JP2020049402A - Purifying material for treating water, and method of producing the same - Google Patents

Purifying material for treating water, and method of producing the same Download PDF

Info

Publication number
JP2020049402A
JP2020049402A JP2018178907A JP2018178907A JP2020049402A JP 2020049402 A JP2020049402 A JP 2020049402A JP 2018178907 A JP2018178907 A JP 2018178907A JP 2018178907 A JP2018178907 A JP 2018178907A JP 2020049402 A JP2020049402 A JP 2020049402A
Authority
JP
Japan
Prior art keywords
water
glass frit
water treatment
metal
purification material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018178907A
Other languages
Japanese (ja)
Inventor
彰 大場
Akira Oba
彰 大場
隆明 篠原
Takaaki Shinohara
隆明 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018178907A priority Critical patent/JP2020049402A/en
Publication of JP2020049402A publication Critical patent/JP2020049402A/en
Pending legal-status Critical Current

Links

Abstract

To provide a purifying material for treating water, which is not easily swollen by water and hence can be made to have a large purifying capacity per unit volume, and can be produced by low temperature calcination and hence can control thermal degradation of its purifying component, can increase its purifying capacity per unit mass, and can increase an amount of water that can be treated.SOLUTION: A glass frit and a water soluble polymer are added to and mixed with a metal titanate or a metal manganate, and the mixture is pelletized and calcined. Clay mineral, conventionally used as a binder, is hygroscopic and therefore a purifying material employing the clay mineral is easily swollen by water. A glass frit is not hygroscopic and therefore is not swollen by water. Hence, a purifying material for a water treatment employing a glass frit according to the present invention is not easily swollen by water and can be made to have a higher bulk density at a time of packing.SELECTED DRAWING: None

Description

本発明は水処理用浄化材及びその製造方法に関するものであり、特に水中の汚染物質の浄化成分であるチタン酸金属塩又はマンガン酸金属塩をバインダーにより造粒、焼成してなる水処理用浄化材及びその製造方法に関する。   The present invention relates to a purification material for water treatment and a method for producing the same, and more particularly to a purification material for water treatment obtained by granulating and baking a metal titanate or a metal manganate which is a component for purifying contaminants in water with a binder. The present invention relates to a material and a method for manufacturing the same.

水中の放射性物質を吸着除去するための水処理用浄化材として、特許文献1には、二チタン酸カリウム等のチタン酸塩をバインダーで造粒し、造粒物を焼成してなる吸着材が提案されている。この特許文献1には、バインダーとしてアタパルジャイト等の粘土鉱物を用い、更に可塑剤としてポリビニルアルコール(PVA)等の水溶性高分子を混合することが記載されている。このように、バインダーと可塑剤を用いて造粒、焼成することにより、浄化性能を大きく損なうことなく、十分な取り扱い耐久性を有する球状の浄化材を製造することができる。   As a purification material for water treatment for adsorbing and removing radioactive substances in water, Patent Document 1 discloses an adsorbent obtained by granulating a titanate such as potassium dititanate with a binder and firing the granulated material. Proposed. Patent Document 1 describes that a clay mineral such as attapulgite is used as a binder, and a water-soluble polymer such as polyvinyl alcohol (PVA) is further mixed as a plasticizer. Thus, by performing granulation and baking using a binder and a plasticizer, a spherical purifying material having sufficient handling durability can be manufactured without significantly impairing the purifying performance.

特開2013−246145号公報JP 2013-246145 A

特許文献1のように、バインダーとして粘土鉱物を用いた従来の浄化材では、次のような問題がある。
(1) 水に浸漬すると体積が膨潤するため、吸着塔に充填して使用する際、浄化材の膨潤で吸着塔が閉塞しないように、充填に先立ち、予め水で膨潤させる。
(2) 浄化材の膨潤により、吸着塔充填時の嵩密度が低下するため、結果的に浄化材の単位体積当たりの吸着容量が低下し、処理可能な水量が減少してしまう。
(3) 500〜900℃の高温で焼成するため、焼成中の二チタン酸カリウムの熱劣化(結晶構造の変化)で本来の吸着性能が損なわれ、吸着容量が低下する可能性がある。
A conventional purifying material using a clay mineral as a binder as in Patent Document 1 has the following problems.
(1) Since the volume swells when immersed in water, it is swollen with water before filling so that the adsorption tower is not blocked by the swelling of the purification material when used in the adsorption tower.
(2) Due to the swelling of the purification material, the bulk density at the time of filling the adsorption tower is reduced, and as a result, the adsorption capacity per unit volume of the purification material is reduced, and the amount of water that can be treated is reduced.
(3) Since the calcination is performed at a high temperature of 500 to 900 ° C., the original adsorption performance may be impaired due to thermal degradation (change in crystal structure) of potassium dititanate during calcination, and the adsorption capacity may be reduced.

本発明は上記従来の問題点を解決し、水に膨潤し難く、従って、単位体積当たりの浄化能力が大きく、また、低温焼成で製造することができるため浄化成分の熱劣化を抑制して単位質量当たりの浄化能力が大きく、処理可能水量の向上を図ることができる水処理用浄化材及びその製造方法を提供することを課題とする。   The present invention solves the above-mentioned conventional problems, hardly swells in water, and therefore has a large purification capacity per unit volume. An object of the present invention is to provide a purification material for water treatment, which has a large purification capacity per mass and can increase the amount of water that can be treated, and a method for producing the same.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、バインダーとしてガラスフリットを用いることで、粘土鉱物を用いた場合よりも低温焼成により製造することができ、また、水による膨潤量が小さい水処理用浄化材を得ることができることを見出した。   The present inventor has conducted intensive studies to solve the above problems, and as a result, by using glass frit as a binder, it can be manufactured by firing at a lower temperature than when using a clay mineral, and the amount of swelling due to water It has been found that a purification material for water treatment having a small water content can be obtained.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such knowledge, and has the following gist.

[1] チタン酸金属塩又はマンガン酸金属塩と、ガラスフリット及び水溶性高分子とを混合して造粒し、造粒物を焼成することを特徴とする水処理用浄化材の製造方法。 [1] A method for producing a purification material for water treatment, comprising mixing a metal titanate or a metal manganate, a glass frit and a water-soluble polymer, granulating the mixture, and firing the granulated material.

[2] 前記水溶性高分子がカルボキシメチルセルロースであることを特徴とする[1]に記載の水処理用浄化材の製造方法。 [2] The method for producing a purification material for water treatment according to [1], wherein the water-soluble polymer is carboxymethyl cellulose.

[3] チタン酸金属塩又はマンガン酸金属塩に対するガラスフリットの混合量が5〜40質量%で、水溶性高分子の混合量が0.5〜5質量%であることを特徴とする[1]又は[2]に記載の水処理用浄化材の製造方法。 [3] The mixing amount of the glass frit to the metal titanate or the metal manganate is 5 to 40% by mass, and the mixing amount of the water-soluble polymer is 0.5 to 5% by mass. ] Or [2], the method for producing a purification material for water treatment according to [2].

[4] 前記造粒物の平均粒子径が150〜3000μmであることを特徴とする[1]ないし[3]のいずれかに記載の水処理用浄化材の製造方法。 [4] The method for producing a purifying material for water treatment according to any one of [1] to [3], wherein the granulated material has an average particle diameter of 150 to 3000 µm.

[5] 前記造粒物を該ガラスフリットの軟化点以上の温度で焼成することを特徴とする[1]ないし[4]のいずれかに記載の水処理用浄化材の製造方法。 [5] The method for producing a purification material for water treatment according to any one of [1] to [4], wherein the granulated material is fired at a temperature equal to or higher than the softening point of the glass frit.

[6] チタン酸金属塩又はマンガン酸金属塩と、ガラスフリット及び水溶性高分子との混合、造粒物の焼成物よりなることを特徴とする水処理用浄化材。 [6] A purification material for water treatment, comprising a mixture of a metal titanate or a metal manganate, a glass frit and a water-soluble polymer, and a calcined product of a granulated product.

[7] 前記水溶性高分子がカルボキシメチルセルロースであることを特徴とする[6]に記載の水処理用浄化材。 [7] The purification material for water treatment according to [6], wherein the water-soluble polymer is carboxymethyl cellulose.

[8] チタン酸金属塩又はマンガン酸金属塩に対するガラスフリットの割合が5〜40質量%で、水溶性高分子の割合が0.5〜5質量%であることを特徴とする[6]又は[7]に記載の水処理用浄化材。 [8] The ratio of the glass frit to the metal titanate or the metal manganate is 5 to 40% by mass, and the ratio of the water-soluble polymer is 0.5 to 5% by mass [6] or The purification material for water treatment according to [7].

[9] 前記造粒物の平均粒子径が150〜3000μmであることを特徴とする[6]ないし[8]のいずれかに記載の水処理用浄化材。 [9] The purification material for water treatment according to any one of [6] to [8], wherein the average particle diameter of the granulated product is 150 to 3000 µm.

[10] 前記ガラスフリットの軟化点が300〜800℃であることを特徴とする[6]ないし[9]のいずれかに記載の水処理用浄化材。 [10] The purification material for water treatment according to any one of [6] to [9], wherein the softening point of the glass frit is 300 to 800 ° C.

本発明によれば、バインダーとしてガラスフリットを用いることで、粘土鉱物を用いた場合に比べて低温での焼成が可能となり、焼成時の浄化成分の熱劣化を抑制することができる。また、従来バインダーと使用されている粘土鉱物は吸湿性を有し、このため粘土鉱物を用いた浄化材は水に膨潤し易いが、ガラスフリットは吸湿性がないため、水に膨潤しない。このためガラスフリットを用いた本発明の水処理用浄化材は、水により膨潤し難く、充填時の嵩密度を大きくすることができる。
このようなことから、本発明の水処理用浄化材によれば、単位体積当たり及び単量質量当たりの浄化性能の向上、処理可能水量の増大を図ることができる。
According to the present invention, by using glass frit as a binder, firing at a lower temperature becomes possible as compared with the case of using a clay mineral, and thermal degradation of a purification component during firing can be suppressed. In addition, clay minerals conventionally used as binders have hygroscopicity, and therefore, a purifying material using clay minerals easily swells in water, but glass frit does not swell in water because it has no hygroscopicity. For this reason, the purification material for water treatment of the present invention using a glass frit is unlikely to swell with water, and can increase the bulk density at the time of filling.
From the above, according to the purification material for water treatment of the present invention, the purification performance per unit volume and per unit mass can be improved, and the amount of water that can be treated can be increased.

以下、本発明の実施の形態を詳細に説明するが、以下に説明する実施形態は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではなく、本発明はその要旨を超えない範囲において、以下の実施形態に開示される各要素を種々変更して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the embodiments described below are intended to facilitate understanding of the present invention, and do not limit the present invention in any way. Can be implemented by variously changing each element disclosed in the following embodiments without departing from the scope of the invention.

<浄化成分>
本発明で用いる浄化成分はチタン酸金属塩又はマンガン酸金属塩である。
<Purifying component>
The purifying component used in the present invention is a metal titanate or a metal manganate.

チタン酸金属塩は、放射性ストロンチウム等の放射性物質の吸着能を有し、放射性物質を含む水の浄化に有用である。   The metal titanate has an ability to adsorb radioactive substances such as radioactive strontium, and is useful for purifying water containing radioactive substances.

チタン酸金属塩としては、チタン酸アルカリ金属塩が好ましく、特に層状の結晶構造を持つチタン酸アルカリ金属塩が好ましく、例えば二チタン酸カリウム(KTi)、三チタン酸ナトリウム(NaTi)、四チタン酸カリウム(KTi)などが挙げられる。 The metal titanate is preferably an alkali metal titanate, particularly preferably an alkali metal titanate having a layered crystal structure. For example, potassium dititanate (K 2 Ti 2 O 5 ), sodium trititanate (Na 2 Ti 3 O 7 ) and potassium tetratitanate (K 2 Ti 4 O 9 ).

マンガン酸金属塩は層状の結晶構造もしくはトンネル状の結晶構造を有しているものが望ましい。例えばマンガン酸ナトリウム(NaMn)などが挙げられる。 The metal manganate preferably has a layered crystal structure or a tunnel-shaped crystal structure. Examples include sodium manganate (Na 2 Mn 3 O 7 ).

チタン酸金属塩又はマンガン酸金属塩は平均粒子径が1〜150μmの範囲にある粉末状であることが好ましい。ここで、平均粒子径は、例えばレーザー回折式粒度分布測定装置により測定することができる。   The metal titanate or the metal manganate is preferably in the form of powder having an average particle diameter in the range of 1 to 150 μm. Here, the average particle diameter can be measured by, for example, a laser diffraction type particle size distribution analyzer.

チタン酸金属塩の平均粒子径が1〜150μmの範囲であれば、吸着容量も高く、また、造粒工程におけるハンドリング性にも優れる。即ち、平均粒子径が1μm以上であれば、飛散や静電気による容器付着など製造上の難点が生じることがなく、また、平均粒子径が150μm以下であれば、比表面積の低下で吸着容量が低下することもない。
従って、本発明においては、このような粒子径のチタン酸金属塩を用いることが好ましい。チタン酸金属塩の平均粒子径は、より好ましくは4〜50μmである。
When the average particle diameter of the metal titanate is in the range of 1 to 150 μm, the adsorption capacity is high and the handling property in the granulation step is excellent. That is, if the average particle size is 1 μm or more, there is no production difficulty such as scattering or adhesion of a container due to static electricity, and if the average particle size is 150 μm or less, the adsorption capacity decreases due to a decrease in specific surface area. Nothing to do.
Therefore, in the present invention, it is preferable to use a metal titanate having such a particle size. The average particle size of the metal titanate is more preferably 4 to 50 μm.

チタン酸金属塩は1種のみを用いてもよく、2種以上を混合して用いてもよい。   The metal titanate may be used alone or in combination of two or more.

マンガン酸金属塩についてもチタン酸金属塩と同様に平均粒子径が1〜150μmであれば、ハンドリング性、浄化性能に優れたものとなる。マンガン酸金属塩の平均粒子径は特に4〜150μmであることが好ましい。   As for the metal manganate, as in the case of the metal titanate, if the average particle diameter is 1 to 150 μm, the handleability and the purification performance are excellent. The average particle size of the metal manganate is particularly preferably from 4 to 150 μm.

マンガン酸金属塩は1種のみを用いてもよく、2種以上を混合して用いてもよい。   The metal manganate may be used alone or in combination of two or more.

なお、処理対象水の水質に応じてチタン酸金属塩の1種又は2種以上とマンガン酸金属塩の1種又は2種以上とを混合して用いてもよいが、一般的にはチタン酸金属塩とマンガン酸金属塩とは混合されずに用いられる。   Depending on the quality of the water to be treated, one or more of the metal titanates and one or more of the metal manganates may be used as a mixture. The metal salt and the metal manganate are used without being mixed.

<ガラスフリット>
本発明では、バインダーとしてガラスフリットを用いることを特徴とする。
ガラスフリットの原料は特に限定するものではない。低温焼結性の観点から、ガラスフリットとしては、軟化点が300〜800℃、特に500〜650℃のものを用いることが望ましい。
また、造粒工程におけるハンドリング性の観点より、ガラスフリットとしては平均粒子径0.1μm以上のものを用いることが好ましく、一方で、被処理水と水処理用浄化材とを効率よく接触させる観点より、ガラスフリットの平均粒子径は50μm以下であることが好ましい。ガラスフリットの粒子径が大き過ぎると、ガラスフリットの占める比表面積が小さく、チタン酸金属塩又はマンガン酸金属塩を十分に結着できないおそれがある。
より好ましいガラスフリットの平均粒子径は0.5〜20μmである。
<Glass frit>
The present invention is characterized in that a glass frit is used as a binder.
The raw material of the glass frit is not particularly limited. From the viewpoint of low-temperature sintering, it is desirable to use a glass frit having a softening point of 300 to 800 ° C, particularly 500 to 650 ° C.
Further, from the viewpoint of handling properties in the granulation step, it is preferable to use a glass frit having an average particle diameter of 0.1 μm or more, while, on the other hand, a viewpoint of efficiently contacting the water to be treated and the purification material for water treatment. More preferably, the average particle size of the glass frit is 50 μm or less. If the particle size of the glass frit is too large, the specific surface area occupied by the glass frit may be small, and the metal titanate or the metal manganate may not be sufficiently bound.
A more preferred average particle size of the glass frit is 0.5 to 20 μm.

ガラスフリットについても1種のみを用いてもよく、平均粒子径やガラス組成、軟化点等の異なるものを2種以上混合して用いてもよい。   As the glass frit, only one kind may be used, or two or more kinds having different average particle diameters, glass compositions, softening points and the like may be mixed and used.

バインダーとしてのガラスフリットは、チタン酸金属塩又はマンガン酸金属塩に対して5〜40質量%、特に10〜20質量%の割合で用いることが好ましい。ガラスフリットの添加量が少ないと得られる浄化材の強度が十分でない傾向があり、多過ぎると相対的にチタン酸金属塩又はマンガン酸金属塩の含有量が少なくなって、浄化性能が低下する傾向にある。   The glass frit as the binder is preferably used at a ratio of 5 to 40% by mass, particularly 10 to 20% by mass based on the metal titanate or the metal manganate. If the added amount of the glass frit is small, the strength of the obtained purifying material tends to be insufficient, and if it is too large, the content of the metal titanate or the metal manganate relatively decreases, and the purifying performance tends to decrease. It is in.

<水溶性高分子>
水溶性高分子は可塑剤として機能するものであり、本発明において、水溶性高分子としてはカルボキシメチルセルロース(CMC)、ポリアクリル酸ソーダ、ポリアクリル酸、ポリエチレングリコール、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)等の1種又は2種を用いることができる。これらのうち、水を多く含ませることができる観点からカルボキシメチルセルロースを用いることが好ましい。
<Water-soluble polymer>
The water-soluble polymer functions as a plasticizer. In the present invention, examples of the water-soluble polymer include carboxymethylcellulose (CMC), sodium polyacrylate, polyacrylic acid, polyethylene glycol, polyvinyl alcohol (PVA), and polyvinylpyrrolidone. One or two types such as (PVP) can be used. Of these, carboxymethylcellulose is preferably used from the viewpoint that a large amount of water can be contained.

水溶性高分子は、チタン酸金属塩又はマンガン酸金属塩に対して0.5〜5質量%、特に1〜3質量%用いることが好ましい。水溶性高分子が上記範囲内であれば、優れた造粒成形性を得ることができる。   The water-soluble polymer is preferably used in an amount of 0.5 to 5% by mass, particularly 1 to 3% by mass, based on the metal titanate or the metal manganate. When the amount of the water-soluble polymer is within the above range, excellent granulation moldability can be obtained.

<混合・造粒工程>
本発明においては、チタン酸金属塩又はマンガン酸金属塩に所定量のガラスフリットと水溶性高分子を添加し、更に水を加えて混練し、得られた混練物を造粒する。
ここで、水の添加量はチタン酸金属塩又はマンガン酸金属塩に対して30〜70質量%、特に40〜60質量%とすることが、優れた混練性、造粒成形性を得る上で好ましい。
<Mixing / granulation process>
In the present invention, a predetermined amount of a glass frit and a water-soluble polymer are added to a metal titanate or a metal manganate, and water is further added and kneaded, and the obtained kneaded product is granulated.
Here, the addition amount of water is preferably 30 to 70% by mass, particularly 40 to 60% by mass based on the metal titanate or the metal manganate, in order to obtain excellent kneading properties and granulation moldability. preferable.

なお、この混練に当っては、ガラスフリット、水溶性高分子以外の他の添加剤、例えばデンプン、乳糖、アルギン酸等の可塑剤等を本発明の目的を損なわない範囲で添加してもよい。   In this kneading, additives other than the glass frit and the water-soluble polymer, for example, a plasticizer such as starch, lactose, and alginic acid may be added as long as the object of the present invention is not impaired.

チタン酸金属塩又はマンガン酸金属塩、ガラスフリット、水溶性高分子、水及び必要に応じて用いられる他の添加剤を混練する方法としては、混練時に大きな剪断力を加えることで、これらを十分に均一に混練することができる方法であればよく、特に制限はないが、スパルタンリューザーなどの高速混合細粒機で混練することが好ましい。また、押出し造粒機を用いて、混練と造粒を同時に行うようにすることもできる。   As a method of kneading a metal titanate or a metal manganate, a glass frit, a water-soluble polymer, water, and other additives used as necessary, a sufficient shear force is applied during kneading to sufficiently Any method can be used as long as it can be uniformly kneaded, and there is no particular limitation, but kneading is preferably performed using a high-speed mixing fine granulator such as a Spartan luzer. Also, kneading and granulation can be performed simultaneously using an extrusion granulator.

上記の混練工程で得られた混合物を造粒する方法としては、特に制限はなく、転動造粒法、又は押出し造粒機を用いて柱状造粒物とした後、マルメライザーなどの成形機を用いて球状に成形する押出造粒法が挙げられる。特に、造粒物の密度を上げる観点から押出造粒法が好ましい。   The method of granulating the mixture obtained in the above kneading step is not particularly limited, and is performed by a rolling granulation method, or a columnar granulation using an extrusion granulator, and then a molding machine such as a marmerizer. Extrusion granulation method of forming into a sphere by using a method. In particular, the extrusion granulation method is preferable from the viewpoint of increasing the density of the granulated material.

造粒により得られる造粒物の形状としては、球状が好ましいが、柱状、盤状、その他の形状であってもよい。
造粒物の平均粒子径は好ましくは150〜3000μm、より好ましくは300〜2000μmである。この造粒物の大きさが上記範囲よりも大きいと、表面積が小さくなってしまうため、浄化性能が低下し、小さいと吸着塔等のストレーナーからリークしたり、吸着塔の差圧が上昇したりするおそれがある。
なお、ここで、造粒物の粒子径とは、造粒物が球状であればその直径に該当し、その他の形状の場合、当該造粒物と同等の体積を有する球の直径をさす。
The shape of the granulated product obtained by granulation is preferably spherical, but may be columnar, disk-shaped, or another shape.
The average particle size of the granulated product is preferably 150 to 3000 µm, more preferably 300 to 2000 µm. If the size of the granulated material is larger than the above range, the surface area is reduced, so that the purification performance is reduced.If the size is small, leakage from a strainer such as an adsorption tower or a differential pressure of the adsorption tower increases. There is a possibility that.
Here, the particle diameter of the granulated material corresponds to the diameter of the granulated material if the granulated material is spherical, and refers to the diameter of a sphere having the same volume as the granulated material when the granulated material has another shape.

また、この造粒物は、粒子径のバラツキが少なく粒子径が揃ったものであることが好ましく、均等係数(試料の粒度加積曲線において、全試料の60%が通過する試料の粒子径と10%が通過する試料の粒子径の比)が2以下、特に1〜1.5であることが好ましい。このように均等係数の小さい造粒物を得るために、造粒により得られた造粒物を、乾燥前に又は乾燥後に、常法に従って分級・整粒する分級・整粒工程を行うことが好ましい。   Further, it is preferable that the granulated material has a small particle diameter variation and a uniform particle diameter, and has a uniformity coefficient (in the particle size accumulation curve of the sample, the particle diameter of a sample through which 60% of all the samples pass). The ratio of the particle size of the sample through which 10% passes) is 2 or less, particularly preferably 1 to 1.5. In order to obtain a granulated product having a small uniformity coefficient as described above, the granulated product obtained by granulation may be subjected to a classification and sizing step of classifying and sizing according to a conventional method before or after drying. preferable.

<乾燥工程>
本発明においては、造粒工程で得られた造粒物を焼成するに先立ち、乾燥を行って、造粒物中の水分を揮発除去することが好ましく、この乾燥は、熱風乾燥機等を用いて、50〜150℃で1〜24時間程度行うことが好ましい。
<Drying process>
In the present invention, prior to firing the granulated product obtained in the granulation step, it is preferable to perform drying to volatilize and remove water in the granulated product, and the drying is performed using a hot-air dryer or the like. It is preferable to carry out at 50 to 150 ° C. for about 1 to 24 hours.

<焼成工程>
乾燥後の造粒物は焼成に先立ち予備焼成により脱脂処理して、造粒物中の水溶性高分子の一部を酸化分解除去することが好ましい。
この脱脂工程は、200〜400℃で1〜5時間程度行うことが好ましい。
<Baking process>
It is preferable that the dried granules are degreased by pre-firing prior to firing to remove a part of the water-soluble polymer in the granules by oxidative decomposition.
This degreasing step is preferably performed at 200 to 400 ° C. for about 1 to 5 hours.

焼成工程の温度は用いるガラスフリットの軟化点によっても異なるが、ガラスフリットの軟化点又は軟化点より高い温度、好ましくはガラスフリットの軟化点〜ガラスフリットの軟化点+100℃の温度範囲、例えば、軟化点+1℃〜軟化点+80℃、特に軟化点+1℃〜軟化点+50℃とすることが好ましい。
焼成温度が上記下限未満(ガラスフリットの軟化点未満)ではガラスフリットを十分に焼結させて高強度の水処理用浄化材を得ることができない場合がある。焼成温度が上記上限よりも高いと浄化成分の熱劣化をひき起こすおそれがある。
The temperature of the firing step varies depending on the softening point of the glass frit to be used, but the softening point of the glass frit or a temperature higher than the softening point, preferably a temperature range from the softening point of the glass frit to the softening point of the glass frit + 100 ° C, for example, softening It is preferable that the temperature is from + 1 ° C to softening point + 80 ° C, particularly from + 1 ° C to + 50 ° C.
If the firing temperature is lower than the lower limit (less than the softening point of the glass frit), the glass frit may not be sufficiently sintered to obtain a high-strength purification material for water treatment. If the firing temperature is higher than the above upper limit, there is a possibility that the purification component may be thermally degraded.

焼成時間は、焼成温度によっても異なるが、生産効率を損なうことなく、ガラスフリットを充分に焼結させて高強度の浄化材を得るために0.5〜24時間程度とすることが好ましい。   The firing time varies depending on the firing temperature, but is preferably about 0.5 to 24 hours in order to sufficiently sinter the glass frit and obtain a high-strength purifying material without impairing the production efficiency.

なお、焼成手段には特に制限はなく、電気式トンネル炉、ガス燃焼式トンネル炉、回分式キルンなどを用いて酸素含有ガスを供給しながら焼成することが好ましく、特に、電気式トンネル炉が好適である。   The firing means is not particularly limited, and it is preferable to perform firing while supplying an oxygen-containing gas using an electric tunnel furnace, a gas-fired tunnel furnace, a batch kiln, or the like, and in particular, an electric tunnel furnace is preferable. It is.

<水処理用浄化材>
ガラスフリットをバインダーとして製造された本発明の水処理用浄化材は、チタン酸金属塩又はマンガン酸金属塩本来の浄化性能が損なわれることなく、ガラスフリットの焼結で十分な機械的強度を示すと共に、その低膨潤性により嵩密度を上げることができ、吸着塔等への充填密度を高めて高い浄化性能を発揮することができる。
<Purification materials for water treatment>
The purification material for water treatment of the present invention produced using a glass frit as a binder shows sufficient mechanical strength by sintering the glass frit without impairing the original purification performance of the metal titanate or the metal manganate. At the same time, the bulk density can be increased by its low swelling property, and the packing density in an adsorption tower or the like can be increased to exhibit high purification performance.

以下、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

以下の実施例及び比較例で用いた原材料は以下の通りである。
<チタン酸金属塩>
平均粒子径20μmの二チタン酸カリウム
Raw materials used in the following Examples and Comparative Examples are as follows.
<Metal titanate>
Potassium dititanate having an average particle size of 20 μm

<ガラスフリット>
ガラスフリットA:平均粒子径5μm、軟化点555℃
ガラスフリットB:平均粒子径2.6μm、軟化点565℃
ガラスフリットC:平均粒子径3.3μm、軟化点649℃
ガラスフリットD:平均粒子径4.6μm、軟化点375℃
<Glass frit>
Glass frit A: average particle size 5 μm, softening point 555 ° C.
Glass frit B: average particle size 2.6 μm, softening point 565 ° C.
Glass frit C: average particle size 3.3 μm, softening point 649 ° C.
Glass frit D: average particle size 4.6 μm, softening point 375 ° C.

<水溶性高分子>
カルボキシメチルセルロース(CMC)
ポリビニルアルコール(PVA)
<Water-soluble polymer>
Carboxymethyl cellulose (CMC)
Polyvinyl alcohol (PVA)

<粘土鉱物>
アタパルジャイト
<Clay mineral>
Attapulgite

また、以下の実施例及び比較例で得られた水処理用浄化材については、以下の(1)〜(3)の評価を行った。   Further, the following (1) to (3) were evaluated for the purifying materials for water treatment obtained in the following Examples and Comparative Examples.

(1) 強度
JIS K1474に記載の活性炭試験法において、硬度90%以上のものを強度が十分「○」であるとし、90%未満のものを強度が不十分「×」であるとした。
(1) Strength In the activated carbon test method described in JIS K1474, those with a hardness of 90% or more were judged to have a sufficient strength of “」 ”, and those with a hardness of less than 90% were judged to have an insufficient strength of“ X ”.

(2) 嵩密度
水に膨潤させた水処理用浄化材を10mL採取し、これを110℃で2時間乾燥させて水分を完全にとばした後その質量W(g)を計測し、W/10で嵩密度(g−dry/mL)を求めた。
この嵩密度が大きいほど膨潤し難いことを示す。
また、比較例1の水処理用浄化材の嵩密度に対する増加率(%)を算出した。
(2) Bulk Density 10 mL of a water treatment purification material swollen in water was sampled, dried at 110 ° C. for 2 hours to completely remove water, and its mass W (g) was measured. Was used to determine the bulk density (g-dry / mL).
The larger the bulk density, the harder it is to swell.
Further, the increase rate (%) with respect to the bulk density of the purification material for water treatment of Comparative Example 1 was calculated.

(3) 吸着試験
Sr濃度100mg/L、NaCl濃度10g/Lで平衡pH12となるようにNaOHを添加した試験水を用い、液固比100mL/g−dryとなるように水処理用浄化材を添加し(試験水100mg/Lに水処理用浄化材1g−dry)、3日間振盪する回分試験を行った。なお、水処理用浄化材は十分量の水に膨潤させたものを用いた。
平衡到達時の試験水中のSr濃度をCeq[μg−Sr/mL]、そのときの水処理用浄化材単位質量当たりのSr吸着量(飽和吸着量)をqeq[μg−Sr/g]として、以下の式から分配係数K[mL/g]を求めた。
=qeq/Ceq
分配係数が大きいほど吸着性能に優れる。
(3) Adsorption test Using test water to which NaOH was added at an Sr concentration of 100 mg / L and an NaCl concentration of 10 g / L to obtain an equilibrium pH 12, a purification material for water treatment was used so that the liquid-solid ratio became 100 mL / g-dry. A batch test was carried out by adding (purification material for water treatment 1 g-dry to 100 mg / L of test water) and shaking for 3 days. The water treatment purification material used was a material swelled in a sufficient amount of water.
The Sr concentration in the test water at the time of reaching the equilibrium is C eq [μg-Sr / mL], and the Sr adsorption amount (saturated adsorption amount) per unit mass of the purification material for water treatment at this time is q eq [μg-Sr / g]. The partition coefficient K d [mL / g] was determined from the following equation.
K d = q eq / C eq
The larger the partition coefficient, the better the adsorption performance.

<実施例1>
二チタン酸カリウム200gにガラスフリットAを40gとCMC10gを加えて混合し、ここへ水約100gを加えて混練した。
この混練物を、ダイス径0.7mmφのダイスを用いて押し出し造粒し、整粒・分級を行って平均粒子径約700μmの球状もしくは円柱状の造粒物を得た。
得られた造粒物を140℃で3時間乾燥して水分を除去した後、300℃で2時間の脱脂工程を行い、その後600℃で12時間焼成して水処理用浄化材を得た。
<Example 1>
To 200 g of potassium dititanate, 40 g of glass frit A and 10 g of CMC were added and mixed, and about 100 g of water was added and kneaded.
This kneaded product was extruded and granulated using a die having a die diameter of 0.7 mmφ, and subjected to sizing and classification to obtain a spherical or columnar granulated product having an average particle size of about 700 μm.
The obtained granules were dried at 140 ° C. for 3 hours to remove water, subjected to a degreasing step at 300 ° C. for 2 hours, and then calcined at 600 ° C. for 12 hours to obtain a purification material for water treatment.

得られた水処理用浄化材について、前記(1)〜(3)の評価を行い、結果を表1に示した。   The obtained purification materials for water treatment were evaluated in the above (1) to (3), and the results are shown in Table 1.

<実施例2>
ガラスフリットAの代りにガラスフリットBを用い、焼成条件を600℃で8時間としたこと以外は実施例1と同様に水処理用浄化材の製造及び評価を行って、結果を表1に示した。
<Example 2>
Production and evaluation of a water treatment purifying material were carried out and evaluated in the same manner as in Example 1 except that the glass frit B was used in place of the glass frit A and the firing conditions were set at 600 ° C. for 8 hours. The results are shown in Table 1. Was.

<実施例3>
ガラスフリットAの代りにガラスフリットCを用い、焼成条件を650℃で2時間としたこと以外は実施例1と同様に水処理用浄化材の製造及び評価を行って、結果を表1に示した。
<Example 3>
Except that glass frit C was used instead of glass frit A, and that the firing conditions were 650 ° C. for 2 hours, a purification material for water treatment was produced and evaluated in the same manner as in Example 1, and the results are shown in Table 1. Was.

<実施例4>
ガラスフリットAの代りにガラスフリットDを用い、焼成条件を400℃で2時間としたこと以外は実施例1と同様に水処理用浄化材の製造及び評価を行って、結果を表1に示した。
<Example 4>
Production and evaluation of a water treatment purifying material were performed in the same manner as in Example 1 except that the glass frit D was used instead of the glass frit A and the firing conditions were set at 400 ° C. for 2 hours. The results are shown in Table 1. Was.

<比較例1>
ガラスフリットAの代りにアタパルジャイトを用い、CMC及び水の代りに7質量%PVA水溶液約120gを加えて混練し、焼成条件を800℃で2時間としたこと以外は実施例1と同様に水処理用浄化材の製造及び評価を行って、結果を表1に示した。
<Comparative Example 1>
Attapulgite was used in place of glass frit A, and about 120 g of a 7% by mass aqueous solution of PVA was added and kneaded instead of CMC and water. The water treatment was performed in the same manner as in Example 1 except that the firing conditions were set at 800 ° C. for 2 hours. The production and evaluation of the cleaning material were performed, and the results are shown in Table 1.

Figure 2020049402
Figure 2020049402

表1より、本発明によれば、粘土鉱物をバインダーとして用いた従来の水処理用浄化材に比べて嵩密度を大きくすることができ、単位体積当たりの浄化性能を向上させることができ、また、低温焼結が可能であることから、浄化成分の熱劣化を防止して単位質量当たりの浄化性能も高めることができることが分かる。   From Table 1, according to the present invention, the bulk density can be increased as compared with a conventional water treatment purifying material using a clay mineral as a binder, and the purifying performance per unit volume can be improved. Since low-temperature sintering is possible, it can be seen that thermal degradation of the purification component can be prevented and the purification performance per unit mass can be improved.

Claims (10)

チタン酸金属塩又はマンガン酸金属塩と、ガラスフリット及び水溶性高分子とを混合して造粒し、造粒物を焼成することを特徴とする水処理用浄化材の製造方法。   A method for producing a purification material for water treatment, comprising mixing and granulating a metal titanate or a metal manganate, a glass frit and a water-soluble polymer, and firing the granulated material. 前記水溶性高分子がカルボキシメチルセルロースであることを特徴とする請求項1に記載の水処理用浄化材の製造方法。   The method for producing a purification material for water treatment according to claim 1, wherein the water-soluble polymer is carboxymethyl cellulose. チタン酸金属塩又はマンガン酸金属塩に対するガラスフリットの混合量が5〜40質量%で、水溶性高分子の混合量が0.5〜5質量%であることを特徴とする請求項1又は2に記載の水処理用浄化材の製造方法。   The mixing amount of the glass frit with respect to the metal titanate or the metal manganate is 5 to 40% by mass, and the mixing amount of the water-soluble polymer is 0.5 to 5% by mass. 3. The method for producing a purification material for water treatment according to claim 1. 前記造粒物の平均粒子径が150〜3000μmであることを特徴とする請求項1ないし3のいずれか1項に記載の水処理用浄化材の製造方法。   The method for producing a purification material for water treatment according to any one of claims 1 to 3, wherein an average particle diameter of the granulated material is 150 to 3000 µm. 前記造粒物を該ガラスフリットの軟化点以上の温度で焼成することを特徴とする請求項1ないし4のいずれか1項に記載の水処理用浄化材の製造方法。   The method for producing a purification material for water treatment according to any one of claims 1 to 4, wherein the granulated material is fired at a temperature equal to or higher than the softening point of the glass frit. チタン酸金属塩又はマンガン酸金属塩と、ガラスフリット及び水溶性高分子との混合、造粒物の焼成物よりなることを特徴とする水処理用浄化材。   A purification material for water treatment, comprising a mixture of a metal titanate or a metal manganate, a glass frit and a water-soluble polymer, and a calcined product of a granulated product. 前記水溶性高分子がカルボキシメチルセルロースであることを特徴とする請求項6に記載の水処理用浄化材。   The purification material for water treatment according to claim 6, wherein the water-soluble polymer is carboxymethyl cellulose. チタン酸金属塩又はマンガン酸金属塩に対するガラスフリットの割合が5〜40質量%で、水溶性高分子の割合が0.5〜5質量%であることを特徴とする請求項6又は7に記載の水処理用浄化材。   The ratio of the glass frit to the metal titanate or the metal manganate is 5 to 40% by mass, and the ratio of the water-soluble polymer is 0.5 to 5% by mass. Purification material for water treatment. 前記造粒物の平均粒子径が150〜3000μmであることを特徴とする請求項6ないし8のいずれか1項に記載の水処理用浄化材。   The purification material for water treatment according to any one of claims 6 to 8, wherein the average particle diameter of the granulated product is 150 to 3000 µm. 前記ガラスフリットの軟化点が300〜800℃であることを特徴とする請求項6ないし9のいずれか1項に記載の水処理用浄化材。   The purification material for water treatment according to any one of claims 6 to 9, wherein the softening point of the glass frit is 300 to 800 ° C.
JP2018178907A 2018-09-25 2018-09-25 Purifying material for treating water, and method of producing the same Pending JP2020049402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018178907A JP2020049402A (en) 2018-09-25 2018-09-25 Purifying material for treating water, and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018178907A JP2020049402A (en) 2018-09-25 2018-09-25 Purifying material for treating water, and method of producing the same

Publications (1)

Publication Number Publication Date
JP2020049402A true JP2020049402A (en) 2020-04-02

Family

ID=69995069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178907A Pending JP2020049402A (en) 2018-09-25 2018-09-25 Purifying material for treating water, and method of producing the same

Country Status (1)

Country Link
JP (1) JP2020049402A (en)

Similar Documents

Publication Publication Date Title
JP2010179268A (en) Plant for producing support
JP2010179267A (en) Support, and method of producing the same
Nijhawan et al. Macroporous hydroxyapatite ceramic beads for fluoride removal from drinking water
CN1203028C (en) Granular ceramic material with high porosity
JP3799678B2 (en) High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same
JP6197482B2 (en) Method for producing strontium adsorbent
JP5747435B2 (en) High-strength zeolite bead molded body and method for producing the same
JP2020049402A (en) Purifying material for treating water, and method of producing the same
CN110382442B (en) Shaped body
JP2782744B2 (en) Method for producing binderless zeolite molded body
JP6926521B2 (en) Silver-supported zeolite molded product
WO2022091792A1 (en) Molded body, adsorbent material resulting from incorporating molded body, and method for anion removal using adsorbent material
KR101227802B1 (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
JPH08333110A (en) Granular activated carbon and its production
JP2008100908A (en) Formed activated carbon for treating waste gas, and its production method
US20180353941A1 (en) Method for preparing solids from a mixture of at least two malachite powders
JP2016526006A (en) Molded ceramic substrate composition for catalyst integration
WO2017057756A1 (en) Carbon dioxide adsorbent material and molded body containing same
JPH11349318A (en) Production of activated carbon
JP2998190B2 (en) High strength molded activated carbon
JP2002068732A (en) Binder-less zeolite bead moldings, method for manufacturing the same, and adsorption removal method by using the same
JPS59152262A (en) Porous alumina formed body
JP2020142164A (en) Production method of clarifying agent for water treatment
KR101961010B1 (en) Adsorbent For Exhaust Acid Gas And Manufacturing Method Thereof
JPH11349319A (en) Production of activated carbon