを損なわない、かつ比較的高密度に製織するなどの配慮をするのがよい。凸部高さおよび凸部―凸部間の最小平均間隔(LW)1/2は、織組織等、繊維構造体の組織に大きく依存しており、この二つのパラメータから算出される構造撥水パラメータ1(H/(LW)1/2)は、織組織等の繊維構造が撥水性に寄与する因子を総合した数値であり、好ましくは、0.15以上、さらに好ましくは、0.3以上であることで、より高い撥水性を得られる。上限としては、製織性の観点から1.0以下であることが好ましい。 Even in the case of other weaving structures such as plain weaving, it is preferable to adjust the weaving density and the tension at the time of weaving so as not to impair the natural texture and to carry out weaving at a relatively high density. The height of the protrusions and the minimum average distance (LW) 1/2 between the protrusions greatly depend on the structure of the fibrous structure such as the woven structure, and the structure water repellency calculated from these two parameters. Parameter 1 (H / (LW) 1/2 ) is a numerical value obtained by integrating factors that contribute to water repellency of the fiber structure such as a woven structure, and is preferably 0.15 or more, and more preferably 0.3 or more. Thus, higher water repellency can be obtained. The upper limit is preferably 1.0 or less from the viewpoint of weaving properties.

本発明における空隙率Sとは、織編物において、凸部を形成する繊維(織物である場合は経糸ないし緯糸、編物である場合は編糸)が複数の単繊維からなる糸条である場合、その糸条が単繊維間にどれだけ空隙を含んでいるかを示す指標である。このような糸条としてはマルチフィラメント、紡績糸等が挙げられる。   The porosity S in the present invention is, in a woven or knitted fabric, a fiber forming a convex portion (a warp or a weft in the case of a woven fabric, a knitting yarn in the case of a knitted fabric) is a yarn composed of a plurality of single fibers, It is an index indicating how much void the yarn contains between the single fibers. Examples of such a yarn include a multifilament and a spun yarn.

空隙率Sは以下の計算式から算出される。図2は空隙率Sの測定法を説明するための概念図である。図2に示すように、凸部を構成する繊維は複数の単繊維からなる糸条であり、この凸部を構成する糸条の断面を観察したとき、その糸条の断面の長径を2×ra、短径を2×rb、長径と短径から想定される楕円の面積ra×rb×πと、単繊維を円形に最密充填したと想定した時の円換算直径から求められる糸条の半径(円換算半径)rから算出される断面積r×πの面積比r/(ra×rb)から、充填率を算出し、1から差し引くことで空隙率Sが算出され、以下の計算式から算出される。 The porosity S is calculated from the following formula. FIG. 2 is a conceptual diagram for explaining a method of measuring the porosity S. As shown in FIG. 2, the fiber constituting the convex portion is a yarn composed of a plurality of single fibers. When the cross section of the yarn constituting the convex portion is observed, the major axis of the cross section of the yarn is 2 × ra, the minor axis is 2 × rb, the area of the ellipse assumed from the major axis and the minor axis, ra × rb × π, and the yarn obtained from the circle-converted diameter when the single fiber is assumed to be closest packed in a circle. The filling rate is calculated from the area ratio r 2 / (ra × rb) of the cross-sectional area r 2 × π calculated from the radius (circle converted to radius) r, and the porosity S is calculated by subtracting 1 from the following. It is calculated from the calculation formula.

空隙率Sが大きいほど高い撥水性が得られる。測定は織編物の凸部について、凸部を構成する繊維の断面を不作為の10箇所で測定し、その平均値から算出した。空隙率Sは、好ましくは0.2、より好ましくは、0.3以上、さらに好ましくは0.5以上であることで、より高い撥水性が得られる。上限としては、製織性の観点から0.8以下であることが好ましい。
S=1−(r/(ra×rb))
S:空隙率
r:円換算半径(2×r=11.9×(d/ρ)1/2)(μm)
d:繊度(dtex)
ρ:糸の比重(ポリエチレンテレフタレート:1.38、ナイロン6:1.13)
2×ra:長径(μm)
2×rb:短径(μm)
/(ra×rb):充填率
The higher the porosity S, the higher the water repellency. The measurement was performed on the convex portion of the woven or knitted fabric by measuring the cross section of the fiber constituting the convex portion at 10 points of omission and calculating the average value. When the porosity S is preferably 0.2, more preferably 0.3 or more, and still more preferably 0.5 or more, higher water repellency can be obtained. The upper limit is preferably 0.8 or less from the viewpoint of weaving properties.
S = 1− (r 2 / (ra × rb))
S: Porosity r: Radius of circle conversion (2 × r = 11.9 × (d / ρ) 1/2 ) (μm)
d: fineness (dtex)
ρ: Specific gravity of yarn (polyethylene terephthalate: 1.38, nylon 6: 1.13)
2 × ra: long diameter (μm)
2 × rb: short diameter (μm)
r 2 / (ra × rb): filling rate

空隙率を大きくするためには、例えば原糸にウーリー加工、ブレリア加工、イタリー加工、ニットデニット加工、押込加工、複合仮撚加工、タスラン加工、交絡加工を行う方法や、2種のポリマーをサイドバイサイド型に複合した複合繊維を用いる方法が挙げられる。   In order to increase the porosity, for example, a method of performing wooly processing, buleria processing, Italy processing, knit denit processing, indentation processing, composite false twist processing, taslan processing, entanglement processing on the raw yarn, or two kinds of polymers are used. A method using a composite fiber compounded in a side-by-side type is exemplified.

空隙率Sは、糸加工等に大きく依存するパラメータである。   The porosity S is a parameter that largely depends on yarn processing and the like.

構造撥水パラメータ2は、上記空隙率Sと構造撥水パラメータ1から(H×S/(LW)1/2)の式で求められるものであり、織組織と糸加工等という繊維構造の組織が撥水性に寄与する因子を総合した数値である。構造撥水パラメータ2が、好ましくは、1×10−2以上、さらに好ましくは、3×10−2以上であることで、さらに高い撥水性を得られる。上限としては、製織性の観点から0.7以下であることが好ましい。 The structural water-repellent parameter 2 is obtained from the above porosity S and the structural water-repellent parameter 1 by the formula of (H × S 2 / (LW) 1/2 ). It is a numerical value summing up the factors that contribute to the water repellency of the tissue. When the structural water repellency parameter 2 is preferably 1 × 10 −2 or more, more preferably 3 × 10 −2 or more, higher water repellency can be obtained. The upper limit is preferably 0.7 or less from the viewpoint of weaving properties.

本発明における単繊維の異形断面度Mは、単繊維の長手方向と直角方向の断面が凹凸を有する形状であるような異型断面糸において、単繊維表面に異形断面が形成されることによる表面積の増加を考慮したパラメータである。本発明においては凸部を構成する糸条に含まれる異型断面糸表面の凹凸による表面積の増加の程度を評価するパラメータである。   In the present invention, the irregular cross-section degree M of the single fiber is such that the cross-section in the direction perpendicular to the longitudinal direction of the single fiber has a shape having irregularities, and the surface area of the monofilament formed by the irregular cross-section on the surface of the single fiber. This is a parameter that takes into account the increase. In the present invention, the parameter is a parameter for evaluating the degree of increase in the surface area due to the unevenness of the irregularly shaped yarn surface included in the yarn constituting the convex portion.

図3はスリット形状の横断面を有する単繊維における異形断面度の測定法を説明するための概念図である。異形断面を考慮した単繊維外周Rmaxは、点線で示される異形断面を考慮しない外接単繊維外周Rsに、異形断面形成による外周の増加分を足した数値である。異形断面による外周の増加分は、図3中のスリットの深さA、スリットの幅B、スリットの数から算出される。さらに凸部として表面に露出する単繊維の本数を、糸条を構成する単繊維の本数(F)の1/4(すなわちF/4)として、以下の計算式から算出される。   FIG. 3 is a conceptual diagram for explaining a method for measuring the degree of irregular cross-section in a single fiber having a slit-shaped cross section. The single fiber outer circumference Rmax in consideration of the deformed cross section is a numerical value obtained by adding an increase in the outer circumference due to the formation of the deformed cross section to the circumscribed single fiber outer circumference Rs indicated by the dotted line and not considering the deformed cross section. The increase in the outer circumference due to the irregular cross section is calculated from the slit depth A, the slit width B, and the number of slits in FIG. Further, the number of the single fibers exposed on the surface as the convex portion is calculated from the following formula as 1/4 of the number (F) of the single fibers constituting the yarn (that is, F / 4).

織編物表面で凸部を構成する単繊維について、長手方向と垂直断面方向に切断した、薄片を採取し、単繊維断面を観察し、走査型電子顕微鏡(SEM)を用いて各値を求めるものとする。不作為の10箇所で測定し、その平均値から算出する。異形断面度Mは、大きいほど高い撥水性が得られ、好ましくは、2以上、さらに好ましくは3以上であることで、より高い撥水性が得られる。上限としては、糸の耐久性の観点から6以下であることが好ましい。   For a single fiber constituting a convex part on the surface of a woven or knitted fabric, a thin section cut in a longitudinal direction and a vertical section direction is collected, a section of the single fiber is observed, and each value is obtained using a scanning electron microscope (SEM). And It is measured at 10 random locations and calculated from the average value. The higher the deformed cross section degree M, the higher the water repellency is obtained, and preferably 2 or more, and more preferably 3 or more, so that higher water repellency is obtained. The upper limit is preferably 6 or less from the viewpoint of yarn durability.

異形断面度Mは、単繊維表面上の微小凹凸を考慮したパラメータである。構造撥水パラメータ3はこの異型断面度Mと構造撥水パラメータ2からH×S×M/(LW)1/2により求められる値であり、織編物表面の短繊維表面で形成される、様々なサイズの凹凸を考慮したパラメータである。構造撥水パラメータ3は、好ましくは、0.1以上、さらに好ましくは、0.2以上であることで、さらに高い撥水性を得られる。上限としては、製織性の観点から0.5以下であることが好ましい。
M=((Rmax/Rs)−1)×F/4
M:異型断面度
Rmax:異形断面を考慮した単繊維外周(μm)
The degree of irregular cross-section M is a parameter that takes into account minute irregularities on the surface of a single fiber. The structural water-repellent parameter 3 is a value obtained from this irregular cross-sectional degree M and the structural water-repellent parameter 2 by H × S 2 × M / (LW) 1/2 , and is formed on the short fiber surface of the woven or knitted fabric surface. This is a parameter that takes into account irregularities of various sizes. If the structural water repellency parameter 3 is preferably 0.1 or more, more preferably 0.2 or more, higher water repellency can be obtained. The upper limit is preferably 0.5 or less from the viewpoint of weaving.
M = ((Rmax / Rs) -1) × F / 4
M: Degree of irregular cross-section Rmax: Single fiber periphery (μm) considering irregular cross-section

下記は、異型断面が図3に示されるスリット形状である場合の計算式を示す。
(Rmax=Rs+(2A+B)×S)
Rs:異形断面を考慮しない外接単繊維外周(μm)
A:スリットの深さ(μm)
B:スリットの幅(μm)
S:スリットの数
F:糸条を構成する単繊維の本数
The following shows a calculation formula when the irregular cross section has the slit shape shown in FIG.
(Rmax = Rs + (2A + B) × S)
Rs: outer circumference of circumscribed single fiber without considering cross section (μm)
A: Slit depth (μm)
B: Slit width (μm)
S: Number of slits F: Number of single fibers constituting yarn

繊維としては特に限定されず、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレートおよびポリブチレンテレフタレートなどの芳香族ポリエステル系繊維、芳香族ポリエステルのジカルボン酸成分あるいは、ジオール成分として、例えば、イソフタル酸、イソフタル酸スルホネート、アジピン酸等の共重合、ジエチレングリコール等のジオール成分を用いた共重合体からなる繊維、ポリエチレングリコールなどをブレンドした芳香族ポリエステル系繊維、L−乳酸を主成分とするもので代表される脂肪族ポリエステル系繊維、ナイロン6やナイロン66などのポリアミド系繊維、ポリアクリルニトリルを主成分とするアクリル系繊維、ポリエチレンやポリプロピレンなどのポリオレフィン系繊維、ポリ塩化ビニル系繊維などの合成繊維、アセテートやレーヨンなどの半合成繊維、木綿、麻、絹などの天然繊維などが挙げられる。   The fibers are not particularly limited, for example, aromatic polyester fibers such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate, dicarboxylic acid components of aromatic polyesters or diol components, for example, isophthalic acid, isophthalic acid sulfonate, adipine Copolymerization of acids and the like, fibers made of a copolymer using a diol component such as diethylene glycol, aromatic polyester fibers blended with polyethylene glycol and the like, aliphatic polyesters represented by those mainly containing L-lactic acid Fibers, polyamide fibers such as nylon 6 and nylon 66, acrylic fibers mainly containing polyacrylonitrile, polyolefin fibers such as polyethylene and polypropylene, polyvinyl chloride fibers, etc. Synthetic fibers, semisynthetic fibers such as acetate and rayon, cotton, hemp, natural fibers such as silk and the like.

本発明における布帛形態は特に限定されず、織物、編物が挙げられるが、防水性の観点から織物が好ましい。   The form of the fabric in the present invention is not particularly limited, and includes a woven fabric and a knitted fabric. A woven fabric is preferable from the viewpoint of waterproofness.

本発明の布帛には撥水剤が固着してなるが、固着とは、撥水剤が繊維と接し、付着または被膜している状態を表す。   The water repellent is adhered to the fabric of the present invention, and the term "adhered" means a state in which the water repellent is in contact with the fiber and is adhered or coated.

撥水剤としては、炭素数が7以上のパーフルオロアルキル基を有するフッ素系撥水剤、炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤、(たとえばダイキン工業(株)製“ユニダイン”TG−5546、“ユニダイン”TG−5601、旭硝子(株)製“アサヒガード”AG−E061、“アサヒガード”AG−E081)、フッ素原子を含まない撥水剤などが挙げられ、これらは1種又は2種以上で用いることができる。なかでも炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤、フッ素原子を含まない撥水剤が好ましい。なお近年パーフルオロオクタン酸及びパーフルオロオクタンスルホン酸は使用を避ける傾向にあることから、布帛中のパーフルオロオクタン酸及びパーフルオロオクタンスルホン酸の含有量として5ppm未満であることが望ましい。   Examples of the water repellent include a fluorine-based water repellent having a perfluoroalkyl group having 7 or more carbon atoms, a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms (for example, manufactured by Daikin Industries, Ltd.). "UNIDINE" TG-5546, "UNIDINE" TG-5601, "Asahigard" AG-E061 and "Asahiguard" AG-E081 manufactured by Asahi Glass Co., Ltd.), and a water-repellent agent containing no fluorine atom. Can be used alone or in combination of two or more. Of these, a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms and a water-repellent containing no fluorine atom are preferred. Since perfluorooctanoic acid and perfluorooctanesulfonic acid tend to be avoided in recent years, the content of perfluorooctanoic acid and perfluorooctanesulfonic acid in the fabric is preferably less than 5 ppm.

撥水剤とともに架橋剤を併用することにより洗濯耐久性を付与することが出来る。このような架橋剤としては、DIC(株)製“アミディア”M−3(トリメチロールメラミン)が好ましい。   Washing durability can be imparted by using a crosslinking agent together with the water repellent. As such a crosslinking agent, "AMIDIA" M-3 (trimethylolmelamine) manufactured by DIC Corporation is preferable.

さらに架橋剤の反応促進のために触媒を用いることができる。このような触媒としては、DIC(株)製“キャタリスト”ACX(アミン系触媒)が好ましい。   Further, a catalyst can be used for accelerating the reaction of the crosslinking agent. As such a catalyst, "Catalyst" ACX (amine catalyst) manufactured by DIC Corporation is preferable.

またマルチフィラメントの内部まで薬剤を浸透させるために浸透剤を用いることができる。このような浸透剤としては、2−プロパノール、エタノール等が挙げられるが、中でも2−プロパノールが好ましい。   In addition, a penetrant can be used to penetrate the drug into the inside of the multifilament. Examples of such a penetrant include 2-propanol and ethanol, and among them, 2-propanol is preferable.

本発明において、炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤を固着させた際、3μLの水に対する接触角が140°以上であることが好ましい。より好ましくは、3μLの水に対する接触角が145°以上である。上記好ましい接触角を有する布帛とするために好ましく用いられ得る炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤としては、ダイキン工業(株)製のTG−5546、旭硝子(株)製の“アサヒガード”AG−E061等が市販されている。   In the present invention, when a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms is fixed, a contact angle to 3 μL of water is preferably 140 ° or more. More preferably, the contact angle to 3 μL of water is 145 ° or more. Examples of the fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms that can be preferably used for obtaining the fabric having the preferable contact angle include TG-5546 manufactured by Daikin Industries, Ltd. and Asahi Glass Co., Ltd. "Asahigard" AG-E061 manufactured by the company is commercially available.

また、本発明において、フッ素原子を含まない撥水剤を固着させた際、3μLの水に対する接触角が140°以上であることが好ましい。より好ましくは、3μLの水に対する接触角が143°以上である。上記接触角を達成するための撥水剤としては、日華化学(株)製のネオシードNR−158等が市販されている。   In the present invention, when a water-repellent agent containing no fluorine atom is fixed, the contact angle to 3 μL of water is preferably 140 ° or more. More preferably, the contact angle to 3 μL of water is 143 ° or more. As a water repellent for achieving the above-mentioned contact angle, Neoseed NR-158 manufactured by Nika Chemical Co., Ltd. is commercially available.

かくして得られる本発明の布帛を織編物に用いた場合、撥水性に優れるため、紳士服、婦人服、礼服、学生服、作業衣、ジャケット、カジュアルウェア、レインコートおよびスポーツウェア等の一般衣料や、水着、傘、テントといった繊維製品に好ましく使用できる。   When the thus obtained fabric of the present invention is used in a woven or knitted fabric, since it has excellent water repellency, general clothing such as men's clothing, women's clothing, formal clothing, student clothing, work clothing, jackets, casual wear, raincoats and sportswear, It can be preferably used for textile products such as swimwear, umbrellas and tents.

(接触角)
接触角の測定は、固液界面解析装置(協和界面科学(株)製“DropMaster”700)で行った。測定条件としては、20℃の水を3μL織編物に乗せた場合の接触角を布帛上の不作為の5箇所で測定し、その平均値をそれぞれの布帛の水に対する接触角とした。
(Contact angle)
The measurement of the contact angle was performed with a solid-liquid interface analyzer (“DropMaster” 700 manufactured by Kyowa Interface Science Co., Ltd.). As the measurement conditions, the contact angles when 3 μL of water at 20 ° C. was placed on the woven or knitted fabric were measured at five locations on the fabric, and the average value was defined as the contact angle of each fabric with water.

接触角が高いほうが、撥水性が高いことを示す。   The higher the contact angle, the higher the water repellency.

(凸部高さH)
測定試料の作製方法
片刃カミソリを用いて凸部をつぶさないように織編物を1cm四方に切断して試験片を作製する。その際、経、緯糸に対して垂直、または平行に切断すると糸が分解しやすく、凸部高さが変わってしまう可能性があるため、経糸方向ないし緯糸方向に対して20°の角度をつけて切断する。経糸方向ないし緯糸方向に対して20°角度をつけて切断した試験片をそれぞれ不作為に5個ずつ用意する。
(Protrusion height H)
Production method of measurement sample A woven or knitted material is cut into a 1 cm square using a single-edged razor so as not to crush the protruding portion to produce a test piece. At that time, if the warp or weft is cut perpendicularly or in parallel, the yarn will be easily decomposed and the height of the convex part may change, so make an angle of 20 ° to the warp or weft direction. And cut it. Five test pieces each prepared at an angle of 20 ° with respect to the warp direction or the weft direction are randomly prepared.

測定方法
上記の方法で作製した1cm四方の試験片の切断面をデジタルマイクロスコープ((株)KEYENCE製“VHX−5000”)で観察し、計測モードで図1の概念図に示す方法で測定したときに、同一視野内で凸部の高さが最も大きい数値を測定した。各試験片でも同様に測定を行い、合計10回の平均値をその試料の凸部高さとした。その際、拡大倍率に規定はないが、20〜50倍から、断面構造が明確に観察できる倍率を選択して測定した。以下の実施例では30倍で行った。
Measuring method A cut surface of a 1 cm square test piece produced by the above method was observed with a digital microscope (“VHX-5000” manufactured by KEYENCE Corporation), and measured in the measurement mode by the method shown in the conceptual diagram of FIG. At times, a numerical value in which the height of the convex portion is the largest in the same visual field was measured. The same measurement was performed on each test piece, and the average value of a total of 10 measurements was taken as the convex portion height of the sample. At this time, the magnification was not specified, but the magnification was selected from 20 to 50 times so that the cross-sectional structure could be clearly observed. In the following examples, the magnification was 30 times.

(凸部―凸部間間隔(LW)1/2
凸部―凸部間間隔(LW)1/2の測定は、ルノメーター(メリヤス密度織むら自動測定器)で織物の経、緯糸密度を測定したのち、計算式に基づいて算出し、凸部―凸部間間隔(LW)1/2とした。ルノメーターで密度を測定できない場合は、デジタルマイクロスコープ((株)KEYENCE製“VHX−5000”)等で凸部―凸部間間隔を実測する。
(Interval between protrusions (LW) 1/2 )
The measurement of the distance between the convex portions and the convex portions (LW) 1/2 is performed by measuring the warp and the weft density of the woven fabric with a luminometer (automatic measuring device of knitted density weave unevenness), and then calculating based on a calculation formula. The interval between projections (LW) was set to 1/2 . When the density cannot be measured with a luminometer, the distance between the convex portions is actually measured by a digital microscope (“VHX-5000” manufactured by KEYENCE Corporation) or the like.

(空隙率S)
測定試料の作製方法
測定試料の作製方法は、凸部高さと同じ方法で作製する。
(Porosity S)
Method for preparing measurement sample The method for preparing the measurement sample is the same as the method for forming the height of the convex portion.

測定方法
上記の方法で作製した1cm四方の試験片の切断面をデジタルマイクロスコープ((株)KEYENCE製“VHX−5000”)で観察し、計測モードで図2の概念図に示す方法で凸部を構成する繊維の長手方向に対する横断面を観察したときに、観察視野内で最も実測の短径2×rbが大きい糸条の横断面に対して測定した。各試験片でも同様に測定を行い、合計10回の平均値をその試料の空隙率Sとした。その際、拡大倍率に規定はないが、30〜100倍程度の範囲から、断面構造が明確に観察できる倍率を選定した。以下の実施例では実際に70倍で行った。
Measuring method A cut surface of a 1 cm square test piece prepared by the above method was observed with a digital microscope (“VHX-5000” manufactured by KEYENCE Co., Ltd.), and the convex portion was formed in the measuring mode by the method shown in the conceptual diagram of FIG. When the cross section in the longitudinal direction of the fiber constituting was observed, the measurement was performed on the cross section of the yarn having the largest measured short diameter 2 × rb in the observation visual field. The same measurement was performed for each test piece, and the average value of a total of 10 measurements was taken as the porosity S of the sample. At this time, the magnification is not specified, but a magnification capable of clearly observing the cross-sectional structure was selected from a range of about 30 to 100 times. In the following examples, the measurement was actually performed at a magnification of 70 times.

(異形断面度M)
測定試料の作製方法
片刃カミソリを用いて1cm四方に切断して試験片を作製する。凸部として表面に露出している経、緯糸の長手方向に対して垂直に切断する。スパッタリング等を行うと断面形状が変化する可能性があるため、行わない。
(Deformed cross section degree M)
Preparation of Measurement Sample A test piece is prepared by cutting into a 1 cm square using a single-edged razor. The warp, which is exposed on the surface as a projection, is cut perpendicularly to the longitudinal direction of the weft. When sputtering or the like is performed, the cross-sectional shape may change;

測定方法
上記の方法で作製した1cm四方の試験片中凸部を構成する繊維の長手方向に対する横断面、SEM((株)日立ハイテクノロジーズ製“SU−1510”)で観察した。図3の概念図に示す方法で、凸部を構成する繊維の断面10本を測定し、その平均値を異形断面度Mとした。その際、拡大倍率に規定はないが、100〜500倍程度から断面構造が明確に観察できる倍率を選定して測定した。以下の実施例では実際に300倍で行った。
(繊度、糸条の本数)
Measurement Method A cross section in the longitudinal direction of the fiber constituting the convex portion of the 1 cm square test piece produced by the above method was observed with a SEM (“SU-1510” manufactured by Hitachi High-Technologies Corporation). According to the method shown in the conceptual diagram of FIG. 3, ten cross sections of the fiber constituting the convex portion were measured, and the average value was defined as the degree of irregular cross section M. At this time, the magnification was not specified, but the magnification was selected from about 100 to 500 times so that the cross-sectional structure could be clearly observed. In the following examples, the magnification was actually 300 times.
(Fineness, number of yarns)

JISL−1013(化学繊維フィラメント糸試験方法)で繊度および糸条の本数を測定した。   The fineness and the number of yarns were measured according to JISL-1013 (test method for chemical fiber filament yarn).

(糸の比重)
自動比重計 DSG−1水中置換式密度・比重計((株)東洋精機製作所)を用いて水中置換法で、比重を測定した。
(Specific gravity of thread)
Automatic specific gravity meter The specific gravity was measured by an underwater replacement method using a DSG-1 underwater replacement type density / specific gravity meter (Toyo Seiki Seisaku-sho, Ltd.).

(織密度)
ルノメーター(メリヤス密度織むら自動測定器)で織物の経、緯糸密度を測定する。
(Woven density)
Measure the warp and weft density of the woven fabric with a luminometer (automatic measuring device for knitting density unevenness).

(ブンデスマン試験)
JISL―1092(雨試験ブンデスマン法)で撥水性を評価した。降雨時間は規定の10分とした。
(Bundesman test)
Water repellency was evaluated according to JISL-1092 (rain test Bundesmann method). The rainfall time was set to 10 minutes.

<実施例1>
44T−48Fのナイロンタスラン加工丸断面糸(芯糸のフィード率+5.0%、鞘糸のフィード率+25%、糸長差20%)のゾッキ平織物で経糸密度135本/2.54cm、緯糸密度148本/2.54cmの織物を得た。得られた織物は、凸部高さHが150μm、凸部―凸部間の最小平均間隔(LW)1/2は、359μm、空隙率Sは0.50、異形断面度Mは1.0であった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が147°となり、ブンデスマン試験では、撥水度は4級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.417、構造撥水パラメータ2が0.104、構造撥水パラメータ3が0.104となった。結果を表1に示す。本織編物をコート用途で使用した結果、雨水が弾かれ、浸透しにくいため、濡れや衣服内のムレが生じにくく、良好な着用快適性を得た。
<Example 1>
44T-48F nylon taslan processed round cross section yarn (core yarn feed rate + 5.0%, sheath yarn feed rate + 25%, yarn length difference 20%), warp density 135 / 2.54cm, weft A woven fabric having a density of 148 / 2.54 cm was obtained. The resulting fabric, the convex height H is 150 [mu] m, the convex portion - minimum average distance (LW) 1/2 between protrusions, 359Myuemu, porosity S 0.50, the modified cross section of M 1.0 Met. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 147 °, and the degree of water repellency was class 4 in the Bundesmann test. The calculated structural water repellent parameters were 0.417 for structural water repellent parameter 1, 0.104 for structural water repellent parameter 2, and 0.104 for structural water repellent parameter 3, respectively. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, rainwater is repelled and hardly penetrates, so that wetting and stuffiness in clothes hardly occur, and good wearing comfort is obtained.

<実施例2>
44T−48Fのナイロンタスラン加工丸断面糸(芯糸のフィード率+5.0%、鞘糸のフィード率+25%、糸長差20%)のゾッキ2/2ツイル織物で経糸密度194本/2.54cm、緯糸密度165本/2.54cmの織物を得た。得られた織物は、凸部高さHが190μm、凸部―凸部間の最小平均間隔(LW)1/2は、284μm、空隙率Sは0.51、異形断面度Mは1であった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が149°となり、ブンデスマン試験では、撥水度は4級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.669、構造撥水パラメータ2が0.174、構造撥水パラメータ3が0.174となった。結果を表1に示す。本織編物をコート用途で使用した結果、雨水が弾かれ、浸透しにくいため、濡れや衣服内のムレが生じにくく、良好な着用快適性を得た。
<Example 2>
A warp density of 194 yarns / 2.2 twill woven fabric of 44T-48F nylon taslan processed round cross section yarn (feed rate of core yarn + 5.0%, feed rate of sheath yarn + 25%, yarn length difference 20%). A woven fabric having 54 cm and a weft density of 165 yarns / 2.54 cm was obtained. In the obtained woven fabric, the height H of the convex portion was 190 μm, the minimum average distance (LW) 1/2 between the convex portions was 284 μm, the porosity S was 0.51, and the degree of irregular cross section M was 1. Was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 149 °, and the degree of water repellency was class 4 in the Bundesmann test. The calculated structural water repellent parameters were 0.669 for structural water repellent parameter 1, 0.174 for structural water repellent parameter 2, and 0.174 for structural water repellent parameter 3, respectively. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, rainwater is repelled and hardly penetrates, so that wetting and stuffiness in clothes hardly occur, and good wearing comfort is obtained.

<実施例3>
44T−48Fのナイロンタスラン加工丸断面糸(芯糸のフィード率+5.0%、鞘糸のフィード率+25%、糸長差20%)のゾッキタッサー織物で経糸密度162本/2.54cm、緯糸密度240本/2.54cmの織物を得た。得られた織物は、凸部高さHが210μm、凸部―凸部間の最小平均間隔(LW)1/2は、258μm、空隙率Sは0.62、異形断面度Mは1であった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が151°となり、ブンデスマン試験では、撥水度は4−5級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.815、構造撥水パラメータ2が0.313、構造撥水パラメータ3が0.313となった。結果を表1に示す。本織編物をコート用途で使用した結果、特に雨水の弾きが強く、浸透しないため、濡れや衣服内のムレが生じにくく、より良好な着用快適性を得た。
<Example 3>
44T-48F nylon tusslan-processed round cross section yarn (core yarn feed rate + 5.0%, sheath yarn feed rate + 25%, yarn length difference 20%), warp density 162 / 2.54cm, weft yarn A fabric having a density of 240 / 2.54 cm was obtained. In the obtained woven fabric, the height H of the projections was 210 μm, the minimum average distance (LW) 1/2 between the projections was 258 μm, the porosity S was 0.62, and the irregularity M was 1. Was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle with respect to 3 μL of water was 151 °, and the water repellency was 4-5 class in the Bundesmann test. The calculated structural water repellent parameters were structural water repellent parameter 1 of 0.815, structural water repellent parameter 2 of 0.313, and structural water repellent parameter 3 of 0.313. Table 1 shows the results. As a result of using the woven or knitted fabric for coating, rainwater repellency was particularly strong and did not penetrate, so that wetting and stuffiness in clothes hardly occurred, and better wearing comfort was obtained.

<実施例4>
56T−40Fのナイロンスリット糸のゾッキ平織物で経糸密度80本/2.54cm、緯糸密度127本/2.54cmの織物を得た。スリット糸の単繊維断面形状としては、スリットの深さAが5.8μm、スリットの幅Bが2.0μmのスリットが8つ設けられている。得られた織物は、凸部高さHが80μm、凸部―凸部間の最小平均間隔(LW)1/2は、656μm、空隙率Sは0.39、異形断面度Mは4.1だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が143°となり、ブンデスマン試験では、撥水度は4級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.122、構造撥水パラメータ2が0.02、構造撥水パラメータ3が0.08となった。結果を表1に示す。本織編物をコート用途で使用した結果、雨水が弾かれ、浸透しないため、濡れや衣服内のムレが生じにくく、良好な着用快適性を得た。
<Example 4>
A fabric with a warp density of 80 yarns / 2.54 cm and a weft yarn density of 127 yarns / 2.54 cm was obtained using a 56T-40F nylon slit yarn Zokki flat fabric. As the single fiber cross-sectional shape of the slit yarn, eight slits having a depth A of the slit of 5.8 μm and a width B of the slit of 2.0 μm are provided. In the obtained woven fabric, the height H of the convex portions is 80 μm, the minimum average distance (LW) 1/2 between the convex portions is 656 μm, the porosity S is 0.39, and the degree of irregular cross section M is 4.1. was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle with respect to 3 μL of water was 143 °, and the degree of water repellency was class 4 in the Bundesmann test. The calculated structural water repellent parameters were structural water repellent parameter 1 of 0.122, structural water repellent parameter 2 of 0.02, and structural water repellent parameter 3 of 0.08. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, rainwater was repelled and did not penetrate, so that wetting and stuffiness in clothes were hardly generated, and good wearing comfort was obtained.

<実施例5>
56T−40Fのナイロンスリット糸のゾッキ2/2ツイル織物で経糸密度80本/2.54cm、緯糸密度127本/2.54cmの織物を得た。スリット糸の単繊維断面形状としては、スリットの深さAが5.8μm、スリットの幅Bが2.0μmのスリットが8つ設けられている。得られた織物は、凸部高さHが110μm、凸部―凸部間の最小平均間隔(LW)1/2は、504μm、空隙率Sは0.42、異形断面度Mは5.8だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が149°となり、ブンデスマン試験では、撥水度は4級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.218、構造撥水パラメータ2が0.04、構造撥水パラメータ3が0.16となった。結果を表1に示す。本織編物をコート用途で使用した結果、雨水が弾かれ、浸透しにくいため、濡れや衣服内のムレが生じにくく、良好な着用快適性を得た。
<Example 5>
A 56T-40F nylon slit yarn Zokki 2/2 twill woven fabric having a warp density of 80 yarns / 2.54 cm and a weft yarn density of 127 yarns / 2.54 cm was obtained. As the single fiber cross-sectional shape of the slit yarn, eight slits having a depth A of the slit of 5.8 μm and a width B of the slit of 2.0 μm are provided. In the obtained woven fabric, the height H of the convex portions is 110 μm, the minimum average distance (LW) 1/2 between the convex portions is 504 μm, the porosity S is 0.42, and the degree M of irregular cross section is 5.8. was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 149 °, and the degree of water repellency was class 4 in the Bundesmann test. The calculated structural water-repellent parameters were structural water-repellent parameter 1 of 0.218, structural water-repellent parameter 2 of 0.04, and structural water-repellent parameter 3 of 0.16. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, rainwater was repelled and hardly permeated, so that wetting and stuffiness in clothes were hardly generated, and good wearing comfort was obtained.

<実施例6>
56T−40Fのナイロンスリット仮撚り糸のゾッキ2/2ツイル織物で経糸密度50本/2.54cm、緯糸密度120本/2.54cmの織物を得た。スリット糸の単繊維断面形状としては、スリットの深さAが5.8μm、スリットの幅Bが2.0μmのスリットが8つ設けられている。得られた織物は、凸部高さHが150μm、凸部―凸部間の最小平均間隔(LW)1/2は、656μm、空隙率Sは0.50、異形断面度Mは5.8だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が150°となり、ブンデスマン試験では、撥水度は4−5級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.22、構造撥水パラメータ2が0.04、構造撥水パラメータ3が0.16となった。結果を表1に示す。本織編物をコート用途で使用した結果、特に雨水の弾きが強く、浸透しないため、濡れや衣服内のムレが生じにくく、より良好な着用快適性を得た。
<Example 6>
A woven fabric with a warp density of 50 yarns / 2.54 cm and a weft yarn density of 120 yarns / 2.54 cm was obtained from a 56T-40F nylon slit false twist yarn 2/2 twill woven fabric. As the single fiber cross-sectional shape of the slit yarn, eight slits having a depth A of the slit of 5.8 μm and a width B of the slit of 2.0 μm are provided. The obtained woven fabric has a convex part height H of 150 μm, a minimum average distance (LW) 1/2 between convex parts and convex parts of 656 μm, a porosity S of 0.50, and an irregular cross-sectional degree M of 5.8. was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 150 °, and the water repellency was 4-5 class in the Bundesmann test. The calculated structural water repellent parameters were structural water repellent parameter 1 of 0.22, structural water repellent parameter 2 of 0.04, and structural water repellent parameter 3 of 0.16. Table 1 shows the results. As a result of using the woven or knitted fabric for coating, rainwater repellency was particularly strong and did not penetrate, so that wetting and stuffiness in clothes hardly occurred, and better wearing comfort was obtained.

<実施例7>
60T−30Fのポリエステルスリット糸のゾッキ平織物で経糸密度122本/2.54cm、緯糸密度100本/2.54cmの織物を得た。スリット糸の単繊維断面形状としては、スリットの深さAが1.5μm、スリットの幅Bが.1.0μmのスリットが30つ設けられている。得られた織物は、凸部高さHが80μm、凸部―凸部間の最小平均間隔(LW)1/2は、460μm、空隙率Sは0.42、異形断面度Mは5.3だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が141°となり、ブンデスマン試験では、撥水度は4級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.174、構造撥水パラメータ2が0.031、構造撥水パラメータ3が0.163となった。結果を表1に示す。本織編物をコート用途で使用した結果、雨水が弾かれ、浸透しにくいため、濡れや衣服内のムレが生じにくく、良好な着用快適性を得た。
<Example 7>
A 60T-30F polyester slit yarn Zocchi plain fabric having a warp density of 122 threads / 2.54 cm and a weft density of 100 threads / 2.54 cm was obtained. As the single fiber cross-sectional shape of the slit yarn, the depth A of the slit is 1.5 μm, and the width B of the slit is. 30 slits of 1.0 μm are provided. The resulting fabric, the convex height H is 80 [mu] m, the convex portion - minimum average distance (LW) 1/2 between protrusions, 460 .mu.m, porosity S is 0.42, modified cross degree M is 5.3 was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 141 °, and the degree of water repellency was class 4 in the Bundesmann test. The calculated structural water repellent parameters were structural water repellent parameter 1 of 0.174, structural water repellent parameter 2 of 0.031, and structural water repellent parameter 3 of 0.163. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, rainwater is repelled and hardly penetrates, so that wetting and stuffiness in clothes hardly occur, and good wearing comfort is obtained.

<実施例8>
60T−30Fのポリエステルスリット糸のゾッキ平織物で経糸密度122本/2.54cm、緯糸密度100本/2.54cmの織物を得た。スリット糸の単繊維断面形状としては、スリットの深さAが2.5μm、スリットの幅Bが.1.0μmのスリットが30つ設けられている。得られた織物は、凸部高さHが50μm、凸部―凸部間の最小平均間隔(LW)1/2は、460μm、空隙率Sは0.42、異形断面度Mは5.7だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が143°となり、ブンデスマン試験では、撥水度は4級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.174、構造撥水パラメータ2が0.03、構造撥水パラメータ3が0.175となった。結果を表1に示す。本織編物をコート用途で使用した結果、雨水が弾かれ、浸透しにくいため、濡れや衣服内のムレが生じにくく、良好な着用快適性を得た。
<Example 8>
A 60T-30F polyester slit yarn Zocchi plain fabric having a warp density of 122 threads / 2.54 cm and a weft density of 100 threads / 2.54 cm was obtained. As the single fiber cross-sectional shape of the slit yarn, the slit depth A is 2.5 μm, and the slit width B is. 30 slits of 1.0 μm are provided. The obtained woven fabric has a convex portion height H of 50 μm, a minimum average distance (LW) 1/2 between convex portions and convex portions of 460 μm, a porosity S of 0.42, and a modified cross-section degree M of 5.7. was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle with respect to 3 μL of water was 143 °, and the degree of water repellency was class 4 in the Bundesmann test. The calculated structural water repellent parameters were structural water repellent parameter 1 of 0.174, structural water repellent parameter 2 of 0.03, and structural water repellent parameter 3 of 0.175. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, rainwater is repelled and hardly penetrates, so that wetting and stuffiness in clothes hardly occur, and good wearing comfort is obtained.

<実施例9>
60T−30Fのポリエステルスリット糸のゾッキ平織物で経糸密度122本/2.54cm、緯糸密度100本/2.54cmの織物を得た。スリット糸の単繊維断面形状としては、スリットの深さAが3.5μm、スリットの幅Bが.1.0μmのスリットが30つ設けられている。得られた織物は、凸部高さHが50μm、凸部―凸部間の最小平均間隔(LW)1/2は、460μm、空隙率Sは0.42、異形断面度Mは5.9だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が148°となり、ブンデスマン試験では、撥水度は4−5級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.174、構造撥水パラメータ2が0.03、構造撥水パラメータ3が0.181となった。結果を表1に示す。本織編物をコート用途で使用した結果、特に雨水の弾きが強く、浸透しないため、濡れや衣服内のムレが生じにくく、より良好な着用快適性を得た。
<Example 9>
A 60T-30F polyester slit yarn Zocchi plain fabric having a warp density of 122 threads / 2.54 cm and a weft density of 100 threads / 2.54 cm was obtained. Regarding the cross-sectional shape of a single fiber of the slit yarn, the depth A of the slit is 3.5 μm and the width B of the slit is. 30 slits of 1.0 μm are provided. The resulting fabric, the convex height H is 50 [mu] m, the convex portion - minimum average distance (LW) 1/2 between protrusions, 460 .mu.m, porosity S is 0.42, the modified cross section of M 5.9 was. "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 148 °, and the water repellency was 4-5 class in the Bundesmann test. The calculated structural water repellent parameters were structural water repellent parameter 1 of 0.174, structural water repellent parameter 2 of 0.03, and structural water repellent parameter 3 of 0.181. Table 1 shows the results. As a result of using the woven or knitted fabric for coating, rainwater repellency was particularly strong and did not penetrate, so that wetting and stuffiness in clothes hardly occurred, and better wearing comfort was obtained.

<比較例1>
556T−40Fのナイロン丸断面糸のゾッキ平織物で経糸密度80本/2.54cm、緯糸密度100本/2.54cmの織物を得た。得られた織物は、凸部高さHが100μm、凸部―凸部間の最小平均間隔(LW)1/2は、656μm、空隙率Sは0.10、異形断面度Mは1だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が135°となり、ブンデスマン試験では、撥水度は2級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.122、構造撥水パラメータ2が0.001、構造撥水パラメータ3が0.001となった。結果を表1に示す。本織編物をコート用途で使用した結果、特に雨水が徐々に浸透し、生地が濡れ、衣服内のムレが生じてくるため、着用時に不快であった。
<Comparative Example 1>
A 556T-40F nylon crocodile plain weave with round cross-section yarn was obtained with a warp density of 80 yarns / 2.54 cm and a weft yarn density of 100 yarns / 2.54 cm. In the obtained woven fabric, the height H of the convex portions was 100 μm, the minimum average distance (LW) 1/2 between the convex portions was 656 μm, the porosity S was 0.10, and the degree M of irregular cross-section was 1. . "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 135 °, and the water repellency was class 2 in the Bundesmann test. The calculated structural water-repellent parameters were structural water-repellent parameter 1 of 0.122, structural water-repellent parameter 2 of 0.001, and structural water-repellent parameter 3 of 0.001. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, in particular, rainwater gradually permeates, the fabric gets wet, and stuffiness in clothes occurs, which is uncomfortable when worn.

結果を表1に示す。   Table 1 shows the results.

<比較例2>
56T−40Fのナイロン丸断面糸のゾッキ2/2ツイル織物で経糸密度70本/2.54cm、緯糸密度110本/2.54cmの織物を得た。得られた織物を、凸部高さHが80μm、凸部―凸部間の最小平均間隔(LW)1/2は、579m、空隙率Sは0.16、異形断面度Mは1だった。炭素数が6以下のパーフルオロアルキル基を有するフッ素系撥水剤である“ユニダイン”TG−5546(ダイキン工業(株)製)50g/Lと、架橋剤である“アミディア”M−3(DIC(株)製)3.0g/L、架橋剤用の触媒として“キャタリスト”ACX(DIC(株)製)1.0g/L、浸透剤である2−イソプロパノール(ナカライテスク(株)製)10g/L、残部を水とした処理液を調整し、これに上記で製造された布帛を浸漬してマングルを用いて絞り率60%となるよう絞り、130℃の温度で乾燥し、その後、170℃の温度で加熱処理をした。3μLの水に対する接触角が136°となり、ブンデスマン試験では、撥水度は2級であった。算出される構造撥水パラメータはそれぞれ、構造撥水パラメータ1が0.218、構造撥水パラメータ2が0.03、構造撥水パラメータ3が0.181となった。結果を表1に示す。本織編物をコート用途で使用した結果、特に雨水が徐々に浸透し、生地が濡れ、衣服内のムレが生じてくるため、着用時に不快であった。
<Comparative Example 2>
A woven thread having a warp density of 70 threads / 2.54 cm and a weft density of 110 threads / 2.54 cm was obtained from a 56T-40F nylon round cross-section 2/2 twill woven fabric. The height of the convex portion of the obtained woven fabric was 80 μm, the minimum average distance (LW) 1/2 between the convex portions was 579 m, the porosity S was 0.16, and the irregularity M was 1. . "Unidyne" TG-5546 (manufactured by Daikin Industries, Ltd.), which is a fluorine-based water repellent having a perfluoroalkyl group having 6 or less carbon atoms, and 50 g / L of a crosslinking agent, "Amidia" M-3 (DIC) 3.0 g / L, "Catalyst" ACX (manufactured by DIC Corporation) 1.0 g / L as a catalyst for a crosslinking agent, 2-isopropanol as a penetrant (manufactured by Nakarai Tesque) A treatment solution containing 10 g / L and the remainder being water was prepared, and the fabric produced above was immersed in the solution, squeezed using a mangle so as to have a squeezing ratio of 60%, and dried at a temperature of 130 ° C. Heat treatment was performed at a temperature of 170 ° C. The contact angle to 3 μL of water was 136 °, and the water repellency was class 2 in the Bundesmann test. The calculated structural water repellent parameters were structural water repellent parameter 1 of 0.218, structural water repellent parameter 2 of 0.03, and structural water repellent parameter 3 of 0.181. Table 1 shows the results. As a result of using the woven or knitted fabric for a coat, in particular, rainwater gradually permeates, the fabric gets wet, and stuffiness in clothes occurs, which is uncomfortable when worn.

1:経糸
2:緯糸
Ha:経糸の高さ
Hb:緯糸の高さ
Rs:異形断面を考慮しない外接単繊維外周
A:スリットの深さ
B:スリットの幅
1: Warp 2: Weft Ha: Warp height Hb: Weft height Rs: Outer circumference of circumscribed single fiber not considering irregular shaped cross section A: Slit depth B: Slit width

Claims (3)

撥水剤が固着されてなる織編物であって、接触角が140°以上であり、かつ少なくとも下記(1)〜(3)のいずれかを満たす織編物。
(1)構造撥水パラメータ1=H/(LW)1/2≧0.15
H:織編物表面に形成される凸部高さ(μm)、
(LW)1/2:凸部―凸部間間隔(μm)
(2)織編物表面に形成される凸部を構成する繊維が複数の単繊維からなる糸条であり、かつ、その糸条の空隙率S≧0.2である。
(3)単繊維の異形断面度M≧2
A woven or knitted fabric to which a water repellent is fixed, wherein the woven or knitted fabric has a contact angle of 140 ° or more and satisfies at least one of the following (1) to (3).
(1) Structure water repellency parameter 1 = H / (LW) 1/2 ≧ 0.15
H: Height of protrusions (μm) formed on the surface of the woven or knitted fabric,
(LW) 1/2 : spacing between protrusions (μm)
(2) The fiber constituting the convex portion formed on the surface of the woven or knitted fabric is a yarn composed of a plurality of single fibers, and the porosity of the yarn is S ≧ 0.2.
(3) Degree of irregular cross section of single fiber M ≧ 2
下記(4)を満たす請求項1に記載の織編物。
(4)構造撥水パラメータ2:(H×S)/(LW)1/2≧1×10−2
The woven or knitted fabric according to claim 1, which satisfies the following (4).
(4) Structural water-repellent parameter 2: (H × S 2 ) / (LW) 1/2 ≧ 1 × 10 −2
下記(5)を満たす請求項1または2に記載の織編物。
(5) 構造撥水パラメータ3::H×S×M/(LW)1/2≧0.1
The woven or knitted fabric according to claim 1 or 2, which satisfies the following (5).
(5) Structural water repellent parameter 3: H × S 2 × M / (LW) 1/2 ≧ 0.1
JP2018184300A 2018-09-28 2018-09-28 Woven and knitted fabric Pending JP2020051006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184300A JP2020051006A (en) 2018-09-28 2018-09-28 Woven and knitted fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184300A JP2020051006A (en) 2018-09-28 2018-09-28 Woven and knitted fabric

Publications (1)

Publication Number Publication Date
JP2020051006A true JP2020051006A (en) 2020-04-02

Family

ID=69996016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184300A Pending JP2020051006A (en) 2018-09-28 2018-09-28 Woven and knitted fabric

Country Status (1)

Country Link
JP (1) JP2020051006A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190040A (en) * 1987-01-30 1988-08-05 帝人株式会社 Water repellent bulky fabric
JP2005350828A (en) * 2004-06-14 2005-12-22 Toray Ind Inc Functional woven fabric
JP2011226026A (en) * 2010-04-21 2011-11-10 Toyobo Specialties Trading Co Ltd Fabric for clothing
JP2018197403A (en) * 2017-05-23 2018-12-13 ユニチカトレーディング株式会社 Water-repellent woven/knitted fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190040A (en) * 1987-01-30 1988-08-05 帝人株式会社 Water repellent bulky fabric
JP2005350828A (en) * 2004-06-14 2005-12-22 Toray Ind Inc Functional woven fabric
JP2011226026A (en) * 2010-04-21 2011-11-10 Toyobo Specialties Trading Co Ltd Fabric for clothing
JP2018197403A (en) * 2017-05-23 2018-12-13 ユニチカトレーディング株式会社 Water-repellent woven/knitted fabric

Similar Documents

Publication Publication Date Title
JP5596886B1 (en) Fabrics and textile products
JP4818369B2 (en) Good wicking scalloped elliptical composite fibers and high uniformity spun yarns containing such fibers
US20100043183A1 (en) Hook surface fastener
JP6469950B2 (en) Anti-stain fabric and textile products
US20060270293A1 (en) Woven or knitted cloth containing two different yarns from and exhibiting reduction of interstitial rate in becoming wet
CN105463650A (en) Cotton-feeling composite yarn, processing method and fabric produced by cotton-feeling composite yarns
US20190352807A1 (en) Woven twill or percale textile fabric
Ramakrishnan et al. An investigation into the properties of knitted fabrics made from viscose microfibers
CN206986416U (en) A kind of carbon fiber woven cloth and its prepreg
JPWO2020158530A1 (en) Water-repellent woven knit, its manufacturing method and clothing
JP5178481B2 (en) Lightweight fabrics and garments
CN107620152A (en) A kind of manufacture method of plush filter cloth for sewage disposal
JP2020051006A (en) Woven and knitted fabric
KR20130047733A (en) Abrasion-resistant polyester fiber and woven/knitted product
JP2007056439A (en) Wool yarn, wool blend yarn, woven wool fabric and method for producing the same
EP3354777B1 (en) Water-repellent woven or knitted fabric, and method for producing same
CN104562381A (en) Polytetrafluoroethylene (PTFE) base cloth special for spunlace filter felt
AU2018423498B2 (en) A twill fabric comprising cotton warp and polyester weft
US20080044620A1 (en) High pile fabrics
JP2019137945A (en) Fabric and fiber structure
JP2009144254A (en) Woven fabric and woven fabric lining
JP4830480B2 (en) Polyester woven and knitted fabric for fused net reinforcement
CN213534093U (en) Glass fiber check cloth
CN211079479U (en) Anti-thread-off fabric
JP7201395B2 (en) Glove fabrics and textiles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307