JP2020050895A - Method for producing composite particle - Google Patents

Method for producing composite particle Download PDF

Info

Publication number
JP2020050895A
JP2020050895A JP2018178524A JP2018178524A JP2020050895A JP 2020050895 A JP2020050895 A JP 2020050895A JP 2018178524 A JP2018178524 A JP 2018178524A JP 2018178524 A JP2018178524 A JP 2018178524A JP 2020050895 A JP2020050895 A JP 2020050895A
Authority
JP
Japan
Prior art keywords
aqueous solution
soft magnetic
composite particles
solution
magnetic ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018178524A
Other languages
Japanese (ja)
Other versions
JP7169138B2 (en
Inventor
智史 森
Tomohito Mori
智史 森
竹内 裕貴
Hirotaka Takeuchi
裕貴 竹内
勝哉 ▲高▼岡
勝哉 ▲高▼岡
Katsuya Takaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018178524A priority Critical patent/JP7169138B2/en
Publication of JP2020050895A publication Critical patent/JP2020050895A/en
Application granted granted Critical
Publication of JP7169138B2 publication Critical patent/JP7169138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide composite particles in which the purity of a soft magnetic ferrite part is improved.SOLUTION: Provided is a method for producing composite particles in which a soft magnetic ferrite part is formed on surfaces of soft magnetic metal particles. An aqueous solution A containing iron ions and bivalent metal ions (except for iron ions), an aqueous solution B containing a nitrite salt as an oxidizer, and an aqueous solution C containing soft magnetic metal particles and dissolved with at least one kind of potassium acetate and ammonium acetate are used. The composite particles are produced by mixing the aqueous solution A, the aqueous solution B and the aqueous solution C. When the total concentration of the iron ions and the bivalent metal ions in the aqueous solution A is defined as αmol/L and the concentration of the nitrite salt in the aqueous solution B is defined as βmol/L, a concentration ratio β/α satisfies the following inequality (1): 0.05≤β/α≤0.5...(1).SELECTED DRAWING: Figure 2

Description

本発明は、複合粒子の製造方法に関する。   The present invention relates to a method for producing a composite particle.

従来、フェライト材料は、モーター、トランス、インダクタ、チョークコイルに例示される電磁変換部品や、ノイズ吸収体として使用されてきた。近年では、部品の小型化、部品の特性向上、部品への磁気特性の付与を目的として、金属、セラミックス、樹脂等の様々な基材と、フェライト材料とを組み合わせた複合材料が検討されている。
また、複合化する基材の形状も、粒子状、板状、パイプ状等、様々である。
フェライトとの複合化にあたり、複合化手法も、種々存在する。例えば、めっき法、ミリング法、噴霧法、ゾルゲル法、共沈法等が例示される。特に、Feイオンと水分子の加水分解反応や、Feイオンとヒドロキシルイオンの加水分解反応を利用するめっき法は、複雑な形状の基材に対してもフェライトを形成可能であり、有用性が高い。
Conventionally, ferrite materials have been used as electromagnetic conversion components exemplified by motors, transformers, inductors, and choke coils, and noise absorbers. In recent years, composite materials combining various base materials such as metals, ceramics, resins, and ferrite materials with the aim of miniaturizing components, improving component characteristics, and imparting magnetic characteristics to components have been studied. .
Further, the shape of the base material to be composited is various, such as a particle shape, a plate shape, and a pipe shape.
There are various compounding methods for compounding with ferrite. For example, a plating method, a milling method, a spray method, a sol-gel method, a coprecipitation method and the like are exemplified. In particular, a plating method using a hydrolysis reaction between Fe ions and water molecules and a hydrolysis reaction between Fe ions and hydroxyl ions can form ferrite even on a substrate having a complicated shape, and is highly useful. .

加水分解反応を利用するめっき法では、スピネルフェライト以外にα−Feをはじめとする金属酸化物が副生成物として発生することが知られている。
従来は、フェライト生成において、Feイオンを溶解させた溶液の初期のpHを制御することで、スピネルフェライトを優先的に生成する工夫をしてきた。ところが、フェライト生成反応の進行とともにプロトンが生成するため、反応溶液中のpHは徐々に酸性に移行し、副生成物の発生を助長してしまう。フェライト生成は中性からアルカリ性条件下で進行するため、酸性への移行は副生成物の生成を促すのである。
そこで、フェライト生成反応中に、反応溶液のpHを制御して、副生成物の発生を抑制しながらフェライトを生成する技術が特許文献1で検討されている。
It is known that in a plating method using a hydrolysis reaction, metal oxides such as α-Fe 2 O 3 are generated as by-products in addition to spinel ferrite.
Conventionally, in the production of ferrite, a device has been devised to preferentially produce spinel ferrite by controlling the initial pH of a solution in which Fe ions are dissolved. However, since protons are generated as the ferrite generation reaction proceeds, the pH in the reaction solution gradually shifts to acidic, which promotes the generation of by-products. Since ferrite formation proceeds under neutral to alkaline conditions, the transition to acidic promotes the formation of by-products.
Therefore, Patent Literature 1 discusses a technique for controlling the pH of a reaction solution during the ferrite generation reaction to generate ferrite while suppressing generation of by-products.

特開2005−64396号公報JP 2005-64396 A

ところで、近年、軟磁性金属粒子の表面に軟磁性フェライト膜を形成した複合粒子が、磁性材料として注目されている。この複合粒子の軟磁性フェライト膜の純度を上げること、すなわち副生成物の発生を抑制することで、磁気特性の向上が期待できる。
複合粒子を製造する際に、上記特許文献1の技術を適用することによって、生成する軟磁性フェライト膜の純度を向上できると推測される。
しかし、実際には、特許文献1の技術を適用しても、軟磁性フェライト膜の純度は必ずしも十分とは言えず、軟磁性フェライト膜の純度を更に向上させる新たな技術が切望されていた。
本発明は、上記実情に鑑みてなされたものであり、軟磁性フェライト膜の純度を更に向上させることを目的とする。本発明は、以下の形態として実現することが可能である。
In recent years, composite particles in which a soft magnetic ferrite film is formed on the surface of soft magnetic metal particles have been receiving attention as a magnetic material. By increasing the purity of the soft magnetic ferrite film of the composite particles, that is, by suppressing the generation of by-products, an improvement in magnetic properties can be expected.
It is presumed that the purity of the resulting soft magnetic ferrite film can be improved by applying the technique of Patent Document 1 when producing the composite particles.
However, in practice, even if the technique of Patent Document 1 is applied, the purity of the soft magnetic ferrite film is not always sufficient, and a new technique for further improving the purity of the soft magnetic ferrite film has been desired.
The present invention has been made in view of the above circumstances, and has as its object to further improve the purity of a soft magnetic ferrite film. The present invention can be realized as the following modes.

〔1〕軟磁性金属粒子の表面に軟磁性フェライト部が形成された複合粒子の製造方法であって、
鉄イオン、及び2価の金属イオン(鉄イオンを除く)を含有する水溶液Aと、
酸化剤としての亜硝酸塩を含有する水溶液Bと、
軟磁性金属粒子を含有するとともに、酢酸カリウム及び酢酸アンモニウムのうちの少なくとも1種を溶解させた水溶液Cと、
を用い、
前記水溶液A、前記水溶液B、及び前記水溶液Cを混合して、複合粒子を製造する複合粒子の製造方法において、
前記水溶液Aにおける、前記鉄イオン及び前記2価の金属イオンの合計濃度をαmol/Lとし、
前記水溶液Bにおける、前記亜硝酸塩の濃度をβmol/Lとした場合に、濃度比β/αが下記式(1)を満たすことを特徴とする複合粒子の製造方法。

0.05≦β/α≦0.5 …(1)
[1] A method for producing a composite particle in which a soft magnetic ferrite portion is formed on the surface of a soft magnetic metal particle,
An aqueous solution A containing iron ions and divalent metal ions (excluding iron ions);
An aqueous solution B containing nitrite as an oxidizing agent;
An aqueous solution C containing soft magnetic metal particles and dissolving at least one of potassium acetate and ammonium acetate;
Using
In the method for producing composite particles, the aqueous solution A, the aqueous solution B, and the aqueous solution C are mixed to produce composite particles.
The total concentration of the iron ion and the divalent metal ion in the aqueous solution A is αmol / L,
A method for producing composite particles, wherein the concentration ratio β / α satisfies the following formula (1) when the concentration of the nitrite in the aqueous solution B is βmol / L.

0.05 ≦ β / α ≦ 0.5 (1)

〔2〕前記水溶液A、前記水溶液B、及び前記水溶液Cを混合するに際して、前記水溶液Cに、前記水溶液Aと前記水溶液Bを混合し、
混合の際の前記水溶液Cの温度は20℃以上100℃以下であることを特徴とする〔1〕に記載の複合粒子の製造方法。
[2] When mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, the aqueous solution A and the aqueous solution B are mixed with the aqueous solution C,
The method for producing composite particles according to [1], wherein the temperature of the aqueous solution C at the time of mixing is 20 ° C. or more and 100 ° C. or less.

〔3〕前記水溶液A、前記水溶液B、及び前記水溶液Cを混合するに際して、前記水溶液Cに、前記水溶液Aと前記水溶液Bを混合し、
混合の際の前記水溶液CのpHは6以上12以下であることを特徴とする〔1〕又は〔2〕に記載の複合粒子の製造方法。
[3] When mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, the aqueous solution A and the aqueous solution B are mixed with the aqueous solution C,
The method for producing composite particles according to [1] or [2], wherein the pH of the aqueous solution C at the time of mixing is 6 or more and 12 or less.

〔4〕前記亜硝酸塩は、亜硝酸カリウム及び亜硝酸ナトリウムのうちの少なくとも1種であることを特徴とする〔1〕〜〔3〕のいずれか1項に記載の複合粒子の製造方法。   [4] The method for producing composite particles according to any one of [1] to [3], wherein the nitrite is at least one of potassium nitrite and sodium nitrite.

〔5〕前記水溶液Aと、前記水溶液Bと、前記水溶液Cとを混合した混合液のカリウム濃度が500mmol/L以下であり、かつ
前記水溶液Aと、前記水溶液Bと、前記水溶液Cとを混合した混合液のナトリウム濃度が500mmol/L以下であることを特徴とする〔4〕に記載の複合粒子の製造方法。
[5] The aqueous solution A, the aqueous solution B, and the aqueous solution C have a potassium concentration of 500 mmol / L or less, and the aqueous solution A, the aqueous solution B, and the aqueous solution C are mixed. The method for producing composite particles according to [4], wherein the mixed solution has a sodium concentration of 500 mmol / L or less.

〔6〕前記水溶液Cにおける、前記酢酸カリウム及び前記酢酸アンモニウムの合計濃度をγmol/Lとした場合に、
濃度比α/γが下記式(2)を満たすことを特徴とする〔1〕〜〔5〕のいずれか1項に記載の複合粒子の製造方法。

0.1≦α/γ≦1.2 …(2)
[6] When the total concentration of the potassium acetate and the ammonium acetate in the aqueous solution C is γmol / L,
The method for producing composite particles according to any one of [1] to [5], wherein the concentration ratio α / γ satisfies the following formula (2).

0.1 ≦ α / γ ≦ 1.2 (2)

〔7〕前記水溶液Aと、前記水溶液Bと、前記水溶液Cとを混合した混合液に20kHz以下の超音波を印可することを特徴とする請求項〔1〕〜〔6〕のいずれか1項に記載の複合粒子の製造方法。   [7] The ultrasonic wave of 20 kHz or less is applied to a mixed liquid obtained by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, [1] to [6]. 3. The method for producing composite particles according to 1.).

本発明の複合粒子の製造方法によれば、複合粒子のフェライト部の純度を向上させることができる。
また、溶液A、水溶液B、及び水溶液Cを混合するに際して、水溶液Cに、水溶液Aと水溶液Bを混合し、混合の際の水溶液Cの温度を20℃以上100℃以下にすると、次の効果を奏する。すなわち、この温度範囲内では、α−Feの生成を抑制するため軟磁性フェライト部の純度が更に向上する傾向にある。しかも、混合の際の水溶液Cの温度をこの範囲とすると、軟磁性フェライト部の生成反応の速度をコントロールして、軟磁性フェライト部の膜厚を制御し易い。
また、水溶液A、水溶液B、及び水溶液Cを混合するに際して、水溶液Cに、水溶液Aと水溶液Bを混合し、混合の際の水溶液CのpHを6以上12以下すると、次の効果を奏する。すなわち、混合の際の水溶液CのpHをこの範囲とすると、軟磁性フェライト部の形成に伴う鉄イオンの消費が速やかに行われ、形成反応がスムーズとなる。また、混合の際の水溶液CのpHをこの範囲とすると、軟磁性金属粒子の表面にてフェライト形成反応が起こり、複合粒子を得ることが出来る。
また、亜硝酸塩が、亜硝酸カリウム及び亜硝酸ナトリウムのうちの少なくとも1種である場合には、次の効果を奏する。すなわち、これらの亜硝酸塩は、酸化力が強いため、軟磁性フェライト部を形成しにくい軟磁性金属粒子に対しても、軟磁性フェライト部を形成できる。
また、本発明の複合粒子の製造方法では、水溶液Aと、水溶液Bと、水溶液Cとを混合した混合液のカリウム濃度が500mmol/L以下であり、かつ水溶液Aと、水溶液Bと、水溶液Cとを混合した混合液のナトリウム濃度が500mmol/L以下であることが好ましい。カリウム濃度やナトリウム濃度が高すぎると、複合粒子の軟磁性フェライト部の耐熱性が低下する傾向にある。上述のカリウム濃度やナトリウム濃度の範囲内とすることで、軟磁性フェライト部の耐熱性を担保できる。
水溶液Cにおける、酢酸カリウム及び酢酸アンモニウムの合計濃度をγmol/Lとした場合に、濃度比α/γが上記式(2)を満たす場合には、反応溶液のpH変動を抑制しつつ、適度な速度で軟磁性フェライト部を形成できる。よって、この場合には、軟磁性フェライト部の膜厚制御がし易い。
水溶液Aと、水溶液Bと、水溶液Cとを混合した混合液に20kHz以下の超音波を印可する場合には、軟磁性フェライト部の形成が促進される。
According to the method for producing composite particles of the present invention, the purity of the ferrite portion of the composite particles can be improved.
When the solution A, the aqueous solution B, and the aqueous solution C are mixed, the aqueous solution A and the aqueous solution B are mixed with the aqueous solution C, and the temperature of the aqueous solution C at the time of mixing is set to 20 ° C. or more and 100 ° C. or less. To play. That is, within this temperature range, the purity of the soft magnetic ferrite tends to be further improved in order to suppress the generation of α-Fe 2 O 3 . Moreover, when the temperature of the aqueous solution C at the time of mixing is within this range, the rate of the reaction for forming the soft magnetic ferrite portion is controlled, and the film thickness of the soft magnetic ferrite portion is easily controlled.
When mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, the aqueous solution A and the aqueous solution B are mixed with the aqueous solution C, and the pH of the aqueous solution C at the time of mixing is 6 or more and 12 or less. That is, when the pH of the aqueous solution C at the time of mixing is within this range, iron ions are rapidly consumed due to the formation of the soft magnetic ferrite portion, and the formation reaction becomes smooth. When the pH of the aqueous solution C during mixing is within this range, a ferrite formation reaction occurs on the surface of the soft magnetic metal particles, and composite particles can be obtained.
When the nitrite is at least one of potassium nitrite and sodium nitrite, the following effects are obtained. That is, since these nitrites have a strong oxidizing power, a soft magnetic ferrite portion can be formed even on soft magnetic metal particles in which it is difficult to form a soft magnetic ferrite portion.
Further, in the method for producing composite particles according to the present invention, the potassium concentration of the mixture of the aqueous solution A, the aqueous solution B, and the aqueous solution C is 500 mmol / L or less, and the aqueous solution A, the aqueous solution B, and the aqueous solution C are mixed. Is preferably 500 mol / L or less. If the potassium concentration or the sodium concentration is too high, the heat resistance of the soft magnetic ferrite portion of the composite particles tends to decrease. Heat resistance of the soft magnetic ferrite portion can be ensured by setting the concentration within the above-mentioned potassium concentration and sodium concentration.
When the total concentration of potassium acetate and ammonium acetate in the aqueous solution C is γmol / L, and the concentration ratio α / γ satisfies the above formula (2), the pH fluctuation of the reaction solution is suppressed and a moderate A soft magnetic ferrite portion can be formed at a high speed. Therefore, in this case, it is easy to control the thickness of the soft magnetic ferrite portion.
When ultrasonic waves of 20 kHz or less are applied to a mixed solution obtained by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, the formation of the soft magnetic ferrite portion is promoted.

軟磁性フェライト部を形成する前の軟磁性金属粒子(実験例1に用いたパーマロイBの粒子)のSEMによる表面観察像である(10000倍)。It is a surface observation image by SEM of a soft magnetic metal particle (a particle of Permalloy B used in Experimental Example 1) before forming a soft magnetic ferrite portion (10000 times). 実験例1における複合粒子のSEMによる表面観察像である(10000倍)。It is the surface observation image by SEM of the composite particle in Experimental example 1 (10000 times). 実験例1における複合粒子のXRD測定結果を示す図である(粉末X線回折ピーク)。FIG. 3 is a view showing an XRD measurement result of the composite particles in Experimental Example 1 (powder X-ray diffraction peak).

以下、本発明を詳しく説明する。なお、本明細書において、数値範囲について「〜」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10〜20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10〜20」は、「10以上20以下」と同じ意味である。   Hereinafter, the present invention will be described in detail. In addition, in this specification, the description using "-" for the numerical range includes the lower limit and the upper limit unless otherwise specified. For example, the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, “10 to 20” has the same meaning as “10 or more and 20 or less”.

1.複合粒子の製造方法
本発明の製造方法は、軟磁性金属粒子の表面に軟磁性フェライト部を被覆して複合粒子とする。
本発明の製造方法では、鉄イオン、及び2価の金属イオン(鉄イオンを除く)を含有する水溶液Aと、酸化剤としての亜硝酸塩を含有する水溶液Bと、軟磁性金属粒子を含有するとともに、酢酸カリウム及び酢酸アンモニウムのうちの少なくとも1種を溶解させた水溶液Cと、を用いる。
そして、本発明の製造方法では、水溶液A、水溶液B、及び水溶液Cを混合して、複合粒子を製造する。
本発明の製造方法では、水溶液Aにおける、鉄イオン及び2価の金属イオンの合計濃度をαmol/Lとし、水溶液Bにおける、亜硝酸塩の濃度をβmol/Lとした場合に、濃度比β/αが下記式(1)を満たすことを特徴とする。

0.05≦β/α≦0.5 …(1)
1. Method for Producing Composite Particles In the production method of the present invention, soft magnetic ferrite portions are coated on the surfaces of soft magnetic metal particles to form composite particles.
In the production method of the present invention, an aqueous solution A containing iron ions and divalent metal ions (excluding iron ions), an aqueous solution B containing nitrite as an oxidizing agent, and soft magnetic metal particles are contained. And an aqueous solution C in which at least one of potassium acetate and ammonium acetate is dissolved.
Then, in the production method of the present invention, the composite particles are produced by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C.
In the production method of the present invention, when the total concentration of iron ions and divalent metal ions in the aqueous solution A is αmol / L and the concentration of nitrite in the aqueous solution B is βmol / L, the concentration ratio β / α Satisfies the following expression (1).

0.05 ≦ β / α ≦ 0.5 (1)

(1)水溶液A
水溶液Aは、鉄イオン、及び2価の金属イオン(鉄イオンを除く)を含有する。
鉄イオンとしては、二価鉄イオン(Fe2+)が挙げられるが、三価鉄イオン(Fe3+)を含有していてもよい。二価の鉄イオン源となる化合物としては、特に限定されないが、塩化鉄(II)、硫酸鉄(II)等を好適に挙げることができる。
2価の金属イオン(鉄イオンを除く)は、特に限定されないが、マンガンイオン(Mn2+)、亜鉛イオン(Zn2+)、ニッケルイオン(Ni2+)、コバルトイオン(Co2+)、マグネシウムイオン(Mg2+)、及び銅イオン(Cu2+)からなる群より選ばれる少なくとも1種が好ましい。
マンガンイオン源となる化合物としては、特に限定されないが、塩化マンガン、硫酸マンガン、硝酸マンガン等を好適に挙げることができる。
亜鉛イオン源となる化合物としては、特に限定されないが、塩化亜鉛、硫酸亜鉛、硝酸亜鉛等を好適に挙げることができる。
ニッケルイオン源となる化合物としては、特に限定されないが、塩化ニッケル、硫酸ニッケル、硝酸ニッケル等を好適に挙げることができる。
(1) Aqueous solution A
The aqueous solution A contains iron ions and divalent metal ions (excluding iron ions).
Examples of the iron ion include a ferrous iron ion (Fe 2+ ), and may contain a ferric iron ion (Fe 3+ ). The compound serving as a source of divalent iron ions is not particularly limited, and preferred examples thereof include iron chloride (II) and iron sulfate (II).
The divalent metal ions (excluding iron ions) are not particularly limited, but include manganese ions (Mn 2+ ), zinc ions (Zn 2+ ), nickel ions (Ni 2+ ), cobalt ions (Co 2+ ), and magnesium ions (Mg 2 2+ ), and at least one selected from the group consisting of copper ions (Cu2 + ).
The compound serving as a manganese ion source is not particularly limited, but manganese chloride, manganese sulfate, manganese nitrate and the like can be preferably mentioned.
The compound serving as a zinc ion source is not particularly limited, but preferably includes zinc chloride, zinc sulfate, zinc nitrate, and the like.
The compound serving as a nickel ion source is not particularly limited, but preferably includes nickel chloride, nickel sulfate, nickel nitrate and the like.

鉄イオンの濃度は、反応速度の観点から、0.005〜0.1mol/Lが好ましく、0.01〜0.08mol/Lがより好ましく、0.015〜0.07mol/Lが更に好ましい。
2価の金属イオン(鉄イオンを除く)の合計濃度は、反応速度の観点から、0.0075〜0.15mol/Lが好ましく、0.015〜0.12mol/Lがより好ましく、0.0225〜0.105mol/Lが更に好ましい。
From the viewpoint of the reaction rate, the concentration of iron ions is preferably 0.005 to 0.1 mol / L, more preferably 0.01 to 0.08 mol / L, and still more preferably 0.015 to 0.07 mol / L.
The total concentration of divalent metal ions (excluding iron ions) is preferably 0.0075 to 0.15 mol / L, more preferably 0.015 to 0.12 mol / L, and more preferably 0.0225 to 0.15 mol / L from the viewpoint of the reaction rate. -0.105 mol / L is more preferable.

(2)水溶液B
水溶液Bは、酸化剤としての亜硝酸塩を含有する。
亜硝酸塩としては、酸化能力を有していれば特に限定されない。亜硝酸カリウム、及び亜硝酸ナトリウムからなる群より選ばれる少なくとも1種が好ましい。これらの亜硝酸塩は、酸化力が強いため、軟磁性フェライト部を形成しにくい軟磁性金属粒子に対しても、軟磁性フェライト部を形成できるからである。
水溶液Bにおける亜硝酸塩の濃度は、不純物の生成抑制の観点から、0.001〜0.125mol/Lが好ましく、0.002〜0.05mol/Lがより好ましく、0.005〜0.03mol/Lが更に好ましい。
水溶液Bは、酢酸カリウム及び水酸化カリウムを含有していてもよい。水溶液Bは、軟磁性フェライト以外の副生成物の生成を抑制するという観点から、酢酸カリウム及び水酸化カリウムによって、pH=10〜12に調整されていることが好ましい。
(2) Aqueous solution B
The aqueous solution B contains nitrite as an oxidizing agent.
The nitrite is not particularly limited as long as it has an oxidizing ability. At least one selected from the group consisting of potassium nitrite and sodium nitrite is preferred. This is because these nitrites have a strong oxidizing power, so that a soft magnetic ferrite portion can be formed even on soft magnetic metal particles which hardly form a soft magnetic ferrite portion.
The concentration of nitrite in the aqueous solution B is preferably 0.001 to 0.125 mol / L, more preferably 0.002 to 0.05 mol / L, and more preferably 0.005 to 0.03 mol / L, from the viewpoint of suppressing generation of impurities. L is more preferred.
The aqueous solution B may contain potassium acetate and potassium hydroxide. The aqueous solution B is preferably adjusted to pH = 10 to 12 with potassium acetate and potassium hydroxide from the viewpoint of suppressing the generation of by-products other than the soft magnetic ferrite.

(3)水溶液C
水溶液Cは、軟磁性金属粒子を含有するとともに、酢酸カリウム及び酢酸アンモニウムのうちの少なくとも1種を含有する。
(3) Aqueous solution C
The aqueous solution C contains the soft magnetic metal particles and at least one of potassium acetate and ammonium acetate.

(3.1)軟磁性金属粒子
軟磁性金属粒子としては、軟磁性金属である金属の粒子を幅広く用いることができる。軟磁性金属としては、純鉄、Fe−Si合金、Fe−Si−Cr合金、Fe−Si−Al合金、Ni−Fe合金、Fe−Co合金、Feアモルファス合金等を好適に用いることができる。
軟磁性金属粒子の粒子径は、特に限定されない。軟磁性金属粒子の粒子径は、使用する用途によって適宜変更することができる。例えば、ノイズ吸収体として使用する場合、周波数帯が1MHz〜1GHzであれば1〜300μmの範囲で変化させることができる。なお、軟磁性金属粒子の粒子径は、レーザー回折/散乱式粒子径分布測定装置(株式会社堀場製作所製、LA−750)によって測定される粒度分布での最大ピークの粒径を意味する。
(3.1) Soft Magnetic Metal Particles As soft magnetic metal particles, metal particles that are soft magnetic metals can be widely used. As the soft magnetic metal, pure iron, Fe-Si alloy, Fe-Si-Cr alloy, Fe-Si-Al alloy, Ni-Fe alloy, Fe-Co alloy, Fe amorphous alloy and the like can be preferably used.
The particle size of the soft magnetic metal particles is not particularly limited. The particle size of the soft magnetic metal particles can be appropriately changed depending on the intended use. For example, when used as a noise absorber, if the frequency band is 1 MHz to 1 GHz, it can be changed in the range of 1 to 300 μm. The particle size of the soft magnetic metal particles means the maximum peak particle size in the particle size distribution measured by a laser diffraction / scattering type particle size distribution measuring device (LA-750, manufactured by Horiba, Ltd.).

軟磁性金属粒子は、表面に金属酸化物層(不動態被膜)を備えていてもよい。金属酸化物層を、表面に備えることによって、焼鈍(熱処理)を行った際、軟磁性金属粒子と軟磁性フェライト部間の金属原子の拡散反応を抑制することができる。
金属酸化物層を構成する金属酸化物は特に限定されない。例えば、酸化クロム、酸化アルミニウム、酸化モリブデン、及び酸化タングステンからなる群より選ばれた1種以上の金属酸化物が好ましい。特に、金属酸化物に、酸化クロム及び酸化アルミニウムのうちの少なくとも1つを含むことが好ましい。これらの好ましい金属酸化物を用いることで、上述の金属原子の拡散が効果的に抑制される。
なお、軟磁性金属粒子として、Fe−Si−Cr合金の粒子を用いた場合には、金属原子拡散の抑制効果を有する金属酸化物層を容易に形成することができる。すなわち、Fe−Si−Cr合金中のCrが酸化することにより軟磁性金属粒子の外縁部に金属酸化物層が形成される。
また、金属酸化物層の厚みは、特に限定されない。厚みは、好ましくは1〜20nmとすることができる。なお、金属酸化物層5の厚みは、XPS(X線光電子分光法)を用いて測定できる。
The soft magnetic metal particles may have a metal oxide layer (passive film) on the surface. By providing the metal oxide layer on the surface, when annealing (heat treatment) is performed, diffusion reaction of metal atoms between the soft magnetic metal particles and the soft magnetic ferrite portion can be suppressed.
The metal oxide constituting the metal oxide layer is not particularly limited. For example, one or more metal oxides selected from the group consisting of chromium oxide, aluminum oxide, molybdenum oxide, and tungsten oxide are preferable. In particular, it is preferable that the metal oxide contain at least one of chromium oxide and aluminum oxide. By using these preferable metal oxides, the above-described diffusion of metal atoms is effectively suppressed.
When Fe--Si--Cr alloy particles are used as the soft magnetic metal particles, a metal oxide layer having an effect of suppressing metal atom diffusion can be easily formed. That is, the metal oxide layer is formed on the outer edge of the soft magnetic metal particles by oxidizing Cr in the Fe-Si-Cr alloy.
The thickness of the metal oxide layer is not particularly limited. The thickness can be preferably between 1 and 20 nm. The thickness of the metal oxide layer 5 can be measured using XPS (X-ray photoelectron spectroscopy).

(3.2)酢酸カリウム及び酢酸アンモニウムの合計濃度
水溶液Cにおける、酢酸カリウム及び酢酸アンモニウムの合計濃度は、副生成物の生成抑制の観点から、0.011〜2.5mol/Lが好ましく、0.05〜1.0mol/Lがより好ましく、0.1〜0.5mol/Lが更に好ましい。
水溶液Cは、水酸化カリウムを含有していてもよい。水溶液Cは、フェライト生成時のpH変動抑制の観点から、酢酸カリウム及び水酸化カリウムによって、pH=10〜12に調整されていることが好ましい。
(3.2) Total concentration of potassium acetate and ammonium acetate The total concentration of potassium acetate and ammonium acetate in the aqueous solution C is preferably 0.011 to 2.5 mol / L from the viewpoint of suppressing generation of by-products, 0.05-1.0 mol / L is more preferable, and 0.1-0.5 mol / L is still more preferable.
The aqueous solution C may contain potassium hydroxide. The aqueous solution C is preferably adjusted to pH = 10 to 12 with potassium acetate and potassium hydroxide from the viewpoint of suppressing pH fluctuation during ferrite formation.

(4)複合粒子
本発明の製造方法によって製造される複合粒子は、軟磁性金属粒子の表面に軟磁性フェライト部が被覆された複合粒子である。
複合粒子の表面は、軟磁性フェライト部が被覆されている。複数の複合粒子を集合させてなる粉体においては、複合粒子のコアである軟磁性金属粒子に着目すると、軟磁性金属粒子同士は、軟磁性フェライト部により電気的に遮断されて、各軟磁性金属粒子は電気的に孤立状態とされる。従って、複数の複合粒子を集合させてなる粉体を用いて圧粉磁心やノイズ吸収体とした場合も、これらの圧粉磁心やノイズ吸収体は、渦電流が効率的に抑制され、MHzを超える周波数帯域まで使用できるようになる。
軟磁性フェライト部の材料は、特に限定されない。軟磁性フェライト部の材料は、マグネタイト、Niフェライト、Znフェライト、Mnフェライト、Ni−Znフェライト、及びMn−Znフェライトからなる群より選ばれた1種以上が好ましい。更には電気抵抗率が10Ω・cm以上のフェライトを用いるのが好ましい。そのため、Niフェライト、Znフェライト、Mnフェライト、Ni−Znフェライト、及びMn−Znフェライトからなる群より選ばれた1種以上がより好ましい。
軟磁性フェライト部としては、例えば、下記式〔1〕又は〔2〕の軟磁性フェライトを好適に用いることができる。

〔1〕 Fe
〔2〕 M−Zn−Fe(3−x−y)
(但し、式中、Mは、Ni又はMnであり、0≦x≦1、0≦y≦1である。)
(4) Composite Particle The composite particle produced by the production method of the present invention is a composite particle in which the surface of a soft magnetic metal particle is covered with a soft magnetic ferrite portion.
The surface of the composite particles is covered with a soft magnetic ferrite part. Focusing on the soft magnetic metal particles, which are the core of the composite particles, in the powder composed of a plurality of composite particles, the soft magnetic metal particles are electrically interrupted by the soft magnetic ferrite part, The metal particles are electrically isolated. Therefore, even when a dust core or a noise absorber is formed by using a powder obtained by assembling a plurality of composite particles, the dust core or the noise absorber can suppress the eddy current efficiently and increase the MHz. It becomes possible to use up to the frequency band exceeding.
The material of the soft magnetic ferrite portion is not particularly limited. The material of the soft magnetic ferrite portion is preferably at least one selected from the group consisting of magnetite, Ni ferrite, Zn ferrite, Mn ferrite, Ni-Zn ferrite, and Mn-Zn ferrite. Further, it is preferable to use ferrite having an electric resistivity of 10 4 Ω · cm or more. Therefore, at least one selected from the group consisting of Ni ferrite, Zn ferrite, Mn ferrite, Ni-Zn ferrite, and Mn-Zn ferrite is more preferable.
As the soft magnetic ferrite portion, for example, a soft magnetic ferrite represented by the following formula [1] or [2] can be suitably used.

[1] Fe 3 O 4
[2] M x -Zn y -Fe (3- x-y) O 4
(Where M is Ni or Mn, and 0 ≦ x ≦ 1 and 0 ≦ y ≦ 1)

(5)軟磁性フェライト部の形成
本発明の製造方法では、水溶液A、水溶液B、及び水溶液Cを混合して、複合粒子を製造する。すなわち、水溶液A、水溶液B、及び水溶液Cを混合することによって、軟磁性フェライト部を軟磁性金属粒子の表面に形成して、複合粒子にする。
混合する順番は、特に限定されない。好ましくは、フェライト生成の収率を高める観点から、水溶液Cに対して、水溶液Aと水溶液Bを混合することが好ましい。このように混合することで、軟磁性金属粒子の略全面に略均一に軟磁性フェライト部、例えばフェライト膜を形成できる。
軟磁性フェライト部は、例えば、めっき装置を用いて形成できる。軟磁性フェライト部の形成反応は、水溶液中でFe2+→Fe3+の酸化反応を利用して、軟磁性金属粒子の表面に、スピネル型フェライト等を堆積させる手法である。この手法では、めっき条件、反応温度、反応液のpHの調整等を適宜調整することにより、軟磁性金属粒子の表面に軟磁性フェライト部を形成できる。また、めっき時間の調整によって、軟磁性フェライト部の厚さを調整できる。
被覆する軟磁性フェライトの種類により各々pHを調節する必要がある。この条件は被覆する軟磁性フェライトの組成によって変化するが、例えばMn−ZnフェライトではpH=10〜11が好ましく、Ni−ZnフェライトではpH=11〜12が好ましい。
具体的には、例えば、次のようにして軟磁性フェライト部が形成される。被めっき物である軟磁性金属粒子を、目的のpHに調整した酢酸カリウムもしくは酢酸アンモニウムを含む水溶液に添加する。そして、この水溶液(水溶液C)に、軟磁性フェライトの原料となる金属イオンを溶解させた反応液(水溶液A)と、酸化液(水溶液B)とを徐々に添加することで、軟磁性フェライトが形成される。この反応の際、撹拌羽根などで、溶液を流動させると軟磁性金属粒子の略全面に略均一なフェライト部を形成させることができる。
(5) Formation of Soft Magnetic Ferrite Part In the production method of the present invention, the aqueous solution A, the aqueous solution B, and the aqueous solution C are mixed to produce composite particles. That is, by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, a soft magnetic ferrite portion is formed on the surface of the soft magnetic metal particles to form composite particles.
The order of mixing is not particularly limited. Preferably, aqueous solution A and aqueous solution B are mixed with aqueous solution C from the viewpoint of increasing the yield of ferrite formation. By performing such mixing, a soft magnetic ferrite portion, for example, a ferrite film can be formed substantially uniformly over substantially the entire surface of the soft magnetic metal particles.
The soft magnetic ferrite portion can be formed using, for example, a plating apparatus. The formation reaction of the soft magnetic ferrite portion is a method of depositing spinel type ferrite or the like on the surface of the soft magnetic metal particles by utilizing the oxidation reaction of Fe 2+ → Fe 3+ in an aqueous solution. In this method, a soft magnetic ferrite portion can be formed on the surface of the soft magnetic metal particles by appropriately adjusting the plating conditions, the reaction temperature, the pH of the reaction solution, and the like. Further, the thickness of the soft magnetic ferrite portion can be adjusted by adjusting the plating time.
It is necessary to adjust the pH depending on the type of soft magnetic ferrite to be coated. Although this condition varies depending on the composition of the soft magnetic ferrite to be coated, for example, pH = 10 to 11 is preferable for Mn-Zn ferrite, and pH = 11 to 12 is preferable for Ni-Zn ferrite.
Specifically, for example, the soft magnetic ferrite portion is formed as follows. The soft magnetic metal particles to be plated are added to an aqueous solution containing potassium acetate or ammonium acetate adjusted to a desired pH. Then, by gradually adding a reaction solution (aqueous solution A) in which metal ions serving as a raw material of soft magnetic ferrite are dissolved and an oxidizing solution (aqueous solution B) to the aqueous solution (aqueous solution C), the soft magnetic ferrite becomes It is formed. In this reaction, when the solution is caused to flow by a stirring blade or the like, a substantially uniform ferrite portion can be formed on substantially the entire surface of the soft magnetic metal particles.

また、反応の際に、水溶液Aと、水溶液Bと、水溶液Cとを混合した混合液に超音波ホーンによりエネルギーを印可してもよい。超音波の周波数は特に限定されないが、20kHz以下であることが好ましい。但し、下限値は通常1Hzである。超音波ホーンの作用により、軟磁性金属粒子は発熱を伴いながら激しく分散される。超音波ホーンを作用させ、かつ混合液を例えば恒温槽等により加熱することで、軟磁性フェライトの生成反応は加速される。また、超音波により溶液中には微小な気泡であるマイクロバブルが発生し、マイクロバブルが膨張収縮する際、高温高圧の反応場が形成される。軟磁性フェライトの生成は、高温下で生成反応におけるギブズの自由エネルギーが負となるため、この高温高圧の反応場中では軟磁性フェライトの生成が著しく促進される。   Further, at the time of the reaction, energy may be applied to a mixed solution obtained by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C with an ultrasonic horn. The frequency of the ultrasonic wave is not particularly limited, but is preferably 20 kHz or less. However, the lower limit is usually 1 Hz. By the action of the ultrasonic horn, the soft magnetic metal particles are violently dispersed while generating heat. By causing the ultrasonic horn to act and heating the mixed solution in, for example, a thermostat, the reaction for producing soft magnetic ferrite is accelerated. In addition, microbubbles, which are microbubbles, are generated in the solution by the ultrasonic waves, and when the microbubbles expand and contract, a reaction field of high temperature and high pressure is formed. The formation of soft magnetic ferrite has a negative Gibbs free energy in the formation reaction at a high temperature, so that the formation of soft magnetic ferrite is remarkably promoted in the reaction field at high temperature and high pressure.

また、下の反応式から分かるように、反応の進行と共にプロトンが生成されるため、反応液内のpHは徐々に酸性に変化する。pHの変動は軟磁性フェライト生成に大きく影響するため、複合粒子の製造においては、反応液内のpHを常に調整する必要がある。反応条件(めっき条件)を最適化すると、金属酸化物層により軟磁性フェライトの生成反応が阻害されることを最小限に抑えることができる。

3Fe2++4HO→Fe+8H+2e

具体的な複合粒子の製造方法の一例を以下に示す。水に2価の金属イオンと鉄イオンとを含む反応液(水溶液A)を用意する。水に酸化剤が溶解した酸化液(水溶液B)を用意する。軟磁性金属粒子を所定のpHに調製した緩衝液中に分散させる。そして、超音波を印加しながら、軟磁性金属粒子が分散した緩衝溶液(水溶液C)に、反応液(水溶液A)及び酸化液(水溶液B)を滴下すると、軟磁性金属粒子の表面に軟磁性フェライト部が形成される。このようにして、本実施形態の複合粒子を製造することができる。
緩衝液のpHは、Ni−Znフェライトの場合には、上述のように、好ましくは11〜12である。緩衝液の種類は特に限定されないが、酢酸カリウムもしくは酢酸アンモニウムを用いた緩衝液が好ましい。このとき、pHを調整する水溶液の種類は特に限定されないが、水酸化カリウム、水酸化ナトリウム、アンモニア水溶液が好ましい。
Further, as can be seen from the reaction formula below, protons are generated as the reaction proceeds, so that the pH in the reaction solution gradually changes to acidic. Since the fluctuation of pH greatly affects the formation of soft magnetic ferrite, it is necessary to always adjust the pH in the reaction solution in the production of composite particles. By optimizing the reaction conditions (plating conditions), it is possible to minimize the inhibition of the soft magnetic ferrite generation reaction by the metal oxide layer.

3Fe 2+ + 4H 2 O → Fe 3 O 4 + 8H + + 2e

An example of a specific method for producing composite particles is shown below. A reaction solution (aqueous solution A) containing divalent metal ions and iron ions in water is prepared. An oxidizing solution in which an oxidizing agent is dissolved in water (aqueous solution B) is prepared. The soft magnetic metal particles are dispersed in a buffer solution adjusted to a predetermined pH. Then, the reaction solution (aqueous solution A) and the oxidizing solution (aqueous solution B) are dropped into a buffer solution (aqueous solution C) in which the soft magnetic metal particles are dispersed while applying ultrasonic waves. A ferrite portion is formed. Thus, the composite particles of the present embodiment can be manufactured.
As described above, the pH of the buffer is preferably 11 to 12 in the case of Ni-Zn ferrite. The type of the buffer is not particularly limited, but a buffer using potassium acetate or ammonium acetate is preferable. At this time, the type of the aqueous solution for adjusting the pH is not particularly limited, but potassium hydroxide, sodium hydroxide, and an aqueous ammonia solution are preferable.

(6)軟磁性フェライト部の形成のメカニズム
軟磁性フェライト部の形成のメカニズムは解明されていないが以下のように推測される。
軟磁性金属粒子の表面の水酸基から反応が開始し、軟磁性フェライト部の形成が始まると推測される。
このようなメカニズムで、本実施形態の複合粒子が生成すると考えられる。なお、反応液のpH条件がずれると軟磁性フェライト部が形成されず、めっき槽内を漂っている磁性フェライト微粒子の堆積体が軟磁性金属粒子の表面に付着した形態の構造になると考えられる。
(6) Mechanism of forming soft magnetic ferrite portion The mechanism of forming the soft magnetic ferrite portion has not been elucidated, but is presumed as follows.
It is presumed that the reaction starts from the hydroxyl groups on the surface of the soft magnetic metal particles, and the formation of the soft magnetic ferrite portion starts.
It is considered that the composite particles of the present embodiment are generated by such a mechanism. If the pH condition of the reaction solution is deviated, a soft magnetic ferrite portion is not formed, and it is considered that a structure in which a deposit of magnetic ferrite fine particles floating in the plating tank adheres to the surface of the soft magnetic metal particles.

(7)本発明の製造方法の特徴
本発明の製造方法では、次のように、α、β、γを定義した場合に、下記式(1)を満たしている。本発明の製造方法では、下記式(1−1)を満たすことが好ましく、下記式(1−2)を満たすことがより好ましい。この特徴により、軟磁性フェライト部の純度を向上できる。すなわち、β/αをこの範囲内とすると、酸化剤と金属イオンとの量的なバランスがよくなり、酸化剤不足によるFe(OH)の生成や、酸化剤過剰によるα−Feの生成が共に抑制され、軟磁性フェライト部の純度が上がる。

αmol/L:水溶液Aにおける、鉄イオン及び2価の金属イオンの合計濃度
βmol/L:水溶液Bにおける、亜硝酸塩の濃度
γmol/L:水溶液Cにおける、酢酸カリウム及び酢酸アンモニウムの合計濃度

0.05≦β/α≦0.5 …(1)
0.04≦β/α≦0.45 …(1−1)
0.03≦β/α≦0.40 …(1−2)
(7) Features of the production method of the present invention In the production method of the present invention, the following expression (1) is satisfied when α, β, and γ are defined as follows. In the production method of the present invention, it is preferable that the following formula (1-1) is satisfied, and it is more preferable that the following formula (1-2) is satisfied. With this feature, the purity of the soft magnetic ferrite portion can be improved. That is, when β / α is within this range, the quantitative balance between the oxidizing agent and the metal ions is improved, and generation of Fe (OH) 2 due to lack of the oxidizing agent and α-Fe 2 O 3 due to excessive oxidizing agent are achieved. Is suppressed, and the purity of the soft magnetic ferrite portion is increased.

αmol / L: total concentration of iron ions and divalent metal ions in aqueous solution A βmol / L: concentration of nitrite in aqueous solution B γmol / L: total concentration of potassium acetate and ammonium acetate in aqueous solution C

0.05 ≦ β / α ≦ 0.5 (1)
0.04 ≦ β / α ≦ 0.45 (1-1)
0.03 ≦ β / α ≦ 0.40 (1-2)

また、本発明の製造方法では、下記式(2)を満たすことが好ましく、下記式(2−1)を満たすことがより好ましく、下記式(2−2)を満たすことが更に好ましい。この特徴により、反応溶液のpH変動を抑制しつつ、適度な速度で軟磁性フェライト部を形成できる。よって、この場合には、軟磁性フェライト部の膜厚を制御し易い。

0.1≦α/γ≦1.2 …(2)
0.2≦α/γ≦1.0 …(2−1)
0.3≦α/γ≦0.8 …(2−2)
Further, in the production method of the present invention, the following formula (2) is preferably satisfied, more preferably the following formula (2-1) is more preferably satisfied, and the following formula (2-2) is more preferably satisfied. With this feature, the soft magnetic ferrite portion can be formed at an appropriate speed while suppressing the pH fluctuation of the reaction solution. Therefore, in this case, it is easy to control the thickness of the soft magnetic ferrite portion.

0.1 ≦ α / γ ≦ 1.2 (2)
0.2 ≦ α / γ ≦ 1.0 (2-1)
0.3 ≦ α / γ ≦ 0.8 (2-2)

なお、αは、フェライト生成および反応速度の観点から、0.0125〜0.25mol/Lが好ましく、0.025〜0.20mol/Lがより好ましく、0.0375〜0.175mol/Lが更に好ましい。
また、βは、不純物の生成抑制の観点から、0.001〜0.125mol/Lが好ましく、0.002〜0.05mol/Lがより好ましく、0.005〜0.03mol/Lが更に好ましい。
また、γは、不純物の生成抑制の観点から、0.011〜2.5mol/Lが好ましく、0.05〜1.0mol/Lがより好ましく、0.1〜0.5mol/Lが更に好ましい。
Α is preferably 0.0125 to 0.25 mol / L, more preferably 0.025 to 0.20 mol / L, further preferably 0.0375 to 0.175 mol / L, from the viewpoint of ferrite generation and reaction rate. preferable.
Β is preferably 0.001 to 0.125 mol / L, more preferably 0.002 to 0.05 mol / L, and still more preferably 0.005 to 0.03 mol / L, from the viewpoint of suppressing generation of impurities. .
Further, γ is preferably 0.011 to 2.5 mol / L, more preferably 0.05 to 1.0 mol / L, and still more preferably 0.1 to 0.5 mol / L, from the viewpoint of suppressing generation of impurities. .

本実施形態の複合粒子の製造方法では、水溶液A、水溶液B、及び水溶液Cを混合するに際して、水溶液Cに、水溶液Aと水溶液Bを混合することが好ましい。そして、混合の際の水溶液Cの温度は、20℃以上100℃以下であることが好ましい。より好ましくは、この混合の際の水溶液Cの温度は、30℃以上90℃以下であり、更に好ましくは40℃以上80℃以下である。
混合の際の水溶液Cの温度をこの範囲とすると、フェライト生成反応が加速され、短時間で軟磁性フェライト部を形成することができ、更に軟磁性フェライト部の純度が向上する傾向にある。
In the method for producing composite particles of the present embodiment, when the aqueous solution A, the aqueous solution B, and the aqueous solution C are mixed, it is preferable that the aqueous solution A and the aqueous solution B are mixed with the aqueous solution C. The temperature of the aqueous solution C at the time of mixing is preferably 20 ° C. or more and 100 ° C. or less. More preferably, the temperature of the aqueous solution C at the time of this mixing is 30 ° C or more and 90 ° C or less, and further preferably 40 ° C or more and 80 ° C or less.
When the temperature of the aqueous solution C at the time of mixing is within this range, the ferrite generation reaction is accelerated, and a soft magnetic ferrite portion can be formed in a short time, and the purity of the soft magnetic ferrite portion tends to be improved.

また、本実施形態の複合粒子の製造方法では、水溶液Cに、水溶液Aと水溶液Bを混合する際の水溶液CのpHは、6以上12以下であることが好ましい。より好ましくは、この混合する際の水溶液CのpHは、7以上12以下であり、更に好ましくは8以上12以下である。
混合する際の水溶液CのpHをこの範囲とすると、軟磁性フェライト部の形成に伴う鉄イオンの消費が速やかに行われ、形成反応がスムーズとなる。また、この範囲とすると、強アルカリ性でないから、安全に軟磁性フェライト部を形成できる。
In the method for producing composite particles of the present embodiment, the pH of the aqueous solution C when the aqueous solution A and the aqueous solution B are mixed with the aqueous solution C is preferably 6 or more and 12 or less. More preferably, the pH of the aqueous solution C at the time of the mixing is 7 or more and 12 or less, and further preferably 8 or more and 12 or less.
When the pH of the aqueous solution C at the time of mixing is in this range, iron ions are rapidly consumed due to the formation of the soft magnetic ferrite portion, and the formation reaction becomes smooth. Further, when the content is within this range, the soft magnetic ferrite portion can be formed safely because it is not strongly alkaline.

また、本実施形態の複合粒子の製造方法では、水溶液Aと、水溶液Bと、水溶液Cとを混合した混合液のカリウム濃度が500mmol/L以下であり、かつ水溶液Aと、水溶液Bと、水溶液Cとを混合した混合液のナトリウム濃度が500mmol/L以下であることが好ましい。カリウム濃度が400mmol/L以下であり、かつナトリウム濃度が300mmol/L以下であることがより好ましい。
カリウム濃度やナトリウム濃度が高すぎると、軟磁性フェライト部の耐熱性が低下する傾向にある。そこで、カリウム濃度及びナトリウム濃度を上述の範囲内とすることで、軟磁性フェライト部の耐熱性を担保できる。
なお、上記カリウム濃度の下限値は、50mmol/Lであり、ナトリウム濃度の下限値は、50mmol/Lである。
In the method for producing composite particles according to the present embodiment, the mixed solution of the aqueous solution A, the aqueous solution B, and the aqueous solution C has a potassium concentration of 500 mmol / L or less, and the aqueous solution A, the aqueous solution B, and the aqueous solution It is preferable that the mixed solution obtained by mixing C and C has a sodium concentration of 500 mmol / L or less. More preferably, the potassium concentration is 400 mmol / L or less and the sodium concentration is 300 mmol / L or less.
If the potassium concentration or the sodium concentration is too high, the heat resistance of the soft magnetic ferrite portion tends to decrease. Therefore, by setting the potassium concentration and the sodium concentration within the above ranges, the heat resistance of the soft magnetic ferrite portion can be secured.
The lower limit of the potassium concentration is 50 mmol / L, and the lower limit of the sodium concentration is 50 mmol / L.

2.本実施形態の複合粒子の製造方法の効果
従来技術では、Feイオンと、水分子又はヒドロキシルイオンとの反応を利用して軟磁性金属粒子とフェライト材料を複合化した際に、スピネルフェライト以外にα-Feや水酸化鉄、MnO、NiO、Mnといった様々な副生成物が生成される。これらの副生成物は非磁性の物質のため、副生成物の存在によって、複素透磁率をはじめ磁気特性の低下を招いてしまう。特に、α−Feは、副生成物として生成しやすく、この副生成物が生成した場合には、赤色の結晶が反応液中に浮遊したり、又は軟磁性金属粒子に付着したりする。その結果、磁気特性が低下してしまう。
これに対し、本実施形態の製造方法では、反応時における反応液のpH変動を抑制し、かつ金属イオンを錯形成によって安定化しているから、副反応が抑制されて、不純物の生成を抑制できる。反応後の反応液を目視で確認しても赤色の結晶は発生しておらず、粉末X線回折パターンにはスピネル結晶構造に由来するピークのみが検出されるようになる。
2. In the prior art, when the soft magnetic metal particles and the ferrite material are compounded by utilizing the reaction between Fe ions and water molecules or hydroxyl ions, in the related art, α other than spinel ferrite is used. -fe 2 O 3 and iron hydroxide, MnO, NiO, various by-products such as Mn 2 O 3 is generated. Since these by-products are non-magnetic substances, the presence of the by-products causes a decrease in magnetic properties including the complex magnetic permeability. In particular, α-Fe 2 O 3 is easily generated as a by-product, and when this by-product is generated, red crystals float in the reaction solution or adhere to soft magnetic metal particles. I do. As a result, the magnetic properties deteriorate.
On the other hand, in the production method of the present embodiment, since the pH fluctuation of the reaction solution during the reaction is suppressed and the metal ions are stabilized by complex formation, the side reaction is suppressed and the generation of impurities can be suppressed. . Even if the reaction solution after the reaction is visually checked, no red crystals are generated, and only peaks derived from the spinel crystal structure are detected in the powder X-ray diffraction pattern.

以下、実施例により本発明を更に具体的に説明する。なお、実験例1,2,3,4,5,6,9,10は、実施例に相当し、実験例7,8は、比較例に相当する。   Hereinafter, the present invention will be described more specifically with reference to examples. Experimental Examples 1, 2, 3, 4, 5, 6, 9, and 10 correspond to Examples, and Experimental Examples 7 and 8 correspond to Comparative Examples.

1.複合粒子の作製
(1)実験例1(実施例)
(1.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFe−50質量%Ni粒子(パーマロイB、平均粒子径:10μm)を使用した。
(1.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(1.3)水溶液Aの調製
純水100mLに所定量の塩化ニッケル、塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化ニッケル、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がNi:Zn:Fe=0.2:0.3:2.5となるように調整した。
(1.4)水溶液Bの調製
(1.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.10gを加えて酸化液とした(水溶液B)。
(1.5)水溶液Cの調製
(1.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(1.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例1に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表1に示す。
なお、表1中のα、β、γは次のように定義され、これらα、β、γから、「β/α」「α/γ」が計算されている。α、β、γの定義については、後述する実験例2〜10でも同様である。

αmol/L:水溶液Aにおける、鉄イオン及び2価の金属イオンの合計濃度
βmol/L:水溶液Bにおける、亜硝酸塩の濃度
γmol/L:水溶液Cにおける、酢酸カリウム及び酢酸アンモニウムの合計濃度

なお、実験例1では、「α=84(mmol/L)」「β=12(mmol/L)」「γ=179(mmol/L)」であった。
また、表1中の「アルカリ金属」の欄は、水溶液A,B,Cを全量混合した場合の混合液中におけるカリウムの濃度を示している。このカリウムは、水溶液Bに含まれる酢酸カリウムと水酸化カリウムに由来するカリウム、水溶液Bに含まれる亜硝酸カリウムに由来するカリウム、水溶液Cに含まれる酢酸カリウムと水酸化カリウムに由来するカリウムの全てを意味する。「アルカリ金属」の欄は、表2でも同様である。
1. Preparation of Composite Particles (1) Experimental Example 1 (Example)
(1.1) Soft magnetic metal particles Fe-50 mass% Ni particles (Permalloy B, average particle diameter: 10 µm) produced by a water atomizing method were used as soft magnetic metal particles as raw materials.
(1.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(1.3) Preparation of aqueous solution A A predetermined amount of nickel chloride, zinc chloride, and iron (II) chloride was added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of nickel chloride, zinc chloride and iron (II) chloride were adjusted such that the molar ratio of each metal ion was Ni: Zn: Fe = 0.2: 0.3: 2.5.
(1.4) Preparation of aqueous solution B To 100 mL of the pH adjusting solution of (1.2), 0.10 g of potassium nitrite was added as an oxidizing agent to prepare an oxidizing solution (aqueous solution B).
(1.5) Preparation of Aqueous Solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (1.2) to obtain an aqueous solution C.
(1.6) Formation of Soft Magnetic Ferrite Portion While flowing nitrogen into the aqueous solution C, the solution was heated to 70 ° C., and while applying ultrasonic waves, the aqueous solution A and the aqueous solution B were dropped to form a soft magnetic ferrite portion. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 1.
Table 1 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
Note that α, β, and γ in Table 1 are defined as follows, and “β / α” and “α / γ” are calculated from these α, β, and γ. The definitions of α, β, and γ are the same in Experimental Examples 2 to 10 described later.

αmol / L: total concentration of iron ions and divalent metal ions in aqueous solution A βmol / L: concentration of nitrite in aqueous solution B γmol / L: total concentration of potassium acetate and ammonium acetate in aqueous solution C

In Experimental Example 1, “α = 84 (mmol / L)”, “β = 12 (mmol / L)”, and “γ = 179 (mmol / L)”.
Further, the column of “alkali metal” in Table 1 shows the concentration of potassium in the mixed solution when all of the aqueous solutions A, B, and C are mixed. This potassium is all of potassium derived from potassium acetate and potassium hydroxide contained in the aqueous solution B, potassium derived from potassium nitrite contained in the aqueous solution B, and potassium derived from potassium acetate and potassium hydroxide contained in the aqueous solution C. means. The column of “alkali metal” is the same in Table 2.

(2)実験例2(実施例)
(2.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFe−10質量%Si−5質量%Al粒子(Sendust、平均粒子径:10μm)を使用した。
(2.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(2.3)水溶液Aの調製
純水100mLに所定量の塩化ニッケル、塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化ニッケル、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がNi:Zn:Fe=0.2:0.3:2.5となるように調整した。
(2.4)水溶液Bの調製
(2.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.2gを加えて酸化液とした(水溶液B)。
(2.5)水溶液Cの調製
(2.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(2.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例2に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表1に示す。
実験例2では、「α=117.5(mmol/L)」「β=23.5(mmol/L)」「γ=294(mmol/L)」であった。
(2) Experimental example 2 (Example)
(2.1) Soft magnetic metal particles Fe-10 mass% Si-5 mass% Al particles (Sendust, average particle diameter: 10 μm) produced by a water atomizing method were used as soft magnetic metal particles as raw materials.
(2.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(2.3) Preparation of Aqueous Solution A A predetermined amount of nickel chloride, zinc chloride, and iron (II) chloride were added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of nickel chloride, zinc chloride and iron (II) chloride were adjusted such that the molar ratio of each metal ion was Ni: Zn: Fe = 0.2: 0.3: 2.5.
(2.4) Preparation of aqueous solution B 0.2 g of potassium nitrite was added as an oxidizing agent to 100 mL of the pH adjusting solution of (2.2) to prepare an oxidizing solution (aqueous solution B).
(2.5) Preparation of aqueous solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (2.2) to obtain an aqueous solution C.
(2.6) Formation of Soft Magnetic Ferrite Part While flowing nitrogen into the aqueous solution C, the aqueous solution A and the aqueous solution B were dropped while heating to 70 ° C. and applying ultrasonic waves to form a soft magnetic ferrite part. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 2.
Table 1 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 2, “α = 117.5 (mmol / L)”, “β = 23.5 (mmol / L)”, and “γ = 294 (mmol / L)”.

(3)実験例3(実施例)
(3.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFe−3.5質量%Sii−4.5質量%Cr粒子(平均粒子径:30μm)を使用した。
(3.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(3.3)水溶液Aの調製
純水100mLに所定量の塩化マンガン、塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化マンガン、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がMn:Zn:Fe=0.2:0.3:2.5となるように調整した。
(3.4)水溶液Bの調製
(3.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.05gを加えて酸化液とした(水溶液B)。
(3.5)水溶液Cの調製
(3.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(3.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例3に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表1に示す。
実験例3では、「α=117.5(mmol/L)」「β=7(mmol/L)」「γ=783(mmol/L)」であった。
(3) Experimental example 3 (Example)
(3.1) Soft magnetic metal particles Fe-3.5% by mass Sii-4.5% by mass Cr particles (average particle diameter: 30 µm) produced by a water atomizing method were used as the soft magnetic metal particles as the raw material. .
(3.2) Preparation of pH adjusting solution (buffer solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjusting solution.
(3.3) Preparation of Aqueous Solution A A predetermined amount of manganese chloride, zinc chloride, and iron (II) chloride were added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of manganese chloride, zinc chloride, and iron (II) chloride were adjusted so that the molar ratio of each metal ion was Mn: Zn: Fe = 0.2: 0.3: 2.5.
(3.4) Preparation of aqueous solution B 0.05 g of potassium nitrite was added as an oxidizing agent to 100 mL of the pH adjusting solution of (3.2) to prepare an oxidizing solution (aqueous solution B).
(3.5) Preparation of aqueous solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (3.2) to obtain an aqueous solution C.
(3.6) Formation of Soft Magnetic Ferrite Portion While flowing nitrogen into the aqueous solution C, the solution was heated to 70 ° C., and the aqueous solution A and the aqueous solution B were dropped while applying ultrasonic waves to form a soft magnetic ferrite portion. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 3.
Table 1 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 3, “α = 117.5 (mmol / L)”, “β = 7 (mmol / L)”, and “γ = 783 (mmol / L)”.

(4)実験例4(実施例)
(4.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFe−78質量%Ni−4質量%Mo粒子(パーマロイC、平均粒子径:10μm)を使用した。
(4.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(4.3)水溶液Aの調製
純水100mLに所定量の塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がZn:Fe=0.3:2.7となるように調整した。
(4.4)水溶液Bの調製
(4.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.3gを加えて酸化液とした(水溶液B)。
(4.5)水溶液Cの調製
(4.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(4.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例4に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表1に示す。
実験例4では、「α=78(mmol/L)」「β=35(mmol/L)」「γ=68(mmol/L)」であった。
(4) Experimental example 4 (Example)
(4.1) Soft magnetic metal particles Fe-78 mass% Ni-4 mass% Mo particles (Permalloy C, average particle diameter: 10 μm) produced by a water atomizing method were used as the soft magnetic metal particles as the raw material.
(4.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(4.3) Preparation of Aqueous Solution A A predetermined amount of zinc chloride and iron (II) chloride were added to 100 mL of pure water and dissolved sufficiently to obtain an aqueous solution A. The amounts of zinc chloride and iron (II) chloride were adjusted so that the molar ratio of each metal ion was Zn: Fe = 0.3: 2.7.
(4.4) Preparation of Aqueous Solution B To 100 mL of the pH adjusting solution of (4.2), 0.3 g of potassium nitrite was added as an oxidizing agent to prepare an oxidizing solution (aqueous solution B).
(4.5) Preparation of aqueous solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (4.2) to obtain an aqueous solution C.
(4.6) Formation of Soft Magnetic Ferrite Part While flowing nitrogen into the aqueous solution C, the mixture was heated to 70 ° C., and the aqueous solution A and the aqueous solution B were dropped while applying ultrasonic waves to form a soft magnetic ferrite part. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 4.
Table 1 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 4, “α = 78 (mmol / L)”, “β = 35 (mmol / L)”, and “γ = 68 (mmol / L)”.

(5)実験例5(実施例)
(5.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFeアモルファス合金粒子(平均粒子径:30μm)を使用した。
(5.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(5.3)水溶液Aの調製
純水100mLに所定量の塩化ニッケル、塩化銅、塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化ニッケル、塩化銅、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がNi:Cu:Zn:Fe=0.2:0.05:0.3:2.45となるように調整した。
(5.4)水溶液Bの調製
(5.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.09gを加えて酸化液とした(水溶液B)。
(5.5)水溶液Cの調製
(5.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(5.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例5に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表1に示す。
実験例5では、「α=42(mmol/L)」「β=11(mmol/L)」「γ=53(mmol/L)」であった。
(5) Experimental example 5 (Example)
(5.1) Soft Magnetic Metal Particles Fe amorphous alloy particles (average particle diameter: 30 μm) produced by a water atomizing method were used as soft magnetic metal particles as raw materials.
(5.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(5.3) Preparation of Aqueous Solution A A predetermined amount of nickel chloride, copper chloride, zinc chloride, and iron (II) chloride were added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of nickel chloride, copper chloride, zinc chloride, and iron (II) chloride are such that the molar ratio of each metal ion is Ni: Cu: Zn: Fe = 0.2: 0.05: 0.3: 2. It was adjusted to be 45.
(5.4) Preparation of aqueous solution B To 100 mL of the pH adjusting solution of (5.2), 0.09 g of potassium nitrite was added as an oxidizing agent to obtain an oxidizing solution (aqueous solution B).
(5.5) Preparation of aqueous solution C An aqueous solution C was prepared by dispersing 10 g of soft magnetic metal particles in 100 mL of the pH adjusting solution of (5.2).
(5.6) Formation of Soft Magnetic Ferrite Portion While flowing nitrogen into the aqueous solution C, the mixture was heated to 70 ° C., and while applying ultrasonic waves, the aqueous solution A and the aqueous solution B were dropped to form a soft magnetic ferrite portion. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 5.
Table 1 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 5, “α = 42 (mmol / L)”, “β = 11 (mmol / L)”, and “γ = 53 (mmol / L)”.

(6)実験例6(実施例)
(6.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製した純鉄粒子(平均粒子径:10μm)を使用した。
(6.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(6.3)水溶液Aの調製
純水100mLに所定量の塩化マンガン、塩化亜鉛、塩化コバルト、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化マンガン、塩化亜鉛、塩化コバルト、塩化鉄(II)の各量は、各金属イオンのモル比がMn:Zn:Co:Fe=0.3:0.3:0.02:2.38となるように調整した。
(6.4)水溶液Bの調製
(6.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.15gを加えて酸化液とした(水溶液B)。
(6.5)水溶液Cの調製
(6.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(6.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例6に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表1に示す。
実験例6では、「α=104(mmol/L)」「β=18(mmol/L)」「γ=259(mmol/L)」であった。
(6) Experimental example 6 (Example)
(6.1) Soft Magnetic Metal Particles Pure iron particles (average particle diameter: 10 μm) produced by a water atomizing method were used as soft magnetic metal particles as raw materials.
(6.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(6.3) Preparation of Aqueous Solution A A predetermined amount of manganese chloride, zinc chloride, cobalt chloride, and iron (II) chloride was added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of manganese chloride, zinc chloride, cobalt chloride, and iron (II) chloride were such that the molar ratio of each metal ion was Mn: Zn: Co: Fe = 0.3: 0.3: 0.02: 2. It was adjusted to be 38.
(6.4) Preparation of aqueous solution B To 100 mL of the pH adjusting solution of (6.2), 0.15 g of potassium nitrite was added as an oxidizing agent to prepare an oxidizing solution (aqueous solution B).
(6.5) Preparation of Aqueous Solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (6.2) to obtain an aqueous solution C.
(6.6) Formation of Soft Magnetic Ferrite Part While flowing nitrogen into the aqueous solution C, the mixture was heated to 70 ° C., and while applying ultrasonic waves, the aqueous solution A and the aqueous solution B were dropped to form a soft magnetic ferrite part. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 6.
Table 1 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 6, “α = 104 (mmol / L)”, “β = 18 (mmol / L)”, and “γ = 259 (mmol / L)”.

(7)実験例7(比較例)
(7.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFe−50質量%Ni粒子(パーマロイB、平均粒子径:10μm)を使用した。
(7.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(7.3)水溶液Aの調製
純水100mLに所定量の塩化ニッケル、塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化ニッケル、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がNi:Zn:Fe=0.2:0.3:2.5となるように調整した。
(7.4)水溶液Bの調製
(7.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.01gを加えて酸化液とした(水溶液B)。
(7.5)水溶液Cの調製
(7.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(7.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例7に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表2に示す。
実験例7では、「α=29(mmol/L)」「β=1.2(mmol/L)」「γ=73(mmol/L)」であった。
(7) Experimental example 7 (comparative example)
(7.1) Soft magnetic metal particles Fe-50 mass% Ni particles (Permalloy B, average particle diameter: 10 µm) produced by a water atomizing method were used as soft magnetic metal particles as raw materials.
(7.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(7.3) Preparation of Aqueous Solution A A predetermined amount of nickel chloride, zinc chloride, and iron (II) chloride were added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of nickel chloride, zinc chloride and iron (II) chloride were adjusted such that the molar ratio of each metal ion was Ni: Zn: Fe = 0.2: 0.3: 2.5.
(7.4) Preparation of aqueous solution B 0.01 g of potassium nitrite was added as an oxidizing agent to 100 mL of the pH adjusting solution of (7.2) to prepare an oxidizing solution (aqueous solution B).
(7.5) Preparation of aqueous solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (7.2) to obtain an aqueous solution C.
(7.6) Formation of Soft Magnetic Ferrite Part While flowing nitrogen into the aqueous solution C, the mixture was heated to 70 ° C., and while applying ultrasonic waves, the aqueous solution A and the aqueous solution B were dropped to form a soft magnetic ferrite part. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, crushed and sieved to obtain composite particles according to Experimental Example 7.
Table 2 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 7, “α = 29 (mmol / L)”, “β = 1.2 (mmol / L)”, and “γ = 73 (mmol / L)”.

(8)実験例8(比較例)
(8.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFe−10質量%Si−5質量%Al粒子(Sendust、平均粒子径:10μm)を使用した。
(8.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(8.3)水溶液Aの調製
純水100mLに所定量の塩化ニッケル、塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化ニッケル、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がNi:Zn:Fe=0.2:0.3:2.5となるように調整した。
(8.4)水溶液Bの調製
(8.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.1gを加えて酸化液とした(水溶液B)。
(8.5)水溶液Cの調製
(8.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(8.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例8に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表2に示す。
実験例8では、「α=20(mmol/L)」「β=12(mmol/L)」「γ=49(mmol/L)」であった。
(8) Experimental example 8 (comparative example)
(8.1) Soft magnetic metal particles Fe-10 mass% Si-5 mass% Al particles (Sendust, average particle diameter: 10 μm) produced by a water atomizing method were used as the soft magnetic metal particles as the raw material.
(8.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(8.3) Preparation of Aqueous Solution A A predetermined amount of nickel chloride, zinc chloride, and iron (II) chloride were added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of nickel chloride, zinc chloride and iron (II) chloride were adjusted such that the molar ratio of each metal ion was Ni: Zn: Fe = 0.2: 0.3: 2.5.
(8.4) Preparation of Aqueous Solution B To 100 mL of the pH adjusting solution of (8.2), 0.1 g of potassium nitrite was added as an oxidizing agent to prepare an oxidizing solution (aqueous solution B).
(8.5) Preparation of aqueous solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (8.2) to obtain an aqueous solution C.
(8.6) Formation of Soft Magnetic Ferrite Portion While flowing nitrogen into the aqueous solution C, the mixture was heated to 70 ° C., and the aqueous solution A and the aqueous solution B were dropped while applying ultrasonic waves to form a soft magnetic ferrite portion. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 8.
Table 2 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 8, “α = 20 (mmol / L)”, “β = 12 (mmol / L)”, and “γ = 49 (mmol / L)”.

(9)実験例9(実施例)
(9.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFe−78質量%Ni−4質量%Mo粒子(パーマロイC、平均粒子径:10μm)を使用した。
(9.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(9.3)水溶液Aの調製
純水100mLに所定量の塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がZn:Fe=0.4:2.6となるように調整した。
(9.4)水溶液Bの調製
(9.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.09gを加えて酸化液とした(水溶液B)。
(9.5)水溶液Cの調製
(9.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(9.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例9に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表2に示す。
実験例9では、「α=62(mmol/L)」「β=11(mmol/L)」「γ=49(mmol/L)」であった。
(9) Experimental example 9 (Example)
(9.1) Soft Magnetic Metal Particles Fe-78 mass% Ni-4 mass% Mo particles (Permalloy C, average particle diameter: 10 μm) produced by a water atomizing method were used as the soft magnetic metal particles as the raw material.
(9.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(9.3) Preparation of Aqueous Solution A A predetermined amount of zinc chloride and iron (II) chloride were added to 100 mL of pure water and dissolved sufficiently to obtain an aqueous solution A. The amounts of zinc chloride and iron (II) chloride were adjusted such that the molar ratio of each metal ion was Zn: Fe = 0.4: 2.6.
(9.4) Preparation of Aqueous Solution B To 100 mL of the pH adjusting solution of (9.2), 0.09 g of potassium nitrite was added as an oxidizing agent to prepare an oxidizing solution (aqueous solution B).
(9.5) Preparation of Aqueous Solution C 10 g of soft magnetic metal particles were dispersed in 100 mL of the pH adjusting solution of (9.2) to obtain an aqueous solution C.
(9.6) Formation of Soft Magnetic Ferrite Portion While flowing nitrogen into the aqueous solution C, the solution was heated to 70 ° C., and the aqueous solution A and the aqueous solution B were dropped while applying ultrasonic waves to form a soft magnetic ferrite portion. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 9.
Table 2 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 9, “α = 62 (mmol / L)”, “β = 11 (mmol / L)”, and “γ = 49 (mmol / L)”.

(10)実験例10(実施例)
(10.1)軟磁性金属粒子
原料の軟磁性金属粒子には、水アトマイズ法によって作製したFeアモルファス合金粒子(平均粒子径:10μm)を使用した。
(10.2)pH調整液(緩衝液)の調製
純水200mLに酢酸カリウムを溶解させ、水酸化カリウムによってpH=11に調整してpH調整液とした。
(10.3)水溶液Aの調製
純水100mLに所定量の塩化ニッケル、塩化銅、塩化亜鉛、塩化鉄(II)を添加し、十分に溶解させて水溶液Aとした。なお、塩化ニッケル、塩化銅、塩化亜鉛、塩化鉄(II)の各量は、各金属イオンのモル比がNi:Cu:Zn:Fe=0.2:0.01:0.4:2.39となるように調整した。
(10.4)水溶液Bの調製
(10.2)のpH調整液100mLに、酸化剤として亜硝酸カリウム0.15gを加えて酸化液とした(水溶液B)。
(10.5)水溶液Cの調製
(10.2)のpH調整液100mLに、軟磁性金属粒子10gを分散させて水溶液Cとした。
(10.6)軟磁性フェライト部の形成
水溶液Cに窒素を流しながら、70℃に加熱し、超音波を印加しながら、水溶液Aと水溶液Bとを滴下して、軟磁性フェライト部を形成させた。反応は25分間行い、複合粒子は純粋で洗浄した後、磁石にて回収した。この後、複合粒子を乾燥させて、粉砕と篩通しを行って、実験例10に係る複合粒子を得た。
軟磁性フェライト部の形成時の「β/α」「α/γ」等を表2に示す。
実験例10では、「α=88(mmol/L)」「β=18(mmol/L)」「γ=734(mmol/L)」であった。
(10) Experimental example 10 (Example)
(10.1) Soft magnetic metal particles Fe amorphous alloy particles (average particle diameter: 10 µm) produced by a water atomizing method were used as soft magnetic metal particles as raw materials.
(10.2) Preparation of pH Adjustment Solution (Buffer Solution) Potassium acetate was dissolved in 200 mL of pure water, and the pH was adjusted to 11 with potassium hydroxide to obtain a pH adjustment solution.
(10.3) Preparation of Aqueous Solution A A predetermined amount of nickel chloride, copper chloride, zinc chloride, and iron (II) chloride were added to 100 mL of pure water, and sufficiently dissolved to obtain an aqueous solution A. The amounts of nickel chloride, copper chloride, zinc chloride, and iron (II) chloride are such that the molar ratio of each metal ion is Ni: Cu: Zn: Fe = 0.2: 0.01: 0.4: 2. It was adjusted to be 39.
(10.4) Preparation of Aqueous Solution B To 100 mL of the pH adjusting solution of (10.2), 0.15 g of potassium nitrite was added as an oxidizing agent to prepare an oxidizing solution (aqueous solution B).
(10.5) Preparation of aqueous solution C An aqueous solution C was prepared by dispersing 10 g of soft magnetic metal particles in 100 mL of the pH adjusting solution of (10.2).
(10.6) Formation of Soft Magnetic Ferrite Part While flowing nitrogen into the aqueous solution C, the aqueous solution A and the aqueous solution B were dropped while heating to 70 ° C. and applying ultrasonic waves to form a soft magnetic ferrite part. Was. The reaction was performed for 25 minutes, and the composite particles were pure and washed, and then collected with a magnet. Thereafter, the composite particles were dried, pulverized and sieved to obtain composite particles according to Experimental Example 10.
Table 2 shows “β / α”, “α / γ”, and the like when the soft magnetic ferrite portion was formed.
In Experimental Example 10, “α = 88 (mmol / L)”, “β = 18 (mmol / L)”, and “γ = 734 (mmol / L)”.

2.複合粒子の評価方法
複合粒子の表面に軟磁性フェライト部が形成されていることを、SEM(走査電子顕微鏡)による表面観察にて確認した。また、軟磁性フェライト部であることの同定は、XRD測定(X線回折)により行った(リガク製RINT2000)。軟磁性フェライト部中の副生成物(不純物)の同定もXRD測定により行った。
軟磁性フェライト部中の副生成物(特に酸化鉄III(錆))は、目視よる観察でも確認した。
これらの結果を総合的に考察して、評価を以下のようにした。

<軟磁性フェライト部の形成について>
軟磁性フェライト部の形成について、以下の基準によって評価した。結果を表1,2の「膜形成」の欄に示す。

(評価基準)
「○」:軟磁性金属粒子の表面に軟磁性フェライト部が形成されている。
「×」:軟磁性金属粒子の表面に軟磁性フェライト部がほとんど形成されていない。

<副生成物(不純物)について>
副生成物について、以下の基準によって評価した。結果を表1,2の「副生成物」の欄に示す。

(評価基準)
「○」:副生成物がほとんど形成されていない。
「×」:副生成物の形成が顕著である。
2. Evaluation Method of Composite Particles The formation of a soft magnetic ferrite portion on the surface of the composite particles was confirmed by surface observation with a scanning electron microscope (SEM). Further, the identification of the soft magnetic ferrite portion was performed by XRD measurement (X-ray diffraction) (Rigaku RINT2000). By-products (impurities) in the soft magnetic ferrite portion were also identified by XRD measurement.
By-products (especially iron oxide III (rust)) in the soft magnetic ferrite part were also confirmed by visual observation.
Considering these results comprehensively, the evaluation was as follows.

<About formation of soft magnetic ferrite part>
The formation of the soft magnetic ferrite portion was evaluated according to the following criteria. The results are shown in the column of “film formation” in Tables 1 and 2.

(Evaluation criteria)
“○”: Soft magnetic ferrite portion is formed on the surface of soft magnetic metal particles.
“×”: The soft magnetic ferrite part is hardly formed on the surface of the soft magnetic metal particles.

<About by-products (impurities)>
The by-products were evaluated according to the following criteria. The results are shown in the column of "By-products" in Tables 1 and 2.

(Evaluation criteria)
"O": Almost no by-product was formed.
“×”: The formation of by-products is remarkable.

3.評価結果
表1,2に示されるように、「0.05≦β/α≦0.5」の関係式(1)を満たす実験例1−6の複合粒子、実験例9−10の複合粒子は、軟磁性金属粒子の表面に軟磁性フェライト部が形成されており、しかも軟磁性フェライト部中に副生成物がほとんど形成されていなかった。
図1に、実験例1の軟磁性フェライト部形成前の軟磁性金属粒子の表面観察像を示す。図1から、軟磁性フェライト部形成前の軟磁性金属粒子の表面には、凹凸がほとんどないことが分かる。図2に、実験例1の複合粒子の表面観察像を示す。図2の複合粒子では、微細な凹凸構造を有する膜が形成されていることが確認できる。この実験例1の複合粒子をXRD測定したところ、図3の回折ピークが観察された。回折ピークのうち▲印をつけたものは、フェライトに由来するピークである。図3のうち、○印をつけたものは、Fe−Ni合金の軟磁性金属粒子に由来するピークである。図3に示すように、実験例1の複合粒子では、副生物の回折ピークは観察されなかった。また、目視にて観察したところ、実験例1の複合粒子には、赤色の副生成物(酸化鉄III(錆))は生成していなかった。よって、これらの結果を総合的に勘案すると、実験例1の複合粒子では、軟磁性金属粒子の表面に軟磁性フェライト部が形成されており、しかも軟磁性フェライト部中に副生成物がほとんど形成されていないことが確認された。ここでは、詳細な結果は省略するが、実験例2−6、実験例9−10のいずれの複合粒子においても、実施例1の複合粒子と同様に、軟磁性金属粒子の表面に軟磁性フェライト部が形成されており、軟磁性フェライト部中に副生成物がほとんど形成されていないことが確認された。
他方、β/αの値が、0.05未満である実験例7の粒子では、SEM、XRD測定、及び目視による観察結果から、軟磁性フェライト部がほとんど形成されておらず、僅かに生成した軟磁性フェライト部中に副生成物たるFe(OH)が発生したことを確認した。これは、水溶液Bにおける、酸化剤たる亜硝酸塩の濃度が低すぎるため、軟磁性フェライト部がほとんど形成されず、しかも軟磁性フェライト部の純度が低くなったからであると推測される。
また、β/αの値が0.5よりも大きい実験例8の粒子では、SEM、XRD測定、及び目視による観察結果から、軟磁性フェライト部は形成されたが、軟磁性フェライト部中に副生成物たるα−Feが発生したことを確認した。これは、水溶液Bにおける、酸化剤たる亜硝酸塩の濃度が高すぎるため、軟磁性フェライト部の純度が低くなったからであると推測される。
3. Evaluation Results As shown in Tables 1 and 2, the composite particles of Experimental Examples 1 to 6 and the composite particles of Experimental Examples 9 to 10 satisfying the relational expression (1) of “0.05 ≦ β / α ≦ 0.5”. In the case of the soft magnetic metal particles, a soft magnetic ferrite portion was formed on the surface of the soft magnetic metal particles, and almost no by-product was formed in the soft magnetic ferrite portion.
FIG. 1 shows a surface observation image of the soft magnetic metal particles before the formation of the soft magnetic ferrite portion in Experimental Example 1. FIG. 1 shows that the surface of the soft magnetic metal particles before the formation of the soft magnetic ferrite portion has almost no irregularities. FIG. 2 shows a surface observation image of the composite particles of Experimental Example 1. In the composite particles of FIG. 2, it can be confirmed that a film having a fine uneven structure is formed. When the XRD measurement was performed on the composite particles of Experimental Example 1, the diffraction peak of FIG. 3 was observed. Those marked with a triangle among the diffraction peaks are peaks derived from ferrite. In FIG. 3, those marked with a circle are peaks derived from the soft magnetic metal particles of the Fe—Ni alloy. As shown in FIG. 3, in the composite particles of Experimental Example 1, no diffraction peak of a by-product was observed. Further, when visually observed, no red by-product (iron oxide III (rust)) was produced in the composite particles of Experimental Example 1. Therefore, considering these results comprehensively, in the composite particles of Experimental Example 1, the soft magnetic ferrite portion was formed on the surface of the soft magnetic metal particles, and almost no by-product was formed in the soft magnetic ferrite portion. It was confirmed that it was not done. Here, although detailed results are omitted, in each of the composite particles of Experimental Examples 2-6 and 9-10, as in the case of the composite particles of Example 1, the surface of the soft magnetic ferrite was formed on the surface of the soft magnetic metal particles. Part was formed, and it was confirmed that almost no by-product was formed in the soft magnetic ferrite part.
On the other hand, in the particles of Experimental Example 7 in which the value of β / α was less than 0.05, from the results of SEM, XRD measurement, and visual observation, the soft magnetic ferrite portion was hardly formed and slightly formed. It was confirmed that Fe (OH) 2 as a by-product was generated in the soft magnetic ferrite portion. This is presumably because the concentration of nitrite as an oxidizing agent in the aqueous solution B was too low, so that the soft magnetic ferrite portion was hardly formed, and the purity of the soft magnetic ferrite portion was lowered.
Further, in the particles of Experimental Example 8 in which the value of β / α was larger than 0.5, a soft magnetic ferrite portion was formed from the results of SEM, XRD measurement, and visual observation. It was confirmed that α-Fe 2 O 3 as a product was generated. This is presumably because the concentration of the nitrite, which is an oxidizing agent, in the aqueous solution B was too high, and the purity of the soft magnetic ferrite portion was low.

なお、上記関係式(1)を満たす実験例1−6、実験例9−10のうち、「0.1≦α/γ≦1.2」の関係式(2)を満たす実験例1−6、実験例10は、反応時間を制御することによって、軟磁性フェライト部の膜厚制御が容易であることを別の実験にて確認した。これに対して、実験例9の場合には、軟磁性フェライト部の膜厚制御がやや困難であることが別の実験で分かった。
また、カリウム(アルカリ金属)の濃度が500mmol/L以下の実験例1−6の場合には、軟磁性フェライト部の耐熱性が良好であった。これに対してカリウムの濃度が500mmol/Lよりも大きい実験例10では、軟磁性フェライト部の耐熱性が若干劣ることが別の実験で確認された。よって、軟磁性フェライト部の耐熱性を担保するためには、アルカリ金属の濃度を500mmol/L以下とすることが好ましいことが確認された。
Note that, of Experimental Examples 1-6 and 9-10 satisfying the above relational expression (1), Experimental example 1-6 satisfying the relational expression (2) of “0.1 ≦ α / γ ≦ 1.2”. In Experimental Example 10, it was confirmed by another experiment that the film thickness of the soft magnetic ferrite portion was easily controlled by controlling the reaction time. On the other hand, in the case of Experimental Example 9, it was found by another experiment that control of the film thickness of the soft magnetic ferrite portion was somewhat difficult.
In the case of Experimental Example 1-6 in which the concentration of potassium (alkali metal) was 500 mmol / L or less, the heat resistance of the soft magnetic ferrite portion was good. On the other hand, in Experimental Example 10 in which the concentration of potassium was higher than 500 mmol / L, it was confirmed in another experiment that the heat resistance of the soft magnetic ferrite portion was slightly inferior. Therefore, in order to secure the heat resistance of the soft magnetic ferrite portion, it was confirmed that the concentration of the alkali metal is preferably set to 500 mmol / L or less.

4.実施例の効果
本実施例の複合粒子の製造方法によれば、複合粒子のフェライト部の純度を向上させることができる。
4. Effects of the Example According to the method for producing composite particles of the present example, the purity of the ferrite portion of the composite particles can be improved.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。   The present invention is not limited to the embodiment described in detail above, and various modifications or changes can be made within the scope shown in the claims of the present invention.

本発明の複合粒子は、モーターコア、トランス、チョークコイル、ノイズ吸収体等の用途に特に好適に使用される。   The composite particles of the present invention are particularly suitably used for applications such as motor cores, transformers, choke coils, and noise absorbers.

Claims (7)

軟磁性金属粒子の表面に軟磁性フェライト部が形成された複合粒子の製造方法であって、
鉄イオン、及び2価の金属イオン(鉄イオンを除く)を含有する水溶液Aと、
酸化剤としての亜硝酸塩を含有する水溶液Bと、
軟磁性金属粒子を含有するとともに、酢酸カリウム及び酢酸アンモニウムのうちの少なくとも1種を溶解させた水溶液Cと、
を用い、
前記水溶液A、前記水溶液B、及び前記水溶液Cを混合して、複合粒子を製造する複合粒子の製造方法において、
前記水溶液Aにおける、前記鉄イオン及び前記2価の金属イオンの合計濃度をαmol/Lとし、
前記水溶液Bにおける、前記亜硝酸塩の濃度をβmol/Lとした場合に、濃度比β/αが下記式(1)を満たすことを特徴とする複合粒子の製造方法。

0.05≦β/α≦0.5 …(1)
A method for producing a composite particle having a soft magnetic ferrite portion formed on the surface of a soft magnetic metal particle,
An aqueous solution A containing iron ions and divalent metal ions (excluding iron ions);
An aqueous solution B containing nitrite as an oxidizing agent;
An aqueous solution C containing soft magnetic metal particles and dissolving at least one of potassium acetate and ammonium acetate;
Using
In the method for producing composite particles, the aqueous solution A, the aqueous solution B, and the aqueous solution C are mixed to produce composite particles.
The total concentration of the iron ion and the divalent metal ion in the aqueous solution A is αmol / L,
A method for producing composite particles, wherein the concentration ratio β / α satisfies the following formula (1) when the concentration of the nitrite in the aqueous solution B is βmol / L.

0.05 ≦ β / α ≦ 0.5 (1)
前記水溶液A、前記水溶液B、及び前記水溶液Cを混合するに際して、前記水溶液Cに、前記水溶液Aと前記水溶液Bを混合し、
混合の際の前記水溶液Cの温度は20℃以上100℃以下であることを特徴とする請求項1に記載の複合粒子の製造方法。
When mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, the aqueous solution C is mixed with the aqueous solution A and the aqueous solution B,
The method for producing composite particles according to claim 1, wherein the temperature of the aqueous solution C at the time of mixing is from 20C to 100C.
前記水溶液A、前記水溶液B、及び前記水溶液Cを混合するに際して、前記水溶液Cに、前記水溶液Aと前記水溶液Bを混合し、
混合の際の前記水溶液CのpHは6以上12以下であることを特徴とする請求項1又は2に記載の複合粒子の製造方法。
When mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C, the aqueous solution C is mixed with the aqueous solution A and the aqueous solution B,
The method for producing composite particles according to claim 1, wherein the pH of the aqueous solution C at the time of mixing is 6 or more and 12 or less.
前記亜硝酸塩は、亜硝酸カリウム及び亜硝酸ナトリウムのうちの少なくとも1種であることを特徴とする請求項1〜3のいずれか1項に記載の複合粒子の製造方法。   The method for producing composite particles according to any one of claims 1 to 3, wherein the nitrite is at least one of potassium nitrite and sodium nitrite. 前記水溶液Aと、前記水溶液Bと、前記水溶液Cとを混合した混合液のカリウム濃度が500mmol/L以下であり、かつ
前記水溶液Aと、前記水溶液Bと、前記水溶液Cとを混合した混合液のナトリウム濃度が500mmol/L以下であることを特徴とする請求項4に記載の複合粒子の製造方法。
A mixed solution obtained by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C has a potassium concentration of 500 mmol / L or less, and a mixed solution obtained by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C The method for producing composite particles according to claim 4, wherein the sodium concentration of the composite particles is 500 mmol / L or less.
前記水溶液Cにおける、前記酢酸カリウム及び前記酢酸アンモニウムの合計濃度をγmol/Lとした場合に、
濃度比α/γが下記式(2)を満たすことを特徴とする請求項1〜5のいずれか1項に記載の複合粒子の製造方法。

0.1≦α/γ≦1.2 …(2)
When the total concentration of the potassium acetate and the ammonium acetate in the aqueous solution C is γmol / L,
The method for producing composite particles according to any one of claims 1 to 5, wherein the concentration ratio α / γ satisfies the following expression (2).

0.1 ≦ α / γ ≦ 1.2 (2)
前記水溶液Aと、前記水溶液Bと、前記水溶液Cとを混合した混合液に20kHz以下の超音波を印可することを特徴とする請求項1〜6のいずれか1項に記載の複合粒子の製造方法。   7. The composite particle according to claim 1, wherein an ultrasonic wave of 20 kHz or less is applied to a mixed solution obtained by mixing the aqueous solution A, the aqueous solution B, and the aqueous solution C. 8. Method.
JP2018178524A 2018-09-25 2018-09-25 Composite particle manufacturing method Active JP7169138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018178524A JP7169138B2 (en) 2018-09-25 2018-09-25 Composite particle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018178524A JP7169138B2 (en) 2018-09-25 2018-09-25 Composite particle manufacturing method

Publications (2)

Publication Number Publication Date
JP2020050895A true JP2020050895A (en) 2020-04-02
JP7169138B2 JP7169138B2 (en) 2022-11-10

Family

ID=69996050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178524A Active JP7169138B2 (en) 2018-09-25 2018-09-25 Composite particle manufacturing method

Country Status (1)

Country Link
JP (1) JP7169138B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323226A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Formation of ferrite film and ferrite substrate
JP2005142241A (en) * 2003-11-04 2005-06-02 Rikogaku Shinkokai Sendust particulates plated with ferrite solder plating, manufacturing method of its compact, the sendust particulates plated with ferrite solder, and its compact
JP2006128307A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Manufacturing method of soft magnetic compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323226A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Formation of ferrite film and ferrite substrate
JP2005142241A (en) * 2003-11-04 2005-06-02 Rikogaku Shinkokai Sendust particulates plated with ferrite solder plating, manufacturing method of its compact, the sendust particulates plated with ferrite solder, and its compact
JP2006128307A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Manufacturing method of soft magnetic compact

Also Published As

Publication number Publication date
JP7169138B2 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
TWI535861B (en) Alloy composition, fe-based nano-crystalline alloy and forming method of the same and magnetic component
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
EP1641001A2 (en) High-frequency magnetic material, producing method for the same and high-frequency magnetic device
JP6705549B2 (en) Crystalline Fe-based alloy powder, method for producing the same, and magnetic core
JP4686494B2 (en) High frequency magnetic material and manufacturing method thereof
WO2018179812A1 (en) Dust core
JPWO2011016275A1 (en) Fe-based amorphous alloy, dust core using the Fe-based amorphous alloy, and coil-filled dust core
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
KR930000413B1 (en) Soft magnetic materials
JP4860386B2 (en) Method for producing nickel-iron alloy nanoparticles
JP2012129384A (en) Dust core, and inductor using dust core
JPWO2019059259A1 (en) Magnetic materials and their manufacturing methods
JP2008081818A (en) Method for producing precursor powder of nickel-ferroalloy nanoparticle, precursor powder of nickel-ferroalloy nanoparticle, method for producing nickel-ferroalloy nanoparticle, and nickel-ferroalloy nanoparticle
JPH111702A (en) Manufacture of ferrous metal-ferritic oxide composite powder
CN112309666A (en) Soft magnetic metal powder and electronic component
JP5182652B2 (en) Nickel-iron-zinc alloy nanoparticles
JP7169138B2 (en) Composite particle manufacturing method
JPWO2019031463A1 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
JP2004281846A (en) High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
JP4444191B2 (en) High frequency magnetic material, high frequency magnetic device, and method of manufacturing high frequency magnetic material
JP7169135B2 (en) Method for manufacturing soft magnetic ferrite composite
JP2005136358A (en) Magnetic core and soft magnetic iron-based powder
JP2019186445A (en) Coating liquid and manufacturing method thereof, and method for manufacturing coating material
JP2005311078A (en) Composite magnetic component and manufacturing method thereof
JP2006128215A (en) Compound magnetic particle and compound magnetic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7169138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150