JP2020049755A - Substrate and liquid ejection head substrate manufacturing method - Google Patents

Substrate and liquid ejection head substrate manufacturing method Download PDF

Info

Publication number
JP2020049755A
JP2020049755A JP2018180594A JP2018180594A JP2020049755A JP 2020049755 A JP2020049755 A JP 2020049755A JP 2018180594 A JP2018180594 A JP 2018180594A JP 2018180594 A JP2018180594 A JP 2018180594A JP 2020049755 A JP2020049755 A JP 2020049755A
Authority
JP
Japan
Prior art keywords
substrate
region
support
manufacturing
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018180594A
Other languages
Japanese (ja)
Inventor
正久 渡部
Masahisa Watabe
正久 渡部
石川 哲史
Tetsushi Ishikawa
哲史 石川
学 大塚
Manabu Otsuka
学 大塚
弘司 笹木
Hiroshi Sasaki
弘司 笹木
真吾 永田
Shingo Nagata
真吾 永田
健治 ▲高▼橋
健治 ▲高▼橋
Kenji Takahashi
大塚 大輔
Daisuke Otsuka
大輔 大塚
光則 利重
Mitsunori Toshishige
光則 利重
史朗 朱雀
Shiro Suzaku
史朗 朱雀
村田 辰雄
Tatsuo Murata
辰雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018180594A priority Critical patent/JP2020049755A/en
Publication of JP2020049755A publication Critical patent/JP2020049755A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method of manufacturing a substrate in which burrs are suppressed from being omitted, and a method of manufacturing a substrate for a liquid ejection head to which the method of manufacturing the substrate is applied.SOLUTION: There is provided a method of manufacturing a substrate comprising: a step of preparing a sticking member 30 in which a member 32 is formed on a support 31; a step of sticking a member 32 side of the sticking member 30 to a substrate 20 so that the member 32 protrudes from the outer edge of the substrate 20; and a step of peeling the support 31 from the sticking member 30 attached to the substrate 20, which includes, before the support 31 is peeled off, a step of providing a separation boundary 33 near the end of the substrate 20 of the member 32 so that the region of the member 32 protruding from the substrate 20 is separated from the region in contact with the substrate 20, and which is characterized by that the peeling of the support 31 is performed so that the support 31 to be peeled finally passes through the separation boundary.SELECTED DRAWING: Figure 3

Description

本発明は、基板の製造方法および液体吐出ヘッド用基板の製造方法に関する。   The present invention relates to a method for manufacturing a substrate and a method for manufacturing a substrate for a liquid ejection head.

昨今の半導体業界では、従来にも増して高精度な寸法精度でデバイスを製造する技術が要求されている。例えば、インクジェット業界においては、その画質を高精細化するために、吐出インク滴の画一性が要求されており、そのためにはインク流路を寸法精度良く画一的に形成する技術が求められる。   In the recent semiconductor industry, there is a demand for a technology for manufacturing devices with higher dimensional accuracy than ever before. For example, in the ink jet industry, uniformity of ejected ink droplets is required in order to improve the image quality, and for that purpose, a technology for uniformly forming ink flow paths with high dimensional accuracy is required. .

その手段の1つとして、特許文献1には、基板に対して感光性樹脂から成る樹脂層を貼り付けることでノズル形成部材を基板上に形成する方法が記載されている。この手法では、樹脂層は基板との貼り付け前まで支持体に支えられており、基板と貼り付けられた後、支持体が剥離される。この後、基板上のノズル形成部材をフォトリソグラフィー等によって流路パターンを形成する。   As one of the means, Patent Literature 1 describes a method of forming a nozzle forming member on a substrate by attaching a resin layer made of a photosensitive resin to the substrate. In this method, the resin layer is supported by the support until the resin layer is attached to the substrate, and after the resin layer is attached to the substrate, the support is separated. Thereafter, a flow path pattern is formed on the nozzle forming member on the substrate by photolithography or the like.

インク流路の寸法精度を低下させる一般的な要因としては、ノズル形成部材の形成方法に由来する膜厚のバラツキが挙げられる。特許文献1の貼り付け手法では、従来のスピンコーティングやスリットコーティングなど異なり、スピン気流や溶媒乾燥が起因となる膜厚均一性の低下を経験しないため、膜厚のバラツキを抑制することができる。   A general factor that reduces the dimensional accuracy of the ink flow path is a variation in the film thickness due to the method of forming the nozzle forming member. Unlike the conventional spin coating and slit coating, the sticking method disclosed in Patent Document 1 does not experience a decrease in film thickness uniformity due to spin airflow or solvent drying, so that variations in film thickness can be suppressed.

特開2006−137065号公報JP 2006-137065 A

支持体上の樹脂層などの部材は通常、貼り付ける基板(ウエハ)と同形状に加工されることが好ましい。しかしながら、支持体上の部材を基板に転写した後、支持体を剥がす必要があり、支持体を掴む把持部を設けることが好ましい。そのため、支持体上の部材は、基板の形状(有効領域)よりも大きめに加工することが行われている。その場合、ウエハ領域外に該部材に基づくバリが形成され、工程中に欠落したバリが製品の品質を低下させることがあった。   It is preferable that the member such as the resin layer on the support is usually processed into the same shape as the substrate (wafer) to be attached. However, it is necessary to peel off the support after transferring the member on the support to the substrate, and it is preferable to provide a gripper for gripping the support. Therefore, members on the support are processed to be larger than the shape (effective area) of the substrate. In that case, burrs based on the member may be formed outside the wafer region, and burrs missing during the process may lower the quality of the product.

本発明では、工程中でのこのようなバリの欠落を抑制した基板の製造方法、並びに該基板の製造方法を適用した液体吐出ヘッド用基板の製造方法を提供することを目的とする。   An object of the present invention is to provide a method of manufacturing a substrate in which such burrs are prevented from being lost during a process, and a method of manufacturing a substrate for a liquid discharge head to which the method of manufacturing a substrate is applied.

上述の課題を解決するための本発明は、部材を支持体上に形成した貼付部材を用意する工程と、基板の外縁から前記部材がはみ出すように、前記貼付部材の前記部材側を前記基板に貼り付ける工程と、前記基板に貼り付けた前記貼付部材から前記支持体を剥離する工程と、を含み、前記支持体を剥離する前に、前記部材の該基板からはみ出す領域が前記基板に接する領域と分離するように、前記部材の前記基板の端部の近傍に分離境界部を設ける工程を有し、前記支持体の剥離は、剥離する前記支持体が該分離境界部を最後に通過するように行うことを特徴とする。   The present invention for solving the above-mentioned problem is a step of preparing an attaching member in which a member is formed on a support, and the member side of the attaching member is attached to the substrate so that the member protrudes from an outer edge of the substrate. A step of sticking, and a step of peeling the support from the sticking member stuck to the substrate, and before peeling the support, an area where the member protrudes from the substrate is in contact with the substrate. Providing a separation boundary near the end of the substrate of the member, and separating the support so that the support to be separated passes through the separation boundary last. It is characterized by performing.

本発明によれば、支持体剥離工程後の部材によるバリの発生を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the burr by the member after a support body peeling process can be suppressed.

本発明の一実施形態に係る液体吐出ヘッド用基板の概略を示す一部破断斜視図(a)と概略断面図(b)である。1A and 1B are a partially cutaway perspective view and a schematic cross-sectional view schematically illustrating a substrate for a liquid ejection head according to an embodiment of the present invention. ウエハ状の基板の概要を説明する斜視図である。It is a perspective view explaining the outline of a wafer-like substrate. 第1の実施形態に係る基板及び液体吐出ヘッド用基板の製造方法を説明する工程断面図である。FIG. 5 is a process cross-sectional view illustrating the method for manufacturing the substrate and the liquid ejection head substrate according to the first embodiment. 第1の実施形態に係る基板の製造方法における分離境界部の形成方法を説明する平面及び断面図である。5A and 5B are a plan view and a cross-sectional view illustrating a method of forming a separation boundary in the method for manufacturing a substrate according to the first embodiment. 第1の実施形態に係る基板の製造方法における分離境界部の形成方法の別の例を説明する概略断面図である。FIG. 4 is a schematic cross-sectional view illustrating another example of a method of forming a separation boundary in the method of manufacturing a substrate according to the first embodiment. 第1の実施形態に係る液体吐出ヘッド用基板の製造方法における流路形成部材及び吐出口形成部材の形成方法を説明する工程断面図である。FIG. 4 is a process cross-sectional view illustrating a method for forming a flow path forming member and a discharge port forming member in the method for manufacturing a liquid discharge head substrate according to the first embodiment. 第2の実施形態に係る基板及び液体吐出ヘッド用基板の製造方法を説明する工程断面図である。It is a process sectional view explaining a substrate and a manufacturing method of a substrate for liquid discharge heads concerning a 2nd embodiment. 第2の実施形態に係る基板の製造方法の変形例を説明する工程断面図である。It is a process sectional view explaining the modification of the manufacturing method of the substrate concerning a 2nd embodiment. 第2の実施形態に係る基板の製造方法の別の変形例を説明する工程断面図である。It is a process sectional view explaining another modification of the manufacturing method of the substrate concerning a 2nd embodiment. 第3の実施形態に係る基板の製造方法を説明する工程断面図である。It is a process sectional view explaining the manufacturing method of the substrate concerning a 3rd embodiment. 第3の実施形態に係る基板の製造方法の変形例を説明する工程断面図である。It is a process sectional view explaining the modification of the manufacturing method of the substrate concerning a 3rd embodiment. 従来技術に係る基板及び液体吐出ヘッド用基板の製造方法を説明する工程断面図である。It is a process sectional view explaining a manufacturing method of a substrate and a substrate for liquid discharge heads concerning a conventional technology.

本発明に係る基板の製造方法は、液体吐出ヘッド用基板の製造方法の他、加速度センサー等のマイクロマシーンの製造に応用可能である。基板としてはウエハ状の基板であることが好ましいが、貼付部材の貼り付けにより部材を転写する際に、バリの欠落が問題となる様々な形状の基板に本発明は適用できる。   The method for manufacturing a substrate according to the present invention is applicable not only to a method for manufacturing a substrate for a liquid discharge head, but also to a method for manufacturing a micro machine such as an acceleration sensor. The substrate is preferably a wafer-shaped substrate, but the present invention can be applied to substrates of various shapes in which burrs are a problem when transferring a member by attaching an attaching member.

以下、本発明の基板の製造方法について、液体吐出ヘッド用基板の製造方法に係る実施形態を例に図面を参照して説明する。   Hereinafter, a method for manufacturing a substrate of the present invention will be described with reference to the drawings, taking an embodiment of a method for manufacturing a substrate for a liquid discharge head as an example.

図1は、本発明の実施形態に係るウエハから切り出したチップの形態の液体吐出ヘッド用基板10の一部破断斜視図(a)と、(a)のX−X’での断面図(b)である。   1A is a partially cutaway perspective view of a liquid ejection head substrate 10 in the form of a chip cut out from a wafer according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line XX ′ of FIG. ).

基体1には、シリコン基板上に半導体製造技術を用いてインクを発泡させる為のエネルギー発生素子2とそれを駆動させる駆動回路(不図示)などが形成されている。また、基体1の両面を連通する液体供給口3がシリコンエッチングにより形成されている。更に、エネルギー発生素子2上にはノズル形成部材4により基板の裏面側から供給されたインクを吐出するための吐出口5が形成されている。各吐出口に対応したエネルギー発生素子2を駆動させ、インクを発泡することによりその圧力を利用してインクを吐出させ印字を行うことができる。   An energy generating element 2 for foaming ink using a semiconductor manufacturing technique on a silicon substrate and a driving circuit (not shown) for driving the energy generating element 2 are formed on a base 1. Further, a liquid supply port 3 communicating with both surfaces of the base 1 is formed by silicon etching. Further, a discharge port 5 for discharging the ink supplied from the back side of the substrate by the nozzle forming member 4 is formed on the energy generating element 2. By driving the energy generating element 2 corresponding to each discharge port to foam the ink, the pressure can be used to discharge the ink to perform printing.

図1(b)に示すように、ノズル形成部材4は、液体流路8の壁部を構成する流路形成部材6と吐出口5を形成する吐出口形成部材7とで構成されている。   As shown in FIG. 1B, the nozzle forming member 4 includes a flow path forming member 6 forming a wall of the liquid flow path 8 and a discharge port forming member 7 forming the discharge port 5.

通常、このようなチップの形態の液体吐出ヘッド用基板10は、図2に示すように、基体(1)を構成するウエハ状態の基板20上に複数同時に形成され、完成後にチップ形態に切り分けられる。   Usually, as shown in FIG. 2, a plurality of such liquid-jet head substrates 10 in the form of chips are simultaneously formed on a wafer-like substrate 20 constituting the base body (1), and are cut into chip forms after completion. .

〔第1の実施形態〕
次に、本発明の第1の実施形態に係る液体吐出ヘッド用基板の製造方法を説明する。チップ形態に切り分ける前のウエハ状態で、液体吐出ヘッド用基板を製造する過程を図2に示すA−A’線での断面を表す図3(a)〜(h)に示す。なお、液体吐出ヘッド用基板における主要な構成は、図1(b)の断面に相当する構成を簡略化して示している。
[First Embodiment]
Next, a method for manufacturing the substrate for a liquid ejection head according to the first embodiment of the present invention will be described. FIGS. 3 (a) to 3 (h) showing a cross section taken along line AA 'shown in FIG. 2 show a process of manufacturing a substrate for a liquid ejection head in a wafer state before being cut into a chip form. The main configuration of the liquid discharge head substrate is a simplified configuration corresponding to the cross section of FIG. 1B.

まず、図3(a)に示すように、液体を吐出するために利用されるエネルギーを発生するエネルギー発生素子を有するウエハ状の基板20を用意する。基板20の表面には、配線や層間絶縁膜などから構成される表面メンブレン層が形成されている(不図示)。   First, as shown in FIG. 3A, a wafer-like substrate 20 having an energy generating element for generating energy used for discharging a liquid is prepared. On the surface of the substrate 20, a surface membrane layer composed of wiring, an interlayer insulating film and the like is formed (not shown).

基板20の裏面にフォトレジストなどを用いて裏面エッチングマスクを形成し、エッチングを行うことで液体供給口3を形成する。ここまでの工程で図3(a)の構造が完成する。なお、液体供給口3を形成する工程は、後述するノズル形成部材の形成の後に行ってもよい。   A back surface etching mask is formed on the back surface of the substrate 20 using a photoresist or the like, and the liquid supply port 3 is formed by performing etching. The structure shown in FIG. 3A is completed by the steps up to here. The step of forming the liquid supply port 3 may be performed after the formation of a nozzle forming member described later.

基板20とは別に、図3(b)に示すように、支持体31上に部材32を形成した貼付部材30を用意する。支持体31としてはポリエチレンテレフタラート、ポリイミド、又はポリアミドなどの樹脂フィルムが挙げられる。支持体31の厚みは10μm〜200μmの範囲が好適であり、液体供給口3上のレジスト落込みを抑制する為には75μm以上の厚みが好ましい。部材32は、特定のエネルギーを与えられたときに剛性の変化など、その特性が変化するものを用いる。例えば、部材32は無機膜、樹脂膜、金属の薄膜などが挙げられる。部材32は樹脂膜であることが好ましく、以下、部材32として、樹脂膜を用いた例を説明する。樹脂膜で部材32を形成する方法としては、スピンコート法やスリットコート法が挙げられる。樹脂膜としては、例えば、感光性樹脂、光硬化性樹脂、熱硬化性樹脂などである。部材32の厚みとしては液体流路の高さを規定するものであり、例えば、0.5μm〜100μmが好適である。部材32の外形は基板20の外形よりも大きなものを用意する。支持体31は部材32の外形と同等以上の外形であればよく、支持体上に部材が形成された貼付部材30を所定形状に成形した後、支持体端部から部材の端部を一部後退させることができる。また、部材や支持体は、基板と相似形、例えば、基板が円形のウエハであれば、同心円形状の部材及び支持体を用いることができる。しかしながら、部材や支持体は基板と相似形である必要はなく、本発明の効果を損なわない範囲で様々な形状とすることができる。   As shown in FIG. 3B, a sticking member 30 in which a member 32 is formed on a support 31 is prepared separately from the substrate 20. Examples of the support 31 include a resin film such as polyethylene terephthalate, polyimide, or polyamide. The thickness of the support 31 is preferably in the range of 10 μm to 200 μm, and is preferably 75 μm or more in order to prevent the resist from dropping on the liquid supply port 3. As the member 32, a member whose characteristics change such as a change in rigidity when given specific energy is used is used. For example, the member 32 may be an inorganic film, a resin film, a metal thin film, or the like. The member 32 is preferably a resin film. Hereinafter, an example in which a resin film is used as the member 32 will be described. As a method of forming the member 32 with a resin film, a spin coating method or a slit coating method may be used. The resin film is, for example, a photosensitive resin, a photocurable resin, a thermosetting resin, or the like. The thickness of the member 32 defines the height of the liquid channel, and is preferably, for example, 0.5 μm to 100 μm. The outer shape of the member 32 is larger than the outer shape of the substrate 20. The support 31 may have an outer shape equal to or larger than the outer shape of the member 32. After the attaching member 30 having the member formed on the support is formed into a predetermined shape, the end of the member is partially cut from the end of the support. Can be retracted. Further, as the member and the support, a concentric member and a support can be used if the substrate has a similar shape to the substrate, for example, if the substrate is a circular wafer. However, the member and the support need not be similar in shape to the substrate, and can be formed in various shapes without impairing the effects of the present invention.

次いで、図3(c)に示すように、貼付部材30を、部材32側から液体供給口3が形成された基板20のおもて面に貼り付ける。即ち、図3(c)では、貼付部材の支持体側が上方、部材側が下方を向くようにして、貼付部材の部材側を基板20のおもて面に貼り付ける。このとき、基板20の外縁、すなわち基板の外縁(端部)から部材32がはみ出すように貼り付ける。一般的にウエハ状の基板、特にシリコン基板は、プロセス中の割れや欠けを抑制するために外周端部が面取りされたベベル部を有しており、基板平坦部の端から基板の外縁に向かって厚みが変化した形状となっている。ベベル部の長さはある程度規格化されており、0.5mm前後が一般的である。ベベル部では部材の貼着はほぼなく、基板平坦部の端より外側の部材がバリとして残る可能性がある。基板の端部からはみ出す部材の長さは、特に制限はないが、あまり長いと部材としての無駄が多くなることから、15mm以下が好ましく、5mm以下がより好ましい。なお、液体供給口3をノズル部材形成後に形成する場合は、この時点で基板20に液体供給口3は形成されていない。   Next, as shown in FIG. 3C, the attaching member 30 is attached to the front surface of the substrate 20 on which the liquid supply port 3 is formed from the member 32 side. That is, in FIG. 3C, the member side of the attaching member is attached to the front surface of the substrate 20 such that the support side of the attaching member faces upward and the member side faces downward. At this time, the attachment is performed so that the member 32 protrudes from the outer edge of the substrate 20, that is, the outer edge (end) of the substrate. Generally, a wafer-shaped substrate, particularly a silicon substrate, has a bevel portion whose outer peripheral edge is chamfered to suppress cracking and chipping during the process, and extends from the edge of the substrate flat portion to the outer edge of the substrate. It has a shape with a changed thickness. The length of the bevel portion is standardized to some extent, and is generally around 0.5 mm. At the bevel portion, there is almost no attachment of the member, and there is a possibility that a member outside the end of the flat portion of the substrate remains as a burr. The length of the member protruding from the end of the substrate is not particularly limited, but if it is too long, the waste of the member increases, and therefore, the length is preferably 15 mm or less, more preferably 5 mm or less. When the liquid supply port 3 is formed after the formation of the nozzle member, the liquid supply port 3 is not formed in the substrate 20 at this time.

次いで、図3(d)に示すように、支持体31を基板20の一端部から基板20の中心方向に向かって一部引き上げることにより、基板20からはみ出した部材と基板上に貼着された部材との境界部に凝集破壊により、分離境界部33が形成される。   Next, as shown in FIG. 3D, the support body 31 was partially pulled up from one end of the substrate 20 toward the center of the substrate 20, so that the member protruding from the substrate 20 was adhered to the substrate. A separation boundary 33 is formed at the boundary with the member by cohesive failure.

分離境界部33を形成するための支持体の引き上げ距離は、図4(a)に示すように、支持体31の引き上げ方向41に対して基板20の直径の半分(1/2)までの距離42とする。このとき、基板20からはみ出した部材34は、支持体31とともに基板20から分離していてもよい。引き上げ距離42が方向41に対して基板20の直径の半分を超えると、部材に掛かる力が基板20の内側から外側に向かう方向となり、凝集破壊による分離境界部が基板20の外側となり、部材がバリとして残るようになる。このことは、分離境界部を形成せずに支持体を方向41から剥離すると、基板の直径の半分の距離を超えた領域から部材がバリとして残る。また、図4(b)に示すように基板20に対して複数の方向から支持体31を引き上げることで、距離42が短くなる。図4(b)では4分割し、41A、41B、41Cの3方向で分離境界部33を形成し、最後に方向43に向かって支持体31を引きはがす。方向43に向かって他の方向と同様に一部引き上げることで、基板20の端部の全周囲に凝集破壊による分離境界部33を形成してもよい。なお、41Aと41Bの二方向で引き上げを行うことで、図4(a)と同様に基板20の全周の2分の1の領域に分離境界部33が形成されることになり、図4(b)の方向41Cと方向43との中間の方向から引き剥がしを行うこともできる。このように、基板の全周の2分の1以上の領域に形成され、また分離境界部を形成する際の支持体の引き上げ距離は、基板の直径の2分の1以下とする。
支持体の引き上げ、支持体の剥離は、支持体の一端部を把持するジグを用いて機械的に行うことが好ましく、引き上げ速度、引き上げ距離、剥離速度を適切に設定することができる。
As shown in FIG. 4A, the distance of pulling up the support for forming the separation boundary 33 is a distance up to half (1 /) the diameter of the substrate 20 with respect to the pulling direction 41 of the support 31. 42. At this time, the member 34 protruding from the substrate 20 may be separated from the substrate 20 together with the support 31. When the lifting distance 42 exceeds half of the diameter of the substrate 20 with respect to the direction 41, the force applied to the member is in a direction from the inside of the substrate 20 to the outside, the separation boundary due to cohesive failure is outside the substrate 20, and the member It will remain as burr. This means that if the support is peeled off from the direction 41 without forming a separation boundary, the member will remain as burrs from a region exceeding a distance of half the diameter of the substrate. Further, as shown in FIG. 4B, by pulling up the support 31 from a plurality of directions with respect to the substrate 20, the distance 42 is reduced. In FIG. 4B, the support 31 is divided into four parts to form a separation boundary part 33 in three directions of 41A, 41B and 41C. The separation boundary 33 due to cohesive failure may be formed around the entire edge of the substrate 20 by partially pulling up in the direction 43 as in the other directions. 4A, the separation boundary 33 is formed in a half area of the entire circumference of the substrate 20 as in FIG. 4A. The peeling can be performed from a direction intermediate between the direction 41C and the direction 43 in (b). In this manner, the support is formed in a region that is equal to or more than one-half of the entire circumference of the substrate, and the distance at which the support is pulled up when forming the separation boundary portion is equal to or less than half the diameter of the substrate.
The lifting of the support and the peeling of the support are preferably performed mechanically using a jig that grips one end of the support, and the lifting speed, the lifting distance, and the peeling speed can be appropriately set.

また、分離境界部33を形成する方法としては、図4に示す支持体の引き上げ動作以外に、図5に示すように、支持体31の端部を把持具51で把持して固定した状態で基板20を支持するステージ52の昇降により形成することができる。この場合、分離境界部33は基板20の端部の全周囲に形成することができる。これらの昇降は上昇、下降のいずれか1回でもよいが、上昇と下降をそれぞれ1回以上行うことが好ましい。また、基板の位置を固定した状態(ステージの昇降なし)で支持体の端部を昇降することで分離境界部33を形成することもできる。昇降距離は、支持体が基板上の部材から剥離しない範囲で行う。基板を支持するステージ52としては、公知のウエハステージを用いることができ、真空チャックなどによりウエハをステージ上に吸着保持する機構を有することができる。また、把持具51については、基板全周囲を把持する必要はない。例えば、図4(b)に示すように基板を4分割する4方向で支持体の端部を把持してステージの昇降を行ってもよく、把持位置を変更してステージの昇降を行う方法であれば、少なくとも一端部を把持して昇降を行い、把持位置を変更して全周囲に分離境界部を形成することもできる。このような把持具は、支持体の剥離の際にも利用することができる。   In addition, as a method of forming the separation boundary portion 33, in addition to the lifting operation of the support body shown in FIG. 4, as shown in FIG. It can be formed by raising and lowering a stage 52 that supports the substrate 20. In this case, the separation boundary 33 can be formed around the entire edge of the substrate 20. These ascent and descent may be performed either once or ascending or descending, but it is preferable to perform ascending and descending once or more each. Alternatively, the separation boundary portion 33 can be formed by raising and lowering the end of the support in a state where the position of the substrate is fixed (without raising and lowering the stage). The elevating distance is set within a range where the support is not separated from the member on the substrate. As the stage 52 for supporting the substrate, a known wafer stage can be used, and a mechanism for sucking and holding the wafer on the stage by a vacuum chuck or the like can be provided. Further, it is not necessary for the gripper 51 to grip the entire periphery of the substrate. For example, as shown in FIG. 4 (b), the stage may be moved up and down by gripping the end of the support in four directions that divide the substrate into four parts, and the stage may be moved up and down by changing the gripping position. If so, it is also possible to hold at least one end and move up and down, change the holding position, and form a separation boundary around the entire periphery. Such a gripping tool can also be used when peeling the support.

部材が樹脂材料の場合、このような凝集破壊により分離境界部を形成した部材が再度結合しないように、基板温度は部材32の軟化点温度以下にすることが好ましい。   When the member is a resin material, it is preferable that the substrate temperature be equal to or lower than the softening point temperature of the member 32 so that the member having formed the separation boundary portion due to such cohesive failure does not rejoin.

次いで、図3(e)に示すように、基板20に貼り付けた貼付部材30から支持体31を剥離する。このとき、図4(a)及び(b)に示すように、分離境界部33の形成されていない側から方向43に向かって支持体を引き上げて行く。また、基板20の端部の全周囲に凝集破壊による分離境界部33が形成されている場合は、支持体31の剥離はどの方向からでもできる。   Next, as shown in FIG. 3E, the support 31 is peeled off from the attaching member 30 attached to the substrate 20. At this time, as shown in FIGS. 4A and 4B, the support is pulled up in the direction 43 from the side where the separation boundary 33 is not formed. When the separation boundary 33 due to cohesive failure is formed all around the edge of the substrate 20, the support 31 can be peeled from any direction.

このように分離境界部33を形成しておくことで、図3(f)に示すように、基板20の端部に部材32によるバリが残っていない状態とすることができる。   By forming the separation boundary portion 33 in this way, as shown in FIG. 3F, it is possible to make a state in which no burr due to the member 32 remains at the end of the substrate 20.

次に、以上の工程で基板20上に形成した部材32を使用して、ノズル形成部材4を形成する。   Next, the nozzle forming member 4 is formed using the member 32 formed on the substrate 20 in the above steps.

まず、図3(g)に示すように、基板20上に形成された部材32を所望の形状に加工し、流路形成部材6を形成する。加工方法は、部材32が感光性樹脂の場合は、露光し、現像処理することで行われる。部材32が熱硬化性樹脂や光硬化性樹脂の場合は、レジストマスクなどを用いてエッチングを行い、所望の形状に加工する。   First, as shown in FIG. 3G, the member 32 formed on the substrate 20 is processed into a desired shape, and the flow path forming member 6 is formed. The processing method is performed by exposing and developing when the member 32 is a photosensitive resin. When the member 32 is a thermosetting resin or a photocurable resin, the member 32 is etched using a resist mask or the like and processed into a desired shape.

次いで、図3(h)に示すように、吐出口形成部材となる部材を図3(b)〜(f)と同様に、流路形成部材6を形成済みの基板上に転写・支持体31剥離後、所望の形状に加工し、吐出口5を形成する。加工方法は、流路形成部材6の形成と同様に、部材32が感光性樹脂の場合は、露光し現像処理することで行われる。   Next, as shown in FIG. 3 (h), the member serving as the discharge port forming member is transferred onto the substrate on which the flow path forming member 6 has been formed in the same manner as in FIGS. 3 (b) to 3 (f). After peeling, it is processed into a desired shape, and the discharge port 5 is formed. The processing method is performed by exposing and developing when the member 32 is a photosensitive resin, similarly to the formation of the flow path forming member 6.

また、流路形成部材6と吐出口形成部材7を形成する部材が双方とも感光性樹脂の場合は、流路形成部材用の露光時に現像を行わず、ノズルプレート形成後に吐出口5と流路部を一括で現像しても構わない。例えば、図6に示すように、部材32としてネガ型の感光性樹脂(第1の樹脂層63)を用いる場合、まず、流路壁パターンを有するマスク61を用いて露光光62にて、第1の樹脂層63の流路壁部を露光する。これにより流路壁に相当する領域が露光部64として潜像される。次に、図6(b)に示すように、支持体65上にネガ型の感光性樹脂(第2の樹脂層66)を形成したものを第1の樹脂層63上に貼り付ける。このとき第2の樹脂層66に配合する光開始剤(光酸発生剤)の処方を変え、第1の樹脂層よりも高感度のものにする。次に図6(c)に示すように、第1の樹脂層63と同様に、第2の樹脂層66を転写した後、図6(d)に示すように、吐出口形成用マスク67を用いて、露光光68で露光する。露光光68は、図6(a)で使用する露光光62よりも低エネルギー(低露光量)で露光を行う。これにより、第1の樹脂層63の未露光部が露光されないようにする。第2の樹脂層66の感光性樹脂は第1の樹脂層63の感光性樹脂よりも高感度であるため、少ない露光量でも露光することができる。その後、一括して現像することで、図3(h)に示す構造が得られる。   When the members forming the flow path forming member 6 and the discharge port forming member 7 are both photosensitive resins, development is not performed during exposure for the flow path forming member, and the discharge port 5 and the flow path are formed after the nozzle plate is formed. The parts may be developed at once. For example, as shown in FIG. 6, when a negative photosensitive resin (first resin layer 63) is used as the member 32, first, a mask 61 having a flow path wall pattern is used to expose the photosensitive resin 62 to exposure light 62. The flow path wall of the first resin layer 63 is exposed. As a result, a region corresponding to the flow path wall is formed as a latent image as the exposure unit 64. Next, as shown in FIG. 6B, a negative photosensitive resin (second resin layer 66) formed on a support 65 is attached on the first resin layer 63. At this time, the formulation of the photoinitiator (photoacid generator) to be blended in the second resin layer 66 is changed so that the sensitivity is higher than that of the first resin layer. Next, as shown in FIG. 6C, similarly to the first resin layer 63, after transferring the second resin layer 66, as shown in FIG. Exposure is performed using exposure light 68. The exposure light 68 performs exposure with lower energy (lower exposure amount) than the exposure light 62 used in FIG. Thereby, the unexposed portion of the first resin layer 63 is prevented from being exposed. Since the photosensitive resin of the second resin layer 66 has higher sensitivity than the photosensitive resin of the first resin layer 63, exposure can be performed with a small exposure amount. Thereafter, the structure shown in FIG. 3H is obtained by collectively developing.

吐出口形成部材7が熱硬化性樹脂や光硬化性樹脂の場合は、レジストマスクなどを用いてエッチングを行い、所望の形状に加工する。なお先述のとおり、この工程のあとに液体供給口3を形成してもよい。その後、基板20をチップ毎にダイシングすることで、図3(i)に示す液体吐出ヘッド用基板10が製造される。   When the discharge port forming member 7 is a thermosetting resin or a photo-curing resin, etching is performed using a resist mask or the like to process into a desired shape. Note that, as described above, the liquid supply port 3 may be formed after this step. Thereafter, the substrate 20 is diced into chips to manufacture the liquid discharge head substrate 10 shown in FIG.

本実施形態の製造方法によれば、基板領域外に残った部材のバリが工程中に欠落することが抑制できる。   According to the manufacturing method of the present embodiment, it is possible to suppress the burr of the member remaining outside the substrate region from being lost during the process.

〔第2の実施形態〕
以上の実施形態では支持体の物理的変形による凝集破壊により分離境界部を形成する例を示した。本実施形態では、別の方法により分離境界部を形成する方法について図7を参照して説明する。
[Second embodiment]
In the above embodiment, an example in which the separation boundary is formed by cohesive failure due to physical deformation of the support has been described. In the present embodiment, a method of forming a separation boundary by another method will be described with reference to FIG.

まず、図3(a)〜(c)と同様に支持体31に部材32を形成した貼付部材を基板20の上に貼り付ける。図7(a)は、図3(c)の基板の一端部の状態を示している。また、部材32としては、感光性樹脂、熱硬化性樹脂又は光硬化性樹脂を用いる。   First, as in FIGS. 3A to 3C, an attaching member in which the member 32 is formed on the support 31 is attached on the substrate 20. FIG. 7A shows a state of one end of the substrate of FIG. 3C. As the member 32, a photosensitive resin, a thermosetting resin, or a photocurable resin is used.

次いで、図7(b)に示すように、支持体31を部材32に貼り付けた状態のまま、基板の端部近傍に仮想的に設けた境界線を境に、部材32にそれぞれ第一のエネルギー71と第二のエネルギー72を与える。第一のエネルギー71と第二のエネルギー72は、部材32の剛性など、その性質を変化させる効果の程度が異なるものである。ここで言う剛性の変化は、剛性が増加する場合と低下する場合のどちらでもよい。部材32に与えられる第一のエネルギー71と第二のエネルギー72のうち、片方はエネルギーがゼロ、すなわちエネルギー付与を行わない場合も含む。部材32にエネルギーを与える方法としては、例えば、光や熱を用いることができる。この処理によって、部材32には第一のエネルギー71を与えられた領域73と、第二のエネルギー72を与えられた領域74との間に剛性の差が生じ、その境界が分離境界部75となる。   Next, as shown in FIG. 7B, the first support member 31 is attached to the member 32 with the support 32 adhered to the member 32 at the boundary virtually provided near the end of the substrate. An energy 71 and a second energy 72 are provided. The first energy 71 and the second energy 72 differ in the degree of the effect of changing their properties, such as the rigidity of the member 32. The change in rigidity referred to here may be either when the rigidity increases or when the rigidity decreases. One of the first energy 71 and the second energy 72 given to the member 32 has zero energy, that is, the case where energy is not applied. As a method of applying energy to the member 32, for example, light or heat can be used. By this processing, a difference in rigidity is generated between the region 73 to which the first energy 71 is applied and the region 74 to which the second energy 72 is applied to the member 32, and the boundary between the region 73 and the separation boundary 75. Become.

分離境界部75は、第1の実施形態と同様に基板外周の2分の1以上の領域に形成すればよく、全周に形成してもよい。   The separation boundary portion 75 may be formed in at least one half of the outer periphery of the substrate as in the first embodiment, or may be formed over the entire periphery.

分離境界部75は、基板20の平坦部の端を起点として、基板の重心方向に30mm以内にあることが好ましい。基板20の平坦部の端の外側、さらには基板20の端部の外側に分離境界部を形成することもできるが、分離境界部は基板の端部より内側、特に基板20の平坦部の端の内側に形成することが好ましい。また、基板20の平坦部の端を起点として、基板の重心方向に20mm以内にあることがさらに好ましい。   The separation boundary 75 is preferably within 30 mm from the end of the flat portion of the substrate 20 in the direction of the center of gravity of the substrate. The separation boundary may be formed outside the edge of the flat portion of the substrate 20 and further outside the edge of the substrate 20, but the separation boundary portion is formed inside the edge of the substrate, particularly the edge of the flat portion of the substrate 20. It is preferable to form it inside. More preferably, the distance from the end of the flat portion of the substrate 20 to the center of gravity of the substrate is within 20 mm.

なお、部材の基板端部からのはみ出し量やベベル部の長さにもよるが、該分離境界部が基板20の平坦部の端より5mmより外側(基板の重心方向に−5mm超)にある場合は、基板領域外に多くの部材がバリとして残ってしまう。該分離境界部が基板20の平坦部の端より内側(基板の重心方向に0mm以上)に形成されてあれば、基板から張り出すバリの発生をより抑えることができる。   Note that, depending on the amount of the member protruding from the end of the substrate and the length of the bevel portion, the separation boundary is located more than 5 mm outside the end of the flat portion of the substrate 20 (more than -5 mm in the direction of the center of gravity of the substrate). In such a case, many members remain as burrs outside the substrate region. If the separation boundary is formed inside the end of the flat portion of the substrate 20 (0 mm or more in the direction of the center of gravity of the substrate), the occurrence of burrs extending from the substrate can be further suppressed.

一方、該分離境界部が基板20の平坦部の端から基板の重心方向に30mmより内側に位置する場合は、第二のエネルギー72が付与された領域74と基板表面の接触面積が大きくなる。そのため、支持体を引き剥がす際の凝集破壊の発生が特定の個所に定まりづらくなり、多くのバリが基板領域外に残ってしまう。該分離境界部が基板20の平坦部の端から基板の重心方向に20mmまでの範囲に形成されていれば、支持体を引き剥がす際の凝集破壊の発生がこの範囲に形成され、バリの発生はほとんどなく、バリの欠落を抑制することができる。   On the other hand, when the separation boundary portion is located within 30 mm from the edge of the flat portion of the substrate 20 in the direction of the center of gravity of the substrate, the contact area between the region 74 to which the second energy 72 is applied and the substrate surface increases. For this reason, it is difficult to determine the occurrence of cohesive failure when the support is peeled off at a specific location, and many burrs remain outside the substrate region. If the separation boundary is formed in a range from the end of the flat portion of the substrate 20 to 20 mm in the direction of the center of gravity of the substrate, cohesive failure when peeling off the support is formed in this range, and burrs are generated. Is almost nonexistent, and the lack of burrs can be suppressed.

次いで、図7(c)に示すように、支持体31を剥離する。このとき、剛性が急峻に変化する分離境界部75において凝集破壊が優先して発生する。そのため、領域74は支持体31の剥離とともに、支持体31に付着したまま除去される。支持体を剥離する際は、第1の実施形態と同様に、分離境界部75を最後に通過するように方向を調整して剥離する。全周に分離境界部が形成されている場合は、どの方向から剥離してもよい。   Next, as shown in FIG. 7C, the support 31 is peeled off. At this time, cohesive failure occurs preferentially at the separation boundary 75 where the rigidity changes sharply. Therefore, the region 74 is removed while being attached to the support 31 together with the separation of the support 31. When peeling the support, similarly to the first embodiment, the support is peeled by adjusting the direction so as to pass through the separation boundary part 75 last. When the separation boundary is formed on the entire circumference, the separation may be performed from any direction.

以上の工程により、基板領域外に部材をほぼ残さず、基板20上に部材32(領域73)を配置することができる。   Through the above steps, the member 32 (region 73) can be disposed on the substrate 20 with almost no member remaining outside the substrate region.

ところで、部材32が感光性樹脂の場合、光を照射することにより特定の溶剤(現像液)に対する溶解性が変化する。したがって、以下のような製造方法を取ることにより、基板領域外の部材を支持体31の剥離前に除去することができ、より効果的にバリの発生を抑制することができる。   When the member 32 is made of a photosensitive resin, irradiation with light changes the solubility in a specific solvent (developer). Therefore, by adopting the following manufacturing method, members outside the substrate region can be removed before the support 31 is peeled off, and the generation of burrs can be suppressed more effectively.

部材32がポジ型の感光性樹脂の場合は、以下のような製造方法となる。
まず、部材32を基板20に貼り付けた後、図8(a)に示すように、支持体31の表面から、基板端部領域以外の領域を遮光マスク81でマスキングして、基板端部領域の部材のみに光82を照射する。このとき、マスキングする領域の境界は、基板20の平坦部の端20aを起点として、基板20の重心方向の距離Dが0mmから20mmにあることが好ましい。この工程により、光を照射された領域83は現像液に可溶な状態となる。その後、図8(b)に示すように現像液(不図示)に領域83を接触させ、領域83を溶解除去する。このとき、光が照射されていない部材32は感光していないため、現像液が達しても溶解することはない。その後、図8(c)に示すように部材32から支持体31を剥離する。この場合も、基板の外周の2分の1以上の領域に分離境界部を形成し、除去すればよく、支持体31が分離境界部を最後に通過するように支持体を剥離すればよい。全周の部材を除去しておくことで、支持体の剥離はじめ側の部材残りも抑制できるためにさらに好ましい。
When the member 32 is a positive photosensitive resin, the manufacturing method is as follows.
First, after the member 32 is attached to the substrate 20, as shown in FIG. 8A, a region other than the substrate end region is masked with a light-shielding mask 81 from the surface of the support 31 to form a substrate end region. The light 82 is applied only to the members of the above. At this time, the boundary of the masking region is preferably such that the distance D in the direction of the center of gravity of the substrate 20 is 0 mm to 20 mm starting from the end 20 a of the flat portion of the substrate 20. By this step, the region 83 irradiated with the light becomes soluble in the developing solution. Thereafter, as shown in FIG. 8B, the region 83 is brought into contact with a developing solution (not shown), and the region 83 is dissolved and removed. At this time, since the member 32 not irradiated with light is not exposed, it does not dissolve even when the developer reaches. Thereafter, the support 31 is peeled off from the member 32 as shown in FIG. In this case as well, a separation boundary may be formed in at least one half of the outer periphery of the substrate and removed, and the support may be peeled off such that the support 31 passes through the separation boundary last. It is more preferable to remove the members around the entire circumference, because the remaining members at the beginning of the separation of the support can be suppressed.

また、部材32がネガ型の感光性樹脂の場合は、以下のような製造方法となる。
まず、部材32を基板20に貼り付けた後、図9(a)に示すように、支持体31の表面から、分離境界部95となる領域以外の領域を遮光マスク91でマスキングして、分離境界部となる部材のみに光92を照射する。光を照射する領域は、基板20の平坦部の端20aを起点として、基板20の重心方向の距離Dが0mmから20mmにあり、幅Wが100μm以上であることが好ましい。この工程により、光を照射された領域は現像液に不溶な分離境界部95となる。未露光の部材32は、分離境界部95の内側となる第1領域93と外側となる第2領域94に分けられる。その後、図9(b)に示すように現像液(不図示)に第2領域94を接触させ、溶解除去する。このとき、分離境界部95は、現像液が達しても溶解することはない。その後、図9(c)に示すように支持体31を剥離する。
When the member 32 is a negative photosensitive resin, the manufacturing method is as follows.
First, after the member 32 is attached to the substrate 20, as shown in FIG. 9A, a region other than the region serving as the separation boundary 95 is masked with a light-shielding mask 91 from the surface of the support 31, and separated. The light 92 is emitted only to the member that becomes the boundary. It is preferable that a region to be irradiated with light has a distance D in the direction of the center of gravity of the substrate 20 from 0 mm to 20 mm and a width W of 100 μm or more, starting from the end 20 a of the flat portion of the substrate 20. By this step, the region irradiated with the light becomes the separation boundary 95 insoluble in the developer. The unexposed member 32 is divided into a first region 93 inside the separation boundary 95 and a second region 94 outside the separation boundary 95. Thereafter, as shown in FIG. 9B, the second region 94 is brought into contact with a developing solution (not shown) to be dissolved and removed. At this time, the separation boundary 95 does not dissolve even when the developer reaches. Then, the support 31 is peeled off as shown in FIG.

さらに、部材32にエネルギーを与える工程は、部材を基板に貼り付ける前に実施することもできる。部材を基板に貼り付けてからエネルギーを与えた場合、エネルギーが光の場合は多重反射による迷光、エネルギーが熱の場合は伝熱により、大小エネルギーを与えて形成される分離境界部が不鮮明になる懸念がある。それに対して、部材を基板に貼り付ける前にエネルギーを与えれば、部材に剛性のコントラストがつきやすいので、支持体剥離時の部材の凝集破壊が発生しやすくなり、より効果的にバリの発生を抑制することができる。   Further, the step of applying energy to the member 32 can be performed before the member is attached to the substrate. When energy is applied after the member is attached to the substrate, stray light due to multiple reflection when energy is light, and heat transfer when energy is heat, the separation boundary formed by giving large and small energy becomes unclear. There are concerns. On the other hand, if energy is applied before the member is attached to the substrate, the member tends to have a rigidity contrast, so that cohesive failure of the member at the time of peeling the support is likely to occur, and the generation of burrs is more effectively performed. Can be suppressed.

その後は、用いた部材に適した通常のパターニング方法により、図7(d)のように流路形成部材6を形成する。加工方法は、部材が感光性樹脂の場合は、露光し、現像処理することで行われる。部材32が熱硬化性樹脂や光硬化性樹脂の場合は、レジストマスクなどを用いてエッチングを行い、所望の形状に加工する。ネガ型感光性樹脂を用いた場合、分離境界部95は、流路形成部材6の一部であってもよく、また、各チップにダイシングする際のダイシング領域の外側に形成して、ダイシングにより除去してもよい。   Thereafter, the flow path forming member 6 is formed as shown in FIG. 7D by a normal patterning method suitable for the member used. The processing method is performed by exposing and developing when the member is a photosensitive resin. When the member 32 is a thermosetting resin or a photocurable resin, the member 32 is etched using a resist mask or the like and processed into a desired shape. When a negative photosensitive resin is used, the separation boundary part 95 may be a part of the flow path forming member 6, or may be formed outside a dicing area when dicing each chip, and the dicing is performed by dicing. It may be removed.

さらに吐出口形成部材7を形成することで、図7(e)のように、吐出口5及び流路8を有する液体吐出ヘッド用基板が得られる。吐出口形成部材7も、流路形成部材6と同様に形成することができる。   Further, by forming the ejection port forming member 7, a liquid ejection head substrate having the ejection port 5 and the flow path 8 can be obtained as shown in FIG. The discharge port forming member 7 can be formed similarly to the flow path forming member 6.

また、流路形成部材6と吐出口形成部材7を形成する部材が、双方とも感光性樹脂の場合は、第1の実施形態として説明した図6のように、吐出口5と流路8を一括して現像することもできる。   When the members forming the flow path forming member 6 and the discharge port forming member 7 are both photosensitive resin, the discharge port 5 and the flow path 8 are connected as shown in FIG. 6 described as the first embodiment. It can be developed all at once.

以上の工程によって、本実施形態の液体吐出ヘッド用基板が製造される。本実施形態の製造方法によれば、基板領域外に残った部材がバリとして工程中に欠落することが抑制できる。   Through the above steps, the substrate for a liquid ejection head of the present embodiment is manufactured. According to the manufacturing method of the present embodiment, it is possible to suppress the members remaining outside the substrate region from being lost as burrs during the process.

〔第3の実施形態〕
第3の実施形態では、第2の実施形態の変形例を示す。第2の実施形態では、支持体側からエネルギーを付与していたが、第3の実施形態では基板側からエネルギーを付与する。
[Third embodiment]
In the third embodiment, a modification of the second embodiment will be described. In the second embodiment, energy is applied from the support side. In the third embodiment, energy is applied from the substrate side.

まず、部材32を基板20に貼り付けた後、図10(a)に示すように、支持体31を剥離する前に基板20の裏面側から基板20をマスクとしてエネルギー101を基板からはみ出ている部材の第2領域103に照射する。第2の実施形態では、エネルギーを遮る為のマスクを用いる必要があった。この場合、マスクと基板の位置関係を調整する必要がある為、アライメントマークを形成し、そのマークをもとにアライメントを行うといった工程を経なければならない。しかし本実施形態の基板裏面側から基板をマスクとして使用する場合は、アライメントは不要であり、セルフアライメントによりエネルギーを選択的に照射することができる。   First, after the member 32 is attached to the substrate 20, as shown in FIG. 10A, the energy 101 protrudes from the back surface of the substrate 20 using the substrate 20 as a mask before the support 31 is separated. Irradiate the second region 103 of the member. In the second embodiment, it is necessary to use a mask for shielding energy. In this case, since it is necessary to adjust the positional relationship between the mask and the substrate, a process of forming an alignment mark and performing alignment based on the mark must be performed. However, when the substrate is used as a mask from the back side of the substrate in the present embodiment, alignment is not required, and energy can be selectively irradiated by self-alignment.

この照射は、基板を回転させて基板外周部のみに行うことにより、液体供給口3を抜けて部材32の基板上の第1領域102にエネルギーが照射されることはない。このエネルギー照射により第2領域103の硬度が変化し、第1領域102と第2領域103の界面に分離境界部104が形成される。ここでいう硬度の変化は、硬度が増加する場合と低下する場合のどちらでもよく、部材内に硬度の差を生じさせることにより凝集破壊が生じる状態であればよい。   This irradiation is performed only on the outer peripheral portion of the substrate by rotating the substrate, so that the energy is not irradiated to the first region 102 of the member 32 on the substrate through the liquid supply port 3. Due to this energy irradiation, the hardness of the second region 103 changes, and a separation boundary portion 104 is formed at the interface between the first region 102 and the second region 103. The change in hardness referred to here may be either a case where the hardness increases or a case where the hardness decreases, and may be a state in which cohesive failure occurs by causing a difference in hardness in the member.

部材にエネルギーを与える方法としては例えば、光や熱を用いることができる。光を用いる場合には、基板材料として遮光性の高いSi基板や、AL等の金属基板を用いるとよい。また、熱を用いる場合には、断熱性に優れるポリエチレンフォーム等を用いるのがよい。   As a method of applying energy to the member, for example, light or heat can be used. In the case of using light, it is preferable to use a Si substrate having a high light-shielding property or a metal substrate such as AL as a substrate material. When heat is used, it is preferable to use a polyethylene foam or the like having excellent heat insulating properties.

次いで、図10(b)に示すように、支持体31を剥離する。このとき、剛性が急峻に変化する分離境界部104において凝集破壊が優先して発生する。そのため、第2領域103は支持体31の剥離とともに、支持体31に付着したまま除去される。上記の工程により、基板領域外に部材を残さず、基板上に部材を形成することができる。   Next, as shown in FIG. 10B, the support 31 is peeled off. At this time, cohesive failure occurs preferentially at the separation boundary portion 104 where the rigidity changes sharply. Therefore, the second region 103 is removed while being attached to the support 31 together with the separation of the support 31. Through the above steps, the member can be formed on the substrate without leaving the member outside the substrate region.

部材32がポジ型の感光性樹脂の場合は、以下のような製造方法となる。まず、部材32を基板20に貼り付けた後、図11(a)に示すように、基板20の裏面から、基板端部領域の部材に光111を照射する。この工程により、光を照射された第2領域113は現像液に可溶な状態となる。その後、図11(b)に示すように現像液(不図示)に第2領域113を接触させ、溶解除去する。このとき、光が照射されていない部材32(第1領域112)は感光していないため、現像液が達しても溶解することはない。その後、図11(c)に示すように部材32から支持体31を剥離する。光111を照射する際には基板を回転させながら行うことで、液体供給口3を介して光が第1領域112に照射させることを抑制することができる。   When the member 32 is a positive photosensitive resin, the manufacturing method is as follows. First, after attaching the member 32 to the substrate 20, as shown in FIG. 11A, light 111 is applied to the member in the substrate end region from the back surface of the substrate 20. By this step, the second region 113 irradiated with light becomes soluble in the developing solution. Thereafter, as shown in FIG. 11B, the second region 113 is brought into contact with a developing solution (not shown) to be dissolved and removed. At this time, the member 32 (first region 112) to which light has not been irradiated is not exposed to light, and therefore does not dissolve even when the developer reaches. Thereafter, the support 31 is peeled off from the member 32 as shown in FIG. By irradiating the light 111 while rotating the substrate, it is possible to suppress irradiation of the light to the first region 112 through the liquid supply port 3.

その後は、上記実施形態と同様に、流路形成部材6の形成、吐出口形成部材7の形成を行い、本実施形態に係る液体吐出ヘッド用基板が完成する。本実施形態の製造方法によれば、基板領域外に残った部材がバリとして工程中に欠落することが抑制できる。   After that, similarly to the above-described embodiment, the formation of the flow path forming member 6 and the formation of the discharge port forming member 7 are performed, and the liquid discharge head substrate according to the present embodiment is completed. According to the manufacturing method of the present embodiment, it is possible to suppress the members remaining outside the substrate region from being lost as burrs during the process.

以上では、流路形成部材及び吐出口形成部材の形成方法として、本発明の基板の製造方法を適用する液体吐出ヘッドの製造方法を説明したが、本発明はこれに限定されるものではない。例えば、図1に示す基体1の裏面側に所定の厚みの構造物、例えば、液体供給口3の蓋部材を形成する場合にも、本発明の基板の製造方法を適用することができる。   In the above, a method of manufacturing a liquid ejection head to which the method of manufacturing a substrate of the present invention is applied has been described as a method of forming the flow path forming member and the discharge port forming member, but the present invention is not limited to this. For example, the substrate manufacturing method of the present invention can also be applied to a case where a structure having a predetermined thickness, for example, a lid member for the liquid supply port 3 is formed on the back side of the base 1 shown in FIG.

以下に、実施例を参照して本発明の液体吐出ヘッド用基板の製造方法について具体的に説明する。   Hereinafter, a method for manufacturing a substrate for a liquid ejection head of the present invention will be specifically described with reference to examples.

(実施例1)
本発明の第1の実施形態に基づく、液体吐出ヘッド用基板の製造方法について、図3を参照して説明する。
(Example 1)
A method for manufacturing a substrate for a liquid ejection head based on the first embodiment of the present invention will be described with reference to FIG.

先ず、図3(a)に示すように、基板20として直径200mmのシリコンウェハに公知の方法によりエネルギー発生素子を含むメンブラン層(不図示)と、基板20を貫通する液体供給口3を形成した。   First, as shown in FIG. 3A, a membrane layer (not shown) including an energy generating element and a liquid supply port 3 penetrating the substrate 20 were formed on a silicon wafer having a diameter of 200 mm as a substrate 20 by a known method. .

次に図3(b)に示すように、支持体31として100μm厚のポリエチレンテレフタラート(PET)フィルムを用意し、支持体上にスピンコート法により部材32を形成した。部材32は、感光性樹脂、光硬化性樹脂、熱硬化性樹脂を用いた。部材32の厚さはすべて20μmとした。スピンコート法によって支持体31上に部材32を形成したのち、支持体31を回転させたまま有機溶剤を用いてサイドリンスすることで、部材32を直径210mmの円形状に加工した。そののち、100℃で20分間のベーク処理をした。このようにして、貼付部材30を用意した。   Next, as shown in FIG. 3B, a polyethylene terephthalate (PET) film having a thickness of 100 μm was prepared as the support 31, and a member 32 was formed on the support by spin coating. As the member 32, a photosensitive resin, a photo-curable resin, and a thermosetting resin were used. The thickness of all the members 32 was 20 μm. After the member 32 was formed on the support 31 by spin coating, the member 32 was processed into a circular shape having a diameter of 210 mm by performing side rinsing using an organic solvent while rotating the support 31. After that, a baking treatment was performed at 100 ° C. for 20 minutes. Thus, the attaching member 30 was prepared.

次に図3(c)に示すように、支持体31上に形成した部材32が下を向くように配置し、貼付部材30を、液体供給口3が形成された基板20に貼り付けた。このとき、基板20の端から部材32が5mmはみ出すように貼り付けを行った。   Next, as shown in FIG. 3C, the member 32 formed on the support 31 was arranged so as to face downward, and the sticking member 30 was stuck to the substrate 20 on which the liquid supply port 3 was formed. At this time, the attachment was performed so that the member 32 protruded from the end of the substrate 20 by 5 mm.

次に図3(d)に示すように、支持体31を一部引き上げて部材32の基板20端部に分離境界部33を形成した。基板20は部材32の軟化点温度以下の常温(23℃)まで冷却した。このとき図4(a)に示すように、支持体31を方向41の方向に引き上げ、距離42が95〜100mmとなるように行った。   Next, as shown in FIG. 3D, the support 31 was partially lifted to form a separation boundary 33 at the end of the substrate 20 of the member 32. The substrate 20 was cooled to room temperature (23 ° C.) lower than the softening point temperature of the member 32. At this time, as shown in FIG. 4A, the support 31 was pulled up in the direction 41, and the distance 42 was set to 95 to 100 mm.

次に図3(e)に示すように、貼付部材30から支持体31の剥離を行った。このとき、図4(a)に示すように方向43から剥離を行った。分離境界部33の形成されていない領域では、図3(d)と同様に支持体31を一部引き上げて行く過程で部材32の凝集破壊が発生し、基板20の端部からはみ出した部材34はほとんど支持体31に付着した状態で分離された。剥離が基板中央部を越えてからは分離境界部33から外側の部材が支持体31に付着した状態で分離された。図3(f)に示すように、支持体31を剥離することで、基板端部に部材のはみ出しがない状態で部材の転写が完了した。   Next, as shown in FIG. 3E, the support 31 was peeled off from the attaching member 30. At this time, peeling was performed from the direction 43 as shown in FIG. In a region where the separation boundary portion 33 is not formed, the cohesive failure of the member 32 occurs in the process of partially lifting up the support body 31 as in FIG. 3D, and the member 34 protruding from the edge of the substrate 20. Was separated while almost adhered to the support 31. After the peeling exceeded the central portion of the substrate, the member outside the separation boundary portion 33 was separated while being attached to the support 31. As shown in FIG. 3F, the transfer of the member was completed in a state where the member did not protrude at the substrate end by peeling the support 31.

次に図3(g)に示すように、部材32を加工し、流路形成部材6を形成した。部材32が感光性樹脂の場合は、フォトマスクを用いて露光し、現像処理することで加工を行った。部材32が光硬化性樹脂と熱硬化性樹脂の場合は、部材32上にフォトレジストを塗布したのち、露光、現像することでレジストパターンを形成し、ドライエッチングして部材32を流路形成部材6の形状に加工した。   Next, as shown in FIG. 3G, the member 32 was processed to form the flow path forming member 6. In the case where the member 32 is a photosensitive resin, processing was performed by exposing to light using a photomask and developing. When the member 32 is made of a photocurable resin or a thermosetting resin, a photoresist is applied on the member 32, and then exposed and developed to form a resist pattern, and the member 32 is dry-etched so that the member 32 is formed as a flow path forming member. 6 was processed.

次に、図3(h)に示すように、流路形成部材6の形成と同様に、吐出口5を有する吐出口形成部材7の層となる部材を作製した。流路形成部材6を作製済みの基板上に貼り付け、基板端部の部材32に支持体31側からエネルギーを与え、支持体31を取り除いたのち、部材32を加工して吐出口形成部材7に吐出口5を形成した。   Next, as shown in FIG. 3H, a member to be a layer of the discharge port forming member 7 having the discharge port 5 was prepared in the same manner as the formation of the flow path forming member 6. The flow path forming member 6 is stuck on the prepared substrate, energy is applied to the member 32 at the end of the substrate from the support 31 side, and after removing the support 31, the member 32 is processed to form the discharge port forming member 7. The discharge port 5 was formed on the substrate.

最後に、図3(i)に示すようにダイシングにより各チップに分割して液体吐出ヘッド用基板10を得た。上記の通り作製した液体吐出ヘッド用基板では、部材のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。   Finally, as shown in FIG. 3 (i), the substrate was divided into chips by dicing to obtain a liquid discharge head substrate 10. In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs on the member and remaining on the substrate could be confirmed.

(実施例2)
実施例1において、図3(d)に示す支持体31の一部引き上げを図4(b)に示す3方向(41A,41B,41C)から行い、最後に方向43から支持体の剥離を行った以外は、実施例1と同様に液体吐出ヘッド用基板を作製した。このとき、各方向の支持体引き上げ距離42はそれぞれ30mmとして行った。
(Example 2)
In the first embodiment, a part of the support 31 shown in FIG. 3D is partially lifted from three directions (41A, 41B, 41C) shown in FIG. A liquid ejection head substrate was manufactured in the same manner as in Example 1 except for the above. At this time, the support lifting distance 42 in each direction was set to 30 mm.

上記の通り作製した液体吐出ヘッド用基板では、部材のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。   In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs on the member and remaining on the substrate could be confirmed.

(実施例3)
本実施例による分離境界部の形成方法を図5に示す。実施例2では、3方向から等分で支持体31を基板20から一部から引き上げて分離境界部33を形成した後、最後に方向43に向かって支持体を剥離する工程を実施する例であった。実施例3においては、ステージを上下させることで基板20の外周部に分離境界部33を形成する工程を実施する。そのため、その他の構成、製造方法は実施例2と同様であるので説明を省略する。
(Example 3)
FIG. 5 shows a method of forming a separation boundary according to this embodiment. The second embodiment is an example in which the support 31 is pulled up from a part of the substrate 20 at equal intervals from three directions to form a separation boundary 33, and finally, the support is peeled off in the direction 43. there were. In the third embodiment, a step of forming the separation boundary 33 on the outer peripheral portion of the substrate 20 by moving the stage up and down is performed. Therefore, the other configuration and the manufacturing method are the same as those of the second embodiment, and the description is omitted.

実施例1と同様の方法により、支持体31端部の部材32を除去した貼付部材30を形成した。貼付部材の端部を把持具51で把持し、ステージ52上に載置した基板20と貼付部材30の部材32とを貼り付けた(図5(a))。   In the same manner as in Example 1, the attaching member 30 from which the member 32 at the end of the support 31 was removed was formed. The end of the sticking member was gripped by the holding tool 51, and the substrate 20 placed on the stage 52 and the member 32 of the sticking member 30 were stuck (FIG. 5A).

次に、図5(b−1)及び(b−2)に示すようにステージ52を上下に数回昇降することで、基板20の外周に沿って部材32の凝集破壊による分離境界部33を形成した。このときステージ52の移動量として10mm上下に移動させた。   Next, as shown in FIGS. 5B-1 and 5B-2, the stage 52 is moved up and down several times so that the separation boundary 33 due to the cohesive failure of the member 32 is formed along the outer periphery of the substrate 20. Formed. At this time, the stage 52 was moved up and down by 10 mm.

本実施例では基板の全外周に沿って分離境界部33が形成されており、図3(e)及び(f)に示すように支持体31をどの位置からでも剥離することができた。   In this example, the separation boundary 33 was formed along the entire outer periphery of the substrate, and the support 31 could be peeled from any position as shown in FIGS. 3 (e) and 3 (f).

(実施例4)
本実施例では、部材32としてネガ型の感光性樹脂を用いて、図6に示すように流路形成部材6と吐出口形成部材7となる部材(樹脂層)を積層して、一括して現像することで、吐出口5と流路8とを形成する方法について説明する。
(Example 4)
In the present embodiment, a negative photosensitive resin is used as the member 32, and a member (resin layer) serving as the flow path forming member 6 and the discharge port forming member 7 is laminated as shown in FIG. A method of forming the discharge port 5 and the flow path 8 by developing will be described.

上記実施例1と同様に、図3(b)に示すように、支持体31としての100μm厚のPETフィルム上に、部材32(第1の樹脂層63)として第1の感光性樹脂層となるエポキシ樹脂(商品名:N−695、大日本インキ社製、軟化点:60℃)を塗布した。具体的には、上記エポキシ樹脂と、露光波長365nmに感度を有する光開始剤(商品名:CPI−210S、サンアプロ社製)とを、溶剤(PGMEA)に溶解させた溶液を、スリットコート法により支持体31上に塗布した。光開始剤の添加量は、後述する吐出口形成時に、吐出口形成部材となる第2の樹脂層を選択的に露光パターニングできるように感度を調整して決定した。なお、第1の樹脂層63の厚みは20μmとした。
その後実施例1〜3と同様にして分離境界部33を形成した後、支持体31の剥離を行った。
As in the first embodiment, as shown in FIG. 3B, a first photosensitive resin layer as a member 32 (first resin layer 63) is formed on a 100 μm thick PET film as a support 31. Epoxy resin (trade name: N-695, manufactured by Dainippon Ink, softening point: 60 ° C.). Specifically, a solution obtained by dissolving the epoxy resin and a photoinitiator having a sensitivity to an exposure wavelength of 365 nm (trade name: CPI-210S, manufactured by San Apro Corporation) in a solvent (PGMEA) is subjected to a slit coating method. It was applied on a support 31. The addition amount of the photoinitiator was determined by adjusting the sensitivity so that the second resin layer serving as the discharge port forming member could be selectively subjected to exposure patterning at the time of forming the discharge port described later. Note that the thickness of the first resin layer 63 was 20 μm.
Then, after forming the separation boundary portion 33 in the same manner as in Examples 1 to 3, the support 31 was peeled off.

次いで、図6(a)に示すように、第1の樹脂層63に、フォトマスク61を介して、露光機にて露光波長365nmの光62を5000J/mの露光量で照射した。その後、50℃で5分間のPEB(Post Exposure Bake)を行うことにより、第1の樹脂層63の露光部64が流路形成部材6となるように潜像させた。 Next, as shown in FIG. 6A, the first resin layer 63 was irradiated with light 62 having an exposure wavelength of 365 nm at an exposure amount of 5000 J / m 2 by an exposure machine through a photomask 61. Thereafter, by performing PEB (Post Exposure Bake) at 50 ° C. for 5 minutes, a latent image was formed so that the exposed portion 64 of the first resin layer 63 became the flow path forming member 6.

次いで、図3(b)と同様に、支持体65としての100μm厚のPETフィルム上に、第2の樹脂層66(第2のネガ型感光性樹脂層)を有する貼付部材を用意した。具体的には、エポキシ樹脂(商品名:157S70、ジャパンエポキシレジン社製、軟化点:50℃)と、露光波長365nmに感度を有する光開始剤(商品名:LW−S1、サンアプロ社製)とをPGMEAに溶解させた溶液を、スリットコート法により支持体65上に塗布した。その後、図6(b)に示すように、第2の樹脂層66と第1の樹脂層63とが接するように、ロール式ラミネーターにて接合させた。基板20上の第2の樹脂層66の厚みが20μmとなるように接合した。   Next, as in FIG. 3B, a sticking member having a second resin layer 66 (second negative photosensitive resin layer) on a PET film having a thickness of 100 μm as the support 65 was prepared. Specifically, an epoxy resin (trade name: 157S70, manufactured by Japan Epoxy Resin Co., softening point: 50 ° C.) and a photoinitiator having a sensitivity to an exposure wavelength of 365 nm (trade name: LW-S1, manufactured by San Apro Co.) Was dissolved in PGMEA and applied to the support 65 by a slit coating method. Thereafter, as shown in FIG. 6B, the second resin layer 66 and the first resin layer 63 were joined by a roll laminator such that they were in contact with each other. The joining was performed so that the thickness of the second resin layer 66 on the substrate 20 became 20 μm.

第1の樹脂層63と同様に、第2の樹脂層66の基板外周部に分離境界部を形成した後、支持体65を剥離することで、図6(c)に示す構造を形成した。   As in the case of the first resin layer 63, after forming a separation boundary on the outer peripheral portion of the substrate of the second resin layer 66, the support 65 was peeled off, thereby forming the structure shown in FIG. 6C.

次に、図6(d)に示すように、第2の樹脂層66に、フォトマスク67を介して、露光機にて露光波長365nmの光68を1000J/mの露光量で照射した。その後、90℃で4分間のPEBを行うことにより、第2の樹脂層66の露光部69が吐出口形成部材7、未露光部が吐出口5となるように潜像させた。 Next, as shown in FIG. 6D, light 68 having an exposure wavelength of 365 nm was irradiated onto the second resin layer 66 via a photomask 67 with an exposure machine at an exposure amount of 1000 J / m 2 . Thereafter, by performing PEB at 90 ° C. for 4 minutes, a latent image was formed such that the exposed portion 69 of the second resin layer 66 became the discharge port forming member 7 and the unexposed portion became the discharge port 5.

次いで、現像装置にて、PGMEAで第1の樹脂層63と第2の樹脂層66の未露光部を溶解させることにより現像した。さらに、200℃で1時間のキュアリング工程を行い、図3(h)に示すように液体流路8を有する流路形成部材6と、吐出口5を有する吐出口形成部材7を形成した。
上記の通り作製した液体吐出ヘッド用基板では、樹脂層由来のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。
Next, development was performed by dissolving the unexposed portions of the first resin layer 63 and the second resin layer 66 with PGMEA in a developing device. Further, a curing step at 200 ° C. for 1 hour was performed to form a flow path forming member 6 having a liquid flow path 8 and a discharge port forming member 7 having a discharge port 5 as shown in FIG.
In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs derived from the resin layer and remaining on the substrate was observed.

(実施例5)
本発明の第2の実施形態に係る製造方法について、図7を用いて説明する。
まず、実施例1と同様に支持体31上に部材32として感光性樹脂からなる樹脂層を形成し、図7(a)に示すように、支持体31上に形成した部材(樹脂層)32が下を向くように配置し、液体供給口3が形成された基板20に貼り付けた。基板20は直径200mmのシリコンウェハを用いた。部材32の直径が210mmであるため、基板20の端から部材32が5mm(図7(a)のP)はみ出すように貼り付けを行った。
(Example 5)
A manufacturing method according to the second embodiment of the present invention will be described with reference to FIG.
First, a resin layer made of a photosensitive resin is formed as a member 32 on a support 31 in the same manner as in Example 1, and a member (resin layer) 32 formed on the support 31 is formed as shown in FIG. Was arranged to face downward, and was attached to the substrate 20 on which the liquid supply port 3 was formed. As the substrate 20, a silicon wafer having a diameter of 200 mm was used. Since the diameter of the member 32 was 210 mm, the member 32 was attached so as to protrude from the end of the substrate 20 by 5 mm (P in FIG. 7A).

次に図7(b)に示すように、支持体31側から部材32にエネルギーを与えた。エネルギー付与はUV光照射によって行った。具体的には図8(a)に示すように遮光マスク81を用いてUV光を照射した。このとき、部材32の端部から、基板20の平坦部の端20aを起点として基板20の重心方向に10mmの距離Dまでを第2領域74とした。この処理によって、図7(b)に示すように、第1領域73と第2領域74の境界に、剛性が急峻に変化する分離境界部75を形成した。   Next, as shown in FIG. 7B, energy was applied to the member 32 from the support 31 side. Energy was applied by UV light irradiation. Specifically, as shown in FIG. 8A, UV light was irradiated using a light shielding mask 81. At this time, the second region 74 was defined as a distance from the end of the member 32 to a distance D of 10 mm in the direction of the center of gravity of the substrate 20 from the end 20a of the flat portion of the substrate 20 as a starting point. By this processing, as shown in FIG. 7B, a separation boundary portion 75 where the rigidity changes sharply is formed at the boundary between the first region 73 and the second region 74.

次に図7(c)に示すように、支持体31を剥離した。このとき、分離境界部75にて凝集破壊が発生し、第2領域74はほとんど支持体31に付着しており、基板20にバリ状に残っている樹脂層は僅かであった。   Next, as shown in FIG. 7C, the support 31 was peeled off. At this time, cohesive failure occurred at the separation boundary 75, the second region 74 was almost adhered to the support 31, and the resin layer remaining on the substrate 20 in a burr-like manner was slight.

次に図7(d)に示すように、基板上の第1領域73にフォトマスク(不図示)を用いて露光し、現像処理することで流路形成部材6を形成した。   Next, as shown in FIG. 7D, the first region 73 on the substrate was exposed using a photomask (not shown) and developed to form the flow path forming member 6.

次に、図7(e)に示すように、流路形成部材6の形成と同様に、吐出口5を有する吐出口形成部材7となる樹脂層を作製し、流路形成部材を作製済みの基板上に貼り付けた。その後、基板端部の樹脂層に流路形成部材の形成と同様にして支持体側からエネルギーを与え、支持体を剥離したのち、樹脂層を加工して吐出口5を有する吐出口形成部材7を形成した。
その後は、実施例1と同様に各チップに切り分け、液体吐出ヘッド用基板を作製した。
Next, as shown in FIG. 7E, similarly to the formation of the flow path forming member 6, a resin layer to be the discharge port forming member 7 having the discharge port 5 is manufactured, and the flow path forming member is already manufactured. Pasted on a substrate. After that, energy is applied to the resin layer at the end of the substrate from the support in the same manner as in the formation of the flow path forming member, and after the support is separated, the resin layer is processed to form the discharge port forming member 7 having the discharge port 5. Formed.
Thereafter, each chip was cut into chips in the same manner as in Example 1, and a substrate for a liquid discharge head was manufactured.

上記の通り作製した液体吐出ヘッド用基板では、樹脂層由来のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。   In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs derived from the resin layer and remaining on the substrate was observed.

(実施例6)
実施例5において距離Dを以下に示すように変更した以外は実施例5と同様にして、支持体を剥離して樹脂層を基板上に転写した。なお、ベベル部(基板端部から基板平坦部の端まで)の長さは0.5mmであり、したがって、基板平坦部の端から部材の端部まで5.5mmであった。
(Example 6)
The support was peeled off and the resin layer was transferred onto the substrate in the same manner as in Example 5 except that the distance D was changed as shown below. The length of the bevel portion (from the edge of the substrate to the edge of the flat portion of the substrate) was 0.5 mm, and therefore, 5.5 mm from the edge of the flat portion to the edge of the member.

Figure 2020049755
Figure 2020049755

距離Dが0mmから20mmであることでバリ状に樹脂層が残ることがなくなり、部材のバリが欠落して基板上に残ることによる品質低下を抑制することができた。一方、サンプル1では分離境界部が基板と接していないため、引き剥がし終端側でバリが発生した。サンプル4では第2領域が基板と接する距離が長すぎるために凝集破壊が発生せず、また、第2領域が基板と密着して支持体と共に剥離せず、全体的にバリとして残った。しかしながら、サンプル1及び4の場合も、バリの欠落は少なく、後述する比較例1のように対策しない場合と比較して品質低下を抑制することができた。   When the distance D is from 0 mm to 20 mm, the resin layer does not remain in the form of burrs, and it is possible to suppress the deterioration in quality due to the lack of burrs of the members and remaining on the substrate. On the other hand, in sample 1, since the separation boundary portion was not in contact with the substrate, burrs were generated at the peeling end side. In Sample 4, cohesive failure did not occur because the distance between the second region and the substrate was too long, and the second region was in close contact with the substrate and did not peel off with the support, leaving the entire surface as burrs. However, also in the case of Samples 1 and 4, the lack of burrs was small, and a decrease in quality could be suppressed as compared with the case where no countermeasure was taken as in Comparative Example 1 described later.

(実施例7)
次に本発明の第2の実施形態の別の実施例を説明する。実施例7は実施例5と比較して、部材32(樹脂層)の種類、およびその加工方法が異なるのみであり、その他の構成、製造方法は実施例5と同様であるので説明を省略する。
(Example 7)
Next, another example of the second embodiment of the present invention will be described. The seventh embodiment is different from the fifth embodiment only in the type of the member 32 (resin layer) and the processing method thereof. .

本実施例においては、樹脂層として光硬化性樹脂を用い、エネルギーを与える手段としてUV光照射を用いた。光硬化性樹脂は、露光・現像では加工できないため、支持体31剥離後は樹脂層上にフォトレジストを塗布したのち、露光、現像することでレジストパターンを形成し、ドライエッチングして樹脂層を流路形成部材6の形状に加工した。
上記の通り作製した液体吐出ヘッド用基板では、樹脂層由来のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。
In this embodiment, a photocurable resin was used as the resin layer, and UV light irradiation was used as a means for applying energy. Since the photocurable resin cannot be processed by exposure and development, after the support 31 is peeled off, a photoresist is applied on the resin layer, and then exposed and developed to form a resist pattern, and the resin layer is dry-etched to form a resist pattern. It was processed into the shape of the flow path forming member 6.
In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs derived from the resin layer and remaining on the substrate was observed.

(実施例8)
次に本発明の第2の実施形態のさらに別の実施例を説明する。実施例8は実施例5と比較して、部材32(樹脂層)の種類、およびその加工方法が異なる点が異なるのみであり、その他の構成、製造方法は実施例5と同様であるので説明を省略する。
(Example 8)
Next, still another example of the second embodiment of the present invention will be described. Example 8 is different from Example 5 only in that the type of the member 32 (resin layer) and the processing method are different, and the other configuration and manufacturing method are the same as in Example 5, and therefore will be described. Is omitted.

本実施例においては、樹脂層として熱硬化性樹脂を用い、エネルギーを与える手段として熱源との接触を用いた。熱硬化性樹脂も、露光・現像では加工できないため、支持体31剥離後は実施例5と同様に樹脂層を流路形成部材6の形状に加工した。
上記の通り作製した液体吐出ヘッド用基板では、樹脂層由来のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。
In this example, a thermosetting resin was used as the resin layer, and contact with a heat source was used as a means for applying energy. Since the thermosetting resin cannot be processed by exposure and development, the resin layer was processed into the shape of the flow path forming member 6 after peeling off the support 31 in the same manner as in Example 5.
In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs derived from the resin layer and remaining on the substrate was observed.

(実施例9)
本実施例では実施例5と比較して、部材32(樹脂層)の種類、および支持体剥離前の工程が異なる点が異なるのみであり、その他の構成、製造方法は実施例5と同様であるので説明を省略する。
(Example 9)
This embodiment is different from the fifth embodiment only in that the type of the member 32 (resin layer) and the process before the support is separated are different, and the other configuration and the manufacturing method are the same as in the fifth embodiment. Description is omitted because there is.

実施例5と同様の方法により、基板にポジ型の感光性樹脂から成る部材を貼り付けた。その後、図8(a)に示すように、遮光マスク81を介して波長365nmの紫外光82を支持体31を介して部材32に照射した。このとき、基板20の平坦部からはみ出した樹脂層と、基板20の平坦部の端20aを起点として、基板20の重心方向に10mmの距離Dにある樹脂層を含む第2領域83に紫外光照射を実施した。   In the same manner as in Example 5, a member made of a positive photosensitive resin was attached to the substrate. Thereafter, as shown in FIG. 8A, the member 32 was irradiated with ultraviolet light 82 having a wavelength of 365 nm via the light-shielding mask 81 via the support 31. At this time, the resin layer protruding from the flat portion of the substrate 20 and the second region 83 including the resin layer located at a distance D of 10 mm in the direction of the center of gravity of the substrate 20 with the end 20a of the flat portion of the substrate 20 as a starting point, Irradiation was performed.

次に、図8(b)に示すように、第2領域83を現像液(水酸化テトラメチルアンモニウム:TMAH)を用いて溶解して除去した。分離境界部85よりも内側の未露光の部材は現像液に溶解することなく残すことができる。なお、未露光の部材が現像液やその後の洗浄液を吸収して膨潤することで部材の粘度や、基板や支持体との接着力が変わることで、支持体剥離時の糸引きや、基板端部からの剥離が生じることがある。このような場合、第2領域の除去後に、乾燥工程を設けて部材の膨潤等を解消してから支持体の剥離を行うことが好ましい。   Next, as shown in FIG. 8B, the second region 83 was dissolved and removed using a developing solution (tetramethylammonium hydroxide: TMAH). The unexposed member inside the separation boundary 85 can be left without being dissolved in the developer. The unexposed member absorbs the developing solution and the subsequent cleaning solution and swells, thereby changing the viscosity of the member and the adhesive force with the substrate or the support. Peeling from the part may occur. In such a case, it is preferable that after the removal of the second region, a drying step is provided to eliminate swelling of the member, and then the support is peeled off.

その後、図8(c)に示すように、支持体31を剥離した。
上記の通り作製した液体吐出ヘッド用基板では、樹脂層由来のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。
Thereafter, as shown in FIG. 8C, the support 31 was peeled off.
In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs derived from the resin layer and remaining on the substrate was observed.

(実施例10)
部材32(樹脂層)としてネガ型感光性樹脂を用いる以外は実施例5と同様に樹脂層の貼り付け、支持体の剥離を行った。その他の構成、製造方法は実施例9と同様であるので説明を省略する。
(Example 10)
Except for using a negative photosensitive resin as the member 32 (resin layer), the resin layer was attached and the support was peeled off in the same manner as in Example 5. The other configuration and the manufacturing method are the same as those of the ninth embodiment, and the description is omitted.

図9(a)に示すように、基板20の平坦部の端20aを起点として、遮光マスク91を用いて基板の重心方向に5mmから10mmの領域(D=5mm、W=5mm)にある樹脂層を含む領域95に光(紫外光)92の照射を実施した。その後、90℃で2分間のベーク処理を行った。これにより領域95よりも基板内側の第1領域93と領域95より基板外側の第2領域94が未露光部分として残った。   As shown in FIG. 9A, starting from the end 20a of the flat portion of the substrate 20 and using a light-shielding mask 91, a resin in an area of 5 mm to 10 mm (D = 5 mm, W = 5 mm) in the direction of the center of gravity of the substrate. Light (ultraviolet light) 92 was applied to a region 95 including the layer. Thereafter, baking treatment was performed at 90 ° C. for 2 minutes. As a result, a first region 93 inside the substrate from the region 95 and a second region 94 outside the substrate from the region 95 remain as unexposed portions.

次に図9(b)に示すように、未露光の第2領域94を現像液に接液し、現像液に対して可溶性の樹脂層を溶解除去した。現像液は、PGMEAを使用した。この処理によって、基板20からはみ出した樹脂層が支持体31の剥離前に除去された。また、紫外光照射によって現像液に対して不溶となる領域95を設けているため、現像液が支持体31と基板20の間に染み込んで行っても、その進行を領域95によって防ぐことができる。   Next, as shown in FIG. 9B, the unexposed second region 94 was brought into contact with the developing solution to dissolve and remove the resin layer soluble in the developing solution. PGMEA was used as a developer. By this processing, the resin layer protruding from the substrate 20 was removed before the support 31 was peeled off. In addition, since the region 95 that is insoluble in the developer by the irradiation of ultraviolet light is provided, even if the developer permeates between the support 31 and the substrate 20, the progress can be prevented by the region 95. .

その後、図9(c)に示すように、支持体31を剥離した。上記の通り作製した液体吐出ヘッド用基板では、樹脂層由来のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。   Thereafter, as shown in FIG. 9C, the support 31 was peeled off. In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs derived from the resin layer and remaining on the substrate was observed.

(実施例11)
本発明の第3の実施形態に係る実施例を、図10を参照して説明する。支持体剥離後の構成は実施例5と同様のため、説明を省略する。
(Example 11)
An example according to the third embodiment of the present invention will be described with reference to FIG. The configuration after the support is peeled off is the same as that of the fifth embodiment, and the description is omitted.

実施例5と同様に支持体31上に部材32を形成し、基板20の端から部材32が5mmはみ出すように貼り付けを行った(図7(a)参照)。   A member 32 was formed on the support 31 in the same manner as in Example 5, and the member 32 was attached so that the member 32 protruded 5 mm from the end of the substrate 20 (see FIG. 7A).

次に図10(a)に示すように、基板端部からはみ出た部材に基板裏面から、基板をマスクとしてエネルギー101を与えた。本実施例では部材として感光性樹脂又は光硬化性樹脂を用い、部材へのエネルギー付与は紫外光照射によって行った。エネルギーを付与する領域は、供給口に掛からないように基板の端から基板の重心方向に5mmの距離(基板平坦部の端)よりも外側に限定した。照射に際しては基板を自転させて外周部のみに照射した。この処理によって、樹脂層に硬度が急峻に変化する分離境界部104を形成した。分離境界部104よりも内側に第1領域102、外側に第2領域103が形成された。   Next, as shown in FIG. 10A, energy 101 was applied to the member protruding from the edge of the substrate from the back surface of the substrate using the substrate as a mask. In this embodiment, a photosensitive resin or a photocurable resin is used as a member, and energy is applied to the member by irradiation with ultraviolet light. The region to which the energy was applied was limited to a distance of 5 mm from the edge of the substrate in the direction of the center of gravity of the substrate (the end of the flat portion of the substrate) so as not to cover the supply port. At the time of irradiation, the substrate was rotated and irradiated only to the outer peripheral portion. By this processing, a separation boundary portion 104 where the hardness changes sharply was formed in the resin layer. The first region 102 was formed inside the separation boundary portion 104, and the second region 103 was formed outside the separation boundary portion 104.

次に図10(b)に示すように、支持体31を剥離した。このとき、分離境界部104で優先して樹脂層の凝集破壊が発生し、第2領域103はほとんど支持体31に付着して除去されており、基板20にバリ状に残っている樹脂層は僅かであった。また、部材として熱硬化性樹脂を用いてエネルギーとして熱を付与、あるいは部材として感光性樹脂を用いて光照射した場合も同様にバリがほとんどない状態で部材の転写が可能であった。   Next, as shown in FIG. 10B, the support 31 was peeled off. At this time, the cohesive failure of the resin layer occurs preferentially at the separation boundary portion 104, and the second region 103 is almost attached to the support 31 and removed. It was slight. Also, when heat is applied as energy using a thermosetting resin as a member, or when light is irradiated using a photosensitive resin as a member, the member can be transferred with almost no burrs.

(実施例12)
実施例12は実施例11と比較して、樹脂層の種類、およびその加工方法が異なる点が異なるのみであり、その他の構成、製造方法は実施例11と同様であるので説明を省略する。
(Example 12)
The twelfth embodiment is different from the eleventh embodiment only in that the type of the resin layer and the processing method thereof are different, and the other configuration and the manufacturing method are the same as those of the eleventh embodiment, so that the description is omitted.

樹脂層としてポジ型の感光性樹脂を用いた。その後、基板端部からはみ出した樹脂層に基板裏面側から基板をマスクとして、波長365nmの光(紫外光)111を照射した(図11(a))。その後、90℃で2分間のベーク処理を行った。この処理により、未露光部の第1領域112と露光部の第2領域113との境界に分離境界部114が形成された。   A positive photosensitive resin was used as the resin layer. Thereafter, light (ultraviolet light) 111 having a wavelength of 365 nm was irradiated onto the resin layer protruding from the edge of the substrate from the back side of the substrate using the substrate as a mask (FIG. 11A). Thereafter, baking treatment was performed at 90 ° C. for 2 minutes. As a result of this processing, a separation boundary portion 114 was formed at the boundary between the first region 112 of the unexposed portion and the second region 113 of the exposed portion.

次に図11(b)に示すように、基板端部領域を現像液に接液し、現像液に対して可溶性の第2領域113を溶解除去した。現像液は、ポジ型感光性樹脂である為TMAHを使用した。次いで、図11(c)に示すように、支持体31を部材から剥離した。その後は他の実施例と同様に加工して液体吐出ヘッド用基板を作製した。   Next, as shown in FIG. 11B, the substrate end region was brought into contact with the developing solution, and the second region 113 soluble in the developing solution was dissolved and removed. As the developer, TMAH was used because it is a positive photosensitive resin. Next, as shown in FIG. 11C, the support 31 was peeled off from the member. After that, processing was performed in the same manner as in the other examples to produce a liquid discharge head substrate.

上記の通り作製した液体吐出ヘッド用基板では、部材のバリが欠落して基板上に残ることによる品質低下はほとんど確認できなかった。   In the liquid ejection head substrate manufactured as described above, almost no deterioration in quality due to the lack of burrs on the member and remaining on the substrate could be confirmed.

(比較例1)
図12(a)に示すように支持体31上に部材32を形成した貼付部材30を基板20に貼り付けた後、図12(b)に示すように支持体31を剥離した。剥離開始から基板の半分までは、図12(b)に示すように部材が凝集破壊され、支持体と共に剥離された。しかし、図12(c)に示すように剥離が基板の半分を超えた領域では凝集破壊からの亀裂が基板の外側に向かい、基板端部にバリ121が残ってしまった。
(Comparative Example 1)
After attaching the attaching member 30 having the member 32 formed on the support 31 as shown in FIG. 12A to the substrate 20, the support 31 was peeled off as shown in FIG. 12B. From the start of peeling to half of the substrate, the member was cohesively fractured as shown in FIG. 12B and peeled together with the support. However, as shown in FIG. 12C, in a region where the exfoliation exceeded half of the substrate, a crack due to cohesive failure was directed to the outside of the substrate, and burrs 121 remained at the end of the substrate.

このように転写した部材では、図12(d)に示すように部材のバリ122の欠落が多く確認された。さらにそのまま流路形成部材6、吐出口形成部材7を図12(f)のように形成し、各チップに切り分けた際、図12(g)に示すように課題のある(ここでは流路8の容量変化)液体吐出ヘッド用基板10’が形成された。   As shown in FIG. 12 (d), many burrs 122 of the member transferred were confirmed in the transferred member. Further, when the flow path forming member 6 and the discharge port forming member 7 are formed as shown in FIG. 12F and cut into chips, there is a problem as shown in FIG. The liquid ejection head substrate 10 'was formed.

以上、液体吐出ヘッド用基板の製造方法について説明したが、本発明の基板の製造方法は、貼付部材の部材を基板上に転写する工程を含む様々な構造体の製造方法に適用することができる。   The method of manufacturing a substrate for a liquid ejection head has been described above, but the method of manufacturing a substrate of the present invention can be applied to a method of manufacturing various structures including a step of transferring a member of an attaching member onto a substrate. .

1 基体
2 エネルギー発生素子
3 液体供給口
4 ノズル形成部材
5 吐出口
6 流路形成部材
7 吐出口形成部材
8 流路
10 液体吐出ヘッド用基板
20 基板
30 貼付部材
31 支持体
32 部材(樹脂層)
33 分離境界部
DESCRIPTION OF SYMBOLS 1 Substrate 2 Energy generating element 3 Liquid supply port 4 Nozzle forming member 5 Discharge port 6 Flow path forming member 7 Discharge port forming member 8 Flow path 10 Liquid discharge head substrate 20 Substrate 30 Adhering member 31 Supporting member 32 (resin layer)
33 Separation Boundary

Claims (23)

部材を支持体上に形成した貼付部材を用意する工程と、
基板の外縁から前記部材がはみ出すように、前記貼付部材の前記部材側を前記基板に貼り付ける工程と、
前記基板に貼り付けた前記貼付部材から前記支持体を剥離する工程と、
を含み、
前記支持体を剥離する前に、前記部材の該基板からはみ出す領域が前記基板に接する領域と分離するように、前記部材の前記基板の端部の近傍に分離境界部を設ける工程を有し、
前記支持体の剥離は、剥離する前記支持体が該分離境界部を最後に通過するように行うことを特徴とする基板の製造方法。
A step of preparing a sticking member in which the member is formed on a support,
Affixing the member side of the attaching member to the substrate so that the member protrudes from an outer edge of the substrate,
Removing the support from the attachment member attached to the substrate;
Including
Prior to peeling the support, a step of providing a separation boundary near the end of the substrate of the member, so that a region of the member protruding from the substrate is separated from a region in contact with the substrate,
The method of manufacturing a substrate, wherein the support is separated so that the separated support finally passes through the separation boundary.
前記基板はウエハ状の基板である請求項1に記載の基板の製造方法。   The method according to claim 1, wherein the substrate is a wafer-shaped substrate. 前記部材が樹脂層である請求項2に記載の基板の製造方法。   The method according to claim 2, wherein the member is a resin layer. 前記分離境界部は、前記基板の全周の2分の1以上の領域に形成される請求項2又は3に記載の基板の製造方法。   4. The method of manufacturing a substrate according to claim 2, wherein the separation boundary portion is formed in a half or more of the entire circumference of the substrate. 5. 前記分離境界部が前記部材の凝集破壊により形成される請求項2ないし4のいずれか1項に記載の基板の製造方法。   The method according to claim 2, wherein the separation boundary is formed by cohesive failure of the member. 前記分離境界部は、前記貼付部材を基板に貼り付ける工程の後、前記支持体を引き上げることで形成され、その引き上げ距離が引き上げ方向の基板の直径の2分の1以下である請求項5に記載の基板の製造方法。   The separation boundary portion is formed by pulling up the support after the step of sticking the sticking member to the substrate, and a distance of the pulling up is equal to or less than half of a diameter of the substrate in a pulling-up direction. The manufacturing method of the substrate described in the above. 前記分離境界部は、前記支持体の端部を固定した状態で前記基板を昇降、又は前記基板の位置を固定した状態で前記支持体の端部を昇降して形成される請求項5に記載の基板の製造方法。   6. The separation boundary part according to claim 5, wherein the substrate is moved up and down with the end of the support fixed, or the end of the support is moved up and down with the position of the substrate fixed. Substrate manufacturing method. 前記部材は、エネルギーの付与により特性が変化する樹脂層であり、前記基板の端部近傍に仮想的に設けた境界線を境にして、前記部材に第一のエネルギーを付与した領域と、第二のエネルギーを付与した領域を形成する工程を有し、前記分離境界部は、前記第一及び第二のエネルギーのいずれか一方が付与された領域又は第一及び第二のエネルギーの付与された領域の境界部に形成される請求項2に記載の基板の製造方法。   The member is a resin layer whose characteristics are changed by the application of energy, and a region where the first energy is applied to the member, with a boundary line virtually provided near an end of the substrate as a boundary, Forming a region to which the second energy is applied, wherein the separation boundary portion is a region to which any one of the first and second energies is applied or a region to which the first and second energies are applied. 3. The method of manufacturing a substrate according to claim 2, wherein the substrate is formed at a boundary between the regions. 前記分離境界部を境として、前記基板の内側に第1領域を、前記基板の外側に第2領域を形成する請求項8に記載の基板の製造方法。   The method according to claim 8, wherein a first region is formed inside the substrate and a second region is formed outside the substrate with the separation boundary as a boundary. 前記部材が、エネルギーを付与することで剛性が変化する樹脂層であり、前記支持体を剥離する際に前記分離境界部を起点に凝集破壊することで前記第1領域と前記第2領域を分離する請求項9に記載の基板の製造方法。   The member is a resin layer whose stiffness changes by applying energy, and separates the first region and the second region by cohesive failure starting from the separation boundary when the support is peeled off. The method for manufacturing a substrate according to claim 9. 前記第一のエネルギーと前記第二のエネルギーが熱、光のいずれかを含む請求項8ないし10のいずれか1項に記載の基板の製造方法。   The method for manufacturing a substrate according to claim 8, wherein the first energy and the second energy include one of heat and light. 前記境界線は、前記基板の平坦部の端を起点として、前記基板の重心方向に30mm以内の範囲に規定される請求項8ないし11のいずれか1項に記載の基板の製造方法。   The method of manufacturing a substrate according to any one of claims 8 to 11, wherein the boundary is defined within a range of 30 mm or less in a direction of a center of gravity of the substrate, starting from an end of a flat portion of the substrate. 前記境界線は、前記基板の平坦部の端を起点として、前記基板の重心方向に0mmから20mmの範囲に規定される請求項12に記載の基板の製造方法。   13. The method of manufacturing a substrate according to claim 12, wherein the boundary line is defined in a range of 0 mm to 20 mm in a direction of a center of gravity of the substrate, starting from an end of a flat portion of the substrate. 前記部材が光を照射することにより特定の溶剤に対する溶解性が変化する感光性樹脂であり、支持体を剥離する工程の前に、前記第2領域を溶剤により除去する工程を含む請求項9に記載の基板の製造方法。   10. The method according to claim 9, wherein the member is a photosensitive resin whose solubility in a specific solvent changes by irradiating light, and including a step of removing the second region with a solvent before the step of peeling the support. The manufacturing method of the substrate described in the above. 前記部材が、ポジ型感光性樹脂であり、前記第2領域は、前記部材の端部から、前記基板の平坦部の端を起点として前記基板の重心方向に20mmまでの距離に光を照射して形成される請求項14に記載の基板の製造方法。   The member is a positive photosensitive resin, and the second region is irradiated with light from an end of the member to a distance of up to 20 mm in a direction of a center of gravity of the substrate starting from an end of a flat portion of the substrate. The method of manufacturing a substrate according to claim 14, wherein the substrate is formed. 前記部材が、ネガ型感光性樹脂であり、前記分離境界部は、前記部材の端部から基板の平坦部の端を起点として、基板の重心方向に0から20mmの範囲に100μm以上の幅で光を照射して形成される請求項14に記載の基板の製造方法。   The member is a negative photosensitive resin, and the separation boundary portion has a width of 100 μm or more in a range of 0 to 20 mm in a center of gravity direction of the substrate from an end of the member to an end of a flat portion of the substrate. The method for manufacturing a substrate according to claim 14, wherein the substrate is formed by irradiating light. 前記エネルギーの付与が、前記支持体を通して前記部材に付与される請求項8ないし16のいずれか1項に記載の基板の製造方法。   17. The method for manufacturing a substrate according to claim 8, wherein the application of the energy is applied to the member through the support. 前記エネルギーの付与が、前記貼付部材を前記基板に貼り付ける前に実施される請求項8ないし16のいずれか1項に記載の基板の製造方法。   The method for manufacturing a substrate according to any one of claims 8 to 16, wherein the application of the energy is performed before the attaching member is attached to the substrate. 前記部材は、エネルギーの付与により特性が変化する樹脂層であり、前記基板の方向からエネルギーを付与して、該基板からはみ出す部材に第2領域を形成し、前記基板上の部材を第1領域として、前記分離境界部が、該第1領域と該第2領域の境界部に形成される請求項2に記載の基板の製造方法。   The member is a resin layer whose characteristics are changed by the application of energy, applies energy from the direction of the substrate to form a second region in a member protruding from the substrate, and forms a member on the substrate in a first region. 3. The method according to claim 2, wherein the separation boundary is formed at a boundary between the first region and the second region. 前記部材に付与するエネルギーは、熱、光のいずれかを含む、請求項19に記載の基板の製造方法。   20. The method for manufacturing a substrate according to claim 19, wherein the energy applied to the member includes any of heat and light. 前記エネルギーの付与により変化する特性が、樹脂層の硬度であり、前記分離境界部を起点に凝集破壊することで前記第1領域と前記第2領域とを分離する請求項19又は20に記載の基板の製造方法。   21. The characteristic according to claim 19, wherein the characteristic that changes by the application of the energy is a hardness of the resin layer, and the first region and the second region are separated by cohesive failure starting from the separation boundary. Substrate manufacturing method. 前記部材がポジ型の感光性樹脂であり、支持体を剥離する工程の前に、前記第2領域を溶剤により除去する工程を含む請求項19に記載の基板の製造方法。   20. The method for manufacturing a substrate according to claim 19, wherein the member is a positive photosensitive resin, and the method includes a step of removing the second region with a solvent before the step of peeling the support. 基体と、該基体のおもて面に形成された液体を吐出するためのエネルギー発生素子と、該エネルギー発生素子の上に液体を配置する液体流路と、該液体流路に連通して液体を吐出する吐出口と、前記基体の前記おもて面と裏面に貫通し、該液体流路に液体を供給する液体供給口と、を備える液体吐出ヘッド用基板の製造方法であって、前記液体流路の壁部もしくは前記吐出口を形成する部材の少なくとも一部が請求項1〜22のいずれか一項に記載の基板の製造方法により形成される部材からなることを特徴とする液体吐出ヘッド用基板の製造方法。   A base, an energy generating element for discharging a liquid formed on the front surface of the base, a liquid flow path for disposing the liquid on the energy generating element, and a liquid communicating with the liquid flow path. And a liquid supply port that penetrates through the front and back surfaces of the base and supplies liquid to the liquid flow path, comprising: A liquid discharge, wherein at least a part of a wall of a liquid flow path or a member forming the discharge port is formed of a member formed by the method for manufacturing a substrate according to any one of claims 1 to 22. A method for manufacturing a head substrate.
JP2018180594A 2018-09-26 2018-09-26 Substrate and liquid ejection head substrate manufacturing method Pending JP2020049755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018180594A JP2020049755A (en) 2018-09-26 2018-09-26 Substrate and liquid ejection head substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180594A JP2020049755A (en) 2018-09-26 2018-09-26 Substrate and liquid ejection head substrate manufacturing method

Publications (1)

Publication Number Publication Date
JP2020049755A true JP2020049755A (en) 2020-04-02

Family

ID=69995235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180594A Pending JP2020049755A (en) 2018-09-26 2018-09-26 Substrate and liquid ejection head substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP2020049755A (en)

Similar Documents

Publication Publication Date Title
US8158494B2 (en) Method for processing a substrate, method for manufacturing a semiconductor chip, and method for manufacturing a semiconductor chip having a resin adhesive layer
US10625506B2 (en) Method for manufacturing liquid discharge head
JP6598497B2 (en) Liquid discharge head and manufacturing method thereof
JP5279686B2 (en) Method for manufacturing liquid discharge head
JP7023644B2 (en) Manufacturing method of liquid discharge head
US9809027B2 (en) Method of manufacturing structure and method of manufacturing liquid ejection head
JP2015104876A (en) Method of manufacturing liquid discharge head
JP2010137460A (en) Method for manufacturing inkjet recording head
JP2005303214A (en) Grinding method for semiconductor wafer
JP6579854B2 (en) Manufacturing method of fine structure and manufacturing method of liquid discharge head
JP2016175312A (en) Method for manufacturing liquid discharge head
JP2020049755A (en) Substrate and liquid ejection head substrate manufacturing method
JP7009225B2 (en) Manufacturing method of structure, manufacturing method of liquid discharge head, manufacturing method of protective member, protective substrate and protective substrate
US10894410B2 (en) Method of manufacturing liquid ejection head and method of forming resist
JP7179554B2 (en) Method for manufacturing substrate with resin layer and method for manufacturing liquid ejection head
JP7187199B2 (en) METHOD FOR TRANSFERRING MEMBER AND METHOD FOR MANUFACTURING LIQUID EJECTION HEAD
KR101376402B1 (en) Liquid discharge head manufacturing method
US11465418B2 (en) Manufacturing method for structure and manufacturing method for liquid ejection head
JP2020049754A (en) Substrate manufacturing method
JP7071231B2 (en) Flattening device, flattening method, article manufacturing method, and method for creating droplet placement pattern data
JP2019155804A (en) Resin layer forming method and liquid discharge head manufacturing method
JP6305035B2 (en) Method for manufacturing liquid discharge head
JP2019043106A (en) Method for manufacturing liquid discharge head and method for manufacturing structure
WO2018052045A1 (en) Substrate bonding method and laminated body production method
JP2020049756A (en) Manufacturing method of substrate with resin layer and manufacturing method of element substrate for liquid discharge head